# Feasibility Study for the Remediation of Sediments Adjacent to Lockheed Martin Middle River Complex Middle River, Maryland

Prepared for:

Lockheed Martin Corporation

Prepared by:

Tetra Tech, Inc.

July 2013

Michael Mart

Michael Martin, P.G. Regional Manager

Hary Bran

Gary Braun Project Manager

## TABLE OF CONTENTS

| Section      | <u>1</u>                                                   | Page  |
|--------------|------------------------------------------------------------|-------|
| ACRO         | IYMS                                                       | xi    |
| GLOSS        | ARY                                                        | xv    |
| EXECU        | TIVE SUMMARY                                               | ES-1  |
| <b>ES</b> .1 | SITE DESCRIPTION AND HISTORY                               | ES-2  |
| ES.2         | NATURE AND EXTENT OF CONTAMINATION                         | ES-2  |
| ES.3         | RISK SUMMARY                                               | ES-3  |
| ES.4         | REMEDIAL ACTION OBJECTIVES AND PRELIMINARY REMEDI<br>GOALS |       |
| ES.5         | REMEDIAL ALTERNATIVES                                      | ES-4  |
| ES.6         | COMPARATIVE ANALYSIS OF REMEDIAL ALTERNATIVES              | ES-6  |
| ES.7         | RECOMMENDED REMEDIAL ALTERNATIVE                           | ES-9  |
| ES.8         | NEXT STEPS                                                 | ES-10 |
| 1 I          | NTRODUCTION                                                | 1-1   |
| 1.1          | REGULATORY BACKGROUND                                      |       |
| 1.2          | PURPOSE AND SCOPE                                          |       |
| 1.3          | PRE-FEASIBILITY STUDY DELIVERABLES                         |       |
| 1.4          | FEASIBILITY STUDY REPORT ORGANIZATION                      | 1-3   |
| 2 8          | SITE BACKGROUND AND CURRENT CONDITIONS                     | 2-1   |
| 2.1          | MIDDLE RIVER COMPLEX SITE BACKGROUND                       | 2-1   |
| 2.2          | ENVIRONMENTAL SETTING                                      |       |
| 2.2          | 1 Land Use                                                 |       |
| 2.2          | 2 Physiography                                             |       |
| 2.2          | Geology, Hydrogeology, and Hydrology                       |       |
| 2.2          | 4 Navigation Requirements                                  |       |
| 2.3          | SUMMARY OF PREVIOUS REMEDIAL INVESTIGATIONS AND ACTIVITIES | 2-4   |
| 2.3          | 1 Previous Upland Remediation Studies and Activities       |       |
| 2.3          | 2 Previous Sediment-Related Investigations                 |       |

| S | ection  |                                                                   | <u>Page</u> |
|---|---------|-------------------------------------------------------------------|-------------|
|   | 2.3.3   | Benthic and Fish Tissue Studies                                   | 2-7         |
|   | 2.3.4   | Bathymetry                                                        | 2-9         |
|   | 2.3.5   | Sediment Stability                                                | 2-10        |
|   | 2.3.6   | Sediment Age Dating                                               | 2-11        |
|   | 2.3.7   | Sediment Characterization                                         | 2-12        |
|   | 2.3.8   | Shear-Strength and Consolidation Characteristics                  | 2-12        |
|   | 2.3.9   | Column Settling Tests                                             | 2-13        |
|   | 2.3.10  | Dewatering Elutriate Tests and Dredge Elutriate Tests             | 2-13        |
|   | 2.4 NAT | URE AND EXTENT OF CONTAMINATION                                   | 2-15        |
|   | 2.4.1   | Sediment Cores                                                    | 2-15        |
|   | 2.4.2   | Porewater                                                         | 2-16        |
|   | 2.4.3   | Contaminant Bioavailability                                       | 2-17        |
|   | 2.5 PRE | LIMINARY CONCEPTUAL SITE MODEL OVERVIEW                           | 2-18        |
|   | 2.5.1   | Sources of Environmental Contamination                            | 2-18        |
|   | 2.5.2   | Contaminant Fate and Transport                                    | 2-19        |
|   | 2.5.3   | Current and Future Receptors of Concern and Exposure Pathways     | 2-20        |
|   |         | MARY OF THE BASELINE HUMAN HEALTH AND ECOLOGICAL<br>X ASSESSMENTS | 2-21        |
|   | 2.6.1   | Baseline Human Health Risk Assessment                             | 2-22        |
|   | 2.6.2   | Baseline Ecological Risk Assessment                               | 2-24        |
| 3 |         | DIAL ACTION OBJECTIVES AND PRELIMINARY REMEDIATION                |             |
|   |         |                                                                   |             |
|   |         | LICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS                  |             |
|   |         | EDIAL ACTION OBJECTIVES                                           |             |
|   |         | LIMINARY REMEDIATION GOALS                                        |             |
|   | 3.3.1   | Development of Human Health PRGs                                  |             |
|   | 3.3.2   | Development of Ecological PRGs                                    | 3-8         |
| 4 | SCRE    | ENING OF REMEDIAL TECHNOLOGIES AND PROCESS OPTIONS                | 54-1        |
|   | 4.1 Rem | edial Technologies and Process Options Screening Overview         | 4-1         |

| Section |                                                            | Page |
|---------|------------------------------------------------------------|------|
| 4.1.1   | Definitions                                                | 4-2  |
| 4.1.2   | Screening Criteria for Candidate Technologies              | 4-2  |
| 4.1.3   | Sustainability Considerations                              | 4-3  |
| 4.2 GEN | IERAL RESPONSE ACTIONS AND TECHNOLOGIES                    | 4-4  |
| 4.2.1   | No Action                                                  | 4-5  |
| 4.2.2   | Institutional Controls                                     | 4-5  |
| 4.2.3   | Monitored Natural Recovery                                 | 4-5  |
| 4.2.4   | Enhanced Natural Recovery                                  | 4-6  |
| 4.2.5   | Containment (Capping)                                      | 4-7  |
| 4.2.6   | Removal                                                    | 4-7  |
| 4.2.7   | In situ Treatment                                          | 4-10 |
| 4.2.8   | Ex situ Treatment                                          | 4-10 |
| 4.2.9   | Disposal/Reuse                                             | 4-11 |
| 4.3 TEC | HNOLOGY SCREENING                                          | 4-11 |
| 4.3.1   | Evaluation and Screening of Institutional Controls         | 4-11 |
| 4.3.2   | Evaluation and Screening of Monitored Natural Recovery     | 4-13 |
| 4.3.3   | Evaluation and Screening of Enhanced Natural Recovery      | 4-13 |
| 4.3.4   | Evaluation and Screening of Containment Technologies       | 4-15 |
| 4.3.5   | Evaluation and Screening of Removal Technologies           | 4-16 |
| 4.3.6   | Evaluation and Screening of Ancillary Technologies         | 4-19 |
| 4.3.7   | Evaluation and Screening of In Situ Treatment Technologies | 4-20 |
| 4.3.8   | Evaluation and Screening of Ex Situ Treatment Technologies | 4-20 |
| 4.3.9   | Evaluation and Screening of Disposal/Reuse Technologies    | 4-22 |
| 4.4 SUN | IMARY OF RETAINED TECHNOLOGIES                             | 4-24 |
| 5. DEVE | LOPMENT OF REMEDIAL ALTERNATIVES                           | 5-1  |
| 5.1 POT | ENTIAL REMEDIATION ACTION AREAS AND REMEDIAL ACTION ELS.   |      |
| 5.1.1   | Areas of Potential Concern                                 |      |
| 5.1.2   | Remedial Action Levels                                     |      |

| Sec | tion   |                                                                     | <u>Page</u> |
|-----|--------|---------------------------------------------------------------------|-------------|
| 5.  | .2 SIT | E-SPECIFIC TECHNOLOGY EVALUATION                                    | 5-4         |
|     | 5.2.1  | Site- and Project-Specific Considerations                           | 5-4         |
|     | 5.2.2  | Removal                                                             | 5-6         |
|     | 5.2.3  | Capping and Enhanced Natural Recovery (ENR)                         | 5-11        |
|     | 5.2.4  | Monitored Natural Recovery                                          | 5-14        |
|     | 5.2.5  | In situ Treatment                                                   | 5-15        |
| 5.  | .3 ASS | SEMBLY OF REMEDIAL ALTERNATIVES                                     | 5-17        |
| 5.  | .4 CO  | MMON REMEDY ELEMENTS                                                | 5-18        |
|     | 5.4.1  | Shoreline and Habitat Improvements                                  | 5-18        |
|     | 5.4.2  | Institutional Controls                                              | 5-18        |
|     | 5.4.3  | Monitoring                                                          | 5-19        |
| 5.  | .5 DE  | SCRIPTION OF ALTERNATIVES                                           | 5-20        |
|     | 5.5.1  | Alternative 1—No Action                                             | 5-20        |
|     | 5.5.2  | Alternative 2—Complete Containment                                  | 5-20        |
|     | 5.5.3  | Alternative 3—Complete Removal                                      | 5-20        |
|     | 5.5.4  | Alternative 4—Combined Action                                       | 5-21        |
| 5.  | .6 SCI | REENING ANALYSIS OF ALTERNATIVES                                    | 5-26        |
|     | 5.6.1  | Effectiveness Evaluation                                            | 5-27        |
|     | 5.6.2  | Implementability Evaluation                                         | 5-27        |
|     | 5.6.3  | Cost Evaluation                                                     | 5-28        |
| 5.  | .7 CO  | MMUNITY OUTREACH PROCESS                                            | 5-28        |
| 5.  | .8 SH  | ORT LIST OF REMEDIAL ALTERNATIVES                                   | 5-29        |
| 6   | DET    | AILED EVALUATION OF REMEDIAL ALTERNATIVES                           | 6-1         |
| 6.  | .1 NA  | TIONAL CONTINGENCY PLAN EVALUATION CRITERIA                         |             |
|     | 6.1.1  | Overall Protection of Human Health and the Environment              | 6-2         |
|     | 6.1.2  | Compliance with Applicable or Relevant and Appropriate Requirements |             |
|     | 6.1.3  | Long-Term Effectiveness and Permanence                              |             |
|     | 6.1.4  | Reductions in Toxicity, Mobility, and Volume through Treatment      |             |
|     | 6.1.5  | Short-Term Effectiveness                                            |             |

| Section |                                                              | Page |
|---------|--------------------------------------------------------------|------|
| 6.1.6   | Implementability                                             | 6-9  |
| 6.1.7   | Cost                                                         | 6-10 |
| 6.1.8   | Modifying Criteria                                           | 6-10 |
| 6.2 DET | TAILED ANALYSIS OF ALTERNATIVE 1: NO ACTION                  | 6-11 |
| 6.2.1   | Threshold Criteria                                           | 6-11 |
| 6.2.2   | Primary Balancing Criteria                                   | 6-12 |
| 6.3 DET | TAILED ANALYSIS OF ALTERNATIVE 3: COMPLETE REMOVAL           | 6-12 |
| 6.3.1   | Overall Protection of Human Health and the Environment       |      |
| 6.3.2   | Compliance with ARARs                                        | 6-13 |
| 6.3.3   | Long-Term Effectiveness and Permanence                       | 6-13 |
| 6.3.4   | Reduction in Toxicity, Mobility, or Volume through Treatment | 6-14 |
| 6.3.5   | Short-Term Effectiveness                                     | 6-14 |
| 6.3.6   | Implementability                                             | 6-15 |
| 6.3.7   | Costs                                                        | 6-16 |
| 6.3.8   | Modifying Criteria                                           | 6-16 |
| 6.4 DET | TAILED ANALYSIS OF ALTERNATIVE 4: COMBINED ACTION            | 6-17 |
| 6.4.1   | Overall Protection of Human Health and the Environment       | 6-17 |
| 6.4.2   | Compliance with ARARs                                        | 6-19 |
| 6.4.3   | Long-Term Effectiveness and Permanence                       | 6-19 |
| 6.4.4   | Reduction in Toxicity, Mobility, or Volume                   |      |
| 6.4.5   | Short-Term Effectiveness                                     |      |
| 6.4.6   | Implementability                                             |      |
| 6.4.7   | Costs                                                        |      |
| 6.4.8   | Modifying Criteria                                           |      |
| 7. COM  | PARATIVE ANALYSIS OF REMEDIAL ALTERNATIVES                   | 7-1  |
| 7.1 CO  | MPARATIVE ANALYSIS METHODOLOGY                               | 7-1  |
| 7.1.1   | Qualitative Comparative Analysis                             |      |
| 7.1.2   | Multi-Criteria Comparative Analysis                          |      |
| 7.2 TH  | RESHOLD CRITERIA                                             |      |

| Section |                                                                     | Page |
|---------|---------------------------------------------------------------------|------|
| 7.2.1   | Overall Protection of Human Health and the Environment              | 7-5  |
| 7.2.2   | Compliance with Applicable or Relevant and Appropriate Requirements | 7-6  |
| 7.3 PRI | MARY BALANCING CRITERIA                                             | 7-6  |
| 7.3.1   | Long-Term Effectiveness and Permanence                              | 7-6  |
| 7.3.2   | Reductions in Toxicity, Mobility, and Volume through Treatment      | 7-8  |
| 7.3.3   | Short-Term Effectiveness and Environmental Criteria                 | 7-8  |
| 7.3.4   | Implementability                                                    | 7-10 |
| 7.3.5   | Cost                                                                | 7-11 |
| 7.4 MOI | DIFYING CRITERIA                                                    | 7-11 |
| 7.5 CON | PARATIVE ANALYSIS SUMMARY AND CDP DECISION ANALYSIS                 | 7-12 |
| 7.6 REC | COMMENDED ALTERNATIVE                                               | 7-13 |
| 7.6.1   | Rationale for Recommendation                                        | 7-14 |
| 7.6.2   | Description of the Recommended Alternative                          | 7-14 |
| 8. REFE | RENCES                                                              | 8-1  |

### APPENDICES

| APPENDIX A—DEVELOPMENT OF | HUMAN HEALTH PRELIMINARY REMEDIATION |
|---------------------------|--------------------------------------|
| GOALS                     |                                      |

- APPENDIX B—DEVELOPMENT OF ECOLOGICAL PRELIMINARY REMEDIATION GOALS
- APPENDIX C—SEDIMENT BATHYMETRY PROFILES
- **APPENDIX D—COMMUNITY INPUT TO REMEDIAL ALTERNATIVES**
- APPENDIX E—DETAILED COST ESTIMATES
- APPENDIX F—ESTIMATION OF SHORT-TERM EFFECTS, ENVIRONMENTAL FOOTPRINT, AND SUSTAINABILITY MEASURES
- **APPENDIX G—CRITERIUM DECISION PLUS® ANALYSIS**
- APPENDIX H—RESPONSE TO MDE, EPA AND PUBLIC COMMENTS

## LIST OF TABLES

#### <u>Page</u>

| Table ES-1 | Short List of Remedial AlternativesES-11                                                                                                               |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table ES-2 | Qualitative Comparative Analysis of Remedial AlternativesES-12                                                                                         |
| Table 2-1  | Human Health Risk Assessment Summary                                                                                                                   |
| Table 2-2  | Ecological Risk Assessment Summary                                                                                                                     |
| Table 3-1  | Federal Chemical-Specific Applicable or Relevant and Appropriate<br>Requirements (ARARs) and To Be Considered (TBC) Criteria                           |
| Table 3-2  | State Chemical-Specific Applicable or Relevant and Appropriate<br>Requirements (ARARs) and To Be Considered (TBC) Criteria                             |
| Table 3-3  | Federal Location-Specific Applicable or Relevant and Appropriate<br>Requirements (ARARs) and To Be Considered (TBC) Criteria                           |
| Table 3-4  | Support Information for Preliminary Remediation Goals for Risk-Driver<br>Chemicals in Lockheed Middle River Complex Sediment                           |
| Table 3-5  | Summary of Preliminary Remediation Goals for Risk-Driver Chemicals of<br>Concern in Lockheed Middle River Complex Sediment                             |
| Table 4-1  | Identification of Candidate General Response Actions, Remedial<br>Technologies, and Process Options                                                    |
| Table 4-2  | Screening of Candidate General Response Actions, Remedial<br>Technologies, and Process Options                                                         |
| Table 5-1  | Summary of Preliminary Remediation Goals and Remedial Action<br>Levels for Risk-Driver Chemicals of Concern at Lockheed Martin Middle<br>River Complex |
| Table 5-2  | Remedial Alternatives - Actively Remediated Areas, Volumes, and Cost<br>Summary                                                                        |
| Table 5-3  | Screening Analysis of Draft Remedial Alternatives                                                                                                      |
| Table 6-1  | Remedial Alternatives – Scope, Cost, and Contaminant Mass Removal<br>Summary                                                                           |
| Table 6-2  | Remedial Alternatives - Residual Site-Wide Area Weighted-Average<br>Concentrations and Predicted Outcomes                                              |
| Table 6-3  | Summary of Short-term Effectiveness and Estimates of Implementability<br>Metrics                                                                       |
| Table 7-1  | Qualitative Comparative Analysis of Remedial Alternatives                                                                                              |

## LIST OF TABLES

#### Page

| Table 7-2 | Framework for Multi-Criteria Comparative Evaluation of Remedial Alternatives        | 7-17 |
|-----------|-------------------------------------------------------------------------------------|------|
| Table 7-3 | Multi-Criteria Comparative Analysis of Remedial Alternatives - CDP Input<br>Scoring | 7-17 |

## LIST OF FIGURES

#### Page 1

| Figure ES-1 | Middle River Complex Site Location and Vicinity MapES-13                            |
|-------------|-------------------------------------------------------------------------------------|
| Figure ES-2 | Area of Potential ConcernES-14                                                      |
| Figure ES-3 | Recommended AlternativeES-15                                                        |
| Figure 1-1  | Middle River Complex Site Location Map1-5                                           |
| Figure 2-1  | Middle River Complex Facility Map2-31                                               |
| Figure 2-2  | Middle River Complex Environmental Setting Map2-31                                  |
| Figure 2-3  | Middle River Federal Navigation Channel                                             |
| Figure 2-4  | Sediment Sample Locations2-31                                                       |
| Figure 2-5  | Middle River Complex Reference Locations                                            |
| Figure 2-6  | Middle River Site Bathymetry                                                        |
| Figure 2-7  | Average Sedimentation Rates and Maximum Bed Stress during 100-year<br>24-hour Storm |
| Figure 2-8  | Thiessen Polygons for Cadmium in Sediment2-31                                       |
| Figure 2-9  | Thiessen Polygons for Chromium in Sediment                                          |
| Figure 2-10 | Thiessen Polygons for Copper in Sediment                                            |
| Figure 2-11 | Thiessen Polygons for Lead in Sediment2-31                                          |
| Figure 2-12 | Thiessen Polygons for Mercury in Sediment2-42                                       |
| Figure 2-13 | Thiessen Polygons for Zinc in Sediment                                              |
| Figure 2-14 | Thiessen Polygons for Arsenic in Sediment                                           |
| Figure 2-15 | Thiessen Polygons for Total Aroclor in Sediment2-45                                 |
| Figure 2-16 | Thiessen Polygons for Total PAHs in Sediment                                        |

# LIST OF FIGURES

#### Page

| Figure 2-17  | Thiessen Polygons for Benzo(a)pyrene Equivalents (Positive Hits Only) in<br>Sediment |
|--------------|--------------------------------------------------------------------------------------|
| Figure 2-18  | Conceptual Site Model                                                                |
| Figure 4-1   | Example Cap Designs                                                                  |
| Figure 4-2   | Summary of Retained Technologies                                                     |
| Figure 5-1a  | Area of Potential Concern Addressing Depth to 52 inches                              |
| Figure 5-1b  | Area of Potential Concern Addressing RAOs at Surface Sediments to Six<br>Inches      |
| Figure 5-2   | Alternative 2 Complete Containment                                                   |
| Figure 5-3a  | Alternative 3A Complete Removal                                                      |
| Figure 5-3b  | Alternative 3A Removal Thiessen Polygons by Depth                                    |
| Figure 5-4a  | Alternative 3B Removal at Dark Head Cove and Cow Pen Creek5-31                       |
| Figure 5-4b  | Alternative 3B Removal Thiessen Polygons by Depth5-40                                |
| Figure 5-5   | Alternative 4A Combined Action                                                       |
| Figure 5-6   | Alternative 4B Combined Action                                                       |
| Figure 5-7   | Alternative 4C Combined Action                                                       |
| Figure 5-8a  | Alternative 4D Combined Action                                                       |
| Figure 5-8b  | Alternative 4D Removal Thiessen Polygons by Depth                                    |
| Figure 5-9   | Alternative 4E Combined Action                                                       |
| Figure 5-10  | Alternative 4F Combined Action                                                       |
| Figure 5-11  | Alternative 4G Combined Action                                                       |
| Figure 5-12  | Alternative 4H Combined Action                                                       |
| Figure 5-13a | Alternative 4I Combined Action                                                       |
| Figure 5-13b | Alternative 4I Removal Thiessen Polygons by Depth                                    |
| Figure 5-14  | Alternative 4J Combined Action                                                       |
| Figure 6-1   | Alternative 4 - Technology Application Summary                                       |
| Figure 7-1   | Comparative Analysis—Technology Application Summary                                  |

# LIST OF FIGURES

#### Page

| Figure 7-2  | Criterium Decision Plus® Analysis Model                                               | 7-22 |
|-------------|---------------------------------------------------------------------------------------|------|
| Figure 7-3  | Comparative Analysis—Achievement of RAO 1 at the End of Construction to Dredge Volume | 7-23 |
| Figure 7-4  | Comparative Analysis—Achievement of RAO 3 at the End of Construction to Dredge Volume | 7-24 |
| Figure 7-5a | Contaminant Mass Removal of COC (PCB, BaP Eqv, As, Hg) to Dredge Volume               | 7-25 |
| Figure 7-5b | Contaminant Mass Removal of COC (Cd, Zn, Pb, Cu) to Dredge Volume                     | 7-26 |
| Figure 7-6  | Comparative Analysis—Environmental Metrics                                            | 7-17 |
| Figure 7-7  | Multi-Criteria Comparative Analysis by CDP Model with Community<br>Acceptance         | 7-28 |
| Figure 7-8  | Multi-Criteria Comparative Analysis by CDP Model without Community<br>Acceptance      | 7-29 |
| Figure 7-9  | Comparative Analysis—CDP Decision Score with Community Input                          | 7-30 |
| Figure 7-10 | Comparative Analysis—CDP Decision Score without Community Input                       | 7-31 |
| Figure 7-11 | Comparative Analysis—CDP Decision Score with Benefits to Cost Ratio                   | 7-32 |
| Figure 7-12 | Recommended Alternative: Alternative 4G (Combined Action)                             | 7-33 |

# ACRONYMS

| AC              | activated carbon                                                                |
|-----------------|---------------------------------------------------------------------------------|
| ANS             | Applied NanoStructured Solutions, LLC                                           |
| AOPC            | area of potential concern                                                       |
| ARARs           | applicable or relevant and appropriate requirements                             |
| As              | arsenic                                                                         |
| atm             | atmosphere(s)                                                                   |
| AVS             | acid-volatile sulfides                                                          |
| AWQC            | ambient water quality criteria                                                  |
| BaPEq           | benzo(a)pyrene equivalents                                                      |
| bgs             | below ground surface                                                            |
| CB-B-IBI        | Chesapeake Bay Benthic Index of Biotic Integrity                                |
| CAD             | confined aquatic disposal                                                       |
| Cd              | cadmium                                                                         |
| CDF             | confined disposal facility                                                      |
| CDP             | Criterium Decision Plus <sup>®</sup>                                            |
| CERCLA          | (federal) Comprehensive Environmental Resource, Compensation, and Liability Act |
| CFR             | Code of Federal Regulations                                                     |
| cm              | centimeter(s)                                                                   |
| cm <sup>2</sup> | square centimeter(s)                                                            |
| cm/year         | centimeter(s) per year                                                          |
| CO <sub>2</sub> | carbon dioxide                                                                  |
| COC             | chemical(s) of concern                                                          |
| COMAR           | Code of Maryland Regulations                                                    |
| COPC            | chemical(s) of potential concern                                                |
| CRL             | cancer risk level                                                               |
| Cs              | cesium                                                                          |
| CSF             | cancer slope factor                                                             |
| CST             | column settling test                                                            |
| Cu              | copper                                                                          |
| CWA             | (federal) Clean Water Act                                                       |
| DMMP            | dredged material management plan                                                |
| DNR             | Department of Natural Resources                                                 |
| DRET            | dredge elutriate test                                                           |
|                 |                                                                                 |

| ENR             | enhanced natural recovery                     |
|-----------------|-----------------------------------------------|
| ERA             | ecological risk assessment                    |
| ESA             | environmental site assessment                 |
| FS              | feasibility study                             |
| foc             | fraction organic carbon                       |
| g               | gravity                                       |
| GAC             | granular activated carbon                     |
| GE              | General Electric                              |
| GHG             | greenhouse gas                                |
| GPS             | global positioning system                     |
| GRA             | general response action                       |
| Hg              | mercury                                       |
| HHRA            | human health risk assessment                  |
| HTTD            | high-temperature thermal desorption           |
| IC              | institutional control                         |
| IRM             | interim remedial measure                      |
| LEED            | Leadership in Energy and Environmental Design |
| LMCPI           | LMC Properties, Inc.                          |
| LTTD            | low-temperature thermal desorption            |
| Lockheed Martin | Lockheed Martin Corporation                   |
| MBE             | multibeam echosounder                         |
| MCL             | maximum contaminant level                     |
| MDE             | Maryland Department of the Environment        |
| MEC             | midpoint effect concentration                 |
| mg/kg           | milligram(s) per kilogram                     |
| mg/L            | milligram(s) per liter                        |
| µg/kg           | microgram(s) per kilogram                     |
| μg/L            | microgram(s) per liter                        |
| μm              | micrometer(s)                                 |
| µmol/g          | micromole(s) per gram                         |
| MLLW            | mean lower-low water                          |
| MNR             | monitored natural recovery                    |
| MRAS            | Middle River Aircraft Systems                 |
| MRC             | Middle River Complex                          |
| MS2             | Maritime Systems & Sensors                    |
| MSA             | Martin State Airport                          |
| MSL             | mean sea level                                |
|                 |                                               |

| N/m <sup>2</sup> | Newton(s) per square meter                                                                  |
|------------------|---------------------------------------------------------------------------------------------|
| NAVFAC           | Naval Facilities Engineering Command                                                        |
| NEPA             | National Environmental Policy Act                                                           |
| NOAA             | National Oceanic and Atmospheric Administration                                             |
| NO <sub>x</sub>  | nitrous oxide                                                                               |
| NPDES            | National Pollutant Discharge Elimination System                                             |
| NPL              | National Priorities List                                                                    |
| NRC              | National Research Council                                                                   |
| O&M              | operation and maintenance                                                                   |
| OM&M             | operation maintenance and monitoring                                                        |
| OMMP             | operations, maintenance, and monitoring plan                                                |
| OSWER            | (USEPA) Office of Solid Waste and Emergency Response                                        |
| РАН              | polycyclic aromatic hydrocarbon                                                             |
| Pb               | lead                                                                                        |
| PCB              | polychlorinated biphenyl                                                                    |
| PEC              | probable effects concentration                                                              |
| PEL              | probable effects level                                                                      |
| $PM_{10}$        | particulate matter                                                                          |
| ppm              | part(s) per million                                                                         |
| ppt              | part(s) per thousand                                                                        |
| PRG              | preliminary remediation goal                                                                |
| psf              | pound(s) per square foot                                                                    |
| QA/QC            | quality assurance/quality control                                                           |
| RAL              | remedial action level                                                                       |
| RAO              | remedial action objective                                                                   |
| RBC              | risk-based concentration                                                                    |
| RCRA             | (federal) Resource Conservation and Recovery Act                                            |
| REC              | Recognized Environmental Concern                                                            |
| RfD              | reference dose                                                                              |
| RME              | reasonable maximum exposure                                                                 |
| SEM              | simultaneously extracted metals                                                             |
| (SEM-AVS)/foc    | ratio of simultaneously extracted metals/acid-volatile sulfides to organic-content fraction |
| SO <sub>x</sub>  | sulfur oxides                                                                               |
| SVOC             | semivolatile organic compound                                                               |
| SWAC             | site-wide area weighted-average concentration                                               |
| TBC              | (criteria) to be considered                                                                 |

| TEQ        | toxicity equivalents                          |
|------------|-----------------------------------------------|
| Tetra Tech | Tetra Tech, Inc.                              |
| Tl         | thallium                                      |
| TOC        | total organic carbon                          |
| TSCA       | (federal) Toxic Substances Control Act        |
| TSS        | total suspended solids                        |
| UBC        | Uniform Building Code                         |
| UCL        | upper confidence level                        |
| UPL        | upper prediction limit                        |
| USACE      | United States Army Corps of Engineers         |
| U.S.C.     | United States Code                            |
| USEPA      | United States Environmental Protection Agency |
| USGS       | United States Geological Survey               |
| UTL        | upper tolerance limit                         |
| WDNR       | Wisconsin Department of Natural Resources     |
| Zn         | zinc                                          |

# GLOSSARY

absorption—The process in which a substance is taken into the volume of another substance.

acute risk—Acute risks can affect a person's health immediately.

adsorption—The process in which a substance adheres to the surface of a solid material.

advection—The transport of matter by a mass of flowing fluid (e.g., a river).

**alluvium**—Unconsolidated sediment derived from the land composed of sorted or unsorted sand, gravel, and clay that has been deposited by water.

amalgamated—A mix of different elements.

analyte—A compound or property that is to be determined, detected, and/or analyzed.

anoxic—An environment lacking oxygen.

**anthropogenic**—Resulting from human activity; e.g., natural and human-made substances may be in the environment due to human activities.

**applicable or relevant and appropriate requirement (ARAR)**—Any state or federal statute or regulation that pertains to protection of human life and the environment in addressing specific conditions or use of a particular cleanup technology at a site.

aqueous—Something made from, with, or by water.

**aquifer**—An underground geologic formation (or group of formations) containing water that can be readily transmitted and that is a source of groundwater for wells and springs.

**Aroclor**—Trade name of mixtures of polychlorinated biphenyls (PCBs). Except for Aroclor-1016, the last two numbers in the trade-name designation correspond to the percentage of chlorine by weight.

**assessment endpoint**—In an ecological risk assessment, an expression of the environmental value to be protected; it includes both an ecological entity and specific attributes thereof. For example, crab (i.e., the valued ecological entity) reproduction and population maintenance (i.e., attributes) is an assessment endpoint.

**attenuation**—The process by which a chemical is reduced in concentration over time, through absorption, adsorption, degradation, dilution, and/or transformation.

Atterberg Limits—A basic measure of the nature of a fine-grained soil. Depending on the water content of the soil, it may appear in four states: solid, semi-solid, plastic, and liquid. In each state, the consistency and behavior of a soil is different and thus so too its engineering properties. Thus, the boundary between each state can be defined based on a change in the behavior of the soil. Atterberg Limits can be used to distinguish between silt and clay and between different types of silts and clays.

**background (background level)**—As defined by USEPA, substances in the environment that are not influenced by releases from a site and usually described as naturally occurring or anthropogenic. *Naturally occurring* is defined as substances in the environment in forms that have not been influenced by human activity. *Anthropogenic* is defined as natural and human-made substances in the environment because of human activities, but not specifically related to the site in question.

**bathymetry**—The measurement of depths of water in rivers, lakes, oceans, and other water bodies or the information derived from such measurements. Bathymetry is expressed relative to a reference elevation or datum.

**bedload**—Sediment particles resting on or near the channel bottom that are pushed or rolled along by the flow of water.

**benthic/benthos**—Relating to or characteristic of the bottom of an aquatic body or the organisms and plants that live there.

**benthic organisms**—Those creatures that live in the benthic zone of a body of water, which includes the sediment surface and shallow subsurface. Benthic organisms may include worms and mollusks.

**bioaccumulation**—The accumulation of contaminants in the tissue of organisms through either direct exposure to a contaminated medium, through respiration, or through its diet.

**bioassay test**—A test to determine the relative strength of a substance by comparing its effect on a test organism with that of a standard preparation.

**bioavailability**—For chemicals, the state of being potentially available for biological uptake by an organism when exposed to a chemical present in environmental media.

**biomagnification**—The process in which the concentrations of certain bioaccumulative chemicals such as PCBs increase in organism tissue with increase in trophic level (i.e., moving up the food chain). The substances become increasingly concentrated in tissues or internal organs as they move up the food chain.

biota—The types of plant and animal life found in specific regions at specific times.

**biota-sediment accumulation factor (BSAF)**—The concentration of a chemical in tissue divided by a concentration in sediment.

**bioturbation**—Mixing of sediment caused by benthic organism activities such as burrowing. Generally occurs in the top 10 centimeters of sediment.

**cadmium**—Cadmium is an element found naturally in soil and rocks. It is also found in some foods, and in manmade consumer products such as batteries, plastics, pigments, paints, and metal coatings. Cadmium does not break down in the environment and generally does not dissolve in water. It typically adsorbs to soil and sediment. Exposure to cadmium may adversely affect human and ecological receptors.

**capping**—A process in which a layer of sand or other material (typically 3-feet thick) is applied to the top of a contaminated medium such as soil or sediment.

**carcinogen**—Any substance that can cause cancer.

**central tendency**—When referring to the exposure of organisms to a chemical, an estimate of the average exposure that may potentially be experienced by the population.

**chemical(s) of concern (COC)**—Chemicals identified through the baseline risk assessment that may potentially cause unacceptable adverse effects to human health and/or ecological receptors.

**chemical(s) of interest (COI)**—Chemicals that have been detected at a site but have not been screened yet in the risk assessment process or have been screened and are not COPC (see below).

**chemical(s) of potential concern (COPC)**—Chemicals of interest that have been retained (following screening) for evaluation in later analyses during the risk assessment.

**Chesapeake Bay Benthic Index of Biotic Integrity (CB-B-IBI)**—An index developed to assess benthic community health and environmental quality in Chesapeake Bay.

**chromium**—A metal found in the environment, including in rocks, soils, plants, animals and people. Chromium also is used for industrial purposes such as chrome plating, the manufacture of dyes and pigments, and the preservation of wood and leather. Exposure to chromium through skin contact, ingestion, or inhalation may adversely affect human and ecological receptors.

**chronic risk**—Chronic risks may be associated with exposures occurring over a long period, either continuously or intermittently; describes ongoing exposures and effects that develop only after a long exposure.

**cleanup**—Actions to deal with a release or threat of release of a hazardous substance that could affect humans and/or the environment. The term "cleanup" is sometimes used interchangeably with the terms remedial action, removal action, response action, or corrective action.

**colloid(s)**—Very small solids that do not dissolve and remain dispersed in a liquid for a long time due to their small size and electrical charge.

**combined sewer overflow (CSO)**—Discharge which occurs when system storage and conveyance capacity are exceeded during large wet-weather events, resulting in sanitary wastewater and storm-water overflow discharging directly to the receiving body of water.

**Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)**—A 1980 federal law authorizing USEPA to respond to releases or threatened releases of hazardous substances that may endanger public health or the environment (also see Superfund).

**conceptual site model (CSM)**—A written and/or schematic representation of an environmental system and the physical, chemical, and biological processes that affect the transport of chemicals from sources through environmental media (i.e., air, soil, water, sediment or tissue) to humans and ecological receptors in the system. The CSM is often revised periodically as additional data become available at a site.

**confined aquifer**—An aquifer in which groundwater is confined under pressure which is significantly greater than atmospheric pressure.

**congener**—One of many related individual chemicals having similar chemical structure but different precise composition (e.g., PCB congeners each have two phenyl rings, but differ in the number and position of chlorine atoms).

**copper**—A metal found naturally in the ground and used extensively in household plumbing. High levels of copper may impact human and ecological receptors.

column settling test (CST)—Test designed to determine the settling behavior of suspended sediment.

**degradation**—A type of organic chemical reaction in which a compound is converted, in stages, into a simpler compound.

**dense non-aqueous-phase liquid (DNAPL)**—Chemicals in liquid form, such as chlorinated hydrocarbon solvents or petroleum fractions, with specific gravities greater than 1.0 that sink through the water column until they reach a confining layer.

**dermal absorption/penetration**—A route of chemical exposure whereby a chemical may be absorbed by or penetrate the skin and enter the body.

dermal exposure (contact)—Contact between a chemical and the skin.

**desorption**—The release of a chemical from the surface of a solid material (e.g., a sediment particle) to water (e.g., water in or overlying the sediment).

**detection limit**—The lowest concentration of a chemical that can reliably be distinguished from a zero concentration.

**diffusion**—The movement of particles or dissolved chemical-species from higher chemical potential to lower chemical potential (such as is represented by a difference in concentration).

**dredging**—The removal of sediment from the bottom of water bodies. Dredging may be subject to regulation under Section 404 of the Clean Water Act.

**dredge elutriate test (DRET)**—A laboratory test to predict the concentration of contaminants in the water column at the point of dredging. It involves mixing sediment and site water, allowing the heavier solid particles to settle, and analyzing for dissolved and particulate-bound contaminants.

dredge prism—Required dredge dimensions and zones.

ecological risk assessment (ERA)—The process of evaluating the likelihood that adverse ecological effects may occur or are occurring as a result of exposure of ecological receptors to environmental stressors, including chemicals.

**ecosystem**—The interacting system of interdependent biological organisms and their nonliving environmental surroundings.

effluent—Liquid waste (treated or untreated) that flows out of a treatment plant, sewer, or industrial outfall.

elutriate—To purify or separate a substance or mixture by washing and straining or decanting.

**enhanced natural recovery**—A process that adds non-contaminated material such as sand as a top layer to the sediment. The process reduces the contaminant concentration in the biologically active zone and speeds up the natural recovery process.

**erosion**—The wearing away of land surface by wind or water, intensified by land-clearing practices related to farming, residential or industrial development, road building, or logging.

**estuary**—A semi-enclosed coastal body of water which has a free connection with the open sea and within which sea water is measurably diluted with fresh water derived from land drainage.

**exposure**—Contact between an organism or biological system and a chemical, physical, or biological agent. Exposure may be expressed as the concentration in a given environmental medium (i.e., air, water, soil, sediment, or tissue) at the point of contact (see exposure point concentration) or as the concentration that is taken up by an organism (i.e., a dose).

**exposure assessment**—Measurement or estimation of the magnitude, frequency, duration, and route of exposure to stressors.

**exposure pathway**—The path from sources of chemicals to humans and ecological receptors from contaminated media including air, soil, sediment, water, or food.

**exposure point concentration (EPC)**—The concentration of a contaminant at the location where exposure occurs.

**exposure route**—The way a contaminant enters an organism after contact; i.e., by ingestion, inhalation, or dermal absorption.

**exposure scenario**—A tool to develop estimates of potential exposure, dose, and risk. An exposure scenario generally includes facts, data, assumptions, inferences, and sometimes professional judgment about how the exposure takes place.

*ex situ* treatment (sediment)—The processing of dredged sediments to transform or destroy COC at a separate location from where they were collected. It often involves a combination of processes or treatment to address various contaminant problems, and includes pretreatment, operational treatment, and/or effluent treatment/residual handling.

**flocculant**—Chemicals that promote flocculation by causing suspended particles in liquids to aggregate, forming a floc.

**flux**—The rate of flow of liquid or discharge, or the transfer of a chemical substance that is the product of the water flow and substance concentration.

**food web model**—A graphical and mathematical model that describes the feeding relationships by which energy and nutrients are transferred from one species to another.

Gastropods—Any mollusk of the class Gastropoda, such as snails, whelks, and slugs.

**groundwater**—Water beneath the surface of the Earth, usually in aquifers, which supplies wells and springs.

groundwater discharge—Groundwater entering a water body (e.g., lake, river, or coastal marine waters).

**groundwater plume**—An area of contaminated groundwater moving through the subsurface by advection and dispersion.

groundwater seep—Groundwater discharge that is visible at or above the ground surface.

**habitat**—The place where a population (e.g. human, animal, plant, microorganism) lives and its surroundings.

**hazard index (HI)**—An indication of the potential for non-cancer effects that is derived by summing the individual-chemical hazard quotients.

**hazard quotient (HQ)**—The ratio of estimated site-specific exposure to a single chemical to a selected toxicity threshold, which is either the level at which no adverse health effects are likely to occur (i.e., the no-observed-adverse-effect level) or at which effects are likely to occur (i.e., the lowest-observed-adverse-effect level).

**hazardous substance**—Substances identified as capable of posing "imminent and substantial danger to public health and welfare or the environment." CERCLA has identified more than 800 hazardous substances. The term does not include petroleum or natural gas.

**hydraulic gradient**—The slope of the groundwater potentiometric-surface expressed in feet of drop per foot of horizontal distance.

hydrodynamics—The study of liquids in motion.

**hydrogeology**—The study of the occurrence and movement of water below the surface of the Earth.

hydrograph—A record of the stage and/or discharge of a river as a function of time.

hydrophobic—Tending not to dissolve in, mix with, or be wetted by water.

infauna—The aggregate of organisms that burrow into and live in the bottom deposits of the ocean or other body of water.

**infiltration**—The penetration of water through the ground surface into subsurface soil or the penetration of water from the soil into sewer or other pipes through defective joints, connections, or manhole walls.

*in situ* **treatment** (**sediment**)—Chemical, physical, or biological techniques for reducing COC concentrations while leaving the contaminated sediment mass in place.

intertidal—Relating to the region between the high tide mark and the low tide mark.

interstitial—Referring to the space between cells, atoms or molecules, or soil particles.

**kriging**—A method of statistical estimation which predicts unknown values from data observed at known locations.

**leachate**—Water that collects contaminants as it trickles through wastes or other materials, such as, pesticides, or fertilizers.

**light non-aqueous-phase liquid (LNAPL)**—A non-aqueous-phase liquid with a specific gravity less than 1.0. Because the specific gravity of water is 1.0, most LNAPLs float on top of the water table. Most common petroleum hydrocarbon fuels and lubricating oils are LNAPLs.

**lowest observed adverse effect level (LOAEL)**—The lowest level of a stressor that causes statistically and biologically significant differences between a test sample and a control sample (i.e., sample not subjected to a stressor).

matrix—The material in which the chemicals of interest are found (e.g., water, sediment, tissue).

media—Specific environmental materials—air, water, soil, and biological tissue.

**mean higher-high-water**—Average of the higher-high water height of each tidal day over a 19-year period.

**mean lower-low-water (MLLW)**—Average of the lower-low-water height of each tidal day over a 19-year period.

**method detection limit (MDL)**—The minimum concentration of a substance being analyzed that has a 99% probability of being identified.

**Middle River Complex**—The site of the Lockheed Martin Mission Systems & Sensors (MS2) facility; Applied NanoStructured Solutions (ANS), which is a Lockheed Martin subsidiary; and the General Electric Middle River Aircraft Systems (MRAS); also known locally as Plant 1.

**model forcing functions**—Important factors that drive model output such as physical or other environmental parameters.

**monitored natural recovery**—A remedy for contaminated media, such as sediment, that typically uses ongoing naturally occurring processes to contain, destroy, or reduce the bioavailability or toxicity of contaminants in sediment.

**National Pollutant Discharge Elimination System (NPDES)**—A regulatory program enacted under the Clean Water Act that prohibits discharge of pollutants into waters of the United States unless a special permit is issued by USEPA, a state, or, where delegated, a tribal government.

*National Priorities List* (NPL)—The USEPA list of the most serious uncontrolled or abandoned hazardous waste sites identified for possible long-term remedial action under Superfund. The list is based primarily on the score a site receives from the Hazard Ranking System. USEPA is required to update the NPL at least once a year. A site must be on the NPL to receive money from the Superfund Trust Fund for remedial action.

**natural recovery**—The breakdown of contaminants due to physical, chemical, and biological processes which occur in the environment, and the ability of the environment to rebound from the injuries caused by the contamination.

**no observed adverse effect level (NOAEL)**—The highest exposure level at which no statistically or biologically significant increases are observed in the frequency or severity of adverse effects between the exposed population and its appropriate control; some effects may be produced at this level, but they are not considered adverse, or as precursors to adverse effects. In an experiment with several NOAELs, the regulatory focus is primarily on the highest one, leading to the common usage of the term NOAEL as the highest exposure without adverse effects.

**non-aqueous-phase liquid (NAPL)**—Non-aqueous-phase liquids are sparingly soluble in water. They do not mix with water, so they form a separate phase. For example, oil is an NAPL because it does not mix with water, and oil and water in a glass will separate into two separate phases. NAPLs can be lighter than water (LNAPL) or denser than water (DNAPL). Hydrocarbons, such as oil and gasoline, and chlorinated solvents, such as trichloroethylene, are examples of NAPLs.

**non-detect**—Data point for which the chemical of interest was not detected in an environmental sample.

**non-point sources**—Diffuse pollution sources (i.e., without a single point of origin or not introduced into a receiving stream from a specific outlet). Common non-point sources are agriculture, forestry, urban, mining, construction, dams, channels, land disposal, and industry.

**operable unit** (**OU**)—The USEPA defines an operable unit as each of a number of separate activities undertaken as part of a Superfund site cleanup but it is also used to define a portion of a site with which activities are associated.

**organic carbon (OC) normalized**—A chemical concentration in sediment adjusted for organic carbon content. The chemical concentration is divided by the fraction of sediment that is organic carbon.

**overdredge allowance**—A construction design method for dredging that occurs outside the required dredge dimensions to compensate for physical conditions, side slopes, and inaccuracies in the dredging process and allow for efficient dredging practices.

oxic—A term describing an environment, a condition, or a habitat in which oxygen is present.

**oxidation-reduction potential**—The electric potential required to transfer electrons from one compound or element (the oxicant) to another compound (the reductant); used as a qualitative measure of the state of oxidation in water treatment systems.

**paint filter test**—The purpose of the test is to determine if liquids will be released from containerized sorbed wastes. The Paint Filter Test has been used to determine the presence of free liquids in bulk or containerized waste since 1985. It consists of placing a sample (normally 100ml or 100g) into a conical paint filter (mesh number 60). The paint filter is suspended from a tripod or ringstand for five minutes. If any portion of the material passes through and drops from the filter, the material is deemed to contain free liquids and cannot be disposed of in a landfill.

**partition coefficient**—An expression of the amount of a chemical that is adsorbed to sediment versus the amount of chemical that goes into solution (at equilibrium) providing an indication of whether a chemical might be dissolved and bioavailable or bound and not bioavailable.

**pathway**—An exposure pathway is the physical course a chemical, particle, or microbe takes from its source to an exposed organism.

**percent fines**—The sum of all silt and clay fractions in sediment; sediment particles passing U.S. standard sieve #230 (0.0625-mm openings).

permeability—The rate at which a liquid or gas flows through soil or other materials.

**plume**—A contiguous visible or measurable discharge of a substance or contaminants emanating from a given point of origin. Can be visible as, for example, a plume of smoke, or simply measureable, as for example, elevated concentrations of contaminants in a discharge plume in a river.

**point source**—A stationary location or fixed facility from which contaminants are discharged; any single identifiable source of pollution; e.g., a pipe, ditch, ship, ore pit, or factory smokestack.

**polycyclic aromatic hydrocarbons (PAHs)**—A group of chemicals formed during the incomplete burning of coal, oil, gas, wood, garbage or other organic substances. There are more than 100 different PAHs. They are also commonly found in asphalt paving and roofing materials and urban environments.

**polychlorinated biphenyls (PCBs)**—Mixtures of up to 209 individual chlorinated compounds. There are no known natural sources of PCBs. PCBs are either oily liquids or solids that are colorless to light yellow. Trade name of mixtures of PCBs are also known as aroclors.

porewater—Water in the interstices (i.e., small spaces) between sediment particles.

**preliminary remediation goal (PRG)**—An acceptable contaminant level or range of levels for a given medium that can be used to support an evaluation of remedial alternatives. Although the preliminary remediation goals are established based on readily available information, the final acceptable exposure levels should be determined on the basis of the results of the baseline risk assessment and the evaluation of the expected exposures and associated risks for each alternative.

#### proximal—Near.

**quality assurance/quality control (QA/QC)**—A system of procedures, checks, audits, and corrective actions to ensure that all research design and performance, environmental monitoring and sampling, and other technical and reporting activities are of the highest achievable quality.

**reactive media**—Material that will eliminate or reduce the availability of chemicals through physical, chemical, or biological processes.

**reasonable maximum exposure**—The maximum exposure reasonably expected to occur in a population.

**receptor**—A human demographic group (e.g., people who fish in a river) or ecological entity (e.g., species or group of species) that is potentially exposed to a stressor.

**record of decision**—A public document that provides documentation regarding which cleanup alternative(s) will be used at *National Priorities List* sites.

**remedial action**—The construction or implementation phase of a Superfund site cleanup that follows a remedial design.

**residuals**—Contaminants left at a site after the risks posed by the site have been reduced and the site conditions no longer poses a threat to people or the environment.

**rinsate**—Water containing low concentrations of contaminants resulting from cleaning sampling containers.

**riparian zone**—A transition habitat between the upland (terrestrial) zone and a water body resulting from frequent but not constant inundation of water. For the MRC FS study area, the riparian zone was defined as the portion of riverbank between approximately +13 feet to +22 feet NAVD88 vertical elevation.

**risk**—An estimate of the likelihood of adverse effects on human health or ecological receptors associated with exposure to given stressors.

**risk assessment**—Qualitative and quantitative evaluation of the potential risk posed to human health and/or the ecosystem by the actual or potential presence of a stressor (e.g., a toxic chemical).

**risk characterization**—The last phase of the risk assessment that estimates the potential for adverse human health or ecological effects to occur from exposure to a stressor and evaluates the uncertainty involved.

**risk drivers**—A chemical that has a significant impact on risk estimates and requires a risk management recommendation or action.

**risk management**—The process of evaluating and selecting alternative regulatory and non-regulatory responses to risk.

**risk reduction**—Lessening the risks, for example, from chemicals by lowering concentrations, mobility, bioavailability, or toxicity, or reducing exposure of receptors.

saturated zone—The area below the water table where all open spaces are filled with water.

**sediment**—Refers to materials, such as sand, silts, and clays that settle at the bottom of the water body. They come from eroding soil and are washed from the land into water, usually after rain or snowmelt. Sediment is found underwater in storm drains, ponds, lakes, creeks, streams, rivers, and oceans.

**sediment removal**—Removal of sediment by hydraulic or mechanical dredging. Removal may also include near-shore excavation.

**sediment quality guideline** (SQG)—A sediment chemical-concentration threshold that represents a documented association with no effects or a specified level of effect on benthic invertebrates. SQGs may be presented as a pair, with the lower concentration indicating a threshold below which adverse biological effects rarely occurred, and the upper concentration indicating a threshold above which adverse biological effects frequently occurred in the data set used to derive the SQGs.

**semivolatile organic compound (SVOC)**—Organic compounds that volatilize (i.e., vaporize) slowly at standard temperature (20 degrees Celsius and 1 atmosphere pressure).

shear stress—Forces on the bottom sediments due to waves.

silt—Sediment composed of fine mineral particles that pass a #200 sieve.

site—Middle River Complex and associated environmentally impaired sediments.

**solubility**—A measure of how much a substance will dissolve in a liquid. Aqueous solubility is the maximum concentration of a chemical that will dissolve in pure water at a reference temperature.

**sorption**—A term describing adherence of chemical substances to particles. It includes either absorption or adsorption.

**storm-water conveyance system**—A system for the collection and transfer of storm water to a discharge point.

stressors—Physical, chemical, or biological conditions that can induce adverse effects on ecosystems or human health.

**Superfund**—The federal environmental cleanup program operated under the legislative authority of CERCLA and the 1984 Superfund Amendments and Reauthorization Act that addresses both emergency removal and long-term remedial activities. The Superfund program includes establishing the *National Priorities List*, investigating sites for inclusion on the list, determining their priority, and conducting and/or supervising cleanup and other remedial actions.

**supernatant**—The usually clear liquid overlying material deposited by settling, precipitation, or centrifugation

**surface runoff**—Precipitation, snow melt, or irrigation water in excess of what can infiltrate the soil surface and be stored in small surface depressions; it is a major mechanism for transport of non-point source contaminants to water bodies.

**surface water**—All water naturally open to the atmosphere (rivers, lakes, reservoirs, ponds, streams, impoundments, seas, estuaries, etc.).

**surficial**—Of or relating to a surface.

**suspended loads (sediment)**—Specific sediment particles maintained in the water column by turbulence and carried with the flow of water.

**toxicity characteristic leaching procedure (TCLP)**—Analytical procedure to simulate leaching from a soil or solid material.

**threshold**—The exposure level (concentration or dose) below which a significant adverse effect is not expected or above which a significant adverse effect is expected.

**total petroleum hydrocarbons (TPH)**—Measure of the concentration or mass of petroleum hydrocarbon constituents present in a given amount of soil or water.

**toxic equivalent quotient (TEQ)**—The sum of a series of multiplicative products, each consisting of the concentration of an individual carcinogenic polycyclic aromatic hydrocarbon, PCB, or dioxin/furan congener multiplied by its toxicity equivalency factor.

**toxicity**—The degree to which a chemical or mixture of chemicals can cause adverse effects to living organisms. *Acute toxicity* involves harmful effects in an organism through a single or short-term exposure. *Chronic toxicity* is the characteristic of a chemical or mixture of chemicals to cause adverse effects, usually upon repeated or continuous exposure over an extended period, sometimes the entire life of the exposed organism. *Subchronic toxicity* is the characteristic of the chemical or mixture to cause effects after exposure that is intermediate between acute and chronic.

**toxicity reference value (TRV)**—A chemical concentration (or dose) threshold that represents a level of documented effect on a particular organism from exposure to the chemical (i.e., the minimum concentration at which adverse effects have been observed, or the maximum concentration at which no adverse effects have been observed).

**toxicity testing**—Biological testing (usually with an invertebrate, fish, or small mammal) to measure the adverse effects of a chemical, effluent, or environmental sample.

**transformation (chemical)**—A process that converts one chemical to another chemical by any number of chemical reaction or biological pathways.

**trophic level**—Each of several hierarchical levels in an ecosystem, comprising organisms that share the same function in the food chain and the same nutritional relationship to the primary sources of energy.

**unconfined aquifer**—An aquifer that is not confined by an overlying aquitard.

**unsaturated zone**—The area above the water table where soil pores are not fully saturated, although some water may be present. Also referred to as the vadose zone.

**urban runoff**—Storm water from city streets and adjacent domestic or commercial properties that carries contaminants of various kinds into the sewer systems and receiving waters.

volatile—Any substance that evaporates readily.

**volatile organic compound (VOC)**—Organic compound that generally has a boiling point below 150 °C and a vapor pressure greater than 0.1 millimeter of mercury.

**volatilization**—The conversion of a chemical substance from a liquid or solid state to a gaseous or vapor state by the application of heat, by reducing pressure, or by a combination of these processes.

**water quality criteria**—Chemical concentrations in surface water specified by environmental regulation and expected to render a body of water suitable for its designated use. Criteria are based on specific levels of chemicals that would make the water safe for aquatic life or safe for human use for drinking, swimming, farming, fish production, or industrial processes.

**weight of scientific evidence**—The degree to which a body of scientific information supports a finding or conclusion. Considerations in assessing the weight of evidence in a risk assessment may include quality of testing methods, size, and power of study design, consistency of results across studies, and biological plausibility of exposure-response relationships and statistical associations between stressors and effects.

This page intentionally left blank.

# **Executive Summary**

Environmental stewardship is an important aspect of Lockheed Martin Corporation's (Lockheed Martin's) commitment to the communities in which Lockheed Martin operates. Consistent with this commitment, Lockheed Martin has assumed responsibility for the assessment and cleanup of environmental impacts associated with the Middle River Complex site. This report presents the feasibility study for the remediation of sediments adjacent to the Lockheed Martin Middle River Complex in Middle River, Maryland (Figure ES-1).

The site characterization investigations and risk assessments performed to date provide the information on the nature and extent of contamination, the nature of ongoing sources of contamination, the physical and chemical properties that influence the fate and transport of contaminants found at the site, and the risks to human health and the environment. The feasibility study describes and evaluates a range of remedial alternatives to address site risks through remediation of sediment contamination at the site. A recommended alternative for a final remedy is also provided in the feasibility study.

As part of Lockheed Martin's ongoing commitment to the Middle River Complex site and the surrounding community, Lockheed Martin established a community outreach program to inform and receive input from the community on potential remedial actions related to Middle River Complex sediments. Valuable feedback received through the community outreach process has been incorporated into this feasibility study.

This feasibility study was prepared as part of Lockheed Martin's Environmental Restoration Program. Although the Middle River Complex site is not addressed by the federal Superfund (a/k/a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) program, the feasibility study was prepared in accordance with the *Interim Final Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA* (United States Environmental Protection Agency [USEPA], 1988), as well as in accordance with the Maryland Department of the Environment (MDE) Article 7-222 Hazardous Substance Response Plan and USEPA regulatory requirements for the Lockheed Martin Middle River Complex site.

## ES.1 SITE DESCRIPTION AND HISTORY

The Lockheed Martin Middle River Complex site is located at 2323 Eastern Boulevard in Middle River, Maryland. It is bounded by Eastern Boulevard (Route 150) to the north, Dark Head Cove to the south, Cow Pen Creek to the west, and Martin State Airport to the east.

In 1928, Glenn L. Martin, an early pioneer in aircraft manufacturing and the founder of the Glenn L. Martin Company (a Lockheed Martin heritage company), purchased land in Middle River, Maryland, to build and test aircraft. Today, Lockheed Martin assembles missile launch systems at one facility on site, and it leases another facility to Middle River Aircraft Systems, Inc., a subsidiary of General Electric Company, which manufactures and assembles aircraft parts. Other parcels of the land were sold over the years to industrial companies and to the state for operation of the Glenn L. Martin State Airport, known locally as Martin State Airport.

In the late 1990s, Lockheed Martin began environmental investigations at Middle River Complex. These investigations were performed to assess impacts from former industrial operations. Since then, Lockheed Martin has investigated groundwater, soil, air, and sediment at the Middle River Complex, and has performed some cleanup activities in upland storm drains. This feasibility study presents an evaluation of remedial alternatives and provides a recommended cleanup approach for sediment adjacent to the Middle River Complex.

Dark Head Cove and Cow Pen Creek are tidal surface water bodies that feed into Dark Head Creek, a tributary to Middle River, which is a tributary to Chesapeake Bay. The facility lies approximately 3.2 miles upstream of Chesapeake Bay. A portion of Middle River is a federal navigation channel within the United States Army Corps of Engineers (USACE) Baltimore District jurisdiction.

### ES.2 NATURE AND EXTENT OF CONTAMINATION

The remedial investigation fieldwork for sediments was conducted from 2005 through 2011. Characterization investigations included chemical testing of surface and subsurface sediment samples, benthic macroinvertebrate and fish tissue samples, bioavailability testing of sediment and porewater, sediment age dating, sediment dewatering tests, benthic assessments, sediment stability analysis, and geotechnical testing.

Analytical data from surface and subsurface sediment samples show that polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and metals are the most frequently detected compounds in the sediments. The greatest detected concentrations of PCBs and PAHs were observed within Dark Head Cove along the shoreline and in shallow sediment near the outfalls of the Middle River Complex. Elevated metal concentrations, primarily cadmium, were observed within Cow Pen Creek, and in the deeper sediments of Dark Head Cove and Dark Head Creek. The spatial extent of potential contamination is illustrated in Figure ES-2.

#### ES.3 RISK SUMMARY

Chemicals of concern from the baseline human health risk assessment included polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) expressed as benzo(a)pyrene equivalents (BaPEq), and arsenic, with PCBs presenting the highest potential risk.

The chemicals of concern in the sediment present a potential risk to human health through directly contacting the sediments (i.e., incidental ingestion and dermal contact) or by consuming fish taken from the study area. Cancer and non-cancer risk estimates developed for the consumption-of-fish exposure pathway exceed both United States Environmental Protection Agency and State of Maryland risk benchmarks. However, the PCB concentrations reported in fish tissue samples for the study area fall within the range of concentrations reported for the general Chesapeake Bay area.

The ecological risk assessment considered potential impacts to benthic (i.e., sediment dwelling) macroinvertebrates, (e.g., worms) fish, birds, and mammals. No risks were identified for birds, mammals, or fish. Potential risk was identified for benthic invertebrates through direct contact with contaminated sediment; due to several metals found at concentrations above which effects may be expected to occur to benthic organisms. Because of these results, site-specific studies were conducted to better evaluate potential risks to the benthic macroinvertebrates.

Sediment samples were also analyzed for acid-volatile sulfides and simultaneously extracted metals to determine whether the metals are bioavailable (i.e., potentially available for biological uptake). The results showed that metals are tightly bound to sulfides, as is common in estuarine environments where sulfides are abundant, and are therefore likely not bioavailable. A direct connection between these constituents and effects on the resident benthic community has not been made but cadmium, copper, lead, mercury, zinc, and total polychlorinated biphenyls have conservatively been identified as chemicals posing potential risks to benthic invertebrates and are therefore considered ecological chemicals of concern.

### ES.4 REMEDIAL ACTION OBJECTIVES AND PRELIMINARY REMEDIATION GOALS

The remedial action objectives (RAOs) provide the foundation upon which preliminary remediation goals, cleanup levels, and remedial alternatives can be developed. The findings of the risk assessments described above were used to develop the RAOs for the feasibility study. The RAOs also guide the evaluation of remedial alternatives to ensure the recommended alternative(s) will protect human health and ecological receptors. The following RAOs have been defined for the cleanup of the Middle River Complex site:

- **Remedial Action Objective 1**: Reduce, to the extent practicable, human health risks associated with the consumption of resident fish by reducing bioavailable sediment concentrations of chemicals of concern.
- **Remedial Action Objective 2**: Reduce, to the extent practicable, human health risks associated with exposure to chemicals of concern through direct contact with sediments and incidental sediment ingestion by reducing sediment concentrations of chemicals of concern.
- **Remedial Action Objective 3**: Reduce, to the extent practicable, risks to benthic macroinvertebrates by reducing bioavailable sediment concentrations of chemicals of concern.

Preliminary remediation goals define target sediment concentrations that adequately protect human health and the environment and achieve the risk reductions identified for each remedial action objective. These preliminary remediation goals are applied either on a point basis or across the site on a site-wide area weighted-average basis, depending on the exposure pathway being addressed. The preliminary remediation goals will be evaluated by the Maryland Department of the Environment and the United States Environmental Protection Agency; final cleanup levels will be identified in the approval documents from the regulators.

### ES.5 REMEDIAL ALTERNATIVES

The remedial alternatives evaluated in this feasibility study comprise a combination of remedial technologies intended to achieve the preliminary remediation goals associated with the remedial action objectives. The alternatives differ in the remedial action levels applied, the rate at which

sediment-contaminant concentrations are reduced, and the type and scale of technologies used. A long list of remedial alternatives was assembled by combining one or more of the retained remedial technologies and process options which are removal (dredging), containment (capping/enhanced natural recovery), and *in situ* treatment as the primary active response actions for reducing risks, supplemented by passive measures (e.g., monitored natural recovery) as necessary to achieve remedial action objectives.

The long list of remedial alternatives was screened per United States Environmental Protection Agency guidance using three broad criteria (i.e., effectiveness, implementability, and cost) to reduce the number of alternatives that will undergo the detailed analysis. Input received from the community (through Lockheed Martin's community outreach process) and site-specific characteristics (e.g., chemical characteristics, sediment transport, sedimentation rates, navigation requirements, current use of waterway, land use, and future use considerations) were also considered during the screening process.

A short list of remedial alternatives was established for Middle River Complex sediments based on the initial screening process and community input (Table ES-1); the short list was retained from a longer list of 14 alternatives considered. The alternatives carried forward for detailed and comparative evaluation in this feasibility study are as follows:

- *Alternative 1—No Action:* This alternative is retained to provide a baseline against which to compare the other remedial alternatives.
- *Alternative 3—Complete Removal:* This alternative includes dredging the sediments with the highest concentrations of chemicals of concern wherever concentrations (at any depth) of these compounds are greater than cleanup levels. Complete removal includes two subalternatives (i.e., Alternatives 3A and 3B) that define the extent of removal; both are retained for further detailed evaluation.
- Alternative 4—Combined Action: The combined-action alternatives involve application of a combination of active and passive remedial technologies (i.e., removal, enhanced natural recovery, reactive enhanced natural recovery, *in situ* treatment, and monitored natural recovery) in the area of potential concern to address surface sediments. Five of the 10 subalternatives (i.e., 4F, 4G, 4H, 4I, 4J) were retained for further evaluation in this feasibility study. The performance of each subalternative in meeting project remedial action objectives is discussed below in the detailed and comparative evaluation of the alternatives.

### ES.6 COMPARATIVE ANALYSIS OF REMEDIAL ALTERNATIVES

The short list of remedial alternatives was evaluated in detail and compared against the two threshold and five primary balancing criteria that are prescribed by Comprehensive Environmental Response, Compensation, and Liability Act guidance. To be eligible for selection as the preferred alternative, each alternative must meet the two threshold criteria: (1) overall protectiveness of human health and the environment and (2) compliance with applicable or relevant and appropriate requirements of pertinent environmental laws. The primary balancing criteria against which the alternatives are evaluated include: long-term effectiveness and permanence; reduction of toxicity, mobility, and/or volume through treatment; short-term effectiveness; implementability; and cost.

Comparative evaluation of remedial alternatives was conducted using a qualitative comparative analysis and a more quantitative multi-criteria comparative analysis. The qualitative comparative analysis was done to evaluate the relative overall ranking of each remedial alternative. A five-star ranking system (corresponding to low, low-medium, medium, medium-high, and high levels) is used to assess the relative performance of each alternative (Table ES-2).

A more quantitative comparative-rankings analysis provided an evaluation of the relative overall ranking of each remedial alternative. Multi-criteria-decision methodology was used to distinguish more thoroughly the similarities and differences among the alternatives. A multi-parameter analysis tool, Criterium Decision Plus<sup>®</sup> (CDP), was used to weight and score the criteria of the remedial alternatives for the Middle River Complex site.

Results of detailed and comparative evaluation of the threshold and balancing criteria based on qualitative and multi-criteria quantitative analysis are summarized below.

*Overall protection of human health and the environment*—Alternative 1, the No Action alternative, takes no measures to protect human health and the environment. Other alternatives meet the threshold criterion of overall protection of human health and the environment by: achieving the remedial action objectives via implementation of the engineered remedy; and providing monitoring to ensure that the preliminary remediation goals associated with the remedial action objectives are achieved.

All of the remedial alternatives evaluated (excluding No Action) would include institutional controls such as public outreach, education, as well as the on-going regional Middle River seafood consumption advisories issued by Maryland Department of Environment.

In summary, Alternatives 3 and 4 achieve the threshold criterion of overall protection of human health and the environment, and achieve project remedial action objectives through implementation of an engineered remedy. Alternative 1 does not achieve this threshold criterion.

*Compliance with applicable or relevant and appropriate requirements*—All alternatives except Alternative 1 (No Action) comply with federal and state chemical- and location-specific applicable or relevant and appropriate requirements. Adequate engineering planning, design, and regulatory review would ensure that the remedies comply with these requirements.

*Long-term effectiveness and permanence*—General analysis factors considered in the comparative evaluation of the long-term effectiveness and permanence of the alternatives include preventing human health risks, minimizing ecological risks, assessing residual potential risk, and technology reliability.

Human health remedial action objective (RAO) 1 (associated with fish consumption) would be achieved at the end of construction under the combined-action alternatives 4F, 4G, 4I, and 4J (with less removal volume than would be achieved under the complete-removal alternatives). Alternatives 3 and 4 achieve human health direct-contact remedial action objective 2 at the end of construction. Alternatives 3A, 3B, and 4F achieve benthic remedial action objective 3 at the end of the construction. Other alternatives achieve this objective within 82 to 93% of the area of potential concern by the end of construction.

*Reductions in toxicity, mobility, and volume through treatment*—No reduction of toxicity, mobility, or volume through treatment would be achieved under the No Action, complete removal, and the combined-action alternatives 4H and 4I because no treatment would be implemented. Alternatives 4F, 4G and 4J incorporate *in situ* treatment, and therefore do somewhat reduce toxicity, mobility, and volume. Under Alternative 4J, as much as 10% of contaminants are expected to be treated by reducing bioavailability; for Alternatives 4F and 4G, up to 20 to 40% of contaminants are expected to be managed by *in situ* treatment. The treatment is considered non-reversible, an important consideration in the evaluation.

*Short-term effectiveness*— Short-term effectiveness is a criterion that addresses impacts that result from implementation and active remediation. More dredging involves more construction, handling, and transportation, and is considered the least protective of workers; it also poses the greatest short-term risk to the environment and to the community.

No short-term impacts occur under No Action alternative. Removal alternatives would cause the greatest short-term impacts due to large removal volume and associated dredge components, and resulting energy use, air emissions, and impacts on water resources. The air pollution emissions generated from all combustion activities are correlated to the remedial action construction activities.

*Implementability*—This evaluation criterion incorporates consideration of the technical and administrative feasibility of implementing the remedial alternatives, and the availability of services and materials.

Complete-removal alternatives have more complex technical and administrative (e.g., coordination with regulators) implementability issues due to the complexity of dredging and ancillary technologies (i.e., transporting, water management, disposal, monitoring, and residuals management). Similarly, Alternatives 4I and 4J, which are designed to remove more volume of material and require a longer construction period, have a comparatively higher potential for problems and delays than Alternatives 4H and 4G, which are designed to remove smaller volumes of material and have a shorter construction time. Alternative 4F involves reactive enhanced natural recovery (i.e., thin layer placement of sand mixed with activated carbon). The alternative has low administrative implementability, due to concerns that placement of the recovery layer reduces the federal navigation depth established for the Middle River.

*Cost*—This criterion provides a comparison of the capital costs (engineering, construction, and supplies) and annual or periodic costs (operation and maintenance costs, monitoring, institutional controls, and ongoing administration) of each alternative. Total cost for the alternatives range from \$18.1 million (Alternative 4H) to \$41.7 million (Alternative 3A). The total costs, which were developed to allow comparison of the remedial alternatives, are estimated with expected accuracies of -30 to +50%, in accordance with the USEPA (1988) guidance.

*Modifying criteria*—Evaluation of the modifying criteria will be completed after the proposed plan has been submitted to regulatory agencies and has been released for public review, and will

follow analysis of public comment on the proposed plan. During development of this feasibility study, community input on remedial alternatives was received through Lockheed Martin's community outreach process and incorporated into the evaluation matrix.

# ES.7 RECOMMENDED REMEDIAL ALTERNATIVE

The detailed and comparative evaluation of the candidate remedial alternatives identified Alternative 4G as the recommended alternative for implementation because of the following characteristics:

- Alternative 4G achieves site-specific preliminary remediation goals associated with remedial action objectives, and also achieves applicable or relevant and appropriate requirements, through implementation of an engineered remedy that includes contaminant removal, *in situ* treatment to reduce the mobility of contaminants, and monitored natural recovery.
- Alternative 4G scores the best among the alternatives under the Comprehensive Environmental Response, Compensation, and Liability Act balancing evaluation-criteria.
- The potential for re-exposure to remaining subsurface contamination is negligible. Localized impacts are unlikely to affect site-wide average concentrations. Achievement of remedial action objectives would be verified through monitoring. Contingency actions would be taken if necessary.
- Low risks would be posed to site workers, the community, and the environment during implementation.
- Technical and administrative implementability during construction is considered high.
- Well-established adequacy and reliability controls will ensure the integrity and performance of the remedy through a combination of monitoring, maintenance, and institutional controls that would be designed and implemented over the next 20 years following construction.
- Alternative 4G has the lowest environmental footprint (except for No Action and Alternative 4H) in terms of greenhouse gas emissions, fuel consumption, use of natural resources, and landfill volume requirements.
- Alternative 4G achieves equal overall benefits relative to other alternatives at a lower cost, providing the most cost-effective and protective remedy.

Alternative 4G includes the following:

• removal of about 48,800 cubic yards of contaminated sediments from more than 12.5 acres, targeting Cow Pen Creek and the area in front of the Dark Head Cove bulkhead

- *in situ* treatment of contaminated sediments over 8.5 acres (the remainder of the area of potential concern)
- monitored natural recovery of about 4 acres of the *in situ* treatment area
- shoreline stabilization, habitat enhancement, and riparian planting after the remedial construction, if necessary
- a long-term monitoring, operation, and maintenance program of *in situ* treatment areas to verify the remedy
- institutional controls entailing public outreach and education. Regional Middle River seafood consumption advisories issued by Maryland Department of Environment would continue

This alternative is estimated to cost \$19.4 million. Figure ES-3 illustrates active remedial actions associated with the recommended alternative. The specific action areas will be refined during the design process.

# ES.8 NEXT STEPS

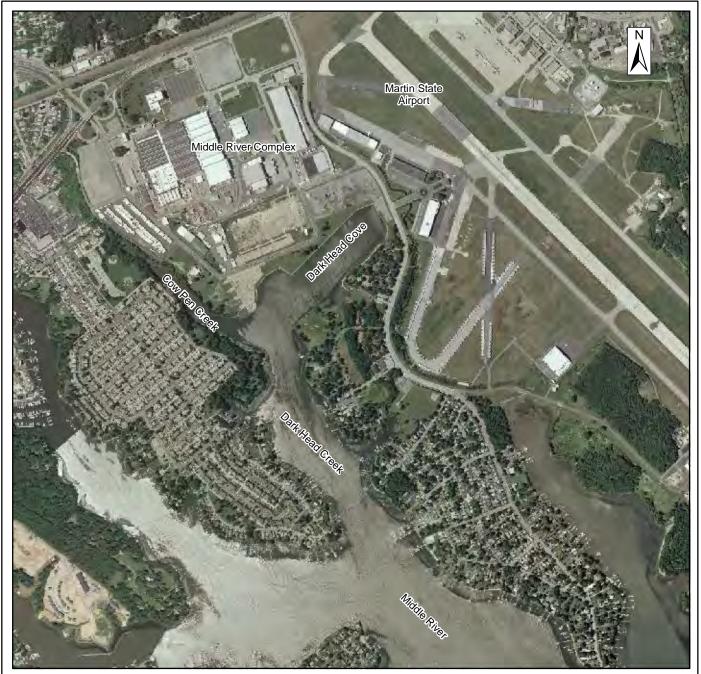
This feasibility study for the remediation of Cow Pen Creek and Dark Head Cove sediments located adjacent to the Lockheed Martin Middle River Complex was submitted to Maryland Department of the Environment and the United States Environmental Protection Agency in December 2012. Lockheed Martin hosted a public meeting and held a public comment period to present the feasibility study and to accept comments on the plan. Lockheed Martin received comments from the regulatory agencies on this feasibility study and the supporting studies (i.e., the sediment risk assessment and the sediment characterization report); those comments, along with comments received from the public, and Lockheed Martin's responses are included in Appendix H. Lockheed Martin expects to implement the remedial actions in 2015 - 2017.

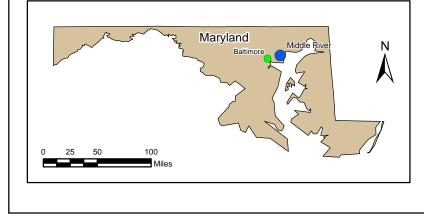
Lockheed Martin is committed to its partnership with the Middle River community, and is committed to maintaining a high level of community involvement and outreach and communication as work progresses. Lockheed Martin will also hold information availability sessions with the community before the remedial construction begins. Lockheed Martin remains committed to two-way communication with the community to ensure that questions are answered and issues and concerns are addressed in a timely manner.

# Table ES-1Short List of Remedial Alternatives

| Alternatives                                                                     | Description/Highlights                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1                                                                                | CERCLA baseline alternative used for comparison to other alternatives                                                                                                                                                                                                                                                                                                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 3A                                                                               | <ul> <li>Removal of impacted sediments over the AOPC in CPC, DHC and Dark Head Creek</li> <li>143,200 cy removal</li> <li>Remedial Action Objectives (RAOs) achieved at end of construction</li> </ul>                                                                                                                                                                                                                                            | \$41.7M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 3B                                                                               | <ul> <li>Removal of impacted sediments over the AOPC in CPC and DHC</li> <li>99,600 cy removal</li> <li>RAOs achieved at end of construction</li> </ul>                                                                                                                                                                                                                                                                                           | \$30.2M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 4F<br>Partial Removal,<br>Reactive ENR                                           | <ul> <li>Removal in CPC, DHC bulkhead and outfalls.</li> <li>48,800 cy removal over 12.5 acres; 8.5 acre reactive ENR (13,800 cy); 8.5 acre long-term monitoring</li> <li>RAOs achieved at end of construction</li> </ul>                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 4G<br>Partial Removal,<br><i>In situ</i><br>Treatment, MNR                       | <ul> <li>Removal in CPC, DHC bulkhead and outfalls.</li> <li>48,800 cy removal over 12.5 acres; 8.5 acre in situ treatment; 3.7 acre MNR; 8.5 acre long-term monitoring</li> <li>Progress towards human health RAOs is 99.5%</li> <li>Benthic RAO is achieved at 93% of the AOPC; average 6 years of MNR to reach benthic RAO in remaining 7% of the AOPC</li> </ul>                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 4H<br>Partial Removal<br>at DHC, CPC,<br>and MNR                                 | <ul> <li>Removal in CPC, DHC bulkhead and outfalls.</li> <li>48,800 cy removal over 12.5 acres; 8.5 acre of MNR; 8.5 acre long-term monitoring</li> <li>Progress towards human health RAOs is 82%</li> <li>Benthic RAO is achieved at 82% of the AOPC; average 11 years of MNR to reach benthic RAO in remaining 18% of the AOPC</li> </ul>                                                                                                       | \$18.1M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 4I<br>Partial Removal<br>at DHC, CPC,<br>and MNR                                 | <ul> <li>Removal in CPC, DHC bulkhead and outfalls, additional removal in DHC and in front of the Wilson Point Park over 3.5 acre</li> <li>62,900 cy removal over 16 acres; 5 acre MNR; 5 acre long-term monitoring</li> <li>Human health RAOs achieved at the end of construction</li> <li>Benthic RAO is achieved at 90% of the AOPC; average 5 years of MNR to reach benthic RAO in remaining 10% of the AOPC</li> </ul>                       | \$21.7M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 4J<br>Partial Removal<br>at DHC, CPC, <i>In</i><br><i>situ</i> Treatment,<br>MNR | <ul> <li>Removal in CPC, DHC bulkhead and outfalls, additional removal in DHC and in front of the Wilson Point Park over 3.5 acre</li> <li>62,900 cy removal over 16 acres; 2 acres in situ treatment; 3 acres MNR; 5 acre long-term monitoring</li> <li>Human health RAOs achieved at end of construction</li> <li>Benthic RAO is achieved at 93% of the AOPC; average 1 year of MNR to reach benthic RAO in remaining 7% of the AOPC</li> </ul> | \$22.1M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                  | 13A3B4FPartial Removal,<br>Reactive ENR4GPartial Removal,<br>In situ<br>Treatment, MNR4HPartial Removal<br>at DHC, CPC,<br>and MNR4IPartial Removal<br>at DHC, CPC,<br>and MNR4JPartial Removal<br>at DHC, CPC, In<br>situ Treatment,                                                                                                                                                                                                             | 1       • CERCLA baseline alternative used for comparison to other alternatives         3A       • Removal of impacted sediments over the AOPC in CPC, DHC and Dark Head Creek         143,200 cy removal       • Remodal Action Objectives (RAOs) achieved at end of construction         3B       • Removal of impacted sediments over the AOPC in CPC and DHC         99,600 cy removal       • Removal of construction         4F       • Removal in CPC, DHC bulkhead and outfalls.         • Removal in CPC, DHC bulkhead and outfalls.       • 48,800 cy removal over 12.5 acres; 8.5 acre reactive ENR (13,800 cy); 8.5 acre long-term monitoring         • Removal in CPC, DHC bulkhead and outfalls.       • Removal in CPC, DHC bulkhead and outfalls.         • Partial Removal, In situ       • Removal over 12.5 acres; 8.5 acre in situ treatment; 3.7 acre MNR; 8.5 acre long-term monitoring         • Progress towards human health RAOs is 99.5%       • Benthic RAO is achieved at 93% of the AOPC; average 6 years of MNR to reach benthic RAO in remaining 7% of the AOPC         4H       • Removal in CPC, DHC bulkhead and outfalls.       • 48,800 cy removal over 12.5 acres; 8.5 acre for MNR; 8.5 acre long-term monitoring         • Progress towards human health RAOs is 82%       • Benthic RAO is achieved at 93% of the AOPC; average 11 years of MNR to reach benthic RAO in remaining 18% of the AOPC         • AH       • Removal in CPC, DHC bulkhead and outfalls.       • 8,800 cy removal over 16 acres; 5 acre MNR; 5 acre long-term monitoring         • T |  |  |  |  |

Acronyms:


CERCLA – Comprehensive Environmental Resource, Compensation, and Liability Act CPC – Cow Pen Creek cy – cubic yard DHC – Dark Head Cove ENR – enhanced natural recovery MNR – monitored natural recovery \$M – million dollars AOPC – area of potential concern RAO – remedial action objective


Qualitative Comparative Analysis of Remedial Alternatives

|                                                                 | Remedial Alternatives                           |                                                                                                                                                                                                                                                                                                                 |                                                  |                                              |                                        |                                                            |                               |                                |                                                            |  |
|-----------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|----------------------------------------|------------------------------------------------------------|-------------------------------|--------------------------------|------------------------------------------------------------|--|
| Evaluation Criteria                                             |                                                 | 1<br>No Action                                                                                                                                                                                                                                                                                                  | 3A<br>Removal at CPC,<br>DHC, Dark Head<br>Creek | 3B<br>Removal at CPC,<br>DHC                 | 4F<br>Partial Removal,<br>Reactive ENR | 4G<br>Partial Removal,<br><i>In situ</i><br>Treatment, MNR | 4H<br>Partial Removal,<br>MNR | 4I<br>Partial+ Removal,<br>MNR | 4J<br>Partial+ Removal<br><i>In situ</i><br>Treatment, MNR |  |
|                                                                 | Achieve RAOs                                    |                                                                                                                                                                                                                                                                                                                 |                                                  | at varying performation a timeframe of about |                                        | considered not achiev                                      | ving RAOs due to un           | acceptable risks to hu         | man health and                                             |  |
| Overall Protection of Human<br>Health and Environment           | Time to Achieve Human<br>Health RAOs (RAO 1 and | No Action achieves RAO 1 in 30 years. Alternatives 3A, 3B, 4F, 4I, and 4J achieve RAO 1 at the end of construction. Alternatives 4G and 4H achieve RAO 1 in one year and 10 years represtively. All alternatives except No Action achieve RAO 2 at the end of construction.                                     |                                                  |                                              |                                        |                                                            |                               |                                |                                                            |  |
|                                                                 | RAO 2)                                          | *                                                                                                                                                                                                                                                                                                               | ****                                             | ****                                         | ****                                   | *****                                                      | ***                           | ****                           | *****                                                      |  |
|                                                                 | Time to Achieve Benthic                         | No Action achieves RAO 3 in 100 years. Alternatives 3A, 3B, 4F achieve RAO 3 at the end of construction. Alternatives 4G achieves RAO 3 up to 13 years;<br>Alternative 4H up to 26 years; Alternative 4I up to 12 years, Alternative 4J up to 3 years.                                                          |                                                  |                                              |                                        |                                                            |                               |                                |                                                            |  |
|                                                                 | RAOs (RAO 3)                                    | *                                                                                                                                                                                                                                                                                                               | ****                                             | ****                                         | ****                                   | ***                                                        | **                            | ***                            | ****                                                       |  |
| Compliance with ARARs                                           |                                                 | Not expected to comply All remedial alternatives comply with ARARs                                                                                                                                                                                                                                              |                                                  |                                              |                                        |                                                            |                               |                                |                                                            |  |
|                                                                 |                                                 | *                                                                                                                                                                                                                                                                                                               | ****                                             | ****                                         | ****                                   | ****                                                       | ****                          | ****                           | ****                                                       |  |
| Long-term Effectiveness                                         |                                                 | Long-term effectiveness is considered higher for removal-focus and larger removal alternatives than the alternatives relying on effectiveness of <i>n situ</i> treatment and MNR.                                                                                                                               |                                                  |                                              |                                        |                                                            |                               |                                |                                                            |  |
|                                                                 |                                                 | *                                                                                                                                                                                                                                                                                                               | ****                                             | ****                                         | ****                                   | ***                                                        | ***                           | ****                           | ****                                                       |  |
| Reduction of Toxicity, Mobility, or Volume through<br>Treatment |                                                 | Alternatives 4F, 4G, and 4J has treatment components. In situ treatment is not included in other alternatives.                                                                                                                                                                                                  |                                                  |                                              |                                        |                                                            |                               |                                |                                                            |  |
|                                                                 |                                                 | *                                                                                                                                                                                                                                                                                                               | *                                                | *                                            | ****                                   | *****                                                      | *                             | *                              | ****                                                       |  |
| Short-term Effectiveness                                        |                                                 | Short-term impacts are higher for removal-focus alternatives and increase with increased removal volume.                                                                                                                                                                                                        |                                                  |                                              |                                        |                                                            |                               |                                |                                                            |  |
|                                                                 |                                                 | ****                                                                                                                                                                                                                                                                                                            | *                                                | **                                           | ****                                   | ****                                                       | ****                          | ***                            | ***                                                        |  |
| Implementability                                                |                                                 | Implementability of removal-focus alternatives is less than the combined action alternatives. Potential for technical and administrative difficulties, schedule delay increase with the dredge volume. Alternative 4F has low administrative implementability due to navigation channel status of Middle River. |                                                  |                                              |                                        |                                                            |                               |                                |                                                            |  |
|                                                                 |                                                 | *****                                                                                                                                                                                                                                                                                                           | *                                                | **                                           | **                                     | ****                                                       | ****                          | ***                            | ***                                                        |  |
| Cost                                                            |                                                 | ****                                                                                                                                                                                                                                                                                                            | *                                                | **                                           | ***                                    | ***                                                        | ****                          | ***                            | ***                                                        |  |
| Modifying Criteria (Regulatory and Public Acceptance)           |                                                 | Regulatory acceptance is not ranked at this time. Public acceptance is ranked based on the input received from the community.                                                                                                                                                                                   |                                                  |                                              |                                        |                                                            |                               |                                |                                                            |  |
|                                                                 |                                                 | *                                                                                                                                                                                                                                                                                                               | **                                               | ***                                          | ****                                   | ****                                                       | ***                           | ****                           | ****                                                       |  |
| Overall S                                                       | ummary =                                        | **                                                                                                                                                                                                                                                                                                              | **                                               | ***                                          | ****                                   | ****                                                       | ****                          | ****                           | ****                                                       |  |
| Ranking Index =                                                 |                                                 | *                                                                                                                                                                                                                                                                                                               | **                                               | ***                                          | ****                                   | ****1                                                      |                               |                                |                                                            |  |
|                                                                 |                                                 | Low                                                                                                                                                                                                                                                                                                             | Low-Medium                                       | Medium                                       | Medium-High                            | High                                                       | -                             |                                |                                                            |  |

CPC=Cow Pen Creek; DHC=Dark Head Cove; RAO=Remedial action objective, MNR=Monitored natural recovery; ENR=Enhanced natural recovery; ARAR=Applicable or relevant and appropriate requirements

Map Document: (K:\GProject\middle\_river\Maps\MiddleRiver\_LocationMap 082112.mxd) 8/21/2012 -- 10:33:59 AM



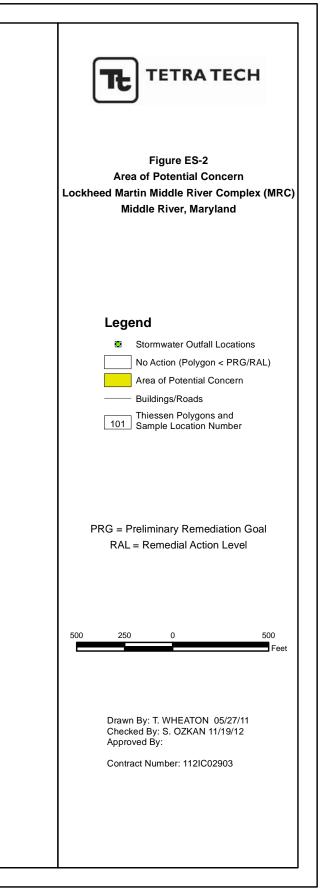


## Figure ES-1

Middle River Complex Site Location UbX<sup>-</sup>J ]W]b]ImiMap

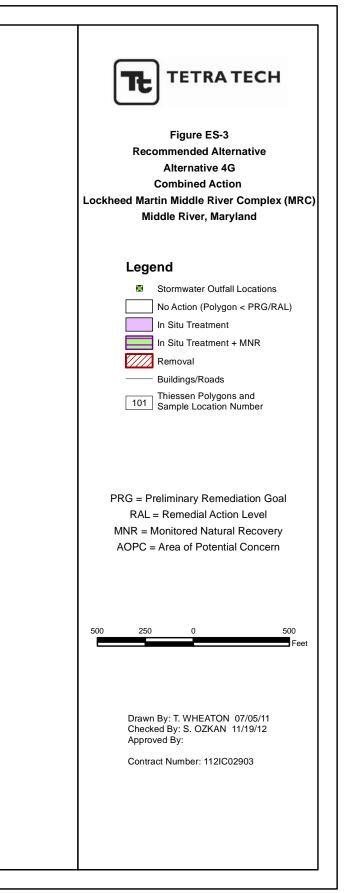
8/21/12

Lockheed Martin Middle River Complex Middle River, Maryland


DATE MODIFIED:




A TECH


MP





PGH P:\GIS\MIDDLE\_RIVER\MAPDOCS\MXD\AUG2010\_THIESSEN\COMBINEDCOC\_APC\_52INCH\_2XCDPRG.MXD 11/19/2012 JN





PGH:P:\GIS\MIDDLE\_RIVER\MAPDOCS\MXD\AUG2010\_THIESSEN\COMBINEDCOC\_THIESSEN\_AUG2010\_SS\_ALT4\_CDPRG\_ALT4G\_REVISED1.MXD 11/19/2012 JN

# Section 1 Introduction

This feasibility study (FS) summarizes the results of the remedial investigations and evaluations that have been completed by the Lockheed Martin Corporation (Lockheed Martin) for the remediation of sediments located adjacent to the Lockheed Martin Middle River Complex in Middle River, Maryland (Figure 1-1). This FS has been prepared as part of Lockheed Martin's Environmental Restoration Program. Although the Middle River Complex (MRC) site is not part of the federal Superfund (a/k/a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) program, the FS was prepared in accordance with CERCLA guidance (United States Environmental Protection Agency [USEPA], 1988), as well as in accordance with Maryland Department of the Environment (MDE) requirements for the environmentally impaired sediments associated with the Lockheed Martin Middle River Complex (referred to herein as the MRC or the site).

## 1.1 REGULATORY BACKGROUND

The waters adjacent to the Middle River Complex are considered waters of the United States and are regulated by the State of Maryland. The proposed sediment remediation at the Middle River Complex will be performed with the oversight of the MDE Controlled Hazardous Substance Enforcement Division of its Environmental Restoration and Redevelopment Program (also known as the state Superfund program) under Environmental Article 7-222 Hazardous Substance Response Plan. The Maryland Superfund division oversees the assessment and cleanup of historically contaminated hazardous waste sites in Maryland that have not been placed on the *National Priorities List* (NPL). Because polychlorinated biphenyls (PCBs) are in site sediments at concentrations greater than 50 parts per million (ppm), the USEPA also has jurisdiction under the Toxic Substances Control Act (TSCA) and its implementing regulations.

# 1.2 PURPOSE AND SCOPE

The purpose of a FS is to identify and evaluate remedial alternatives to prevent, mitigate, respond to, or remedy releases or threatened releases of hazardous substances, pollutants, or contaminants at or from the site. This Middle River Complex FS was conducted in accordance with CERCLA, the *National Contingency Plan* (NCP), the MDE requirements for the Lockheed Martin Middle River Complex, and other relevant USEPA guidance. This work was also performed in accordance with the *Interim Final Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA* (USEPA, 1988, or subsequently issued guidance) and the *Guidance for Data Usability in Risk Assessment* (USEPA, 1992 or subsequently issued guidance).

The FS is the mechanism for evaluating and screening remedial technologies to ensure that appropriate remedial alternatives are developed and evaluated. This document presents relevant information regarding potential remedies available for the site and the methods used to select an appropriate remedy. This FS focuses on identifying remedial alternatives to address the contaminated sediments located adjacent to the MRC and within Cow Pen Creek, Dark Head Cove, and Dark Head Creek. The data and information used to develop this FS were previously reported in the documents discussed below.

# 1.3 PRE-FEASIBILITY STUDY DELIVERABLES

Several reports have been prepared and submitted to MDE and USEPA, in accordance with federal and state regulations. Those deliverables have helped all parties reach consensus regarding important remedial investigation findings, conclusions, and recommendations completed in advance of this FS. Deliverables submitted to or prepared for submission to regulatory agencies for review before this FS include the following:

- *Surface Water and Sediment Sampling Report* (Tetra Tech, 2006): This document includes results of sediment sampling, site surveying, and reconnaissance activities; submitted to both agencies for review in 2006.
- Additional Characterization and Sediment Sampling Data Summary Report (Tetra Tech, 2011a): This document includes information regarding field and laboratory testing and treatability studies, and provides additional data regarding sediment stratigraphy and geotechnical properties; submitted to both agencies for review in 2011.

- *Fish Tissue Report* (Tetra Tech, 2011b): This document, also submitted to federal and state regulators in 2011, includes fish tissue sampling results from fish collected in the study area.
- *Sediment Risk Assessment* (Tetra Tech, 2011c): This document is the most recent risk assessment prepared for sediments at the site, and includes both a human health and ecological risk assessment. It was submitted to the USEPA and MDE in 2011.
- Additional Sediment Characterization Report (Tetra Tech, 2012a): This document, which further characterizes site sediments, is undergoing internal review and has not yet been submitted to the regulators. However, the data from that study were considered in preparation of this FS. This report contains further characterization of site sediments and includes geotechnical data and investigation results. The results of sediment dewatering-elutriate tests, field vane-shear tests, column settling tests, and dredge elutriate tests are also included in this report.

# 1.4 FEASIBILITY STUDY REPORT ORGANIZATION

This FS incorporates the findings of the extensive sampling program that has been conducted in and on sediments adjacent to the Middle River Complex, and the results of human health and ecological risk assessments of site sediments. The results of the site characterization investigation and risk assessment studies culminate in the identification of potential risks, and define the study area boundary used in the FS. This document is organized as follows:

<u>Executive Summary</u>: Provides a brief overview of site background, the remedial alternative evaluation process, and the recommended alternative.

<u>Section 1.0—Introduction</u>: Provides general project background and the purpose and scope of the FS report.

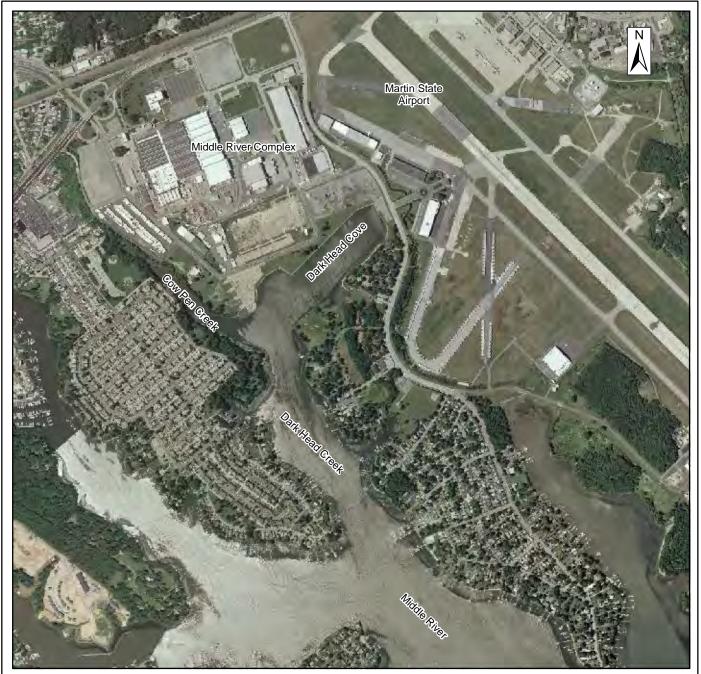
<u>Section 2.0—Site Background and Current Conditions</u>: Presents background and environmental setting information regarding the site and surrounding area. The section includes a conceptual model overview for the site, and discussions of previous investigations and remediation activities, the nature and extent of the contamination, potential source areas, and pathways to site sediments. This section also includes a discussion regarding source control measures undertaken and a summary of the baseline ecological and human health risk assessments.

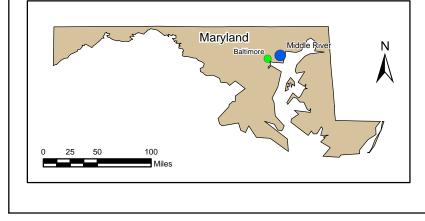
<u>Section 3.0—Remedial Action Objectives and Preliminary Remediation Goals</u>: Summarizes the remedial action objectives (RAOs) developed for the site (based on the risk assessments) and identifies the preliminary remediation goals (PRGs) that will achieve the remedial action objectives.

<u>Section 4.0—Screening of Remedial Technologies and Process Options</u>: Summarizes the identification and screening of the remedial technologies and process options applicable to the site.

<u>Section 5.0—Development of Remedial Alternatives</u>: Identifies potential remedial action areas and remedial action levels and summarizes the assembly and initial screening of representative remedial alternatives.

<u>Section 6—Detailed Evaluation of Remedial Alternatives</u>: Presents a detailed analysis of each remedial alternative retained for further evaluation. The detailed evaluation was performed in accordance with the *Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA* (USEPA, 1988).


<u>Section 7.0—Comparative Analysis of Remedial Alternatives</u>: The comparative analysis section provides an evaluation of the relative performance of each alternative with respect to the nine CERCLA evaluation criteria. This detailed comparative evaluation of the candidate remedial alternatives led to the selection of one alternative, which will be recommended to the regulators for implementation at the site.


Section 8.0—Reference: Provides a complete list of the references cited in this document.

Tables and figures are included at the end of their respective sections. This document is also supported by the following appendices:

- Appendix A—Development of Human Health Preliminary Remediation Goals
- Appendix B—Development of Ecological Preliminary Remediation Goals
- Appendix C—Sediment Bathymetry Profiles
- Appendix D—Community Input to Remedial Alternatives
- Appendix E—Detailed Cost Estimates
- Appendix F—Estimation of Short-Term Effects, Environmental Footprint, and Sustainability Measures
- Appendix G—Criterium Decision Plus<sup>®</sup> Analysis
- Appendix H—Response to MDE, EPA and Public Comments

Map Document: (K:\GProject\middle\_river\Maps\MiddleRiver\_LocationMap 082112.mxd) 8/21/2012 -- 10:33:59 AM





## Figure 1-1

Middle River Complex Site Location and Vicinity Map

Lockheed Martin Middle River Complex Middle River, Maryland

DATE MODIFIED:

CREATED BY: 8/21/12

**TETRA TECH** RL |

MP

# Section 2 Site Background and Current Conditions

This section describes the site and surrounding area, provides a narrative of the site operational and ownership history, and discusses the investigation/remedial history, areas of concern, and current site conditions. This section summarizes the Middle River Complex (MRC) site setting, including the following conditions:

- the nature and extent of contamination
- the location and extent of the identified contaminated area, including maps with sample collection sites cross-referenced to the sample identification numbers in the data summary
- potential contamination sources, pathways, and source control
- an overview of the conceptual site model
- a summary of the baseline human health and ecological risk assessments

## 2.1 MIDDLE RIVER COMPLEX SITE BACKGROUND

The Lockheed Martin Corporation (Lockheed Martin) MRC is located at 2323 Eastern Boulevard in Middle River, Maryland. Figure 2-1 is a facility layout map. The MRC consists of approximately 180 acres of land and 12 main buildings. It includes an active industrial area and yard, perimeter parking lots, an athletic field, a vacant lot with an extensive concrete slab, a trailer and parts storage lot, and numerous grassy areas along the facility perimeter. Locked chain-link fences surround all exterior lots and the main industrial area. The MRC is bounded by Eastern Boulevard (Route 150) to the north, Dark Head Cove to the south, Cow Pen Creek to the west, and Martin State Airport (MSA) to the east.

LMC Properties, Inc. (LMCPI), the current owner, conducts activities at the MRC that are limited to facility and building management and maintenance. The MRC has three main tenants: Middle River

Aircraft Systems (MRAS), a wholly owned subsidiary of General Electric Company; Maritime Systems & Sensors (MS2)—Marine Systems; and Applied NanoStructured Solutions LLC (ANS), a Lockheed Martin subsidiary. MRAS designs, manufactures, fabricates, tests, overhauls, repairs, and maintains aeronautical structures, parts, and components for military and commercial applications. Maritime Systems & Sensors—Marine Systems fabricates, assembles, tests, and otherwise supports vertical-launch systems. The third tenant, ANS occupies a smaller portion of the site than the other tenants. ANS is involved in the development and commercialization of nanotechnology. Historically, the property has been used for aircraft and missile-launching systems design, development, manufacturing, and sales.

The facility is broken up into tax blocks, which segregate the MRC property into a series of land parcels for tax assessment purposes (Figure 2-1). This proved to be a convenient way to segregate the property for participation in the State of Maryland's Voluntary Cleanup Program.

## 2.2 ENVIRONMENTAL SETTING

This section presents general information regarding the environmental setting for the MRC site and relevant surrounding area. Current land use, residential establishments, site physiography, geology and hydrogeology, and navigation requirements are also discussed in this section.

#### 2.2.1 Land Use

The MRC is an industrial facility within the broader Chesapeake Industrial Park. It is surrounded primarily by commercial, industrial, and residential establishments. Six other facilities, comprising the remainder of the Chesapeake Industrial Park, are adjacent to the MRC. These include Tilley Chemical Company, Inc. (a food- and pharmaceutical-chemical distributor for personal care and other industries), North American Electric (an industrial and commercial electrical contractor), Johnson and Towers (a heavy-duty diesel equipment, truck, and boat repair and maintenance company), Poly Seal Corp. (a producer of various flexible packaging types), Exxon (a gasoline filling station and convenience store), and the Middle River Post Office. Residential developments lie on the opposite shores of Cow Pen Creek, Dark Head Cove, and Dark Head Creek, as well as north of Route 150 and Eastern Boulevard (Figure 2-2).

## 2.2.2 Physiography

The site lies within the Western Shore of the Coastal Plain physiographic province. Coastal Plain topography is generally characterized by low relief. The MRC topography slopes gently from approximately 32 feet above mean sea level (MSL) to sea level (Cassell, 1977). The topography slopes from Eastern Boulevard to the southwest and south toward Cow Pen Creek and Dark Head Cove.

## 2.2.3 Geology, Hydrogeology, and Hydrology

Geologic maps of Baltimore County show that the MRC is underlain by the Potomac Group, a Cretaceous-age geologic group comprised of unconsolidated and interbedded layers of gravel, sand, silt, and clay ranging from zero to 800 feet thick. Soils logging beneath the MRC (conducted during extensive site characterization activities) identified a very heterogeneous substrate. The underlying soils are composed primarily of silty sands, fine- to medium-grained sands, silty clays, clayey silts, and plastic clay, with the primary lithology being clay to silty clay. Sand lenses were encountered, but do not appear to be continuous beneath the facility. Shallow groundwater tends to flow in the more sandy lenses toward the surface water bodies, and surface flow contours have a gradient similar to those of the overlying topography (Tetra Tech, 2012a).

The MRC lies at the junction of Cow Pen Creek and Dark Head Cove. Both are tidal surface water bodies that feed into Dark Head Creek, a tributary to Middle River, which is a tributary to Chesapeake Bay. The facility lies approximately 3.2 miles upstream of Chesapeake Bay. No surface water bodies lie within or cross the Lockheed Martin MRC. The average annual maximum water level range is approximately -2.0 feet MSL to +4.0 feet MSL. Storm water infiltrates into the surface soils at the MRC facility, or is collected as runoff by the facility's storm water management system and released through outfalls that discharge to Cow Pen Creek and/or Dark Head Cove (Figure 2-1). There are nine storm water outfalls at the MRC; however, only eight of the outfalls are currently permitted and actively used. There are some small areas immediately adjacent to Cow Pen Creek and Dark Head Creek from which runoff discharges as sheet flow directly into these water bodies. Other outfalls may have been used historically but are no longer in service. Storm water runoff from the Chesapeake Industrial Park and a portion of the MSA (across Wilson Point Road), as well as from some of the area along Eastern Boulevard, is collected through a storm-water conveyance system and discharged to Cow Pen Creek and Dark Head Cove.

A Maryland National Pollutant Discharge Elimination System (NPDES) permit (surface industrialdischarge permit number 00DP0298, NPDES No. MD0002852) is maintained by LMCPI for the outfalls at MRC; it was issued by the Maryland Department of the Environment (MDE) Industrial Discharge Permits Division, Water Management Administration. The NPDES permit authorizes the discharge of facility storm water runoff from eight permitted discharge points (i.e., Outfalls 001, 002, 003, 004, 005, 006, 007, and 009; Outfall 008 is no longer in service). Sanitary wastewater and process wastewater is generated by MRAS. The facility pretreats and discharges wastewater under an industrial user discharge permit (permit number WWDP#1579), issued to MRAS by the Baltimore County Department of Public Works Bureau of Utilities (Baltimore County, 2011).

## 2.2.4 Navigation Requirements

A portion of Middle River and extending to Dark Head Cove is a federal navigation channel within the United States Army Corps of Engineers (USACE) Baltimore District jurisdiction. The USACE and the State of Maryland have concurrent jurisdiction over management of the channel. The navigation channel was constructed in 1940, and provides a channel totaling 3.7 miles (see Figure 2-3). The federally authorized navigation channel is 200 feet wide and 10 feet deep from the mouth of Middle River at Chesapeake Bay to the head of Dark Head Creek. In the branch of Dark Head Creek, an anchorage basin 10 feet deep, 2,000 feet long and generally 400 feet wide extends northeasterly from the head of the channel (i.e., Dark Head Cove).

The navigation project was completed in 1942, and the USACE has conducted reconnaissance surveys since then; to date, no additional dredging has been performed (Blama, 2012). The USACE completed the most recent reconnaissance survey on March 29, 2011. The current depths in Dark Head Cove as surveyed by the USACE range from -12 to -8 feet mean lower-low water (MLLW) (USACE, 2012).

# 2.3 SUMMARY OF PREVIOUS REMEDIAL INVESTIGATIONS AND ACTIVITIES

This section includes a summary of previous MRC upland remediation studies and activities, as well as sediment-related investigations and studies. The sediment studies include benthic and fish-tissue studies, site bathymetry, a sediment-age dating study, and studies of sediment hydrodynamic stability, sediment geotechnical characteristics, sediment settling characteristics, and dredging treatability.

## 2.3.1 Previous Upland Remediation Studies and Activities

The following environmental activities have been conducted at the Lockheed Martin MRC:

- underground storage tank closures and abandonments
- soil excavations
- Phase I environmental site assessment (ESA)
- Phase II ESA
- groundwater investigations
- sub-slab vapor intrusion investigations
- human health and ecological risk assessments

In a 2003 facility-wide Phase I ESA at Lockheed Martin MRC, thirteen recognized environmental concerns (RECs), associated primarily with current site conditions, were identified (Earth Tech, 2003). Subsequent review of historical site activities identified another 18 RECs at the facility (Tetra Tech, 2004). Many of the identified RECs are in the southern portion of the facility along the waterfront, and could have potentially contributed to sediment contamination. Soil and groundwater sampling at the RECs has identified sporadic impacts in soil and groundwater underlying the facility. As a result, the MRC upland has been entered into the MDE Voluntary Cleanup Program.

#### 2.3.2 Previous Sediment-Related Investigations

Various MRC site investigations have identified surface water and sediment contamination resulting from historical landfilling and plant activities. Surface water and sediment impacts include elevated concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and metals. Sediment samples were analyzed for PCB as Aroclors, (the most commonly known trade names for PCB mixtures manufactured from 1930 to 1979). With the exception of Aroclor-1016, the last two numbers in the trade name designation correspond to the percentage of chlorine by weight. Total PCBs (denoted herein as PCBs) equal the sum of detected Aroclor concentrations. In some parts of the feasibility study (FS) text, when specific Aroclors are not being referenced, the terms PCB(s) and Aroclor(s) may be used interchangeably.

Three in-water sampling investigations were performed at the MRC between 2005 and 2008. In March 2005, seven surface water and 12 sediment samples were collected; in October 2005, 10

surface water and 50 sediment samples were collected; and in November 2008, 146 sediment samples from four depth intervals were collected (Figure 2-4). Sampling depth intervals range from zero to six inches below ground surface (bgs), six to 18 inches bgs, 18 to 30 inches bgs, and 30 to 54 inches bgs. Samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compound (SVOCs) including PAHs, PCBs, and priority pollutant metals.

A characterization of contaminated sediment was provided in the *Surface Water and Sediment Sampling Report* (Tetra Tech, 2006); this document also contained human health and ecological risk assessments for the surface water and sediments of Cow Pen Creek, Dark Head Cove, and Dark Head Creek. The 2006 human health risk assessment (HHRA) determined that non-cancer risks associated with both surface water and sediment were within a range acceptable to regulators, and that potential carcinogenic risks associated with surface water were less than the MDE risk threshold of  $1 \times 10^{-5}$  (or a one-in-100,000 incremental probability of developing cancer). The risk estimate was within the  $1 \times 10^{-4}$  to  $1 \times 10^{-6}$  United States Environmental Protection Agency (USEPA) cancer risk range and, more importantly, did not exceed  $1 \times 10^{-4}$ , the benchmark typically used to determine if further evaluation is necessary.

Potential carcinogenic risks due to exposure to sediment exceeded the MDE threshold, but fell within the USEPA acceptable risk range of  $10^{-4}$  to  $10^{-6}$  (an incremental increased lifetime cancer risk of one-in-10,000 to one-in-one-million). The primary contributors to risk included arsenic, PAHs, and PCBs.

The results of the 2006 ecological risk assessment (ERA) determined that both lower (benthic macroinvertebrates) and upper-trophic-level organisms (e.g., great blue heron) were potentially at risk. Cadmium in surface water, and barium, silver, and three PAHs (benzo(a)pyrene, benzo(g,h,i)perylene, and indeno(1,2,3-cd)pyrene) in sediment, were determined to be the major contributors to risk. In addition, mercury in the diet of great blue herons was also identified as an ecological concern through food chain modeling (based on sediment concentrations of mercury).

An additional sediment investigation was performed in 2010. Sediment samples were collected from 24 site locations, and from three sites that were located away from possible MRC influences to determine background conditions reflecting an urbanized coastal area. Sediment samples were collected from the surface (zero to six inches), six to 18 inches, 18 to 30 inches, and 30 to 52 inches

below the surface water/sediment interface. These intervals are consistent with depths sampled during previous investigations and allowed for consistency in data evaluation and risk assessment. Sediment samples were analyzed for semivolatiles (including PAHs), PCBs, and metals. Several samples were also analyzed for acid-volatile sulfides (AVS)/simultaneously extracted metals (SEM). A summary of the risk assessment based on the 2010 data is presented in Section 2.6 of this report.

#### 2.3.3 Benthic and Fish Tissue Studies

Benthic macroinvertebrate samples were collected in 2010 to evaluate the status of benthic communities residing in sediment at the site. Benthic macroinvertebrate samples were also collected from three background/reference locations (i.e., locations not affected by contaminants possibly leaving the site) and were used for comparison to site samples (Figure 2-5). Benthic macroinvertebrate samples were collected from seven site locations, including two in Cow Pen Creek and five in Dark Head Cove. Tetra Tech performed identical diversity and abundance assessments at the three reference areas to compare these locations with similar environments in the Middle River area.

The selected reference areas included one with little to no shoreline development (Marshy Point), one with typical regional waterfront development (i.e., Bowleys Quarters), and from the Middle River at a location upstream of the river's confluence with Dark Head Creek presumably removed from possible MRC influences. Reference locations are shown in Figure 2-5. Reference locations were selected before mobilization to be representative of sediment conditions in an urbanized coastal area reflecting non-point runoff. None of the three reference locations appeared to be near any industrial point sources, and they had similar substrates to site locations. The final sampling locations in each reference area were selected in the field to avoid possible effects associated with any recognized industrial point-sources. Reference locations were confirmed with global positioning system (GPS) readings during field reconnaissance in the initial stages of fieldwork to ensure that the specific reference-sampling locations are similar in nature to the sampling locations in Cow Pen Creek and Dark Head Cove. The Middle River location was approximately 4,000 feet south of MRC, and approximately 2,000 feet upstream of the river's confluence with Dark Head Creek, at a location where it was presumed there would be limited to no influence from the MRC even with tidal movement. Sediment analytical data from this sampling location appeared to be somewhat elevated when compared to sediment concentration data from other site-specific

background sampling locations. However, based on comparisons to regional sediment data, available as a consequence of investigations conducted by the USEPA and NOAA, the sediment concentrations detected at the referenced Middle River location may simply reflect regional background conditions and the developed nature of the area. Conservatively, the sediment analytical data from the Middle River location were excluded from the background dataset.

Criteria to assess the similarity of reference sampling locations to site sampling locations included grain size, water depth, salinity, temperature, and pH (a measure of the acidity/alkalinity of a solution). Field instruments measured salinity, temperature, dissolved oxygen, and pH. Depth was measured with a tape, and grain size was evaluated qualitatively by comparison to a grain-size chart. To compare substrate from the reference locations, a composite sample was collected from each sampling location and analyzed for grain size, total organic carbon (TOC), PCBs, PAHs, and total priority pollutant metals. One reference site (Marshy Point), representing the most (comparatively) pristine local-area environmental conditions in an area with little to no shoreline development, had relatively good benthic conditions. The other two local reference sites, Bowleys Quarters and a remote downstream reference site in Middle River, are located in areas having typical regional waterfront development. Both sites showed some indications of conditions stressful for benthic macroinvertebrates.

Benthic macroinvertebrate fauna in tidally influenced brackish water vary spatially and are heterogeneous (patchy) in nature, so five individual grab samples were collected at each benthic sampling location in an effort to obtain representative analytical results. The individual grab samples from each location were collected from within an approximately 25-foot circle, taking care to avoid sampling the same sediment area twice. The five individual grab samples for each sampling location were composited at the laboratory and processed as a single sample. Some indications of stress to benthic organisms (i.e., a greater abundance of pollution-tolerant organisms than pollution-sensitive organisms) were found at all sites local to the MRC. However, some sites local to the MRC had a greater density of benthic organisms than the reference sites.

In 2010, fish samples were collected from five site locations and three reference locations to measure chemical concentrations in their tissue (Tetra Tech, 2011b). Site-associated fish collection locations included one in Cow Pen Creek, two in Dark Head Cove, and two at the confluence of the two water bodies. To compare these locations with similar environments in the Middle River area,

samples of the same fish species were also collected from reference areas at Marshy Point, Bowleys Quarters, and Middle River.

Fish sampling protocols and the target species selected for fish tissue analyses were consistent with the MDE regional fish monitoring program. Targeted species for collection and tissue residue analysis included the channel catfish and brown bullhead because both are demersal (i.e., bottom feeding) and expected to be resident (i.e., non-migratory). These fish are likely to accumulate chemicals from sediment and are edible (MDE Science Services Administration, 2009). Channel catfish were collected as proposed, but attempts to capture brown bullhead were unsuccessful. Sample collection goals identified in the work plan were met by collecting and submitting tissue samples from white catfish for tissue-residue analysis; white catfish is also a demersal species, and is a resident equivalent.

As discussed in the 2011 *Fish Tissue Report* (Tetra Tech, 2011b), concentrations of chemicals detected in fish tissue samples collected in the immediate vicinity of the MRC study area are similar to reference and regional concentrations. Average total PCB concentrations in channel catfish (the species most frequently collected in this study) were less than the average concentrations reported by MDE for regional samples collected from the Back River and Middle River (which most likely represent the region from which the site data were collected).

The PCBs with higher chlorine content bioaccumulate in fish through the food chain, resulting in a different level of residue in fish tissue compared to the levels detected in sediment samples. Metals concentrations in channel catfish from the site were generally similar to reference concentrations, based on a comparison of site versus reference-area average concentrations. Several metals detected in sediment were not detected in fish tissue, including cadmium, which had elevated concentrations in sediment samples collected from the site.

#### 2.3.4 Bathymetry

Tetra Tech performed a bathymetric survey in Dark Head Cove, in accessible portions of Cow Pen Creek, and at the confluence of the two water bodies in August 2010 (see Figure 2-6). Tetra Tech used the research vessel *Storm*, a 21-foot jet boat configured with a dual-multibeam echosounder (MBE) system. The Middle River bathymetry survey mapped in high detail the morphology (form and structure) of Dark Head Cove and, to the extent possible (given the dense floating and

semi-submerged vegetation), Cow Pen Creek. Water depths within the survey area ranged from 0.0 to 13.0 feet, and averaged 8.0 United States survey feet as referenced to MLLW, consistent with the USACE datum. These depths are shallower than the USACE survey depths for Dark Head Cove (as noted in Section 2.2.4), because bathymetric survey areas outside the navigation channel include Cow Pen Creek.

### 2.3.5 Sediment Stability

A hydrodynamic modeling analysis estimated the stability of bed sediment in Cow Pen Creek and the Dark Head Cove forks of Dark Head Creek relative to wind- and wave-generated bottom velocities and associated shear stresses (Tetra Tech, 2011a). The analysis considered simulation of two extreme events: a high rainfall event (100-year, 24-hour) in the Cow Pen Creek and Dark Head Creek watersheds, and a historical storm-surge and wind event associated with Hurricane Isabella during September 2003. Modeling results indicated that the MRC sediment bed is stable, except for the upstream area of Cow Pen Creek where a 100-year 24-hour storm event could transport material from upstream of Cow Pen Creek.

The USEPA Environmental Fluid Dynamic Code, which involved determining bed stresses during simulated events, was used for the modeling analysis. Model-forcing functions included runoff into Cow Pen Creek and Dark Head Cove, tidal water surface elevation at the mouth of Dark Head Creek, and wind forcing over the entire model domain. Modeled bed stresses are less than 0.1 Newton per square meter  $(N/m^2)$  over most of the study area, except for the upstream area of Cow Pen Creek, where the maximum stresses reach 4 N/m<sup>2</sup> (Tetra Tech, 2011a).

Field investigations of critical bed-stresses that could erode cohesive sediments in the Chesapeake Bay region (Maa, et al., 1998, 2002, 2008) indicate that  $0.1 \text{ N/m}^2$  is a lower boundary for critical-erosion stress. Sand and non-cohesive silt beds are also stable at stresses below  $0.1 \text{ N/m}^2$  (Garcia, 2008). Therefore, the general conclusion of the analysis is that the sediment bed is stable, except for the upstream area of Cow Pen Creek. The modeled 100-year 24-hour storm event could transport eroded material from within and upstream of Cow Pen Creek, outside of the study area.

During such an event, the corresponding suspended-sediment-concentration range modeled for the mouth of Dark Head Creek could be from 140 to 1,000 milligrams per liter (mg/L). An estimated erosion depth from the one-day event could be as much as 10 centimeters (cm), and would be

anticipated to occur in the upstream area of Cow Pen Creek, where bed stresses would be the highest. However, conservatism is built into the hydrodynamic model, because the wind-induced stresses do not account for local sheltering effects. Due to the relatively sheltered nature of Dark Head Cove and Cow Pen Creek, normal tidal conditions, including monthly spring tides with a range of 1.58 feet (0.48 meter), are not anticipated to pose a potential for erosion.

Sediment stability can also be susceptible to disturbance during earthquakes. The site is in Seismic Zone 1, corresponding to an effective peak ground-acceleration of 0.075 of gravity (g) (*Uniform Building Code* [UBC], 2006). Probabilistic seismic-hazard analyses for the MRC site using United States Geological Survey (USGS) de-aggregation plots result in peak ground-accelerations of 0.006g, 0.02g, and 0.07g for nominal 100-year, 500-year, and 2,500-year events, respectively.

These peak ground-accelerations correspond to weak-to-light shaking, associated with no to very light potential damage (USGS, 2011). The significant central Virginia earthquake of August 23, 2011 was a magnitude 5.8 with peak ground-accelerations corresponding to an approximately 500-year event. This quake was felt in Baltimore, and caused light to moderate shaking. Resuspension of MRC sediments were not observed during this 500-year event. Due to very low seismic activity in the region, resuspension potential of MRC sediments due to a seismic event is considered negligible. MRC sediments are expected to remain stable under known regional seismic conditions.

#### 2.3.6 Sediment Age Dating

Sediment-age dating enabled an evaluation of sediment stability, an estimate of the period during which chemicals of potential concern (COPC) may have been released to the sediments, and an assessment of rates of natural recovery. Sediment cores were collected from three locations in August 2010 and evaluated for sediment age, stability, and sedimentation rate. Sediment chronology work is based on analyzing for and interpreting the levels of the radioactive nuclides lead (Pb)-210 and cesium (Cs)-137 in samples taken at various depths in sediment cores. This analysis derives sedimentation rates and calendar dates for the sediments. Average inferred sedimentation rates at Dark Head Cove, Dark Head Creek, and at the mouth of Cow Pen Creek are estimated at 0.8 centimeters per year (cm/year), 1.3 cm/year, and 0.38 cm/year, respectively (Tetra Tech, 2011a). Average sedimentation rates and bed stresses estimated for a 100-year 24-hour storm event are illustrated in Figure 2-7.

#### 2.3.7 Sediment Characterization

Most of the information presented in this section regarding characterization of site sediments was obtained from the *Additional Sediment Characterization Report* (Tetra Tech, 2012a). In December 2011, geotechnical cores and sediment samples were collected for the FS from selected locations distributed over the Middle River sediment study area to better characterize the sediment environment and substrate at the MRC. and to use these results in the remedial design. The locations of these sediment cores are shown in Figure 2-5; logs of the cores are in Appendix A of the *Additional Sediment Characterization Report* (Tetra Tech, 2012a).

Visual classification of the sediment cores and laboratory tests on selected sediment-core samples indicate that the top three to five feet of MRC sediments typically consist of elastic silt underlain by fat clay intermixed with lean clay, sandy lean clay, and sandy elastic silt. In Cow Pen Creek and the confluence of Dark Head Cove and Cow Pen Creek, the elastic silt stratum is typically underlain by fat clay. In Dark Head Cove, the elastic silt stratum is typically underlain by lean clay, sandy elastic silt, and silty sand (Tetra Tech, 2012a).

#### 2.3.8 Shear-Strength and Consolidation Characteristics

Shear-strength and consolidation characteristics of MRC sediments were investigated in December 2011. *In situ* field vane-shear and laboratory vane-shear tests were conducted to determine the strength properties of MRC sediments. The field and laboratory test results indicate that the upper 10 feet of MRC sediments are very soft (zero to 200 pounds per square foot [psf]) to soft (200 psf to 500 psf). *In situ* field vane-shear testing and laboratory vane-shear testing resulted in peak shear-strength values in the range of 10–292 (psf) and zero to 451 psf, respectively (Tetra Tech, 2012a). Peak shear-strength values were determined for the different soil strata of MRC sediments and are as follows:

- elastic silt: 10–99 psf fat clay: 20–179 psf
- lean clay: 59–233 psf
  sandy lean clay: 245–451 psf

Shear-strength properties provide information for analyses of the slope stability of dredge cuts, the bearing capacity of underlying sediments, backfill design, enhanced natural recovery or cap

placement, and design of a cofferdam or temporary sheet-pile wall, if needed, to isolate the work area or divert Cow Pen Creek flow during sediment removal, if needed.

Consolidation tests determined the compressibility behavior of MRC sediments under potential loading of residuals-management backfill after dredging, enhanced natural recovery, or conventional sediment capping. Based on the test results, MRC sediments are expected to consolidate under the potential load of material placed over soft deposits. During remedial design, consolidation of MRC sediments under such potential loading will be considered in monitoring material placement operations and cap thickness (if applied) over time. Post–consolidation conditions (long–term settlement after placement of cap material) will also be considered for long-term design evaluations.

## 2.3.9 Column Settling Tests

A column settling test (CST) defines the anticipated settling behavior of sediments that may be dredged, and predicts the distance that suspended solids may travel. A CST also allows for the design of appropriate best management practices to avoid potential exceedances of water quality standards during dredging, help select appropriate potential dredging methods, and predict potential water quality effects.

Composite sediment samples were collected from locations across Dark Head Cove and Cow Pen Creek in December 2011 for the CSTs. The CST results from Cow Pen Creek samples demonstrate faster zone-settling during the first few hours of the test as compared to the Dark Head Cove test results, probably due to the sand content of the Cow Pen Creek sediments. However, as the CST progressed and the primary settling mechanism became flocculant settling in the column supernatant, the settling velocity of the creek sediment slowed until it resembled the settling rate of the Dark Head Cove sediments. The lowest total suspended solids (TSS) concentration that the CST for Cow Pen Creek sediments achieved was 200 mg/L, whereas the lowest TSS concentration achieved by the Dark Head Cove CST was 16 mg/L. Most of the sediments in the Dark Head Cove CSTs settled, and the supernatant clarified within approximately two days (Tetra Tech, 2012a).

## 2.3.10 Dewatering Elutriate Tests and Dredge Elutriate Tests

A dewatering elutriate test (known as a pillow test) and a dredge elutriate test (DRET) were conducted to identify potential treatment requirements for dewatering [ensuring that elutriates meet

ambient water quality criteria (AWQC) before discharge], and to evaluate parameters that will affect potential dredging design. The DRET was performed on a composite of representative dredge material to assess potential contaminant mobility in the water column during dredging. During dredging, AWQC must be met before sediment dewatering elutriate can be discharged back to Dark Head Cove or Cow Pen Creek.

To identify possible treatment requirements to meet AWQC, elutriate samples were filtered to remove/reduce PCB concentrations associated with suspended sediment particles. Filtration sizes used in the test included a three- to five-micron filter paper to simulate a typical sand filter and a 0.45-micron filter paper to simulate the filtering effect of activated carbon (not including adsorption). Detection limits for Aroclors were not low enough to evaluate whether they meet applicable AWQC concentrations (0.014 micrograms per liter [ $\mu$ g/L]), but the laboratory performing the elutriate analyses did achieve a method detection limit of 0.2  $\mu$ g/L. Therefore, the "treatment goal" for Aroclor is considered equivalent to the method detection limit, which was 0.2  $\mu$ g/L at the time of the study.

The pillow test was performed on an 11% sediment slurry (original target slurry concentration was 10% solids) that was conditioned using a coagulant and flocculent (Solve 425 followed by Solve 127) from WaterSolve, LLC. Once elutriate had been generated through the PT, an elutriate sample was collected from the composite container and analyzed for PCBs by USEPA Method 608 (Aroclors). Data suggest that Aroclor-1260 was the only PCB released into elutriate generated during the dewatering elutriate test, at a concentration of 0.3  $\mu$ g/L. Filtration with the five-micrometer ( $\mu$ m) filter medium reduced the concentration of Aroclor-1260 to below detection limits (0.2  $\mu$ g/L).

No Aroclors were released to the water column during the DRETs. Limited concentrations of PAHs (i.e., fluoranthene, pyrene) and metals were released to the water column during the DRETs. The metals and PAH compounds detected in the unfiltered samples appear to have been removed to below AWQC effluent limitations after filtration through a 0.45-µm filter medium. During the DRETs, cadmium and lead concentrations consistently exceeded AWQC in unfiltered samples. However, filtration through a 0.45-µm filter medium removed cadmium and lead concentrations to below AWQC (Tetra Tech, 2012a).

# 2.4 NATURE AND EXTENT OF CONTAMINATION

This summary of the nature and extent of site contamination includes a discussion of previous sediment data collected at the site in 2005 and 2008, as well as the 2010 sediment data.

## 2.4.1 Sediment Cores

The 2010 sediment investigation focused on areas where insufficient data were available from previous investigations. Sediment samples were collected in 2010 from 24 site and three reference locations. Sediment samples were collected from zero to six, six to 18, 18 to 30, and 30 to 52 inches below the surface-water/sediment interface. Sediment samples were analyzed for PAHs, PCBs, and metals. In addition, some sediment samples were analyzed for AVS/SEM.

Figures 2-8 to 2-18 show the distribution and the horizontal and vertical extent of chemical concentrations in MRC sediments, based on the analytical results obtained from the sediment samples collected between 2005 and 2010, in concert with the conclusions of the human health and ecological risk assessments., Each figure has four sections representing the four sampled depth-intervals. Distributions of COPC are presented in Thiessen polygons delineated around the sampling locations (i.e., with each line of the polygon representing half the distance to the adjacent sampling point). The chemical concentration assigned to each polygon is the concentration of the chemical in the sample taken within the polygon boundary.

## <u>2.4.1.1</u> PAHs

Concentrations of total PAH compounds detected in the site samples in 2010 ranged from 1.2 micrograms per kilogram ( $\mu g/kg$ ) to 457,300  $\mu g/kg$  (Figure 2-16). The range of benzo(a)pyrene equivalent (BaPEq) concentrations was 0.090  $\mu g/kg$  to 38,387  $\mu g/kg$  (Figure 2-17). Per USEPA guidelines, a BaPEq concentration is calculated from a group of seven carcinogenic PAHs and utilized for purposes of human health risk assessment. The highest concentrations of total PAHs (sum of all detected PAHs) were in samples collected along the shoreline of MRC and in Dark Head Cove. In surface sediment, the highest PAH concentrations were in samples collected from a location at the upper part of Cow Pen Creek, the eastern portion of Dark Head Cove (near MSA), and from the middle of the cove adjacent to the MRC property. The PAH concentrations tend to be higher in the middle two depth intervals (six to18 inches and 18 to 30 inches) than in surface sediment or the lowest interval, although the upper reaches of Cow Pen Creek also had elevated

PAH concentrations in the top three intervals down to a 30-inch depth. The PAH concentrations were also elevated in sediment samples collected from the middle two intervals near Outfall 09. Overall, PAH results were consistent with previous findings.

## <u>2.4.1.2</u> PCBs

Detected concentrations of total Aroclors (PCBs) ranged from  $11 \mu g/kg$  to  $54,000 \mu g/kg$  (Figure 2-15). A site-wide surface area weighted-average concentrations (SWAC) was calculated for PCBs, using the areas and contaminant concentrations associated with each Thiessen polygon, with larger polygons given more weight in the calculation than smaller ploygons. The SWAC for total PCBs was 945  $\mu g/kg$ . Surface sediment PCB concentrations were highest adjacent to the shoreline of the MRC complex and in the middle of Dark Head Cove. The areas with the most elevated concentrations were well bounded and defined by other samples with lower concentrations. These findings are similar to those found in previous investigations.

## 2.4.1.3 Metals

Several metals were detected in sediment at concentrations in excess of screening values. Metals of particular interest included cadmium, chromium, copper, lead, mercury, and zinc (Figures 2-8 through 2-13). In general, cadmium and chromium cocentrations exceeded their respective sediment guideline concentrations more often than other metals (Figures 2-8 and 2-9 respectively). The greatest concentrations of metals in Dark Head Cove are generally found in samples from the six- to 18-inch and 18- to 30-inch depth intervals; this indicates that sediment with higher concentrations is being buried under cleaner sediments. In some areas in Cow Pen Creek, the highest concentrations were detected in the surface interval, which was expected because the deposition rate (as estimated from the age dating analysis) is probably lower in the creek, and the scour there appears to be greater than in Dark Head Cove.

#### 2.4.2 Porewater

Sediment porewater was extracted (via centrifugation) at the laboratory from core depths corresponding to the top three intervals sampled (depths of zero to six, six to 18, and 18 to 30 inches) to determine the equilibrium concentrations of COPC in porewater (both horizontally and vertically) near the MRC. Porewater concentrations of arsenic, cadmium, selenium, and PAHs

exceeded surface water ecological-screening values at all three intervals in one or more samples. Porewater concentrations of lead exceeded surface water ecological screening-values in one depth.

Aroclor-1260 concentrations exceeded surface water ecological screening-values in all porewater samples in which it was detected. Aroclor-1260 was reported as not detected in the 18–30 inch interval; however, the detection limit for Aroclor-1260 in that depth's sample(s) was greater than its screening level of  $0.000074 \,\mu$ g/L. This means that Aroclor-1260 may be present in the sample at a concentration above its screening level, but below the analytical instrument's level of detection. As discussed further in Appendix B, the screening level is based on the Great Lakes water quality criteria for the protection of upper trophic level wildlife, and is not based on the protection of aquatic receptors such as benthic invertebrates. Other published Aroclor-1260 screening values that are protective of aquatic receptors range from 1.3  $\mu$ g/L to 94  $\mu$ g/L (Suter and Tsao, 1996). All PCB porewater detections were much lower than 1.3  $\mu$ g/L, as were the analytical detection limits.

#### 2.4.3 Contaminant Bioavailability

Various samples were collected and analyses performed to evaluate whether the chemicals in the sediment might be bioavailable to ecological receptors, including a comparison of sediment AVS to SEM, sediment porewater chemistry analyses, and a benthic macroinvertebrate community study. Sediment samples from seven locations were collected from each depth interval and analyzed for AVS/SEM. Metals in the SEM analysis include cadmium, chromium, copper, lead, nickel, silver, and zinc. In general, concentrations of AVS were higher than SEM in most samples, indicating that simultaneously extracted metals were not be expected to be bioavailable or directly toxic to benthic macroinvertebrates.

One sample in the shallowest depth interval (six to 18 inch interval), and two in the 18–30 inch depth interval, had AVS/SEM ratios within a range the USEPA considers "uncertain" for potential toxicity to benthic macroinvertebrates (USEPA, 2005a). These are the only sampled locations where a potential for toxicity was indicated throughout the vertical sediment column. The AVS/SEM samples that had the potential for toxicity do not correspond to samples with the highest sediment concentrations of these metals.

## 2.5 PRELIMINARY CONCEPTUAL SITE MODEL OVERVIEW

A conceptual site model (CSM) for MRC sediments was produced as part of the exposure-assessment component of the *Sediment Risk Assessment* (Tetra Tech, 2011c); the exposure assessment provides an evaluation (either quantitatively or qualitatively) of the type and magnitude of exposure to chemicals at, or migrating from, a site. As the foundation of the exposure assessment, the CSM includes an illustration of both current and future scenarios for land use, and an identification of potential contaminant sources, contaminant release mechanisms, transport routes, receptors, and other appropriate information. Figure 2-18 illustrates the study area CSM, which is discussed in the following sections.

#### 2.5.1 Sources of Environmental Contamination

Water bodies surrounding the MRC are subject to a variety of influences, given the highly developed nature of the area. Potential sources of contamination to Dark Head Cove and Cow Pen Creek include historical industrial discharges, surface spills, releases, and waste management activities, which may have been the primary sources of contamination. Other sources may include runoff from MSA, as well as from surrounding residential properties and roadways.

Results of previous sediment investigations, as well as investigations of the MRC tax blocks, indicate that the most likely source of PCB contamination in sediment is PCB-contaminated soil in Tax Block E. It is believed that the PCBs originated from transformers at former Building D (formerly located in Tax Block E), and were possibly released during operation but may also have been released during building demolition. This source is being addressed in remedial actions planned for Block E, and will precede any sediment remedial actions. Therefore, a continuing source of PCB contamination will be eliminated to prevent sediment re-contamination. Sediment remedial actions will likely include a long-term monitoring program to verify achievement of remedial goals. The effectiveness of source control actions taken in Tax Block E will also be confirmed through this long-term monitoring program. Accessible contaminated sediment was removed during an interim remedial measure (IRM) completed for Block E storm drains. Final remediation of the storm drains will be coordinated with sediment remediation so as not to re-introduce potential contamination.

Forensic analysis indicates that the PAHs in Dark Head Cove and Cow Pen Creek sediments are consistent with urban runoff. The results of the alkylated-PAH analyses indicate that the types and concentrations of monoaromatic hydrocarbons and PAHs identified in the sediment are consistent with those found in urban soils and associated runoff. Although storm water samples did not contain detectable levels of PAHs, sediment associated with storm water displayed a signature deemed associated with urban runoff and similar to that found in Cow Pen Creek and Dark Head Cove sediments. This indicates that the water bodies adjacent to the Middle River Complex receive contributions of PAHs from other sources, such as Eastern Boulevard and other roadways.

Several metals were detected in sediment at elevated concentrations, but some of these concentrations were less than, or only slightly greater than, regional background concentrations (see Figures 2-8 through 2-13). Metals of particular interest include cadmium, chromium, copper, lead, mercury, and zinc. Metals found above regional background concentrations may be associated with historical site operations, including manufacturing, machining, and metal plating, and the discharge of process wastewater to Cow Pen Creek and Dark Head Cove. The greatest concentrations of metals in Dark Head Cove were generally found in samples collected from the six to 18 inch and the 18–30 inch depth intervals, indicating that sediment with higher concentrations is being buried under cleaner sediments, and thus is likely associated more with past rather than current sources. Some elevated metals concentrations were observed in surface samples in Cow Pen Creek, which is to be expected, because the deposition rate (as estimated from age-dating analyses) is probably lower in that location, and the scour appears to be greater than in the cove.

#### 2.5.2 Contaminant Fate and Transport

Contaminants released from the primary sources can potentially be transported to Dark Head Cove and Cow Pen Creek. As stated earlier, the MRC has nine (eight active) storm-water outfalls that discharge storm water into Cow Pen Creek and Dark Head Cove (see Figure 2-1). Most surface water runoff from rainfall discharges from the MRC to Cow Pen Creek and Dark Head Cove through the outfalls mentioned above. Some surface water runoff presumably discharges to these water bodies as overland sheet flow, and some precipitation infiltrates into the ground in unpaved areas. Infiltrating precipitation could result in the transport of contamination from surface soil to subsurface soil and groundwater at the facility. Groundwater beneath the MRC flows into Cow Pen Creek and Dark Head Cove at very low flux rates (Tetra Tech, 2012b). A large portion of the MRC facility is covered with structures, pavement, or gravel. Grassy areas are present around the northern portions of the property with a mixture of grass, concrete cover, and exposed soil at the southern side, and grass to a limited extent at the southwestern portion of the property. The western side of the facility is primarily parking lots and street. The surface cover material largely prevents soil in unpaved areas from eroding into Cow Pen Creek and Dark Head Cove. Volatile contaminants in groundwater may enter site structures through sub-slab vapor intrusion. However, most of these contaminants would be expected to remain in groundwater until it eventually discharges into adjacent surface water bodies.

The surface cover may, to a certain degree, also prevent soil erosion due to wind and storm water runoff. However, erosion may have been a significant contaminant transport mechanism in the past. For example, PCBs in surface soil at Block E appear to have been transported to the adjacent water bodies via storm water runoff. This source-and-transport mechanism will be addressed through remediation of Block E soils before remediation of site sediment, and the effectiveness of source control would be verified through a long-term monitoring program of the selected remedy for MRC sediments. Under current conditions, storm water runoff from the MRC and the entire surrounding area is most likely the major contaminant-transport mechanism to the adjacent surface water bodies.

Contaminants released to surface water, sediment, or sediment porewater in the study area may be transferred among these media. Contaminants in surface water may transfer to sediment through deposition, or to porewater through partitioning. Contaminants in sediment may transfer to surface water through resuspension, or to porewater through partitioning. Contaminants in porewater may transfer to sediment or surface water through partitioning. As previously discussed, sedimentation rates at Dark Head Cove, Dark Head Creek, and at the mouth of Cow Pen Creek are estimated at 0.8 centimeters per year (cm/year), 1.3 cm/year, and 0.38 cm/year, respectively (Tetra Tech, 2011a). In the sheltered waters of Dark Head Cove and Dark Head Creek where sedimentation rates are higher than in Cow Pen Creek, this sedimentation is anticipated to sequester contamination beneath additional layers of sediment.

#### 2.5.3 Current and Future Receptors of Concern and Exposure Pathways

The MRC is currently used for commercial/industrial purposes and it is anticipated that it will remain a commercial/industrial facility for the foreseeable future. However, recreational activities (wading, swimming, and fishing) do occur in the adjacent surface water bodies and presumably will

occur in these areas in the future. Therefore, the HHRA provided an evaluation of possible risks to potential recreational receptors from direct contact with sediment COPC via incidental ingestion and dermal contact, as well as via ingestion of fish taken from the study area. Direct-contact exposures to surface water are not included in the CSM because the findings in the original HHRA for this pathway did not indicate unacceptable risks (Tetra Tech, 2006; 2011b), and because chemical concentrations in the available surface water samples from 2010 do not exceed human health screening levels. Surface water was therefore not considered a medium of concern in the HHRA.

As shown in the CSM, chemical contaminants originating from the site can enter surface water and sediment in Cow Pen Creek and Dark Head Cove through discharge from storm water outfalls and groundwater, and as a consequence of surface water/sediment runoff. Benthic macroinvertebrates (i.e., organisms that live on or in sediment) and aquatic organisms (e.g., fish in Cow Pen Creek, Dark Head Cove, and Dark Head Creek) could be exposed to chemicals through direct contact with surface water and sediment, ingestion of surface water and sediment, and consumption of contaminated food. Many benthic macroinvertebrates are a food source for higher trophic-level organisms such as fish, blue crabs, birds, and mammals. Benthic macroinvertebrates can accumulate contaminants that can be transferred to piscivorous animals when the macroinvertebrates are consumed.

Aquatic plants could also be exposed to contaminants through direct contact and absorption through their roots. This applies especially to shallow water areas along Cow Pen Creek. Water depth in most of Dark Head Cove, however, is too deep for many aquatic plant species. Toxicity data for rooted and submerged vegetation are sparse, so aquatic plant toxicity was not quantitatively evaluated in the ERA. Airborne transport of dust and inhalation of contaminants at the MRC are negligible pathways for ecological receptors because the sediment is covered with water.

## 2.6 SUMMARY OF THE BASELINE HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENTS

Tetra Tech prepared a *Sediment Risk Assessment* for the MRC in 2011 (Tetra Tech, 2011c) that included both an HHRA and an ecological risk assessment. Summaries of these risk assessments are included in the following sections.

#### 2.6.1 Baseline Human Health Risk Assessment

Cancer and non-cancer risk estimates were developed for human receptors potentially exposed to COPC using MRC study area sediments samples and fish tissue samples collected from Cow Pen Creek, Dark Head Cove, and selected reference areas. The primary COPC evaluated were PCBs, PAHs (expressed as BaPEq), and arsenic. A COPC is a chemical detected at a maximum concentration exceeding conservative screening levels established for an environmental medium (e.g., sediment). COPC are evaluated quantitatively in the HHRA.

The 2011 HHRA provided an evaluation of COPC concentrations in both surficial and deeper sediments and in fish tissue samples. However, exposure to the deeper sediments would potentially occur only if such sediments were to be exposed (possibly by dredging or other disturbance) and deposited on surface soils or surficial sediments. The results of the 2011 HHRA are summarized in Table 2-1. The risk estimates are compared to both MDE and USEPA risk management benchmarks defined in the table. As a general guideline, the need for environmental remediation is evaluated in an FS when risk management benchmarks are exceeded.

Cancer risk estimates developed for the direct-contact exposure pathways (i.e., incidental ingestion of and dermal contact with [i.e., touching] sediments) do not exceed the USEPA target risk range of a one-in-10,000  $(1\times10^{-4})$  to one-in-one million  $(1\times10^{-6})$  risk or probability of developing cancer. However, the risk estimates do exceed the MDE risk benchmark of  $1\times10^{-5}$  (a one-in-100,000 probability of developing cancer) when sediment COPC in the zero to six inch, six to 18 inch, and 18 to 30 inch depth intervals are assessed. The primary risk drivers (i.e., chemicals contributing most significantly to the estimated risks) are BaPEq and PCBs. Hazard indices for the direct-contact exposure pathways do not exceed 1, indicating that adverse non-carcinogenic health effects are not anticipated if a receptor contacts the sediments. (A hazard index of 1 is the non-cancer risk management benchmark established by both the MDE and the USEPA.) Based on the HHRA results, PAHs, PCBs, and arsenic are selected as chemicals of concern (COC) for direct contact with sediment exposure; these are the chemicals that will be further evaluated in this FS.

Cancer and non-cancer risk estimates developed for the consumption-of-fish exposure pathway, based on sediment concentrations (and assuming bioaccumulation between sediments and fish), exceed both the MDE and USEPA risk management benchmarks. Exceedances occur when COPC in the zero to six inch, six to 18 inch, and 18 to 30 inch depth intervals are evaluated. A few metals

(e.g., antimony and cobalt), PAHs, and PCBs are the primary cancer and non-cancer risk drivers for the fish-consumption exposure pathway.

The analysis for the consumption-of-fish exposure pathway presented in the preceding paragraph based on sediment sample results, was conducted to compliment and support the risk assessment using chemical concentrations detected in actual fish tissue samples (which produced slightly different results, discussed in the following paragraph). In addition, the sediment-based analysis was performed because the sediment sample database is larger and more robust than the fish tissue sample database. Several sources of uncertainty impact risk assessment results based on food-chain modeling (e.g., the use of default bioaccumulation factors to predict fish tissue concentrations based on sediment concentrations). Consequently, risk assessment results based on actual fish tissue data are typically considered more representative of a study area, and are relied upon to identify COC for further evaluation in the FS.

Cancer and non-cancer risk estimates developed for the consumption-of-fish exposure pathway based on evaluation of actual fish tissue data for the study area exceed both USEPA and Maryland risk benchmarks. PCBs are the only identified risk drivers. However, according to data from the MDE surface water monitoring program, PCB concentrations reported in fish tissue samples from the study area fall within the range of concentrations reported for the general Chesapeake Bay area. Based on the HHRA results, PCBs are selected as COC for the consumption-of-fish exposure pathway, and are further evaluated in this FS.

The risk estimates above must be interpreted with the understanding that COPC concentrations detected at background sediment locations, as well as the study area locations, exceed the conservative sediment screening levels used in the HHRA (i.e., screening levels for both direct contact and consumption-of-fish exposure pathways). Risk estimates for the consumption-of-fish exposure pathways based on maximum background sediment concentrations exceed both Maryland and USEPA cancer risk benchmarks. A review of both study area data and data reported in open scientific literature indicates that COPC concentrations detected in the MRC study area are a function both of study-area-specific and regional sources of contamination. The HHRA identified PCBs, PAHs (expressed as BaPEq) and arsenic as COC, with the caveat that site concentrations of arsenic may represent background conditions. Remedial goals established for this FS consider study area and regional background conditions as appropriate.

## 2.6.2 Baseline Ecological Risk Assessment

The ecological endpoints evaluated in the ERA were benthic macroinvertebrates, fish, and birds and mammals that consume fish and benthic macroinvertebrates. The ecological risk assessment identified total PCBs and the metals cadmium, copper, lead, mercury, and zinc as COC. The results of the ERA are summarized in Table 2-2. A more detailed summary of the ERA follows.

Multiple lines of evidence were used to evaluate risks to benthic macroinvertebrates. Sediment chemistry was the primary measure by which potential risks were evaluated, but AVS/SEM data, porewater data, and benthic macroinvertebrate community data were also used in the evaluation. Several chemicals were initially selected as COPC for risks to sediment macroinvertebrates because they had been detected at concentrations that exceeded screening levels, or because they lacked a screening level.

Risks to benthic macroinvertebrates from metals in sediment are possible, with the greatest likelihood of those effects occurring in the areas where probable-effects concentrations (PECs) are exceeded. Concentrations of metals at some locations are similar to background concentrations. At many locations, however, metals concentrations (especially cadmium, copper, lead, mercury, and zinc) are greater than PECs and background values. Generally, the highest concentrations of metals are in the 6 to 18 inch and 18 to 30 inch depth intervals, with much lower concentrations in the 30 to 52 inch depth interval.

Potential risks are posed to benthic macroinvertebrates by PCBs and PAHs at several onsite locations, especially in Dark Head Cove surface sediment near Outfall 05. Total PAHs also pose potential risks to benthic macroinvertebrates at the eastern end of the cove (BaPEq are not used to evaluate risk to macroinvertebrates). However, risks to benthic macroinvertebrates from PAHs in the sediment are not expected to drive the cleanup at the site because potential risks were generally low, with very few exceptions, and the sediment benchmark for ecological receptors is much greater than it is for humans. As shown on Figure 2-16, the PEC for total PAHs (22,800 ug/kg) is only exceeded at a few locations. All of these locations have concentrations of other chemicals that exceed ecological PRGs (primarily cadmium and PCBs). Therefore, PAHs are not risk drivers for determining clean up, so they are not retained as risk-driver COCs for ecological receptors and ecological PRGs were not developed for PAHs.

Evaluations of AVS/SEM data, *ex situ* porewater data, and benthic macroinvertebrate community data indicate some uncertainty regarding whether the chemicals in sediment are bioavailable and significantly affecting the benthic community. Chemical concentrations in the porewater samples are less than criteria with only a few exceptions. At most locations where AVS/SEM and *ex situ* pore-water samples were collected, data indicate bioavailability is low. This conclusion is based on an evaluation of the AVS and SEM data, along with the fraction of organic carbon present in the samples, as described in USEPA (USEPA, 2005c) and detailed in Appendix B. Basically, any sediment with a ratio of SEM-AVS to fraction of organic carbon (foc) [(SEM-AVS)/foc] less than 130 micromoles per gram (µmols/g) organic carbon poses a low risk of adverse biological effects due to cadmium, copper, lead, nickel, and zinc. Most of the (SEM-AVS)/foc concentrations in the site samples are less than 130 µmols/g of organic carbon.

As identified in the ERA, concentrations of cadmium, copper, lead, mercury, zinc, and total PCBs are greater than their respective PECs, and thus pose a potential risk to benthic invertebrates. However, using PECs to evaluate risk to benthic invertebrates is associated with some uncertainty because PECs are literature-based, nonsite-specific values. In addition, other lines of evidence at this site, such as AVS/SEM, indicate low potential for bioavailability. Benthic community analyses indicate an impaired, but not absent benthic community; although the benthic community was stressed in all MRC samples, it was also stressed in background samples. However, to be protective, these chemicals were retained as final ecological COPCs in sediments near MRC. Under current conditions, ecological receptors are expected to be exposed only to surface sediment (the zero to six inch depth interval, also considered the bioactive zone). In surface sediment, cadmium and total PCBs pose the greatest potential risk to benthic receptors.

Even though chromium was detected in several samples at concentrations exceeding sediment benchmarks, it was determined that chromium was not likely to impact benchic macroinvertebrates for several reasons. All porewater concentrations of chromium were less than the ecological screening-value for surface water, indicating that the bioavailability of chromium in sediment is low. Chromium in porewater is not toxic up to a co-located sediment chromium concentration of 1,530 mg/kg.

Chromium found in sediments is primarily in two oxidation states: trivalent chromium, which is relatively insoluble and nontoxic; and hexavalent chromium, which is much more soluble and toxic.

Hexavalent chromium is thermodynamically unstable in anoxic sediments. Since AVS is formed only in anoxic sediments, sediments with measurable AVS concentrations are not likely to contain toxic hexavalent chromium (USEPA, 2005c). The data from the seven samples analyzed for AVS/SEM suggest that the chromium present in sediments is not toxic. Overall, the porewater and AVS/SEM data indicate that potential risks posed by chromium is limited to a few sampling locations, so chromium was not retained for further evaluation, nor was it identified as a COC.

Based on COPC concentrations in fish tissue collected from Cow Pen Creek and Dark Head Cove, the ERA concluded that fish did not appear to be at significant risk from sediment contamination, and/or that risks were similar to those estimated for other similar environments within the region.

In the ERA, food chain modeling was conducted to evaluate risks to piscivorous birds and mammals consuming fish and incidental sediment from Cow Pen Creek and Dark Head Cove. The results indicated that bioaccumulative chemicals present in sediment in all four depth intervals pose negligible risks to upper trophic level receptors. Food chain modeling for piscivorous birds and mammals addressed the transfer of contaminants from sediment to consumed food sources, such as benthic organisms and fish. (The term "piscivorous" is used in a broad sense to describe birds and mammals that prey not only upon fish, but also on a variety of aquatic and benthic organisms.)

The food chain was modeled under scenarios representing both current conditions (i.e., contamination in the upper six inches of sediment is available to receptors) and possible future conditions (i.e., contamination in deeper sediment that may be exposed through dredging). Results indicate that potential risks to these receptors are not a concern. The ecological risk assessment identified total PCBs, cadmium, copper, lead, mercury, and zinc as contaminants of concern.

### Human Health Risk Assessment Summary Middle River Complex, Middle River, Maryland

|                                           |                                                                                                                                                                                                 | Page 1 of 3                                                                                                                                                      |                                                                                                                                                                                                                                                                  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental<br>Medium/Data<br>Evaluated | Do Risk Estimates for<br>Recreational User Direct<br>Contact With Sediments<br>Exceed Risk Benchmarks:<br>1E-05 Cancer Risk Level (CRL)<br>or Hazard Index (HI) of 1?<br>(Chemicals of Concern) | Do Risk Estimates for<br>Recreational Fisher Exceed<br>Risk Benchmarks:<br>1E-05 Cancer Risk Level (CRL)<br>or Hazard Index (HI) of 1?<br>(Chemicals of Concern) | Comments/Risk Management Considerations                                                                                                                                                                                                                          |
| Sediments :                               | Yes (CRL = 4E-05)/                                                                                                                                                                              | Yes (CRL = 1E-03; HI >1)                                                                                                                                         | Direct contact risks do not exceed USEPA target cancer risk<br>range (1E-06 to 1E-04). Most of the study area sediments are<br>continuously submerged therefore frequency of direct contact<br>exposure is likely to very limited. Arsenic concentrations likely |
| 0-6" - 95%UCL                             | Yes (CRL = 2E-05)                                                                                                                                                                               | <i>Yes</i> ( <i>CRL</i> =3 <i>E</i> -04; <i>HI</i> >1)                                                                                                           | reflect background conditions. <i>Risk estimates presented in italics</i> are based on the modeled transfer of chemicals from sediments to fish and are presented for informational purposes                                                                     |
| 0-6" - Wt. Avg.                           | [BaPEq/PCBs(95%UCL only)/As]                                                                                                                                                                    | [BaPEq/PCBs/Sb/Co]                                                                                                                                               | only because actual fish tissue data (see below) were evaluated<br>in the human health risk assessment (HHRA). <i>Chemicals of</i><br><i>concern recommended for further evaluation in the</i><br><i>feasibility study are presented in bold italics.</i>        |
|                                           |                                                                                                                                                                                                 |                                                                                                                                                                  | Direct contact risks do not exceed USEPA target cancer risk                                                                                                                                                                                                      |
| Sediments :                               | Yes (CRL = 3E-05)/                                                                                                                                                                              | <i>Yes (CRL</i> =9 <i>E</i> -04; <i>HI</i> >1)                                                                                                                   | range. Direct contact with deeper, subsurface sediments is very<br>unlikely unless sediments are disturbed. Arsenic concentrations                                                                                                                               |
| 6-18" - 95%UCL/                           | Yes (CRL = 2E-05)                                                                                                                                                                               | Yes (CRL =2E-04; HI >1)                                                                                                                                          | likely reflect background conditions. <i>Risk estimates presented</i><br><i>in italics</i> are based on the modeled transfer of chemicals from<br>sediments to fish and are presented for informational purposes                                                 |
| 6-18" - Wt. Avg.                          | [ <i>BaPEq /PCBs(95%UCL only)</i> /As]                                                                                                                                                          | [BaPEq/Sb/PCBs/Co]                                                                                                                                               | only because actual fish tissue data (see below) were evaluated<br>in the HHRA. <i>Chemicals of concern recommended for</i><br><i>further evaluation in the feasibility study are presented in</i><br><i>bold italics.</i>                                       |

#### Human Health Risk Assessment Summary Middle River Complex, Middle River, Maryland Page 2 of 3

| Page 2 of 3                               |                                                                                                                                                                                                 |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental<br>Medium/Data<br>Evaluated | Do Risk Estimates for<br>Recreational User Direct<br>Contact With Sediments<br>Exceed Risk Benchmarks:<br>1E-05 Cancer Risk Level (CRL)<br>or Hazard Index (HI) of 1?<br>(Chemicals of Concern) | Do Risk Estimates for<br>Recreational Fisher Exceed<br>Risk Benchmarks:<br>1E-05 Cancer Risk Level (CRL)<br>or Hazard Index (HI) of 1?<br>(Chemicals of Concern) | Comments/Risk Management Considerations                                                                                                                                                                                                                                                                                  |
| Sediments :                               | Yes (CRL = 5E-05)/                                                                                                                                                                              | <i>Yes</i> ( <i>CRL</i> =5 <i>E</i> -04; <i>HI</i> >1)                                                                                                           | Direct contact risks do not exceed USEPA target cancer risk<br>range. Direct contact with deeper, subsurface sediments is very<br>unlikely unless sediments are disturbed. Arsenic concentrations                                                                                                                        |
| 18-30" -<br>95%UCL/                       | Yes (CRL = 2E-05)                                                                                                                                                                               | <i>Yes</i> ( <i>CRL</i> =2 <i>E</i> -04; <i>HI</i> >1)                                                                                                           | likely reflect background conditions. <i>Risk estimates presented</i><br><i>in italics</i> are based on the modeled transfer of chemicals from                                                                                                                                                                           |
| 18-30" - Wt. Avg.                         | [BaPEq /As]                                                                                                                                                                                     | [BaPEq/PCBs/Sb(minor<br>contributor-wt avg scenario)/Co]                                                                                                         | sediments to fish and are presented for informational purposes<br>only because actual fish tissue data (see below) were evaluated<br>in the HHRA. <i>Chemicals of concern recommended for</i><br><i>further evaluation in the feasibility study are presented in</i><br><i>bold italics.</i>                             |
| Sediments :                               |                                                                                                                                                                                                 | <i>Yes (CRL =5E-05; HI &gt;1)</i>                                                                                                                                | Direct contact risks do not exceed USEPA target cancer risk<br>range or State of Maryland Department of the Environment<br>cancer risk benchmark (1E-05). Direct contact with deeper,<br>subsurface sediments is very unlikely unless sediments are                                                                      |
| >30" - 95%UCL/                            | No/                                                                                                                                                                                             | <i>Yes</i> ( <i>CRL</i> =5 <i>E</i> -05; <i>HI</i> >1)                                                                                                           | disturbed. Arsenic concentrations likely reflect background<br>conditions. <i>Risk estimates presented in italics</i> are based on the                                                                                                                                                                                   |
| >30" - Wt. Avg.                           | No                                                                                                                                                                                              | [BaPEq/PCBs/Sb(minor<br>contributor-95%UCL scenario)/Co]                                                                                                         | modeled transfer of chemicals from sediments to fish and are<br>presented for informational purposes only because actual fish<br>tissue data (see below) were evaluated in the HHRA.<br><i>Chemicals of concern recommended for further evaluation in</i><br><i>the feasibility study are presented in bold italics.</i> |

### Human Health Risk Assessment Summary Middle River Complex, Middle River, Maryland

### Page 3 of 3

| Environmental<br>Medium/Data<br>Evaluated  | Do Risk Estimates for<br>Recreational User Direct<br>Contact With Sediments<br>Exceed Risk Benchmarks:<br>1E-05 Cancer Risk Level (CRL)<br>or Hazard Index (HI) of 1?<br>(Chemicals of Concern) | Do Risk Estimates for<br>Recreational Fisher Exceed<br>Risk Benchmarks:<br>1E-05 Cancer Risk Level (CRL)<br>or Hazard Index (HI) of 1?<br>(Chemicals of Concern) | Comments/Risk Management Considerations                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fish Tissue Data<br>from MRC Study<br>Area | NA                                                                                                                                                                                              | Yes (CRL = 2E-04; HI>1)<br>[ <i>PCBs</i> , Cr (assumed hexavalent)]                                                                                              | Cancer risk estimates for study area fish tissue samples exceed USEPA target cancer risk range and are twice those calculated for the reference area fish tissue samples. Cancer risk estimates for PCBs approximately equal to 2E-04. Chromium unlikely to be present as predominantly hexavalent chromium. <i>Chemicals of concern recommended for further evaluation in the feasibility study are presented in bold italics.</i> |
| Fish Tissue Data<br>from Reference<br>Area | NA                                                                                                                                                                                              | Yes (CRL = 1E-04; HI>1)<br>[PCBs, Cr (assumed hexavalent)]                                                                                                       | Cancer risk estimates do not exceed USEPA target cancer risk<br>range. Cancer risk estimates for PCBs equal to approximately<br>3E-05. Chromium unlikely to be present as predominantly<br>hexavalent chromium.                                                                                                                                                                                                                     |

BaPEq – benzo(a)pyrene equivalents

- $\mathrm{Co}-\mathrm{Cobalt}$
- Cr Chromium

CRL – cancer risk level

HHRA - human health risk assessment

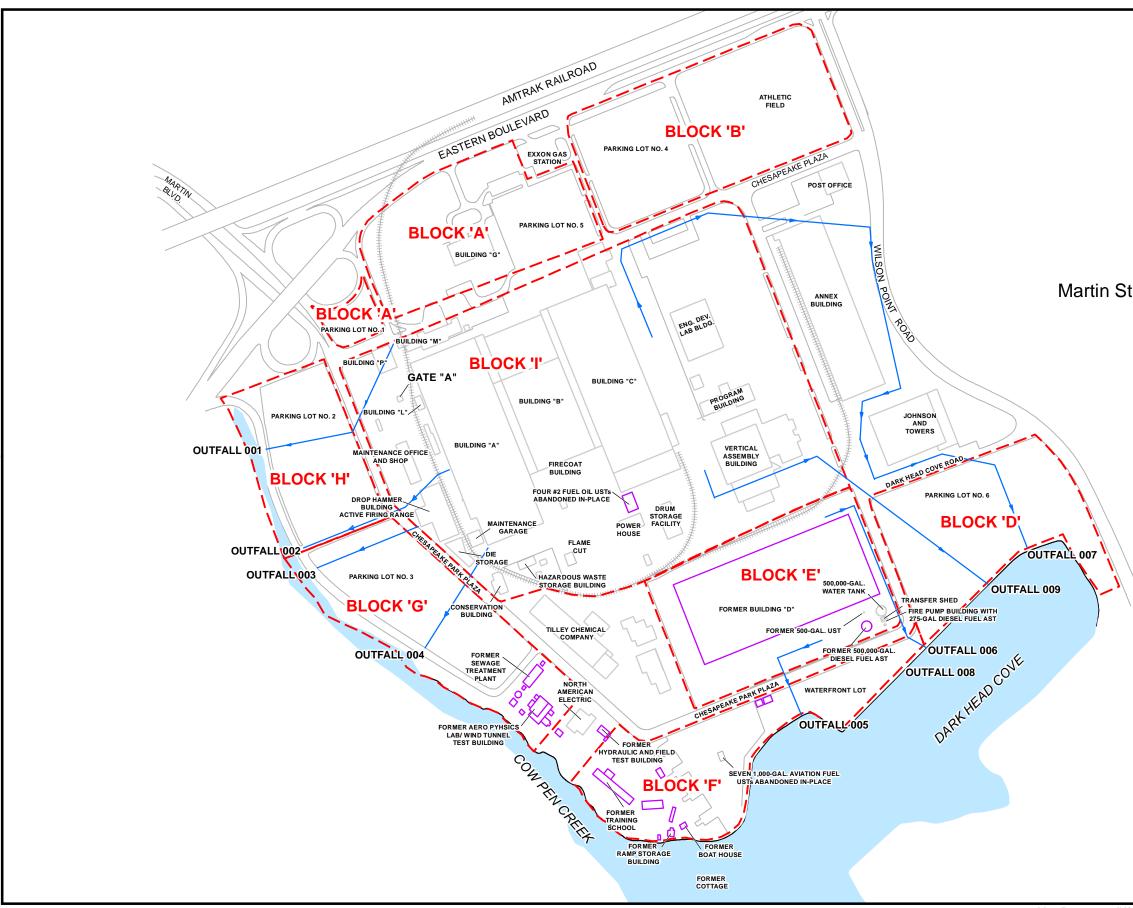
HI – hazard index

MRC – Middle River Complex

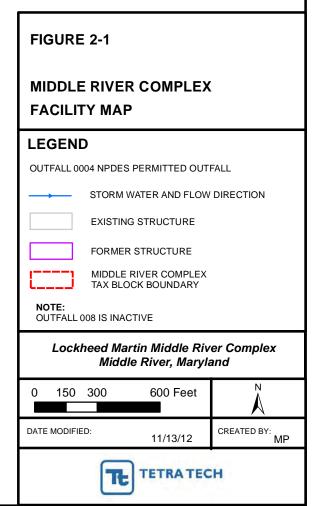
NA – not applicable

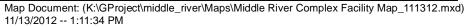
PCB – polychlorinated biphenyl

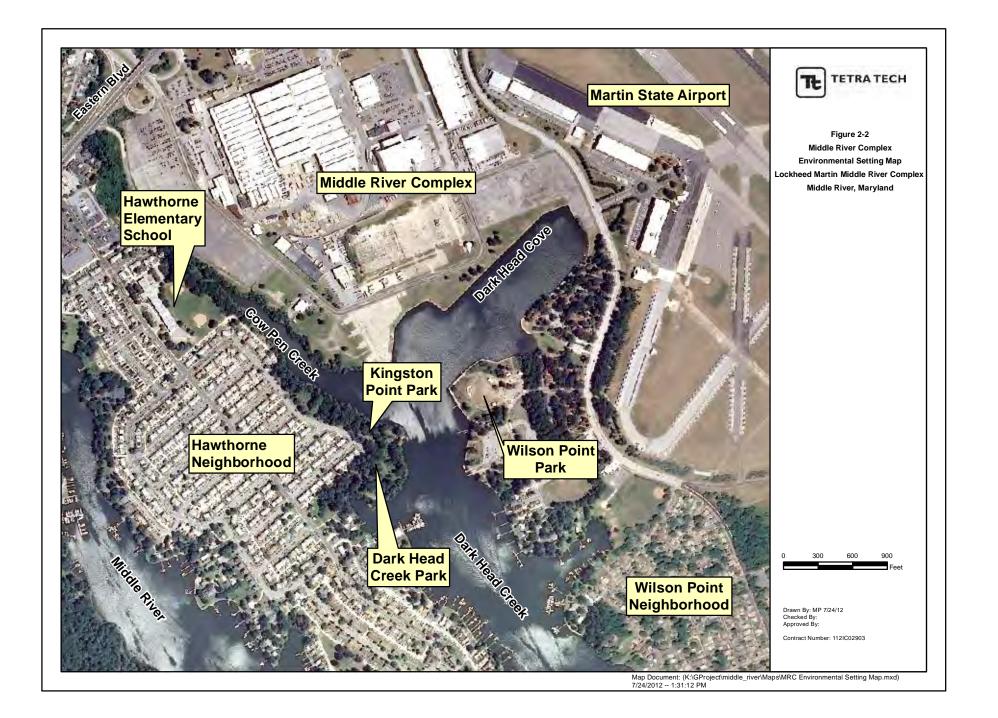
Sb-Antimony

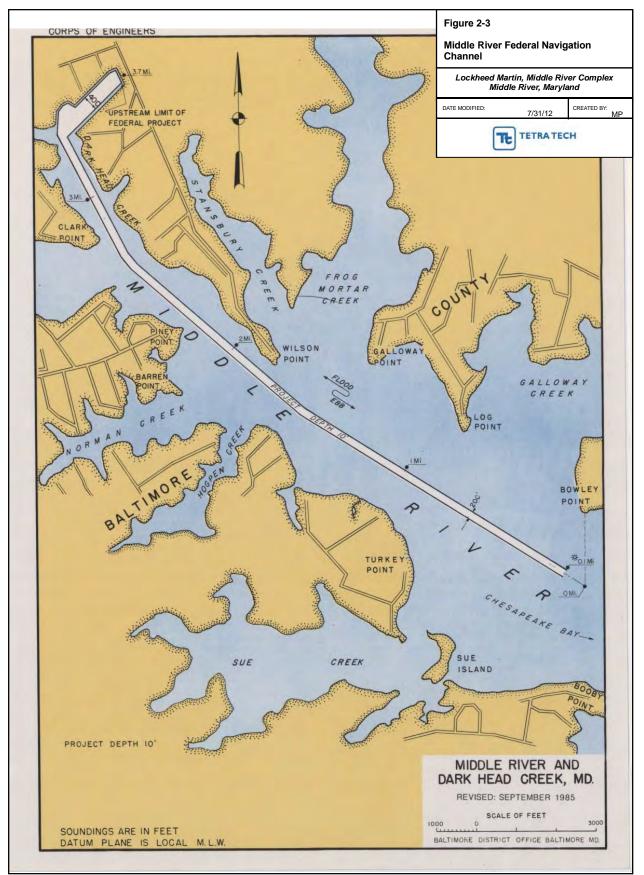

UCL – upper confidence level

USEPA – United States Environmental Protection Agency


Wt. Avg. - weighted average


### Ecological Risk Assessment Summary Middle River Complex, Middle River, Maryland

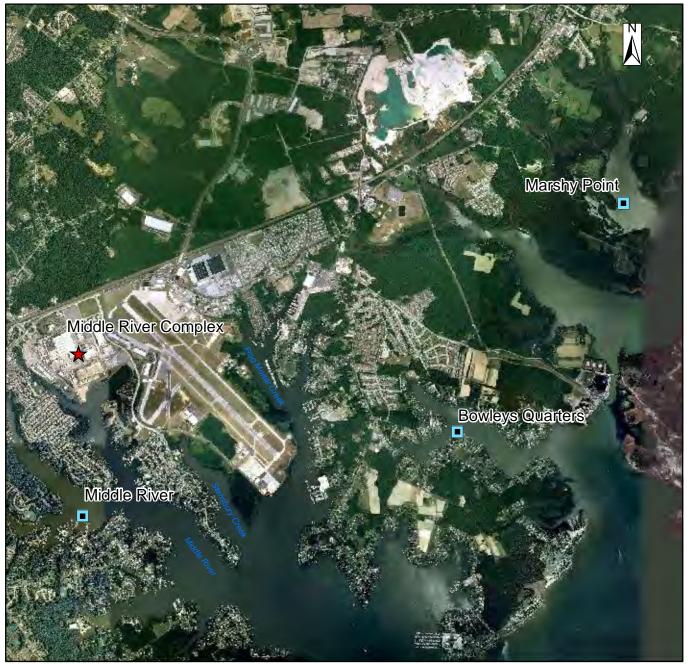

| Assessment Endpoint                                                                                 | Final Chemicals of Potential Concern |
|-----------------------------------------------------------------------------------------------------|--------------------------------------|
|                                                                                                     | Total Aroclor                        |
|                                                                                                     | Cadmium                              |
| Protection of benthic invertebrates from adverse                                                    | Copper                               |
| effects on their survival, reproduction, and growth                                                 | Lead                                 |
|                                                                                                     | Mercury                              |
|                                                                                                     | Zinc                                 |
| Protection of fish from adverse effects on their survival, reproduction, and growth.                | None (negligible ecological risk)    |
| Protection of piscivorous birds from adverse effects<br>on their survival, reproduction, and growth | None (negligible ecological risk)    |
| Protection of piscivorous mammals from adverse effects on their survival, reproduction, and growth  | None (negligible ecological risk)    |



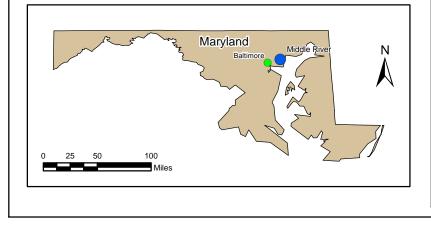

Martin State Airport











K:\Graphics\Lockheed\MSA\Middle River Federal Navigation Channel.cdr



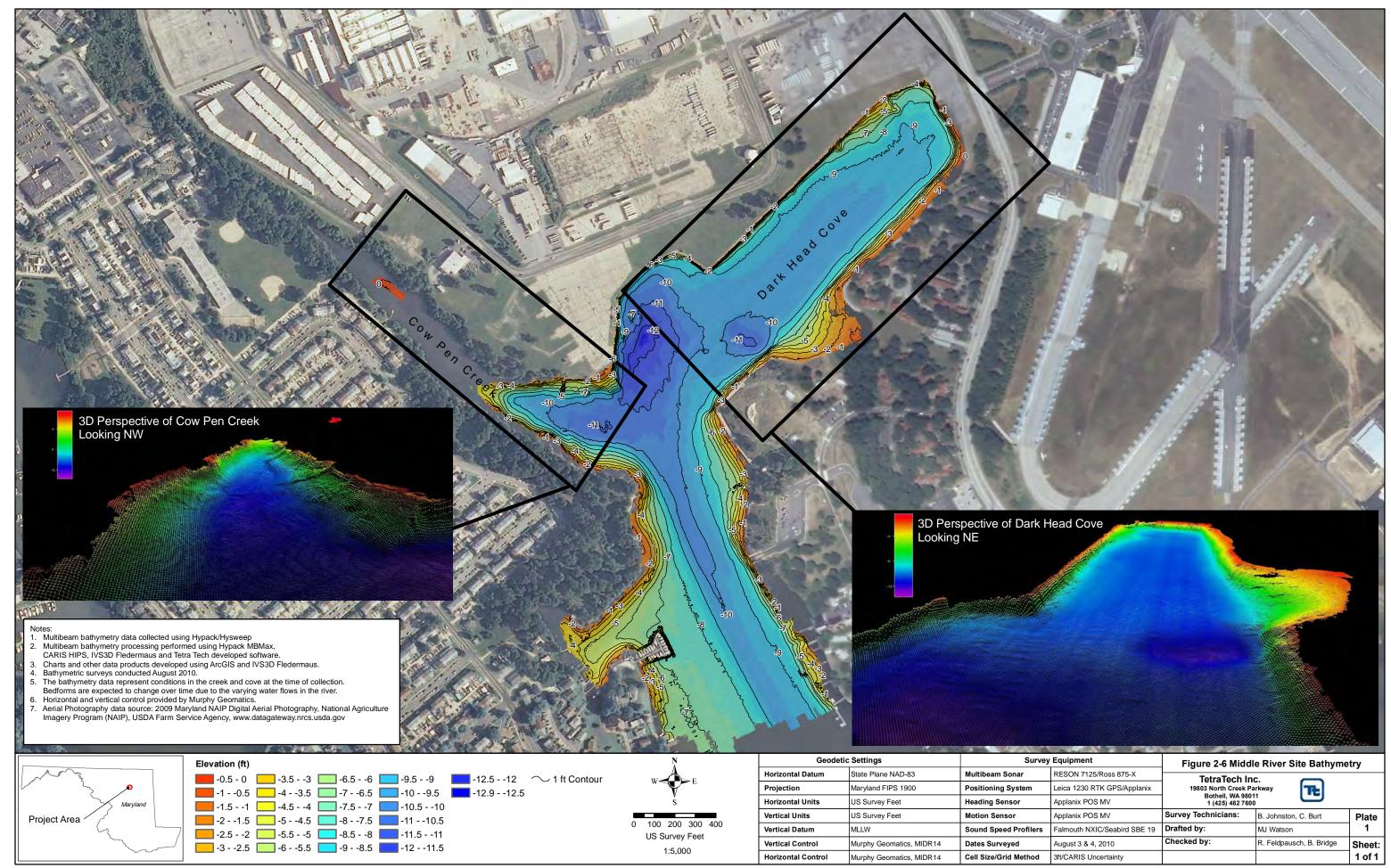
Map Document: (K:\GProject\middle\_river\Maps\Sediment Reference Locations\_082812.mxd) 8/28/2012 -- 1:42:27 PM



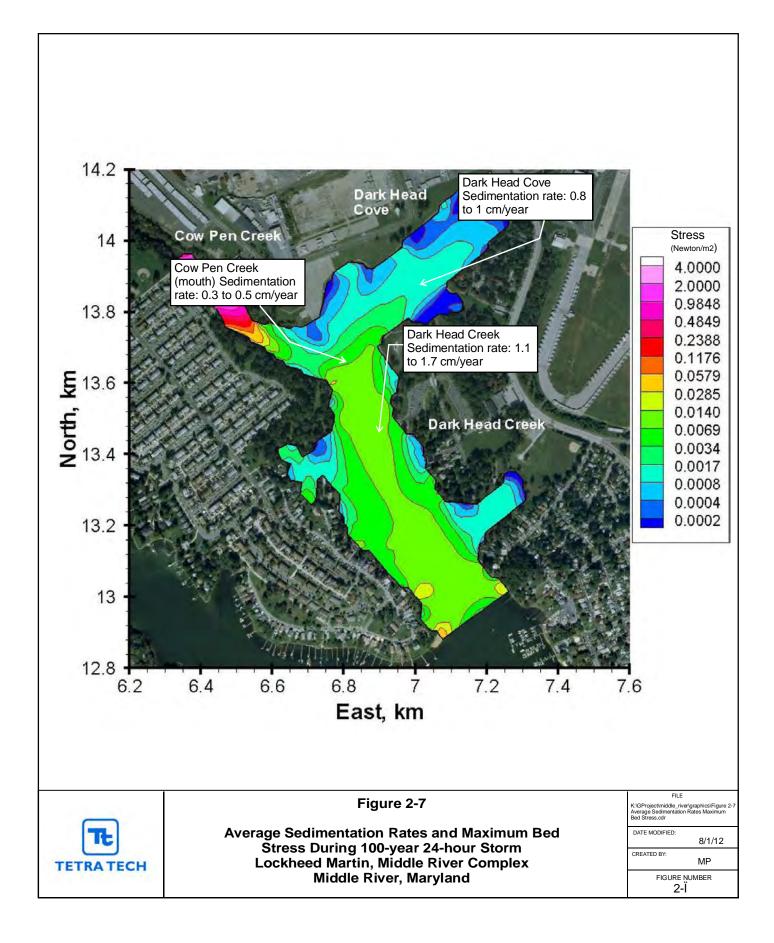
Source: Google Earth Pro, 2008

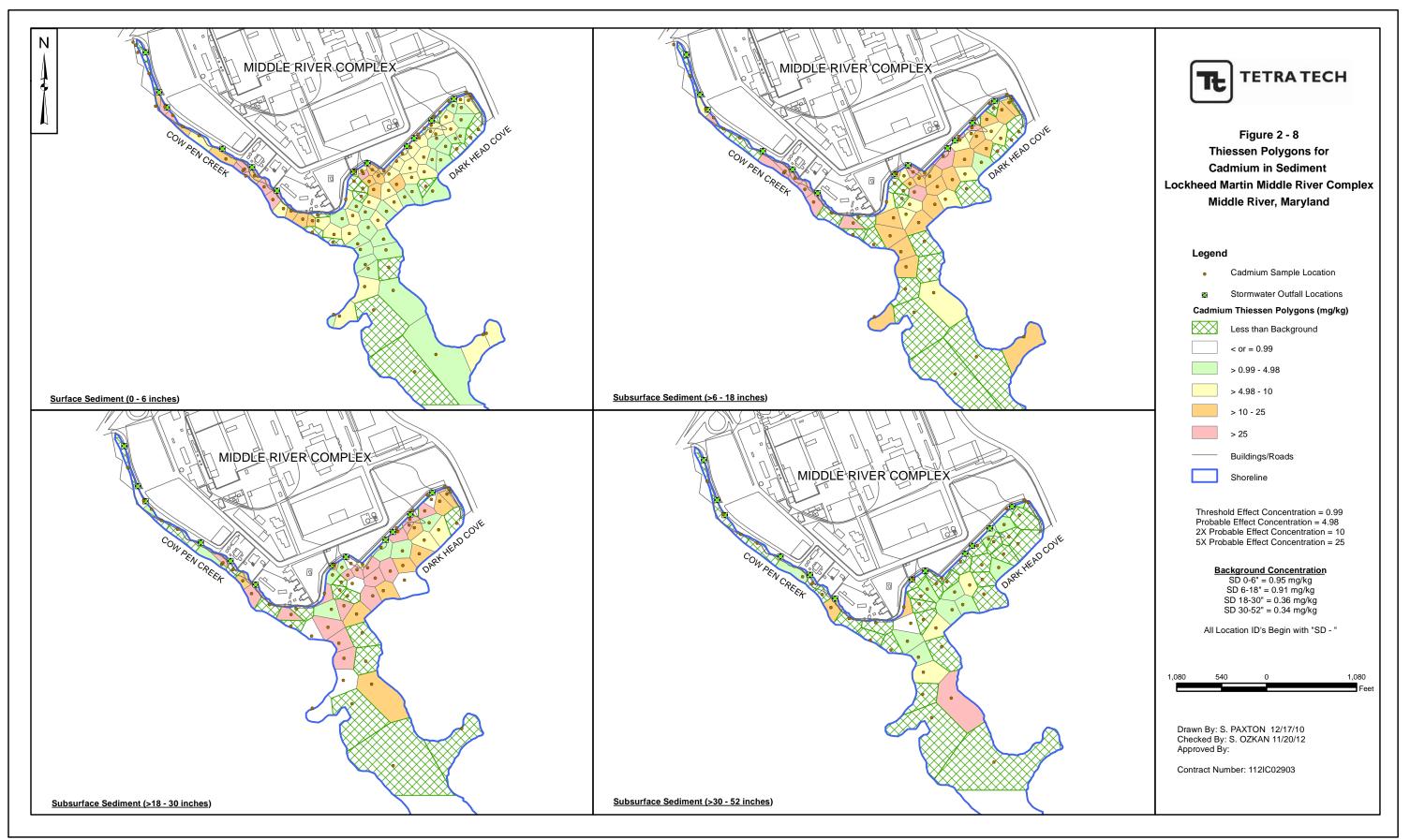





Middle River Complex **Reference Locations** 

Lockheed Martin Middle River Complex Middle River, Maryland


**F**L


DATE MODIFIED:

CREATED BY: 8/28/12 MP **TETRA TECH** 



G:\Marine Mapping\Projects\8026\_Middle River\_Lochheed Martin\ArcGIS\_Middle\_River\_Bathymetry\maps\Bathymetry\_Figure2\_4.mxd





PGH P:\GIS\MIDDLE\_RIVER\MAPDOCS\MXD\AUG2010\_THIESSEN\CD\_THIESSEN\_AUG2010\_BKG.MXD 11/20/12 JN



PGH P:\GIS\MIDDLE\_RIVER\MAPDOCS\MXD\AUG2010\_THIESSEN\CR\_THIESSEN\_AUG2010\_BKG.MXD 11/14/12 JN



PGH P:\GIS\MIDDLE\_RIVER\MAPDOCS\MXD\AUG2010\_THIESSEN\CU\_THIESSEN\_AUG2010\_BKG.MXD 11/14/12 JN





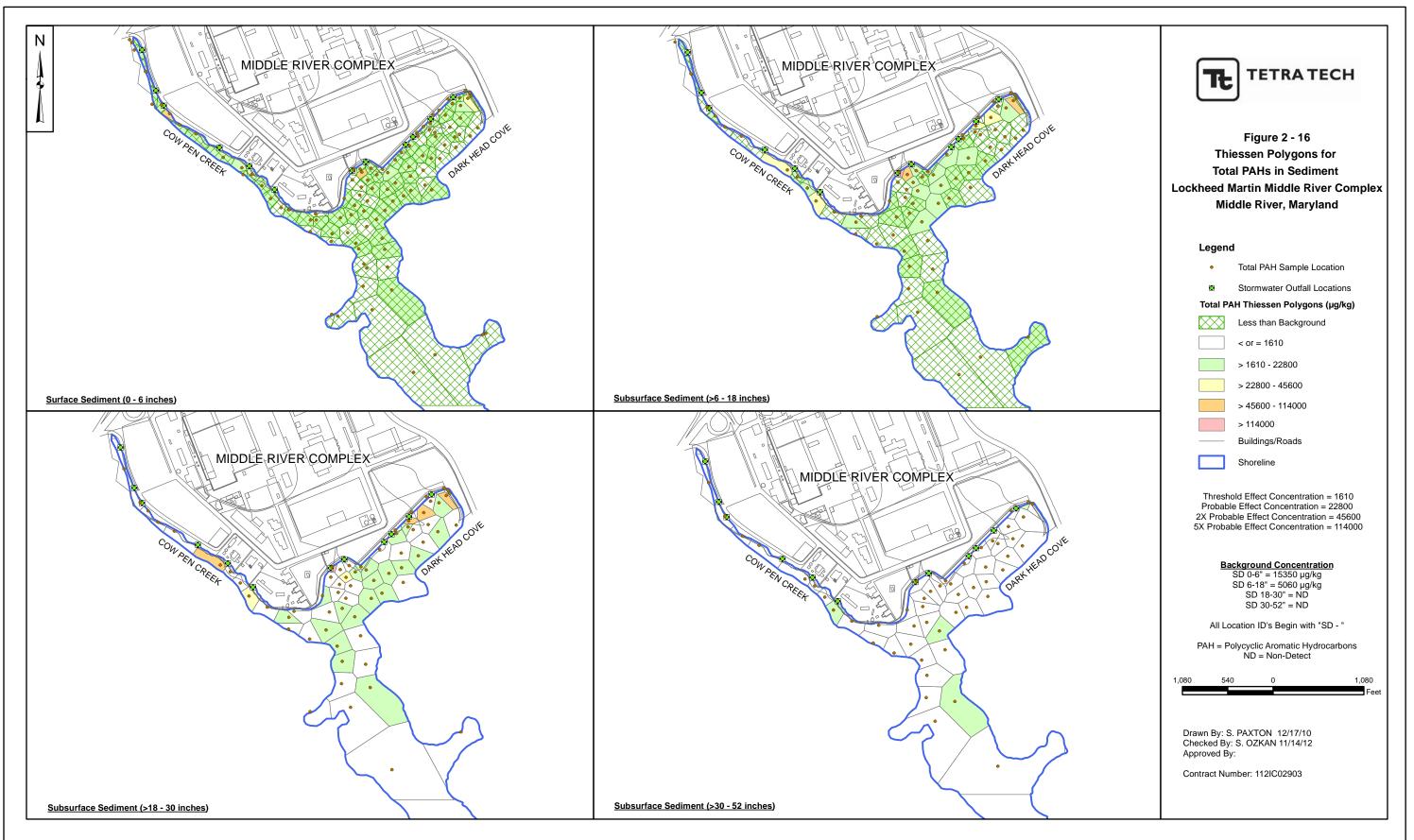


PGH P:\GIS\MIDDLE\_RIVER\MAPDOCS\MXD\AUG2010\_THIESSEN\HG\_THIESSEN\_AUG2010\_BKG.MXD 11/14/12 JN

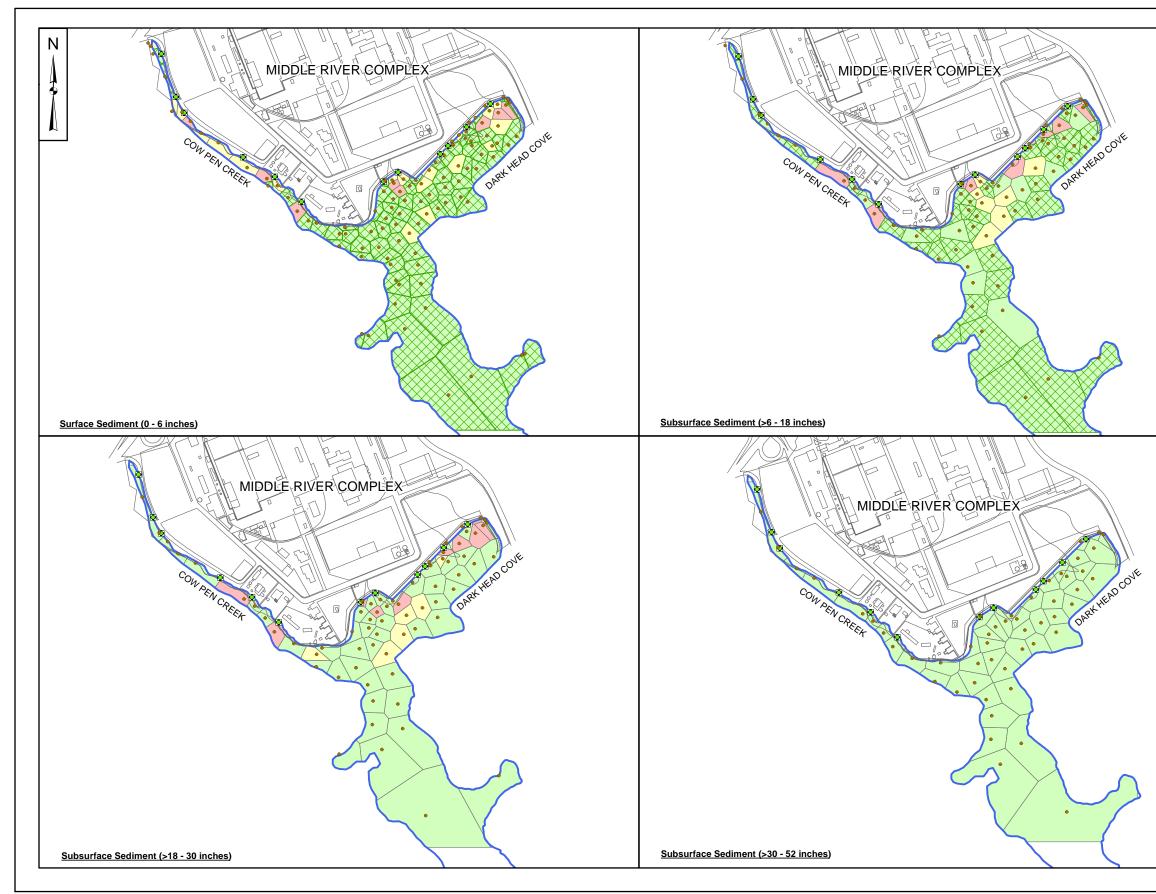


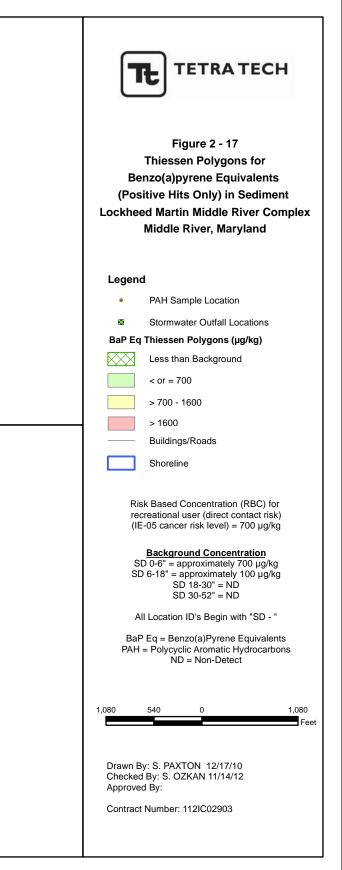

PGH P:\GIS\MIDDLE\_RIVER\MAPDOCS\MXD\AUG2010\_THIESSEN\ZN\_THIESSEN\_AUG2010\_BKG.MXD 11/14/12 JN




| TE TETRA TECH                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Figure 2 - 14<br>Thiessen Polygons for Arsenic in Sediment<br>Lockheed Martin Middle River Complex (MRC)<br>Middle River, Maryland                                                                                                                                                                                                                                                                              |  |  |
| Egend     Arsenic Sample Location                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| <ul> <li>Stormwater Outfall Locations</li> <li>Arsenic Thiessen Polygons (mg/kg)         <ul> <li>&lt; or = 18.3</li> <li>&gt; 18.3 - 95% UTL for MRC Background Data</li> <li>Buildings/Roads</li> <li>Shoreline</li> </ul> </li> </ul>                                                                                                                                                                        |  |  |
| Background Concentration<br>(Maximum MRC Study Area)<br>SD 0-6" = 13.5 mg/kg<br>SD 6-18" = 10.5 mg/kg<br>SD 18-30" = 6.9 mg/kg<br>SD 30-52" = 6.8 mg/kg<br>All Location ID's Begin with "SD - "<br>UPL = Upper Prediction Limit<br>UTL = Upper Tolerance Limit<br>PRG = Preliminary Remediation Goal<br>EPA = U.S. Environmental Protection Agency<br>NOAA = National Oceanic and Atmospheric<br>Administration |  |  |
| Background         UTL         UPL           MRC Study Area         18.3         14.4           EPA/NOAA         31         30.5                                                                                                                                                                                                                                                                                |  |  |
| Feet<br>Drawn By: T. WHEATON 04/19/11<br>Checked By: S. OZKAN 11/14/12<br>Approved By:<br>Contract Number: 112IC02903                                                                                                                                                                                                                                                                                           |  |  |

PGH P:\GISWIDDLE\_RIVER\MAPDOCS\MXD\AUG2010\_THIESSEN\AS\_THIESSEN\_AUG2010\_ECO\_FS1.MXD 11/14/12 JN

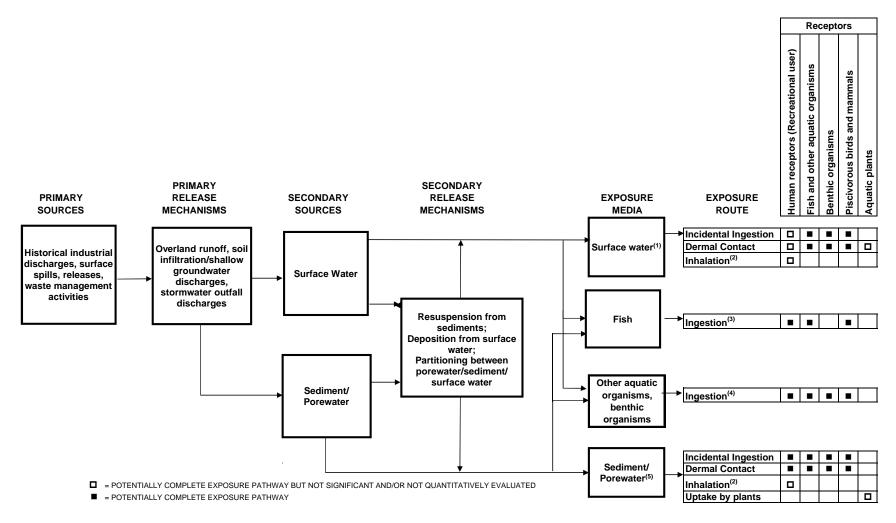




| Figure 2-15   Thisssen Polygons for   Total Aroclor in Sediment   Lockheed Martin Middle River Complex   Middle River, Maryland   Legent <ul> <li>Total Aroclor Sample Location</li> <li>Stormwater Outfall Locations</li> </ul> Control Control Sample Location (a) Control Sample Location (b) Control Sample Location (c) Control Sample Line S | r |                                                                                            |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------|--|--|
| Thiessen Polygons for<br>Total Aroclor in Sediment<br>Lockheed Martin Middle River Complex<br>Middle River, Maryland         Legend         • Total Aroclor Sample Location         • Stormwater Outfall Locations         Total PCBs Thiessen Polygons (µg/kg)         • or = 59.8         • 59.8 - 676         • 676 - 1352         • 1352 - 3380         • 3380         Buildings/Roads         Threshold Effect Concentration = 59.8<br>Probable Effect Concentration = 676         2X Probable Effect Concentration = 1352         5X Probable Effect Concentration = 1352         1       Categories show different intervals of<br>chemical concentrations.         Site-specific background = ND<br>Regional level = 1500 µg/kg"         "Regional level = 1500 µg/kg"         "Regional level = 1500 µg/kg"         "Regional level = 1500 µg/kg"         108       54                                                                                                                                                                                                                                                                                                                                                                                                                                |   | TE TETRA TECH                                                                              |  |  |
| <ul> <li>Total Aroclor Sample Location</li> <li>Stormwater Outfall Locations</li> </ul> Total PCBs Thiessen Polygons (µg/kg) <ul> <li>&lt; or = 59.8 <ul> <li>&lt; or = 59.8</li> <li>&lt; &gt; 59.8 - 676 <ul> <li>&lt; &gt; 676 - 1352 <ul> <li>&gt; &gt; 1352 - 3380 </li> <li>&gt; &gt; 3380 </li> </ul> Buildings/Roads <ul> <li>Shoreline Threshold Effect Concentration = 59.8 Probable Effect Concentration = 59.8 Probable Effect Concentration = 1352 SX Probable Effect Concentration = 1352 SX Probable Effect Concentration = 3380 Categories show different intervals of chemical concentrations. Site-specific background = ND Regional levels are Presented on Table 4-10 of Tetra Tech 2011c. All Location ID's Begin with "SD - " ND = Non-Detect 1.080 540 0 1,080 Feet Drawn By: S. PAXTON 12/20/10 Checked By: S. OZKAN 11/14/12 Approved By:</li></ul></li></ul></li></ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | Thiessen Polygons for<br>Total Aroclor in Sediment<br>Lockheed Martin Middle River Complex |  |  |
| <ul> <li>Stormwater Outfall Locations</li> <li>Total PCBs Thiessen Polygons (µg/kg)</li> <li>&lt; or = 59.8 &lt; 59.8 - 676 &lt; 676 - 1352 &lt; &gt; 676 - 1352 &lt; &gt; 1352 - 3380 &lt; &gt; 3380 Buildings/Roads Shoreline Threshold Effect Concentration = 59.8 Probable Effect Concentration = 676 2X Probable Effect Concentration = 1352 5X Probable Effect Concentration = 1352 5X Probable Effect Concentration = 3380 Categories show different intervals of chemical concentrations. Site-specific background = ND Regional levels are Presented on Table 4-10 of Tetra Tech 2011c. All Location ID's Begin with "SD - " ND = Non-Detect 1.080 540 0 1,080 Feet Drawn By: S. PAXTON 12/20/10 Checked By: S. OZKAN 11/14/12 Approved By:</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | Legend                                                                                     |  |  |
| Total PCBs Thiessen Polygons (µg/kg)          < or = 59.8         > 59.8 - 676         > 676 - 1352         > 1352 - 3380         > 3380         Buildings/Roads         Threshold Effect Concentration = 59.8         Probable Effect Concentration = 676         2X Probable Effect Concentration = 1352         5X Probable Effect Concentration = 1352         5X Probable Effect Concentration = 3380         Categories show different intervals of chemical concentrations.         Site-specific background = ND Regional level = 1500 µg/kg *         *Regional levels are Presented on Table 4-10 of Tetra Tech 2011c.         All Location ID's Begin with "SD - "         ND = Non-Detect         1,080       540       0         1,080       540       0       1,080         Threak of the py: S. PAXTON 12/20/10       Preet         Drawn By: S. PAXTON 12/20/10       Checked By: S. OZKAN 11/14/12         Approved By:       Site Proved By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                                                                                            |  |  |
| <ul> <li>&gt; 59.8 - 676</li> <li>&gt; 676 - 1352</li> <li>&gt; 1352 - 3380</li> <li>&gt; 3380</li> <li>Buildings/Roads</li> <li>Shoreline</li> <li>Threshold Effect Concentration = 59.8<br/>Probable Effect Concentration = 676<br/>2X Probable Effect Concentration = 1352<br/>5X Probable Effect Concentration = 1352<br/>5X Probable Effect Concentration = 3380</li> <li>Categories show different intervals of<br/>chemical concentrations.</li> <li>Site-specific background = ND<br/>Regional levels are Presented on Table 4-10<br/>of Tetra Tech 2011c.</li> <li>All Location ID's Begin with "SD - "<br/>ND = Non-Detect</li> <li>1.080 540 0 1,080<br/>Feet</li> <li>Drawn By: S. PAXTON 12/20/10<br/>Checked By: S. OZKAN 11/14/12<br/>Approved By:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | -                                                                                          |  |  |
| <ul> <li>&gt; 676 - 1352</li> <li>&gt; 1352 - 3380</li> <li>&gt; 3380</li> <li>Buildings/Roads</li> <li>Shoreline</li> <li>Threshold Effect Concentration = 59.8<br/>Probable Effect Concentration = 676<br/>2X Probable Effect Concentration = 1352<br/>5X Probable Effect Concentration = 1352<br/>5X Probable Effect Concentration = 1352<br/>5X Probable Effect Concentration = 3380</li> <li>Categories show different intervals of<br/>chemical concentrations.</li> <li>Site-specific background = ND<br/>Regional level = 1500 µg/kg *</li> <li>*Regional levels are Presented on Table 4-10<br/>of Tetra Tech 2011c.</li> <li>All Location ID's Begin with "SD - "</li> <li>ND = Non-Detect</li> <li>1,080 540 0 1,080</li> <li>Feet</li> <li>Drawn By: S. PAXTON 12/20/10<br/>Checked By: S. OZKAN 11/14/12<br/>Approved By:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | < or = 59.8                                                                                |  |  |
| <ul> <li>&gt; 1352 - 3380</li> <li>&gt; 3380</li> <li>Buildings/Roads</li> <li>Shoreline</li> <li>Threshold Effect Concentration = 59.8<br/>Probable Effect Concentration = 676<br/>2X Probable Effect Concentration = 1352<br/>5X Probable Effect Concentration = 1352<br/>5X Probable Effect Concentration = 3380</li> <li>Categories show different intervals of<br/>chemical concentrations.</li> <li>Site-specific background = ND<br/>Regional level = 1500 µg/kg *</li> <li>*Regional levels are Presented on Table 4-10<br/>of Tetra Tech 2011c.</li> <li>All Location ID's Begin with "SD - "<br/>ND = Non-Detect</li> <li>1.080 540 0 1,080<br/>Feet</li> <li>Drawn By: S. PAXTON 12/20/10<br/>Checked By: S. OZKAN 11/14/12<br/>Approved By:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | > 59.8 - 676                                                                               |  |  |
| <ul> <li>&gt; 3380</li> <li>Buildings/Roads</li> <li>Shoreline</li> <li>Threshold Effect Concentration = 59.8<br/>Probable Effect Concentration = 676<br/>2X Probable Effect Concentration = 1352<br/>5X Probable Effect Concentration = 3380</li> <li>Categories show different intervals of<br/>chemical concentrations.</li> <li>Site-specific background = ND<br/>Regional level = 1500 µg/kg *</li> <li>*Regional levels are Presented on Table 4-10<br/>of Tetra Tech 2011c.</li> <li>All Location ID's Begin with "SD - "</li> <li>ND = Non-Detect</li> <li>1,080 540 0 1,080</li> <li>Feet</li> <li>Drawn By: S. PAXTON 12/20/10<br/>Checked By: S. OZKAN 11/14/12<br/>Approved By:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | > 676 - 1352                                                                               |  |  |
| Buildings/Roads Buildings/Roads Shoreline Threshold Effect Concentration = 59.8 Probable Effect Concentration = 676 2X Probable Effect Concentration = 1352 5X Probable Effect Concentration = 3380 Categories show different intervals of chemical concentrations. Site-specific background = ND Regional level = 1500 µg/kg * *Regional levels are Presented on Table 4-10 of Tetra Tech 2011c. All Location ID's Begin with "SD - " ND = Non-Detect 1.080 540 0 1,080 Feet Drawn By: S. PAXTON 12/20/10 Checked By: S. OZKAN 11/14/12 Approved By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | > 1352 - 3380                                                                              |  |  |
| Shoreline         Threshold Effect Concentration = 59.8         Probable Effect Concentration = 676         2X Probable Effect Concentration = 1352         5X Probable Effect Concentration = 1352         5X Probable Effect Concentration = 3380         Categories show different intervals of chemical concentrations.         Site-specific background = ND         Regional level = 1500 µg/kg *         *Regional levels are Presented on Table 4-10 of Tetra Tech 2011c.         All Location ID's Begin with "SD - "         ND = Non-Detect         1,080         Drawn By: S. PAXTON 12/20/10         Checked By: S. OZKAN 11/14/12         Approved By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | > 3380                                                                                     |  |  |
| Shoreline         Threshold Effect Concentration = 59.8         Probable Effect Concentration = 676         2X Probable Effect Concentration = 1352         5X Probable Effect Concentration = 1352         5X Probable Effect Concentration = 3380         Categories show different intervals of chemical concentrations.         Site-specific background = ND         Regional level = 1500 µg/kg *         *Regional levels are Presented on Table 4-10 of Tetra Tech 2011c.         All Location ID's Begin with "SD - "         ND = Non-Detect         1,080       540       0       1,080         Freet         Drawn By: S. PAXTON 12/20/10         Checked By: S. OZKAN 11/14/12       Approved By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | Buildings/Roads                                                                            |  |  |
| Probable Effect Concentration = 676<br>2X Probable Effect Concentration = 1352<br>5X Probable Effect Concentration = 3380<br>Categories show different intervals of<br>chemical concentrations.<br>Site-specific background = ND<br>Regional level = 1500 µg/kg *<br>*Regional levels are Presented on Table 4-10<br>of Tetra Tech 2011c.<br>All Location ID's Begin with "SD - "<br>ND = Non-Detect<br>1,080 540 0 1,080<br>Feet<br>Drawn By: S. PAXTON 12/20/10<br>Checked By: S. OZKAN 11/14/12<br>Approved By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                                                                            |  |  |
| chemical concentrations.<br>Site-specific background = ND<br>Regional level = 1500 µg/kg *<br>*Regional levels are Presented on Table 4-10<br>of Tetra Tech 2011c.<br>All Location ID's Begin with "SD - "<br>ND = Non-Detect<br>1,080 540 0 1,080<br>Feet<br>Drawn By: S. PAXTON 12/20/10<br>Checked By: S. OZKAN 11/14/12<br>Approved By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | Probable Effect Concentration = 676<br>2X Probable Effect Concentration = 1352             |  |  |
| Regional level = 1500 µg/kg *<br>*Regional levels are Presented on Table 4-10<br>of Tetra Tech 2011c.<br>All Location ID's Begin with "SD - "<br>ND = Non-Detect<br>1,080 540 0 1,080<br>Feet<br>Drawn By: S. PAXTON 12/20/10<br>Checked By: S. OZKAN 11/14/12<br>Approved By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                                                                                            |  |  |
| of Tetra Tech 2011c.<br>All Location ID's Begin with "SD - "<br>ND = Non-Detect<br>1,080 540 0 1,080<br>Feet<br>Drawn By: S. PAXTON 12/20/10<br>Checked By: S. OZKAN 11/14/12<br>Approved By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                                                                                            |  |  |
| ND = Non-Detect<br>1,080 540 0 1,080<br>Feet<br>Drawn By: S. PAXTON 12/20/10<br>Checked By: S. OZKAN 11/14/12<br>Approved By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | of Tetra Tech 2011c.                                                                       |  |  |
| Feet<br>Drawn By: S. PAXTON 12/20/10<br>Checked By: S. OZKAN 11/14/12<br>Approved By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | -                                                                                          |  |  |
| Drawn By: S. PAXTON 12/20/10<br>Checked By: S. OZKAN 11/14/12<br>Approved By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                                                                                            |  |  |
| Checked By: S. OZKAN 11/14/12<br>Approved By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | Feet                                                                                       |  |  |
| Contract Number: 112IC02903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | Checked By: S. OZKAN 11/14/12                                                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Contract Number: 112IC02903                                                                |  |  |

PGH P:\GIS\MIDDLE\_RIVER\MAPDOCS\MXD\AUG2010\_THIESSEN\PCB\_THIESSEN\_AUG2010\_BKG\_ECO.MXD 11/14/12 JN



PGH P:\GIS\MIDDLE\_RIVER\MAPDOCS\MXD\AUG2010\_THIESSEN\PAH\_THIESSEN\_AUG2010\_BKG.MXD 11/14/12 JN






PGH P:\GIS\MIDDLE\_RIVER\MAPDOCS\MXD\AUG2010\_THIESSEN\BAP\_POS\_THIESSEN\_AUG2010\_BKG.MXD 11/14/12 JN

#### Figure 2-18

#### Conceptual Site Model Lockheed Martin, Middle River Complex Middle River, Maryland



1 - Direct contact with surface water is a complete exposure pathway but is not significant for the recreational user because contaminant concentrations in surface water did not result in unacceptable risks in the previous (2006) HHRA, and no contaminant concentrations in available 2010 surface water samples exceeded human health screening levels.

2 - Inhalation of volatile organic chemicals in surface water/sediment is not considered a significant pathway because of the low concentrations detected in surface water/sediment samples and because the sediments are submerged.

3 - Ingestion of fish that have accumulated chemicals from surface water, sediment, or porewater.

4 - Ingestion of other aquatic organisms and benthic organisms that have accumulated chemicals from surface water, sediment, or porewater.

5 - Only benthic invertebrates are expected to be exposed to chemicals in porewater.

MRC = Middle River Complex.

# Section 3 Remedial Action Objectives and Preliminary Remediation Goals

This section provides a description of the development of a set of narrative (i.e., non-numerical) remedial action objectives (RAOs) for the site. Remedial action objectives are developed to protect human health and the environment, and provide the foundation upon which preliminary numerical remediation goals, cleanup levels, and remediation alternatives can be developed. The RAOs pertain to the specific exposure pathways and receptors that were evaluated in the human health and ecological risk assessments, and for which potentially regulatorily unacceptable risks were identified (see Section 2.6).

Remedial action objectives are the basis for developing numerical preliminary remediation goals (PRGs), the target endpoint contaminant-concentrations that are believed sufficient to protect human health and the environment based on available site information (USEPA, 1997a). For the Middle River Complex (MRC) site, PRGs are numerical concentrations for sediment that will protect a particular receptor from regulatorily unacceptable exposure to a chemical via a specific pathway.

In addition to ensuring that human and ecological receptors are protected, remedial actions to clean up a site must also take into account applicable or relevant and appropriate requirements (ARARs). The ARARs are derived from federal, state, and local legal requirements and may potentially govern remedial activities. The estimates of human health and ecological risks, together with federal and state legal requirements (i.e., ARARs), are considered during definition of RAOs and development of PRGs.

# 3.1 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

Identifying federal, state, and local legal requirements is a key component in developing RAOs and in the planning, evaluation, and selection of remedial action alternatives. The definitions of ARARs are as follows:

- *applicable requirements* are cleanup standards, standards of control, and other substantive environmental protection requirements, criteria, or limitations promulgated under federal or state law that specifically address a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstance at a Comprehensive Environmental Resource, Compensation, and Liability Act (CERCLA, or Superfund) site
- *relevant and appropriate requirements* are cleanup standards, standards of control, and other substantive environmental protection requirements, criteria, or limitations promulgated under federal or state law, which, although not "applicable" to a hazardous substance, pollutant, contaminant, or remedial action, location, or other circumstance at a site, address problems or situations sufficiently similar to those encountered at the site that their use is well suited to the particular site

Some federal, state, and local environmental and public health governmental authorities may develop criteria, advisories, guidance documents, and proposed standards that are not legally enforceable, but that contain useful information for implementing a cleanup remedy or selecting cleanup levels. These fall into the category of criteria "to be considered" (referred to as TBCs). TBCs are not mandatory, but they may complement the identified ARARs.

The ARARs may be categorized as chemical-specific, action-specific, and location-specific:

- *Chemical-specific* ARARs are health-risk-based numerical values or methodologies that establish concentration or discharge limits for particular contaminants. Examples include drinking water maximum contaminant levels (MCLs) and Clean Water Act (CWA) Ambient Water Quality Criteria (AWQC).
- *Action-specific* ARARs are technology- or activity-based requirements, limitations on actions, or conditions involving special substances. Examples of action-specific ARARs include wastewater discharge standards.
- *Location-specific* ARARs are restrictions on actions or contaminant concentrations in certain environmentally sensitive areas. Examples of such areas that are regulated under various federal laws include floodplains, wetlands, and locations where endangered species or historically significant cultural resources are present.

Summaries of federal and Maryland chemical-specific ARARs and TBCs are included in Tables 3-1 and 3-2. These ARARs and TBCs provide some medium-specific guidance on regulatorily "acceptable" or "permissible" concentrations of contaminants. Table 3-3 summarizes federal location-specific ARARs and TBCs for this feasibility study (FS). These ARARs and TBCs place restrictions on activities or contaminant concentrations based on the particular characteristics or location of the MRC site.

# 3.2 **REMEDIAL ACTION OBJECTIVES**

Remedial action objectives provide a general description of what the cleanup will accomplish and serve as the design basis for the remedial alternatives developed in the FS (United States Environmental Protection Agency [USEPA], 1999). The RAOs should be as detailed as possible without limiting the range of possible remedial alternatives. The USEPA (1999) guidance states that RAOs should specify the following:

- exposure pathways, receptors, and the chemicals of concern (COC)
- regulatorily acceptable chemical concentrations or ranges of concentrations for each exposure pathway

The following RAOs were developed for the MRC site based on the outcome of the human health and ecological risk assessments, and considered the ARARs and TBCs presented in Section 3.1:

**RAO 1:** Reduce, to the extent practicable, human health risks associated with the consumption of resident fish by reducing bioavailable sediment concentrations of COC. The human health risk assessment provided an evaluation that identified the exposure scenarios likely to present the highest risks at the site. Per USEPA guidance (USEPA 1989), reasonable maximum exposure (RME) scenarios were used to formulate RAOs and evaluate cleanup alternatives. The RME scenario with the highest risk estimates for the MRC site is consumption of fish exposed to site sediments by recreational fishermen. The risk-driver COC identified for this scenario are polychlorinated biphenyls (PCBs), benzo(a)pyrene equivalents (BaPEq), and arsenic in resident seafood organisms. However, because only PCBs were detected in actual fish tissue data, PCBs were selected as COC for the consumption-of-fish exposure pathway.

Meeting this RAO will require that site-wide surface weighted-average COC concentrations in surface sediments be reduced to achieve a corresponding reduction in the concentration of COC in fish tissue. Exposure of these organisms to contaminants in sediment occurs within the biologically active zone, which includes the surficial sediment layer where organisms might have direct-contact exposure, and the upper layers of sediment where prey organisms may take up sediment contaminants. Reducing concentrations of COC in the upper surface layers of sediment will help reduce concentrations of COC in fish tissue that may occur

through direct contact with sediment, and will reduce the transfer of COC to sediment porewater and surface water (which may also be a source of sediment contaminants in fish tissue). Reducing concentrations of COC in sediment that may transfer to porewater and surface water would be expected to also reduce concentrations in dietary items through which fish may be exposed.

**RAO 2:** Reduce, to the extent practicable, human health risks associated with exposure to COC through direct contact with sediments and incidental sediment ingestion by reducing sediment concentrations of COC. The human health risk assessment provides an estimate of regulatorily unacceptable cancer risks associated with direct contact or incidental ingestion of sediments during swimming, wading or fishing. The risk drivers for the direct-contact scenarios are BaPEq, arsenic, and PCBs. Reducing the excess cancer risk for the exposure pathways would entail reducing contaminant concentrations in surface sediment to risk-based levels or background. Human exposure to the COC for the exposure pathways may occur within the upper one to two feet of sediment, depending on the activity. Deeper sediments will not contribute appreciably to these risks unless they are exposed in the future.

**RAO 3:** Reduce, to the extent practicable, risks to benthic macroinvertebrates by reducing bioavailable sediment concentrations of COC. The conclusion in the ecological risk assessment is that ecological risks are possible for the benthic macroinvertebrate community. The ecological risk assessment identified cadmium, copper, mercury, lead, zinc, and total PCBs as potential risk drivers for the benthic macroinvertebrate community. Achievement of this RAO is determined on a point basis and can be demonstrated through comparison to the PRG. Exposure of benthic organisms to COC occurs within the biologically active zone, which is generally defined as the upper six inches (15 centimeters) of sediment (Furota and Emmett, 1993). Deeper sediments will not contribute appreciably to these risks unless they are exposed in the future. In some areas, achieving and maintaining this RAO may therefore require addressing deeper sediments that contain these risk drivers if they are potentially subject to exposure due to erosion or other forces that may disturb the overlying sediments.

The focus of RAO development is the impact of the contaminated sediments on human health and the benthic invertebrate communities that populate the site. Whereas the RAOs narratively define the intent of any remedial actions that may be undertaken to address these risks, numerical values (PRGs) are required to evaluate remedial alternatives for the site. The PRGs define the concentrations of COC in affected media that correspond to the RAOs (i.e., concentrations that will protect ecological and human receptors). Development of PRGs is discussed in Section 3.3.

# 3.3 PRELIMINARY REMEDIATION GOALS

Preliminary remediation goals (PRGs) are the chemical endpoint-concentrations associated with each RAO that are believed to be sufficient to protect human health and the environment, based on available site information (USEPA, 1997b). The PRGs in this FS are used to guide the evaluation of proposed remedial alternatives for sediment. Per USEPA guidelines, PRGs should be based on a

combination of ARARs and the RAOs that are designed to minimize risks to human health and the environment. As presented in Tables 3-1 through 3-3, key ARARs for this project include the Maryland Department of the Environment (MDE) cleanup standards for soil and groundwater, the federal Clean Water Act, and the federal Rivers and Harbors Act. This section describes the development of human health and ecological PRGs for the sediment COC identified and evaluated in this FS. The COC and routes of exposure initially identified in the *Sediment Risk Assessment* (Tetra Tech, 2011c) are listed below.

| Receptor of concern<br>(exposure scenario)                                                                                               | Chemicals of                                                                                                                                                                                             | f concern                               |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Recreational fisher:<br>(Consumption of fish taken from Cow<br>Pen Creek and Dark Head Cove)<br>Remedial Action Objective 1              | Polychlorinated bipheny<br>Arsenic<br>Polycyclic aromatic hydrocarbons<br>to calculate the benzo(a)pyrene equ<br>Benzo(a)pyrene<br>Benzo (a)anthracene<br>Benzo (b)fluoranthene<br>Benzo (k)fluoranthene | (As)<br>(PAHs), specifically those used |
| Recreational user:<br>(Direct human contact with the<br>sediments of Cow Pen Creek and Dark<br>Head Cove)<br>Remedial Action Objective 2 | Arsenic (As)<br>PCBs<br>BaPEq                                                                                                                                                                            |                                         |
| Benthic organisms:<br>(Direct contact with the sediments of<br>Cow Pen Creek and Dark Head Cove).<br>Remedial Action Objective 3         | PCBs<br>Cadmium (Cd)<br>Copper (Cu)                                                                                                                                                                      | Mercury (Hg)<br>Lead (Pb)<br>Zinc (Zn)  |

<sup>1</sup>These PAHs will be referred to as the BaPEqs throughout the following narrative.

The PRGs developed for the MRC site are numerical values that complement the narrative RAOs. As such, they may be used as cleanup levels and post-cleanup monitoring criteria, or as criteria for measuring the performance of site remediation. The range of potential PRGs for risk-driver COC are presented in Table 3-4; these PRGs are protective for human health reasonable maximum exposure (RME) scenarios and for ecological receptors. Table 3-4 also includes the following:

• Descriptive statistics for site-specific background-sediment data for samples from the following locations near Middle River: Bowleys Quarters, Marshy Point, MRC-SW/SD-1, SD-1, and SD-78. (See Section 4 of the Sediment Risk Assessment [Tetra Tech, 2011c] for the detailed analytical results.)

- Descriptive statistics for sediment concentration data for numerous sampling locations across the upper Chesapeake Bay: The data were extracted and summarized from USEPA and National Oceanic and Atmospheric Administration (NOAA) websites, as described in Attachment A in Appendix A of this FS. This data set (and the associated descriptive statistics) provides a regional understanding of chemical concentrations in sediments across the upper Chesapeake Bay.
- Risk-based concentrations (RBCs) for a recreational fisherman routinely consuming fish taken from Cow Pen Creek/Dark Head Cove, and RBCs for the recreational user directly exposed to sediments in Cow Pen Creek/Dark Head Cove while recreating (e.g., boating, fishing, swimming, wading): These RBCs are potential PRGs for the site and represent the one-in-one million (1×10<sup>-6</sup>), one-in-100,000 (1×10<sup>-5</sup>), and one-in-10,000 (1×10<sup>-4</sup>) cancer risk levels (i.e., probabilities of developing cancer) and/or a hazard index of 1 (i.e., the no adverse non-cancer effect level) for COC detected in sediment. These RBCs were calculated using the methodology described in Appendix A, Sections A.1 and A.2; detailed calculations are in Attachment B of Appendix A.
- Recommended risk-based PRGs for benthic organisms exposed to site sediments. Development of the PRG values in Table 3-4 is also discussed in Appendix B.

If a chemical was not identified as a COC for a particular human exposure scenario or ecological receptor, the chemical is identified as "Not COC" in Table 3-4, and no PRG is identified. The PRGs selected for further evaluation in the FS were based on the information presented in Table 3-4, and are summarized in Table 3-5. The rationale for the selection of PRGs is presented below.

# 3.3.1 Development of Human Health PRGs

This section presents rationale for selecting PRGs retained for further evaluation in the FS. The lowest PRGs are for protection of human health (RAOs 1 and 2), representing the  $1 \times 10^{-6}$  cancer risk level and a hazard index of 1. Additionally, if background concentrations are greater than the calculated RBCs, then the PRGs default to background concentrations. The PRGs selected for further evaluation in the FS are highlighted in Table 3-4, and summarized in Table 3-5.

# 3.3.1.1 Recommended Preliminary Remediation Goal for PCBs

The recommended PRG for RAO 1 for PCBs is a site-wide area weighted-average concentration of 195 micrograms per kilogram ( $\mu$ g/kg). As detailed in Attachment A of Appendix A, this concentration is the regional background level (the 95% upper prediction limit [UPL]), calculated based on data collected across the upper Chesapeake Bay by USEPA and NOAA. This regional background level is recommended as the PRG for RAO 1 because, as summarized in Table 3-4, calculated risk-based PRGs for the recreational fisher consuming fish are 2.3–23  $\mu$ g/kg for the

 $1 \times 10^{-6}$  and  $1 \times 10^{-5}$  cancer risk levels, respectively. These calculated, risk-based concentrations are less than the regional background level, and thus are not suitable for selection as the PRG in this FS. The following items relate to the PRG selected for PCBs:

- The referenced regional background data set was used to determine a background level for the study area because PCBs were not detected in background sediments in the data set specific to the study area. This may be a consequence of the fact that the data set for the study area includes only 11 background sediment samples; in contrast, analytical results for 95 samples were available in the regional background data set.
- The recommended PRG is less than the calculated risk-based PRGs representing the  $1 \times 10^{-4}$  cancer risk level (presented in Table 3-4). Thus, although the recommended PRG exceeds the calculated risk-based PRG for the  $1 \times 10^{-5}$  cancer risk level (the MDE risk management benchmark), the recommended PRG is nevertheless within the USEPA target cancer-risk range for making remedial decisions (i.e.,  $1 \times 10^{-4}$  to  $1 \times 10^{-6}$ ).
- The 95% UPL was chosen because it is a commonly used and relatively conservative statistical benchmark for background. In general, UPLs are recommended as estimates of background values. If background and site contaminant distributions are comparable, then a typical site concentration should lie below a 95% UPL. A site observation exceeding the background 95% UPL indicates some evidence of contamination due to site-related industrial activities

# 3.3.1.2 Recommended Preliminary Remediation Goal for BaPEq

The BaPEq PRG recommended for RAOs 1 and 2 is 700  $\mu$ g/kg, measured as a site-wide surface weighted-average. This is the maximum detected background concentration and the 95% UPL reported for the background-sediment data set. The recommended PRG also represents the 1×10<sup>-5</sup> cancer risk level for a lifelong recreational user hypothetically exposed to sediments through direct contact in the study area.

As shown in Table 3-4, calculated RBCs for the recreational fisher consuming fish are less than the study-area-specific background level; they are therefore not included for further evaluation in the FS. The recommended PRG is within the range of BaPEq concentrations reported in the regional background sediment data set discussed in Attachment A of Appendix A, and is less than the 95% UPL calculated for that data set. As reported in the scientific literature, a significant number of anthropogenic sources contribute to the BaPEq concentrations typically detected in background soils and sediments; this recommended PRG is likely on the lower end of the concentration range typically detected in sediments in a highly developed area such as the MRC.

# 3.3.1.3 Recommended Preliminary Remediation Goals for Arsenic

The arsenic PRG recommended for RAOs 1 and 2 is a site-wide surface weighted-average of 18.3 milligrams per kilogram (mg/kg). This concentration is the 95% Upper Tolerance Limit (UTL) calculated for background sediment in the study area data set. Like UPLs, UTLs are also used as estimates of background as they are upper threshold statistics. This value is the recommended PRG because, as summarized in Table 3-4, risk-based PRGs calculated for the recreational fisher consuming fish and the recreational user contacting sediment are less than the background level. The background level (18.3 mg/kg) is based on the background sample data and is within the range of the regional background values presented in Attachment A of Appendix A.

# 3.3.2 Development of Ecological PRGs

The potential for adverse ecological effects due to exposure to chemicals released to the environment through historical activities at the MRC was evaluated through the ecological risk assessment (ERA) conducted for MRC sediments (Tetra Tech, 2011c). The conclusions presented in the ERA led to the retention of total PCBs and certain metals as final chemicals of potential concern (COPC) for potential risk to benthic invertebrates, based on an evaluation of surficial and subsurface sediment (i.e., at depth intervals of six to 18 inches, and 18–30 inches, respectively). The methodology used to develop sediment PRGs will protect benthic invertebrates, and is described in Appendix B. As discussed in the previous section, risks to benthic invertebrates are possible from certain metals and total PCBs in the sediment.

Under current conditions, ecological receptors are primarily exposed only to the surficial sediment (i.e., top six inches); cadmium and total PCBs are the risk-drivers in this interval. However, because deeper sediment could be exposed if the surficial sediment is removed (such as during dredging), subsurface sediment was also evaluated, as a conservative measure. Copper, lead, mercury, and zinc could also be of concern with respect to sediment-dwelling invertebrates if the subsurface sediment became surficial sediment. PRGs were therefore developed for cadmium, copper, lead, mercury, zinc, and total PCB concentrations; these COC were selected based on sediment chemistry, acid-volatile sulfides (AVS)/simultaneously extracted metals (SEM) results, porewater chemistry, and benthic invertebrate community data. As discussed in Section 2.5.2, porewater and AVS/SEM data indicate that potential risks posed by chromium is limited to a few sampling locations, so chromium was not retained for further evaluation or identified as a COC.

Sediment screening-levels (i.e., "lower-effects" values) are used to initially select chemicals as COPC in ERAs; they are not generally used as cleanup levels. Less conservative sediment benchmarks (referred to herein as "higher effects" values) are often used for deriving risk estimates, and are also used for developing PRGs. The lower-effects values are typically defined as concentrations below which effects on sediment macroinvertebrates are not expected, whereas higher effects values are typically defined as concentrations above which adverse effects to sediment macroinvertebrates are probable (MacDonald, et al., 1996, 2000a). Therefore, the first step in the PRG development process is to identify the higher effects values for each of the sediment COPC.

Table B-1 in Appendix B presents the higher-effects values (such as freshwater probable-effect concentrations [PECs] and marine probable-effect levels [PELs]) for each of the COPC. As discussed above, based on the salinity of the surface water (between one and 10 parts per thousand), and to be conservative, the lower of the freshwater or marine surface water and sediment screening levels were used in the ERA to meet (conservative) screening objectives. This approach was followed for selecting the surface water screening levels used to evaluate the porewater results in this PRG document for the same reason. The porewater results were not used to set PRGs; they were used to evaluate the relative bioavailability of the chemicals in the sediment. However, because the sediment benchmarks were used to set PRGs, the greater of the freshwater or marine benchmark was used as the basis for the PRG. In a brackish environment, such as exists at the site, both freshwater and marine values are appropriate for screening. This approach for setting PRGs is less conservative than the conservative approach used in a screening-level ERA to identify COPCs.

The AVS/SEM and porewater data were then used to determine whether the PECs could be adjusted to account for the site-specific bioavailability. Table B-2 in Appendix B presents the bulk-sediment chemical concentrations, the AVS/SEM results, and the porewater results for samples collected from seven locations adjacent to the site. PECs and surface water criteria used for comparison to porewater results are also included. All surface water criteria in Table B-2 are the lower of the freshwater and marine-water ecological screening levels from USEPA Region 3 Biological Technical Assistance Group [BTAG] (USEPA, 2006a, b).

Sediment concentrations shaded black in Table B-2 are concentrations greater than their respective PECs; porewater concentrations shaded black are concentrations exceeding their respective surface

water criteria. The ratio of simultaneously extracted metals/acid-volatile sulfides to the fraction of organic content in sediments  $[(SEM-AVS)/f_{oc}]$  is shaded black if its value exceeds 130 micromoles per gram (µmol/g) of organic carbon, indicating the chemical is potentially bioavailable. As discussed in Appendix B, SEM-AVS)/ $f_{oc}$  concentrations greater than 130 µmol/g indicate that a sample may pose adverse biological effects due to cadmium, copper, lead, nickel, and zinc, while samples with SEM-AVS)/ $f_{oc}$  concentrations less than 130 µmol/g should pose lower risks. The table includes the results for all metals included in the SEM analysis, because the results for all metals are needed to calculate a total SEM value.

The (SEM-AVS)/ $f_{oc}$  values in the sediment samples collected from zero to six inches at all seven locations were less than 130 µmol/g. AVS concentrations in four samples were greater than the SEM concentrations, resulting in negative values (indicating the metals are not expected to be bioavailable). Only three sediment samples, collected in the deeper intervals (two at SD87 from depths of 6 to 18 inches and18 to 30 inches, and one at SD89 at a depth of 18 to 30 inches) had (SEM-AVS)/ $f_{oc}$  values that were slightly greater than 130 µmol/g. The total SEM values in those three samples are based primarily on the SEM concentration for zinc; the SEM concentrations for the other metals concentrations in those three samples exceeded their respective surface water criteria, indicating that the metals were not partitioning from the sediment to the porewater.

The benthic macroinvertebrate community study provides a third line of site-specific evidence used to develop the PRGs. As presented above, benthic macroinvertebrate samples were collected from seven site locations and three reference locations. A suite of benthic characteristics (i.e., metrics), including the Chesapeake Bay Benthic Index of Biotic Integrity (CB-B-IBI) for oligohaline estuaries, were then calculated, providing an indication of benthic community health. The CB-B-IBI is calculated by scoring six metrics of benthic community structure and function according to established thresholds. The scores for each metric (on a 1 to 5 scale) are then averaged to form the index for each site. Samples with index values of 3.0 or more are considered to have good benthic conditions, indicative of good habitat quality. One of the reference sites (Marshy Point) had good benthic conditions according to the CB-B-IBI (3.0), while the other two reference sites (Bowleys Quarters [2.3], and Middle River Downstream [2.0]) had values that were similar to the scores from the site locations (1.7 to 2.3), indicating stressful conditions for benthic macroinvertebrates based on CB-B-IBI scores. All seven sites

near MRC in Cow Pen Creek and Dark Head Cove had CB-B-IBI scores indicating stress to benthic organisms.

Because contaminants such as metals and PCBs are elevated in some of the site samples where benthic macroinvertebrates were collected, it is possible that the contaminants contribute to the findings discussed above. However, the evaluation of benthic data also suggest that habitat, nutrient conditions (i.e., high levels of detritus [non-living organic material such as dead plants]), or some other type of background disturbances or inputs are negatively affecting benthic organisms in the general study area (in MRC samples as well as background samples). Some benthic macroinvertebrates such as pollution-tolerant *tubificid oligochaetes* and *spionid polychaetes* can survive in sediment with high amounts of detritus, but this type of environment may not be conducive to the survival of other more sensitive macroinvertebrates. (Both *tubificid oligochaetes* and *spionid polychaetes* were found at the site, and were also found to a lesser degree at the reference sites.) Therefore, although the total abundance of benthic macroinvertebrates increased at the locations with high amounts of detritus, other metrics such as the low abundance of pollution-sensitive taxa and other tolerance scores led to lower CB-B-IBI scores.

In summary, as presented in the evaluation above, the porewater and AVS/SEM results provide two lines of evidence that metals in the sediment are not highly bioavailable. In addition, the benthic community evaluation indicates that, although the benthic community at the site sampling locations is stressed, it is similarly stressed at two of the three background/reference stations. Although uncertainty remains as to whether this stress is caused by chemicals at the site or by natural conditions, the site benthic community is generally similar to those in the surrounding area; it does not appear to be significantly impacted by chemicals in the sediment. Also, as indicated above (and in Section 2.3.3), some sites local to the MRC had a greater density of benthic organisms than the reference sites, indicating the organisms were thriving at the site, even if many of them were classified as pollution-tolerant.

Based on the AVS/SEM and porewater analyses in the surficial and deeper sediment samples, cadmium at concentrations greater than six and 10 times the PEC (4.98 mg/kg), respectively, was not bioavailable. Although this evaluation supports a higher PRG, the recommended PRG for cadmium is set at twice the PEC (9.96 mg/kg). This value was selected because it is still conservative and is expected to be protective of sediment macroinvertebrates, and because remedial

alternatives would not change significantly with slightly greater PRGs. It may be appropriate to set a clean-up goal that is higher than the PRG selected here at a later time, since it would be equally protective. This evaluation will be further evaluated during the design process.

All porewater concentrations of copper were less than its surface water screening level, with an exception at SD-85. This, combined with the AVS/SEM results (as discussed in more detail in Appendix B) indicates that copper is even less bioavailable than cadmium in site sediment. Therefore, similar to cadmium, a PRG of twice its PEC (149 mg/kg), or 298 mg/kg, is recommended for copper.

Based on the AVS/SEM and porewater analysis, the bioavailability of lead and zinc is expected to be low. Although specific bioavailability data was not available for mercury (it was not analyzed for in the AVS/SEM or porewater samples), the bioavailability of mercury is expected to be similar to that of the other metals. Therefore, the PRGs for lead, mercury, and zinc were set at the greater of their respective PEC or background concentration. The background level of lead (190 mg/kg) is greater than the PEC (149 mg/kg). Conversely, the PECs for mercury (1.06 mg/kg) and zinc (459 mg/kg) are greater than their respective background concentrations. Therefore, the PRG for lead is based on its background concentration (190 mg/kg), and the PRGs for mercury (1.06 mg/kg) and zinc (459 mg/kg) are based on their PECs.

Similar to what was done for the metals, the greater of the freshwater or marine higher effects value was used to develop a PRG for total PCBs. Thus, the PCB PRG is 0.676 mg/kg, based on the freshwater PEC (MacDonald et al., 2000a). However, the primary site-specific parameter that affects the bioavailability of PCBs is organic carbon concentration in the sediment. In MacDonald et al. (2000b), sediment quality guidelines expressed on an organic carbon–normalized basis were converted to dry weight (dry wt)-normalized concentrations, assuming one percent organic carbon. The average percent of organic carbon in surficial sediment at the site is greater than three percent;If a site-specific value of 3 percent was used to convert the values, the guidelines would be three time higher. The relatively high organic carbon concentration in the site sediments compared to the assumptions used to develop the PEC provides a line of evidence to suggest that using the PEC for the PCBs PRG is likely to be conservative. Since all of porewater detections of PCBs were much lower than 1.3  $\mu$ g/L (the lowest chronic value for aquatic organisms in Suter and Tsao, [1996]), risks to aquatic organisms, including sediment macroinvertebrates, from PCBs in the porewater are

not likely. As a result, using the PEC (0.676 mg/kg, or 676  $\mu$ g/kg) as the PRG for PCBs is expected to be protective of benthic macroinvertebrates at the site.

#### Federal Chemical-Specific Applicable or Relevant and Appropriate Requirements (ARARs) and To Be Considered (TBC) Criteria Middle River Complex, Middle River, Maryland Page 1 of 2

| Requirement                                                                             | Citation                                                                                               | Synopsis                                                                                                             | Evaluation/action to be taken                                                                                                                |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Cancer slope<br>factors (CSFs)                                                          | _                                                                                                      | CSFs are guidance values used to evaluate the potential carcinogenic hazards caused by exposure to contaminants.     | CSFs are considered in developing human health protection values for soils and sediments at the site.                                        |
| Reference doses<br>(RfDs)                                                               |                                                                                                        | RfDs are guidance values used to evaluate the potential non-carcinogenic hazards caused by exposure to contaminants. | RfDs are considered in developing human health protection values for soils and sediments at the site.                                        |
| Clean Water<br>Act                                                                      | 33 U.S.C. 401;<br>33 U.S.C. 141;<br>33 U.S.C. 1251-1316;<br>40 CFR 230, 231,<br>404;<br>33 CFR 320-330 | Clean Water Act regulates dredge/fill and other in-water construction work.                                          | Dredging and other in-water construction must meet specific<br>standards that apply to any construction activity in or near state<br>waters. |
| Resource<br>Conservation<br>and Recovery<br>Act (RCRA)<br>Land Disposal<br>Restrictions | 42 U.S.C. 7401-7642;<br>40 CFR 268                                                                     | Land disposal of hazardous waste                                                                                     | RCRA land disposal restrictions are considered for disposal of dredged sediments.                                                            |
| Toxic<br>Substance<br>Control Act                                                       | 15 U.S.C. 2605;<br>40 CFR761                                                                           | Management and disposal of materials<br>containing polychlorinated biphenyls (PCBs)                                  | Toxic Substance Control Act is considered for disposal of sediments with PCB concentrations greater than 50 parts per million (ppm).         |
| Solid Waste<br>Disposal Act                                                             | 42 U.S.C.<br>215103259-6901-<br>6991;<br>40 CFR 257, 258                                               | Requirements for solid waste handling management and disposal                                                        | Covers non-hazardous waste generated during remedial activities unless wastes meet recycling exemptions.                                     |

U.S.C. – United States Code

CFR – Code of Federal Regulations

#### Federal Chemical-Specific Applicable or Relevant and Appropriate Requirements (ARARs) and To Be Considered (TBC) Criteria Middle River Complex, Middle River, Maryland

#### Page 2 of 2

| Requirement                                                            | Citation*       | Synopsis Evaluation/action to be taken                     |                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|------------------------------------------------------------------------|-----------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| National<br>Pollutant<br>Discharge<br>Elimination<br>System<br>(NPDES) | 40 CFR 122, 125 | Point-source standards for new discharges to surface water | Remediation discharges must comply with substantive<br>requirements of NPDES rules. If upland handling of sediment<br>is planned, construction storm water requirements will be<br>addressed including development of a storm water pollution<br>prevention plan and implementation of best management<br>practices. NPDES program requirements will be reviewed as<br>part of project final design. |  |  |

U.S.C. – United States Code

CFR – Code of Federal Regulations

| State Chemical-Specific Applicable or Relevant and Appropriate Requirements (ARARs) |
|-------------------------------------------------------------------------------------|
| and To Be Considered (TBC) Criteria                                                 |
| Middle River Complex, Middle River, Maryland                                        |

| Requirement                                                                                                                     | Citation                                                     | Synopsis                                                                                                                                                             | Evaluation/action to be taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Maryland<br>Surface Water<br>Quality Criteria                                                                                   | Code of<br>Maryland<br>Regulations<br>(COMAR)<br>26.08.02.03 | Establish minimum<br>standards for surface water<br>quality for each designated<br>use. Standards are available<br>to protect both human health<br>and aquatic life. | Considered in determining the extent of<br>surface water contamination and discharge<br>criteria for alternatives that involve<br>discharges to surface water and process<br>water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Maryland<br>Department of<br>the Environment<br><i>Cleanup</i><br><i>Standards for</i><br><i>Soil and</i><br><i>Groundwater</i> | Not codified                                                 | Guidance for remedial<br>actions based on land use<br>and projected use of<br>groundwater for potable<br>purposes.                                                   | These guidelines are used in determining<br>cleanup goals. The values in the tables are<br>considered when determining cleanup<br>concentrations for soil and groundwater.<br>By the definition of ARARs in the<br><i>National Contingency Plan</i> , state<br>requirements must be state laws or<br>regulations; an environmental or facility<br>siting law; promulgated; more stringent<br>than the federal requirement; identified in<br>a timely manner; and consistently applied.<br>The Maryland <i>Cleanup Standards for Soil</i><br><i>and Groundwater</i> are not promulgated as<br>a law or regulation and should not be<br>considered an ARAR. |  |  |

# Federal Location-Specific Applicable or Relevant and Appropriate Requirements (ARARs) and To Be Considered (TBC) Criteria Middle River Complex, Middle River, Maryland Page 1 of 2

| Requirement                                                                                                                                                      | Citation                                                                   | Synopsis                                                                                                                                                                                                                                                                                                                                                                                | Evaluation/action to be taken                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Endangered<br>Species Act of<br>1973                                                                                                                             | ties Act of 1531; 50 CFR impacts on endangered and                         |                                                                                                                                                                                                                                                                                                                                                                                         | A review of the available information<br>indicates that no state or federally<br>listed endangered or threatened species<br>are known to permanently or<br>seasonally reside near the Middle<br>River Complex. For this reason, the<br>Endangered Species Act would not be<br>applicable or relevant and appropriate<br>to actions taken at the site. |
| Archaeological<br>and Historic<br>Preservation Act                                                                                                               | 16 U.S.C. 469;<br>36 CFR<br>Parts 62 and 65                                | Establishes requirements relating<br>to potential loss or destruction of<br>significant scientific, historical, or<br>archaeological data. Also requires<br>federal agencies to consider the<br>existence and locations of<br>landmarks on the <i>National</i><br><i>Registry of Natural Landmarks</i><br>to avoid undesirable impacts on<br>such landmarks.                            | The landmarks within and surrounding<br>the Middle River Complex are not<br>classified as potentially significant<br>scientific, historical, archaeological, or<br>national landmarks. For this reason, the<br>Archaeological and Historical<br>Preservation Act is not applicable or<br>relevant and appropriate to actions<br>taken at the site.    |
| Fish and Wildlife<br>Coordination<br>Act,<br>Improvement<br>Act, and<br>Conservation Act                                                                         | 16 U.S.C. 661<br>and 33 CFR<br>320.3;<br>16 U.S.C. 742a;<br>16 U.S.C. 2901 | These acts require that the U.S.<br>Fish and Wildlife Service,<br>National Marine Fisheries<br>Service, and related state<br>agencies be consulted before<br>structural modification of any<br>body of water, including<br>wetlands. If modifications must<br>be conducted, the regulation<br>requires that adequate protection<br>be provided for fish and wildlife<br>resources.      | These agencies would be consulted<br>regarding remedial alternatives that<br>alter a stream or wetland.                                                                                                                                                                                                                                               |
| NationalExecutiveEnvironmentalOrder 11990Policy Actand 40 CFR(NEPA)SubsectionRegulations,6.302 [a]Wetlands,Appendix AFloodplains, etc.,Executive Order1199011990 |                                                                            | These regulations contain<br>procedures for complying with<br>Executive Order 11990 on<br>wetlands protection. Appendix A<br>of this order states that no<br>remedial alternative may<br>adversely affect a wetland if<br>another practicable alternative is<br>available. If no alternative is<br>available, impacts from<br>implementing the chosen<br>alternative must be mitigated. | These regulations would apply for<br>remedial actions that affect a wetland.                                                                                                                                                                                                                                                                          |

#### Federal Location-Specific Applicable or Relevant and Appropriate Requirements (ARARs) and To Be Considered (TBC) Criteria Middle River Complex, Middle River, Maryland Page 2 of 2

| Requirement                                                                   | Citation                                                                                                      | Synopsis                                                                                                                                                                                                                                                                                                                | Evaluation/action to be taken                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NEPA<br>Regulations,<br>Floodplain<br>Management,<br>Executive Order<br>11988 | Executive<br>Order 11988<br>and<br>40 CFR Part 6,<br>Appendix A                                               | Appendix A of this order<br>describes the policy for carrying<br>out the Executive Order<br>regarding floodplains. If no<br>practicable alternative exists to<br>performing cleanup in a<br>floodplain, potential harm must<br>be mitigated and actions taken to<br>preserve the beneficial value of<br>the floodplain. | For removal actions in a floodplain,<br>different alternatives that reduce the<br>risk of flood loss and restore and<br>preserve the floodplain will be<br>considered.                                                                                                                                                                                                                                            |
| CWA                                                                           | 33 U.S.C. 401;<br>33 U.S.C. 141;<br>33 U.S.C.<br>1251-1316;<br>40 CFR 230,<br>231, 404;<br>33 CFR 320-<br>330 | CWA regulates dredge/fill and<br>other in-water construction work.                                                                                                                                                                                                                                                      | Dredging and other in-water<br>construction must meet specific<br>standards that apply to any<br>construction activity in or near state<br>waters.                                                                                                                                                                                                                                                                |
| NPDES                                                                         | 40 CFR 122,<br>125                                                                                            | Point-source standards for new<br>discharges to surface water                                                                                                                                                                                                                                                           | Remediation discharges must comply<br>with substantive requirements of<br>NPDES rules. If upland handling of<br>sediment is planned, construction<br>storm water requirements will be<br>addressed, including development of a<br>storm-water pollution prevention plan<br>and implementation of best<br>management practices. NPDES<br>program requirements will be reviewed<br>as part of final project design. |

Table 3-4 Support Information for Preliminary Remediation Goals for Risk-Driver Chemicals in Lockheed Middle River Complex Sediment

|                                                                |                                                                  |                                                                       |                                                                                   |                                                                                   |                                                                                                               |                                  | or RISK-Driver Ch                                                                                           |                                                                                               |                                                                                                                                    | reshold Concentra             |                                       |                                      |                                                           |                                |                                            |                               |                                  |                    |                                                                           |                                              |       |    |    |    |    |    |    |    |    |                    |
|----------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------|--------------------------------------|-----------------------------------------------------------|--------------------------------|--------------------------------------------|-------------------------------|----------------------------------|--------------------|---------------------------------------------------------------------------|----------------------------------------------|-------|----|----|----|----|----|----|----|----|--------------------|
|                                                                | Background Concentrations in Sediment                            |                                                                       | Site Sediment Data                                                                |                                                                                   | RAO 1. Recreational Fisher (Consumption of Fish) RAO 2. Direct Human Contact with Sediments                   |                                  |                                                                                                             | ments                                                                                         |                                                                                                                                    |                               |                                       |                                      |                                                           |                                |                                            |                               |                                  |                    |                                                                           |                                              |       |    |    |    |    |    |    |    |    |                    |
| Chemicals of<br>Concern                                        | Combined<br>NOAA/USEPA Data<br>Upper Chesapeake<br>Bay - Maximum | Combined<br>NOAA/USEPA Data -<br>Upper Chesapeake<br>Bay -<br>95% UPL | Site-Specific<br>Maximum Across<br>0-6"<br>6-18"<br>18-30"<br>30-52"<br>Intervals | Site-Specific 95%<br>UTL Across<br>0-6"<br>6-18"<br>18-30"<br>30-52"<br>Intervals | Sediment Depth<br>Intervals:<br>0-6"<br>6-18"<br>18-30"<br>30-52"<br>(95 % UCL Unless<br>Specified Otherwise) | Spatial Scale of<br>Exposure     | Adult 10 <sup>-4</sup><br>Cancer Risk                                                                       | Adult 10 <sup>-5</sup><br>Cancer Risk                                                         | Adult 10 <sup>-6</sup><br>Cancer Risk                                                                                              | Non-Cancer<br>HQ = 1          | Adult 10 <sup>-4</sup><br>Cancer Risk | Adult 10 <sup>5</sup><br>Cancer Risk | Adult 10 <sup>-6</sup><br>Cancer Risk                     | Child Non-<br>Cancer<br>HQ = 1 | RAO 3. Benthic<br>Organisms <sup>(1)</sup> |                               |                                  |                    |                                                                           |                                              |       |    |    |    |    |    |    |    |    |                    |
| Total PCBs (µg/kg dw) 498 (positive only 195 (positive only an | 195 (positive only and                                           | Not Detected                                                          | NA                                                                                | Aroclor 1260 (most<br>prevalent):<br>5000/1500/220/20                             | Site-wide                                                                                                     | 230-640<br>(Varies based on TOC) | 23-64 ( <bkgd)<br>(Varies based on TOC)</bkgd)<br>                                                          | 2.3-6.4 ( <bkgd)<br>(Varies based on TOC)</bkgd)<br>                                          | 39-110 ( <bkgd)<br>(Varies based on<br/>TOC)</bkgd)<br>                                                                            | 100,000                       | 10000                                 | <u>1000</u>                          | 5600                                                      | NA                             |                                            |                               |                                  |                    |                                                                           |                                              |       |    |    |    |    |    |    |    |    |                    |
| (BSAF-based)                                                   | and 1/2 U)                                                       | 1/2 U)                                                                |                                                                                   |                                                                                   | Maximum Aroclor 1260<br>concentration:<br>54,000/14000/1300/ 120                                              | Point                            | NA                                                                                                          | NA                                                                                            | NA                                                                                                                                 | NA                            | NA                                    | NA                                   | NA                                                        | NA                             | <u>676<sup>(1)</sup></u>                   |                               |                                  |                    |                                                                           |                                              |       |    |    |    |    |    |    |    |    |                    |
| Arsenic                                                        |                                                                  |                                                                       | 13.5                                                                              |                                                                                   | 10/7.6/6.8/6.6                                                                                                | Site-wide                        | 650                                                                                                         | 65                                                                                            | 6.5 ( <bkgd)< td=""><td>1200</td><td>180</td><td>18</td><td>1.8 (<bkgd)< td=""><td>108</td><td>Not COC</td></bkgd)<></td></bkgd)<> | 1200                          | 180                                   | 18                                   | 1.8 ( <bkgd)< td=""><td>108</td><td>Not COC</td></bkgd)<> | 108                            | Not COC                                    |                               |                                  |                    |                                                                           |                                              |       |    |    |    |    |    |    |    |    |                    |
| (mg/kg dw)                                                     | 32.6                                                             | 30.5                                                                  | (UPL = 15 Based on all available samples.)                                        | <u>18.3</u>                                                                       | Maximum Concentration: 37.2/12.6/12.3/35.9                                                                    | Point                            | NA                                                                                                          | NA                                                                                            | NA                                                                                                                                 | NA                            | NA                                    | NA                                   | NA                                                        | NA                             | Not COC                                    |                               |                                  |                    |                                                                           |                                              |       |    |    |    |    |    |    |    |    |                    |
| BAP equivalents 1282 (positive only 858 (positive              |                                                                  |                                                                       | re only)/847 UPL for all surface 141                                              | 1410 (positive                                                                    | 1700/1800/3000/180<br>(Calculated using 1/2 U)                                                                | Site-wide                        | Not COC in fish tissue.<br>Calculated value based on<br>transfer factor<br>approximates bkgd: 400-<br>1100. | Not COC in fish tissue.<br>Calculated value based<br>on transfer factor is less<br>than bkgd. | Not COC in fish tissue.<br>Calculated value based<br>on transfer factor is less<br>than bkgd.                                      | NA                            | 7000-16000                            | 700-1600<br>(approximates<br>bkgd)   | 70-160<br>( <bkgd)< td=""><td>NA</td><td>NA</td></bkgd)<> | NA                             | NA                                         |                               |                                  |                    |                                                                           |                                              |       |    |    |    |    |    |    |    |    |                    |
| (µg TEQ/kg dw)                                                 | (µg TEQ/kg dw) and 1/2 U) (1/2 U)                                | (1/2 0)                                                               |                                                                                   | UPL for all available<br>samples                                                  | UPL for all available<br>samples                                                                              | UPL for all available samples    | UPL for all available samples                                                                               | UPL for all available samples                                                                 | UPL for all available samples                                                                                                      | UPL for all available samples | UPL for all available samples         | UPL for all available samples        | UPL for all available samples                             | UPL for all available samples  | UPL for all available samples              | UPL for all available samples | UPL for all available<br>samples | only)/6230 (1/2 U) | Maximum Concentration<br>6500/12100/38700/810<br>(Calculated using 1/2 U) | Point                                        | NA    | NA | NA | NA | NA | NA | NA | NA | NA |                    |
| Lead                                                           | 217                                                              | 153                                                                   | 151                                                                               | <u>190</u>                                                                        | Arithmetic Mean<br>Concentration:<br>407/131/89.4/18.9                                                        | Site-wide                        | Not COC                                                                                                     | Not COC                                                                                       | Not COC                                                                                                                            | Not COC                       | Not COC                               | Not COC                              | Not COC                                                   | Not COC                        | NA                                         |                               |                                  |                    |                                                                           |                                              |       |    |    |    |    |    |    |    |    |                    |
| (mg/kg dw)                                                     |                                                                  |                                                                       |                                                                                   |                                                                                   |                                                                                                               |                                  |                                                                                                             |                                                                                               |                                                                                                                                    |                               |                                       |                                      |                                                           |                                |                                            |                               |                                  |                    |                                                                           | Maximum Concentration:<br>31500/1370/316/163 | Point | NA | 128 <sup>(1)</sup> |
| Cadmium                                                        | 5.1                                                              | 1.9                                                                   | 0.95                                                                              | 1.4                                                                               | 23.8/52.4/53/10                                                                                               | Site-wide                        | Not COC                                                                                                     | Not COC                                                                                       | Not COC                                                                                                                            | Not COC                       | Not COC                               | Not COC                              | Not COC                                                   | Not COC                        | NA                                         |                               |                                  |                    |                                                                           |                                              |       |    |    |    |    |    |    |    |    |                    |
| (mg/kg dw)                                                     | 5.1                                                              | 1.9                                                                   | 0.90                                                                              | 1.4                                                                               | Maximum Concentration:<br>296/306/296/33.6                                                                    | Point                            | NA                                                                                                          | NA                                                                                            | NA                                                                                                                                 | NA                            | NA                                    | NA                                   | NA                                                        | NA                             | <u>9.96<sup>(1)</sup></u>                  |                               |                                  |                    |                                                                           |                                              |       |    |    |    |    |    |    |    |    |                    |
| Copper                                                         | 246                                                              | 118                                                                   | 110                                                                               | 110                                                                               | 112/93.6/67.3/22.1                                                                                            | Site-wide                        | Not COC                                                                                                     | Not COC                                                                                       | Not COC                                                                                                                            | Not COC                       | Not COC                               | Not COC                              | Not COC                                                   | Not COC                        | NA                                         |                               |                                  |                    |                                                                           |                                              |       |    |    |    |    |    |    |    |    |                    |
| Copper<br>(mg/kg dw)                                           | 240                                                              | 110                                                                   | 110                                                                               | 110                                                                               | Maximum Concentration:<br>183/178/147/84.1                                                                    | Point                            | NA                                                                                                          | NA                                                                                            | NA                                                                                                                                 | NA                            | NA                                    | NA                                   | NA                                                        | NA                             | <u>298<sup>(1)</sup></u>                   |                               |                                  |                    |                                                                           |                                              |       |    |    |    |    |    |    |    |    |                    |
| Mercury                                                        |                                                                  | 0.30                                                                  | 0.74                                                                              | 0.71                                                                              | 1.7                                                                                                           | 0.43/0.82/1.5/0.23               | Site-wide                                                                                                   | Not COC                                                                                       | Not COC                                                                                                                            | Not COC                       | Not COC                               | Not COC                              | Not COC                                                   | Not COC                        | Not COC                                    | NA                            |                                  |                    |                                                                           |                                              |       |    |    |    |    |    |    |    |    |                    |
| (mg/kg dw)                                                     |                                                                  | 0.00                                                                  | 0.71                                                                              | 1.7                                                                               | Maximum Concentration:<br>3.5/3.5/6.1/1.5                                                                     | Point                            | NA                                                                                                          | NA                                                                                            | NA                                                                                                                                 | NA                            | NA                                    | NA                                   | NA                                                        | NA                             | <u>1.06<sup>(1)</sup></u>                  |                               |                                  |                    |                                                                           |                                              |       |    |    |    |    |    |    |    |    |                    |
| Zinc                                                           | 844                                                              | 552                                                                   | 327                                                                               | 401                                                                               | 352/411/508/144                                                                                               | Site-wide                        | Not COC                                                                                                     | Not COC                                                                                       | Not COC                                                                                                                            | Not COC                       | Not COC                               | Not COC                              | Not COC                                                   | Not COC                        | NA                                         |                               |                                  |                    |                                                                           |                                              |       |    |    |    |    |    |    |    |    |                    |
| (mg/kg dw) 844                                                 | 552                                                              | 521                                                                   | 401                                                                               | Maximum Concentration:<br>636/1300/2980/4370                                      | Point                                                                                                         | NA                               | NA                                                                                                          | NA                                                                                            | NA                                                                                                                                 | NA                            | NA                                    | NA                                   | NA                                                        | <u>459<sup>(1)</sup></u>       |                                            |                               |                                  |                    |                                                                           |                                              |       |    |    |    |    |    |    |    |    |                    |

1 - Consensus based probable effects concentration for freshwater systems (MacDonaldet al., 2000); "2x" the benchmark is provided in some cases. Please see text for explanation.

2 - Selected preliminary remediation goals are shown in bold underline USEPA = United States Environmental Protection Agency

BAP = benzo(a)pyrene bkgd = background

dw = dry weight

COC = chemical of concern

HQ = hazard quotient BSAF = biota-sediment accumulation factor mg/kg = milligram per kilogram

NA = not applicable

NOAA = National Oceanic and Atmospheric Administration

PCB = polychlorinated biphenyl RAO = remedial action objective TOC = total organic carbon TEQ = toxicity equivalency U = non-detected

UCL = upper confidence limit µg/kg = microgram per kilogram UPL = upper prediction limit UTL = upper tolerance limit

#### Summary of Preliminary Remediation Goals for Risk-Driver Chemicals of Concern in Lockheed Middle River Complex Sediment Middle River Complex, Middle River, Maryland

| Risk Driver<br>Chemical of<br>Concern |           |                                         | RAO 2: Direct<br>Human Contact<br>with Sediments | RAO 3: Benthic<br>Organisms |  |
|---------------------------------------|-----------|-----------------------------------------|--------------------------------------------------|-----------------------------|--|
| Total PCBs<br>(µg/kg dw)              | Site-wide | background (195) <sup>1/</sup>          | 1000                                             | n/a                         |  |
| (µg/kg uw)                            | Point     | n/a                                     | n/a                                              | 676                         |  |
| BaPEq (µg<br>TEQ/kg dw)               | Site-wide | background<br>(700/2,000) <sup>2/</sup> | background<br>(700/2,000)                        | n/a                         |  |
| TEQ/Kg uw)                            | Point     | n/a                                     | n/a                                              | n/a                         |  |
| Arsenic (mg/kg                        | Site-wide | background (18.3) <sup>3/</sup>         | background (18.3)                                | n/a                         |  |
| dw)                                   | Point     | n/a                                     | n/a                                              | n/a                         |  |
| Lead (mg/kg                           | Site-wide | n/a                                     | n/a                                              | n/a                         |  |
| dw)                                   | Point     | n/a                                     | n/a                                              | background (190) 3/         |  |
| Cadmium                               | Site-wide | n/a                                     | n/a                                              | n/a                         |  |
| (mg/kg dw)                            | Point     | n/a                                     | n/a                                              | 9.96                        |  |
| Copper (mg/kg                         | Site-wide | n/a                                     | n/a                                              | n/a                         |  |
| dw)                                   | Point     | n/a                                     | n/a                                              | 298                         |  |
| Mercury (mg/kg                        | Site-wide | n/a                                     | n/a                                              | n/a                         |  |
| dw)                                   | Point     | n/a                                     | n/a                                              | 1.06                        |  |
| Zinc (mg/kg                           | Site-wide | n/a                                     | n/a                                              | n/a                         |  |
| dw)                                   | Point     | n/a                                     | n/a                                              | 459                         |  |

Notes:

<sup>1/</sup> Recommended background concentration is UPL calculated based on combined NOAA/USEPA dataset. Significant variation observed in dataset. PCBs were not detected in MRC background dataset.

 $^{2/}$  Recommended background concentration is maximum detected concentration reported for MRC studyarea-specific background sediment dataset. Significant variation observed in dataset. The 700 µg/kg value is for BaPEq calculated using positive results only. The 2,000 µg/kg value is for BaPEq calculated using onehalf of the detection limit for non-detected results.

<sup>3/</sup> Recommended background concentration is UTL calculated for MRC study-area-specific background sediment dataset. Reasonable agreement with combined USEPA/NOAA datasets.

| Acronyms:<br>BaPEq – benzo(a)pyrene equivalents<br>dw – dry weight                                        | NOAA – National Oceanic and Atmospheric Administration<br>RAO – remedial action objective |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| mg/kg – milligrams per kilogram<br>MRC – Middle River Complex                                             | TEQ – toxicity equivalents<br>USEPA – U.S. Environmental Protection Agency                |
| µg/kg – micrograms per kilogram<br>n/a – not available/not applicable<br>PCBs – polychlorinated biphenyls | UPL – upper prediction limit<br>UTL – upper tolerance limit                               |

## Section 4 Screening of Remedial Technologies and Process Options

The identification, description, and screening of remedial technologies and process options that may be applicable to the Lockheed Martin Corporation (Lockheed Martin) Middle River Complex (MRC) in Middle River, Maryland is provided in this section. Representative, effective, and implementable process options are identified and selected to carry forward for developing remedial alternatives for MRC sediments.

#### 4.1 REMEDIAL TECHNOLOGIES AND PROCESS OPTIONS SCREENING OVERVIEW

The identification and screening of remedial technologies and process options used in this section follow United States Environmental Protection Agency (USEPA) guidance (USEPA, 1988) and consist of the following three general steps:

- 1. Identify and describe general response actions (GRAs), the broad categories of remedial actions that may be appropriate for the MRC sediment (the medium of concern), as a single action or a combination of actions which may be taken to satisfy the remedial action objectives (RAOs) developed for the site.
- 2. Identify and screen the technologies and process options (e.g., specific processes within each technology type) applicable to each GRA to ensure that only those technologies and process options applicable to the contaminants present, their physical matrix (e.g., sediments), and other site characteristics will be considered and carried forward into the assembly of alternatives. This screening will be based primarily on the effectiveness of the technology in addressing the contaminants at the site but will also take into account the implementability and cost of each technology.

3. Identify preliminary volumes or areas of sediment to which GRAs might be applied, taking into account the requirements for protectiveness as identified in the RAOs and the specific chemical and physical characteristics of the site.

#### 4.1.1 Definitions

The terms *general response action* (GRA), *technology types*, and *process options* are used throughout this section, and the definitions of these terms are provided below. In combination, they provide a structure for identifying and screening the technologies, processes, and administrative tools available for implementing remedial actions.

*General response actions* broadly describe the kinds of media-specific remedial measures that could be applied to manage the human health and ecological risk-drivers. At MRC, they range from no action to complete removal with treatment or disposal, encompassing the possible remedial actions that could be used to achieve the RAOs. Identifying GRAs appropriate to contaminated sediments reduces and focuses the list of technologies to be screened.

*Technology types* are the general technologies that describe a means for achieving a GRA. Examples of technology types include dredging, dry excavation, and physical and chemical treatment. Removal is a GRA that can be achieved using excavation or dredging technologies, whereas treatment is a GRA achieved using physical, biological, or chemical technologies.

*Process options* are specific processes within each technology type. For example, chemical treatment, which is a technology type, includes such process options as solvent extraction and slurry oxidation. Process options are selected based on the characteristics of the medium and the technologies available to address the medium.

#### 4.1.2 Screening Criteria for Candidate Technologies

According to USEPA guidance (USEPA, 1988), the initial screening of potential remedial technologies (and associated process options) identified for each GRA is based on effectiveness, implementability, and cost. Technologies may be applicable to all or only portions of the MRC site due to site-specific factors. Technologies considered should be commercially available, and should

have been proven on a project or projects similar in size and site conditions to the site. The three screening criteria for candidate technologies are defined as follows:

- *Effectiveness* is the degree to which RAOs can be attained for the MRC site using a given technology. This criterion is also used to evaluate the short-term and long-term adverse effects the potential remedial alternative may have on the environment. Evaluation of effectiveness for MRC sediments includes the following: (1) the potential effectiveness of technology/process options in processing the estimated volumes of sediment and in meeting the remediation goals identified in the RAOs; (2) potential impacts to human health and the environment during the construction and implementation phase; and (3) the degree to which the technology/process is proven and reliable, given the risk drivers and conditions of MRC sediments.
- *Implementability* includes constructability of the technology, availability of treatments, associated administrative activities, and availability of materials. It addresses whether the intended remedial alternative can be implemented in a specific area requiring remediation. Factors to be considered in evaluating implementability at the MRC site include the following: site access; site bathymetric conditions; physical obstructions (such as piers); water depths; depths of sediment contamination; and sediment transport and disposal considerations.

Other factors to be considered when evaluating the implementability of a remediation technology include: meeting federal, state, and local regulations; the degree and speed of remediation; size and availability of equipment; local and regional agency project-support; public acceptance; anticipated future land use; and other planned and/or ongoing projects and activities at or near the MRC.

• Order-of-magnitude costs are estimated based on experience with the technology on similar projects and include relative costs for equipment, labor, waste management, and permitting, among other considerations that are required to design and construct the process options being evaluated. Order-of-magnitude costs alone are not used to screen out a potential remediation option but are used in consideration of and in combination with the other screening criteria.

#### 4.1.3 Sustainability Considerations

In addition to the three screening criteria described above, USEPA recognizes that incorporating sustainability principles can help increase the environmental, economic, and social benefits of a cleanup. USEPA has a "green remediation" strategy that applies to all Superfund cleanups to enhance the environmental benefits of federal cleanup programs by promoting sustainable technologies and practices (USEPA, 2012b). Green remediation strategy objectives include the following: (1) protecting human health and the environment by achieving remedial action goals; (2) supporting sustainable human and ecological use and reuse of remediated land; (3) minimizing impacts to water quality and water resources; (4) reducing air toxics emissions and greenhouse gas

production; (5) minimizing material use and waste production; and (6) conserving natural resources and energy.

Green remediation comprises a range of best management practices that may be applied throughout the cleanup process. These practices provide potential waste management improvements; conserve or preserve energy, fuel, water, and other natural resources; reduce greenhouse gas emissions; promote sustainable long-term stewardship; and reduce adverse impacts on local communities during and after remediation activities.

Lockheed Martin has long been driven by the concept of sustainability and continues to seek and implement green and sustainable remediation solutions in remediation projects. The Corporation's sustainability measures include reduction in landfill waste, reduction in water and carbon emissions, infrastructure improvements, green power purchases, building Leadership in Energy and Environmental Design certified facilities, and safety performance awards. Lockheed Martin's long-term sustainability efforts in core business areas incorporate the use of hybrid life-cycle assessment to estimate environmental impacts across supply chain and operations, to fully assess the types and quantities of materials and resources used, to determine how these materials are sourced and the path they follow into the facilities, and to estimate product use and end-of-life considerations. At remediation sites, Lockheed Martin's goal is to protect human health and the environment and to perform environmental remediation in the most effective, efficient and affordable manner possible. Consistent with the Corporation's green and sustainable strategy for remediation projects, Lockheed Martin will explore and implement sustainability measures to reduce the environmental footprint of cleanup activities developed in this FS during remedial design and implementation.

In this section, sustainability criteria were not formally used to screen potentially applicable technologies, but they are considered in the detailed evaluation of each alternative in Section 6 and the comparative evaluations of alternatives in Section 7. Environmental footprint estimates of the remedial alternatives, sustainability measures, and best management practices that could be applied during cleanup activities are briefly discussed in Appendix F.

### 4.2 GENERAL RESPONSE ACTIONS AND TECHNOLOGIES

The GRAs are medium-specific actions that can be used to satisfy RAOs. Remediation of contaminated sediments can be accomplished using a number of different technologies or a

combination of technologies. The GRAs and technology types appropriate for consideration in the remediation of contaminated sediments at the MRC are as follows, and are briefly described in the sections below:

- no action
- monitored natural recovery
- containment

- disposal/reuse
- institutional controls
- enhanced natural recovery
- *in situ* treatment
- removal

• *ex situ* treatment

#### 4.2.1 No Action

No Action is a remedial approach retained by default, as required by the Comprehensive Environmental Resource, Compensation, and Liability Act (CERCLA, or Superfund). No Action can only be the selected remedy if the site poses no regulatorily unacceptable risks to human health or the environment. The MRC risk assessments show regulatorily unacceptable risks to human health and the environment (Tetra Tech, 2011c); therefore, the No Action alternative is retained for comparison but not discussed in detail in this FS.

#### 4.2.2 Institutional Controls

Institutional controls are non-engineered controls such as legal or administrative measures that restrict human use or access of the site, thereby preventing or reducing exposure to contaminants by limiting or controlling activities that could lead to human exposure (USEPA, 2005a). Fish consumption advisories, restrictions on use of the waterway, deed restrictions, and restrictive covenants are examples of institutional controls. Institutional controls are typically used in conjunction with remedial measures such as dredging, containment, natural recovery, *in situ* treatment, etc. The nature and future use of the site and surrounding areas must be considered when developing institutional controls that leave contamination in place.

#### 4.2.3 Monitored Natural Recovery

Monitored natural recovery (MNR) of contaminated sediments relies on naturally occurring physical, chemical, and/or biological processes to isolate, destroy, or otherwise reduce the mobility

or toxicity of contaminants over time. The acceptability of natural recovery as a response action depends upon the time to recover to regulatorily acceptable contaminant levels in comparison to active remedies, and whether those recovery processes are permanent or reversible. Under MNR, risk reduction is achieved in one or more of the following ways:

- the contaminants are converted to a less toxic form through transformation processes, such as biochemical degradation or abiotic transformation which convert the contaminants to less toxic forms.
- loss of contaminants through diffusion into overlying water.
- exposure levels are reduced by a decrease in contaminant concentration levels in the near-surface sediment zone through burial or mixing-in-place with cleaner sediment.
- exposure levels are reduced by a decrease in contaminant concentration levels in the near-surface sediment zone through dispersion of particle-bound contaminants or diffusive or advective transport of contaminants to the water column.

Monitored natural recovery would entail a long-term monitoring program designed to observe and assess sediment chemistry and health of the biological community. Results of such a monitoring program determine the progress of natural recovery toward achieving RAOs.

#### 4.2.4 Enhanced Natural Recovery

Enhanced natural recovery (ENR) for sediment involves the application of thin layers of clean material over areas where natural recovery processes are already occurring at a rate that is insufficient to reduce risks within an acceptable period. By applying thin layers of clean sediments over an area and allowing natural re-sorting or bioturbation to mix the contaminated and clean sediment layers, the natural recovery process is accelerated, resulting in a surface layer with chemical concentrations that are within regulatorily acceptable levels. The performance of ENR can be increased through *in situ* treatment by using *in situ* sorbent amendments. The reactive material (such as activated carbon, or organoclay) is mixed with the thin layer of clean material and reduces migration of dissolved contaminants in sediment porewater by binding them through adsorptive processes. The technology is called reactive ENR when sediment amendments are mixed into the ENR layer. A long-term monitoring program would likely be conducted in conjunction with ENR (USEPA, 2005a) to verify the effectiveness of the technology.

#### 4.2.5 Containment (Capping)

Containment is in-place physical isolation or immobilization of contaminants in sediment through *in situ* capping. This technique involves placing clean capping material over areas of contaminated sediment to reduce the risk of human or biotic contact with contaminated sediment through stabilization and physical and chemical isolation mechanisms (USEPA, 2005a). With effective *in situ* cap placement, the bioavailability and mobility of contaminants in the underlying sediments would be immediately limited because the biota are physically isolated from the contaminated sediments.

Four general types of *in situ* caps are available: (1) conventional sediment caps, (2) composite caps, (3) armored caps, and (4) reactive caps. Conventional caps are constructed of granular material (such as clean sediment, clay, sand, or gravel) and may include a habitat-mix layer for habitat improvement. A more complex cap design (generally referred to as a composite cap) can include geotextiles, liners, and other permeable or impermeable elements in multiple layers. Armored caps include larger material such as gravel, cobbles, or quarry spalls to prevent erosion or loss of an underlying chemical isolation layer. Reactive caps incorporate reactive media such as activated carbon to attenuate the flux of contaminants. Example designs of conventional, composite, armored, and reactive caps are shown in Figure 4-1 (EPRI, 2007). A long-term monitoring program and institutional controls would be required to verify and maintain the integrity and performance of the cap.

#### 4.2.6 Removal

Removal refers to the dredging or excavation of contaminated sediments from a site. Following removal, the dredged material is transferred to a treatment or a disposal facility. Excavation involves removing sediments in the absence of overlying water, whereas dredging is removal of sediment below the water column by mechanical or hydraulic methods. In general, following removal of contaminated sediments, clean fill material is placed in areas to manage residual contamination or to re-establish pre-existing bottom grades. If remaining contamination exceeds approved levels for residuals, the remaining contamination is typically capped in place.

Removal action is usually followed by the ancillary technologies and process options including dewatering of removed sediments, treatment of wastewater associated with dredging, and transportation and disposal of dredged or excavated sediments.

#### 4.2.6.1 Dewatering

Removed sediment usually requires dewatering (either by gravity or mechanical equipment) to produce a material that is more easily handled, able to pass the paint filter test, and of sufficient strength for landfill disposal. Dewatering also minimizes the weight and cost of material to be transported and disposed, and makes transportation of the material easier and more cost-effective. During the dewatering process, sand may be separated from fine material fractions and, if relatively clean, may be considered for beneficial re-use. Dewatering requires management and potential treatment of wastewater before discharge either to a sanitary sewer or to surface water. As with all construction activities, dewatering processes will likely incorporate best management practices to protect air and surface water quality, as deemed appropriate during design. The two types of dewatering processes available, mechanical and passive, are summarized below.

*Mechanical dewatering*—Typical mechanical dewatering processes include centrifugation, hydrocyclones, filter presses, and belt presses. These technologies physically force water from sediment. Centrifugation uses centrifugal force to separate liquids from solids. Water and solids are separated based upon density differences. A cloth filter or the addition of chemicals helps separate fine particles. Mechanical dewatering processes are suitable for areas where larger passive dewatering systems are impractical.

Hydrocyclones are continuously operated devices that use centrifugal force to accelerate the settling rate and separation of sediment particles in water. Slurries enter near the top of cone-shaped hydrocyclones and spin downward toward the point of the cone. The particles settle out through a drain in the bottom of the cone, while the effluent water is withdrawn through a pipe exiting the top of the cone. The production rate and minimum particle size separated depend on the diameter of the hydrocyclone.

Diaphragm filter presses use an inflatable diaphragm to add additional force to the filter cake before dewatered sediments are removed from the filter. Filter presses operate in a series of vertical filters that filter sediments from the dredge slurry as the slurry is pumped past the filters. Once the surface of the filter is covered by sediment and the pressure has been applied, the flow of the slurry is stopped and the caked sediments are removed. Filter presses are available in portable units similar to the centrifuge units.

Belt presses and plate filter presses use porous belts or plates with filters to compress sediments. Slurries are sandwiched between the belts or plates and high-pressure compression is applied, which promotes drainage through the filter medium and separation. Flocculants are often used to help remove water from the sediments. The overall dewatering process usually involves gravity-draining free water, initial low-pressure compression, and finally high-pressure compression. Belt presses can be fixed-base or transportable. They are commonly used in sludge management operations at municipal and industrial wastewater treatment plants.

*Passive dewatering*—Passive dewatering involves settling suspended sediment particles via gravity and passively draining clarified water from the sediment. Many passive dewatering approaches are available. For mechanically dredged sediments, dewatering may involve gravity settling and separation and may be done on a transfer barge in the dredge operations area. The process may include haul barges outfitted with side drains or baffles to allow overflow of the clarified water. More commonly, mechanically dredged sediments are transferred to dewatering pads designed for gravity dewatering and collection of decant water in sumps for further treatment prior to discharge. Hydraulically dredged sediments can be dewatered in bermed ponds or lagoons, or sediment/water slurry may be pumped into geotextile bags (e.g., Geotubes<sup>®</sup>, a type of passive filter) and allowed to gravity drain.

#### 4.2.6.2 Wastewater Treatment

Requirements for and methods used to treat wastewater are driven by the water quality criteria applicable to the discharge-receiving system (e.g., sanitary sewer systems or site surface water). Sanitary sewer systems have additional limitations on quantity, or flow rate, of discharge based on the capacity of the system. Water separated from dredged sediments may be decanted directly back to the receiving water without further treatment. If required, wastewater treatment may consist of gravity sedimentation potentially followed by filtration steps such as sand filtering. Further processing to substantively comply with Clean Water Act and National Pollutant Discharge Elimination System (NPDES) requirements (such as treatment with granular activated carbon [GAC]) will be evaluated based on the anticipated quality of the process water relative to discharge requirements.

#### 4.2.6.3 Transportation

All remedial alternatives incorporating removal actions will also require transportation or conveyance methods for the sediment removed. Removed sediment can generally be transported via barge to a shoreline transfer facility. Sediment is then generally loaded to either trucks or rail cars by derrick cranes or mechanical conveyors for transfer to the final destination, such as a landfill. In cases of on-site disposal, sediment may be directly conveyed from barges or the dredge via pipeline. A new USEPA requirement to notify the affected region whenever contaminated material is being shipped through an "Environmental Justice" community (e.g., racial minorities, residents of economically disadvantaged areas) en route to the final disposal location must also be complied with.

#### 4.2.7 *In situ* Treatment

*In situ* treatment is the in-place use of chemical or biological methods to reduce contaminant bioavailability, concentrations, mobility, or toxicity. With this technology, sediment is not removed from the site during or after treatment. Examples of *in situ* treatment include enhanced biodegradation, oxidation, sediment flushing, and adding sorbent amendments such as activated carbon, organoclay (to bind persistent organic pollutants) and natural minerals such as apatite, zeolites, or bauxite to bind toxic metals to sediments.

Guidance from USEPA encourages tracking and evaluation of treatment technologies, although significant technical limitations currently exist for many technologies applicable to sediments (USEPA, 2005a). In general, the *National Contingency Plan* and USEPA, under CERCLA, prefer treatment of contaminated media over containment or disposal (USEPA, 1988).

#### 4.2.8 *Ex situ* Treatment

*Ex situ* treatment involves post-removal application of treatment technologies to transform, destroy, or immobilize COC in the contaminated dredge material. *Ex situ* treatment is performed to meet chemical and physical requirements for treatment or disposal, and/or to reduce the volume/weight of sediment that requires transport, treatment, or restricted disposal. Examples of *ex situ* treatment include stabilization, separation, solidification, thermal destruction, and vitrification.

*Ex situ* treatment technologies require sediment removal, generally followed by sediment dewatering and treatment of both the dewatered sediment and water. This approach requires

treatment application in a nearby confined facility or lined dewatering pad, where physical, chemical, biological, and/or thermal processes remove contaminants from the sediment.

#### 4.2.9 Disposal/Reuse

Disposal is the permanent placement of material that has been removed from the site into a permitted and/or appropriate structure or facility. Examples of disposal alternatives include inor near-water facilities such as confined aquatic-disposal facilities or confined disposal facilities, and upland and off-site landfills. Any off-site disposal facility must be permitted and in compliance with the CERCLA off-site policy (i.e., the facility must also comply with all substantive permit requirements). Beneficial reuse is an alternative to disposal for some dredge material if, after treatment, some or all of the separated material(s) can be used for other purposes, such as industrial fill or daily landfill cover.

#### 4.3 TECHNOLOGY SCREENING

The GRAs, technology types, and process options considered for MRC site sediments are listed in Table 4-1. These technologies were qualitatively evaluated and screened based on their effectiveness, implementability, and order-of-magnitude costs (the criteria previously described in Section 4.1.2). This screening evaluation process is intended to streamline the development of remedial alternatives for more detailed evaluation in the FS. Consistent with CERCLA guidance (USEPA, 1988), representative process options are selected to represent each technology type, to evaluate the remedial alternatives further and develop cost estimates. Selecting a representative process option does not preclude reexamining other similar process options later in the design phase of the project. Evaluation and screening of remedial technologies and process options is provided in this section, and summarized in Table 4-2.

#### 4.3.1 Evaluation and Screening of Institutional Controls

Institutional controls are typically administrative actions that limit site or resource use. They are most often used in conjunction with remedial technologies that isolate or leave contaminated sediments in place, or in circumstances where concentrations of contaminants in fish or shellfish are expected to pose risks to human health for some time. Institutional controls include educational tools, seafood consumption advisories, easements, covenants, deed restrictions, enforcement and permit tools, and shoreline access, property use, and water use restrictions.

*Effectiveness*—The effectiveness of institutional controls (ICs) depends on the cooperation of site owners, site users, and the public. The effectiveness of ICs also depends upon how they are enforced by the relevant agency or governmental entity. When implemented in conjunction with more active technologies, institutional controls can help effectively manage exposure risks to protect human health.

USEPA (2005b) guidance recommends using institutional controls in "layers" or in "series" to enhance protectiveness by simultaneously using more than one control with the same goal (e.g., a consent decree and a deed notice). Choosing the best combination of institutional controls that will protect human health and the environment is therefore quite important. Institutional controls have proven effective and reliable in meeting human health RAOs when designed, implemented, monitored, and enforced effectively with the cooperation of site users, owners, and the public.

*Implementability*—Community information/education, fish and/or shellfish consumption advisories and related signs, and boating operations/anchorage restrictions are all technically implementable at the MRC. Administration of these controls would require the cooperation of the implementing agencies, as well as public acceptance and commitment from the public, site users, and site owners. Implementation of ICs at the MRC consists of developing an institutional controls plan that will prevent disturbance of contaminated sediments that remain in place and prevent unauthorized use of Cow Pen Creek and Dark Head Cove. If waterway use restrictions such as a no-anchor zone designation are to be applied, such an institutional control will be implemented through federal rule-making by the United States Coast Guard and the United States Army Corp of Engineers (USACE) in consultation with Maryland Department of Natural Resources (DNR). ICs would also include a requirement for regular site inspections to verify and enforce the continued application of these controls.

*Cost*—The cost of implementing ICs compared to other GRAs is low. The cost is related to legal and administrative implementation costs. Costs associated with monitoring the institutional controls and enforcement activities may be incurred.

*Screening result*—Institutional controls are considered appropriate as a component of a combined remedial alternative applicable to the MRC, but are not considered as the sole component of a remedy. Institutional controls are retained for consideration in the FS.

#### 4.3.2 Evaluation and Screening of Monitored Natural Recovery

Monitored natural recovery of contaminated sediments relies on naturally occurring physical, chemical, and/or biological processes such as burial, biodegradation, and dilution to reduce the mobility or toxicity of contaminants over time.

*Effectiveness*—The COC in site sediments generally resist biodegradation and dissolution. The primary mechanism of natural recovery at the MRC are burial and dilution via sediment deposition. Sedimentation-rate analyses for sediments in Dark Head Cove, Cow Pen Creek, and the confluence of the two water bodies indicate that the highest sedimentation rates are expected at the confluence of Dark Head Cove and Cow Pen Creek downstream of the site (1.1 to 1.7 centimeters per year [cm/year]). The sedimentation rate in Dark Head Cove is 0.8 to 0.99 cm/year, and at the mouth of Cow Pen Creek it is 0.3 to 0.51 cm/year (Tetra Tech, 2011a). Low sedimentation rates and the magnitude of COC concentrations in Cow Pen Creek suggest that MNR alone has a relatively low effectiveness in achieving RAOs in a reasonable timeframe (i.e, estimated time to reach RAOs is 96 years). Sedimentation rates in Dark Head Cove and at the confluence suggest that MNR will have moderate to high effectiveness in achieving RAOs. Monitored natural recovery is considered effective as a component of a combined remedial alternative.

*Implementability*—MNR is technically implementable for site conditions. Long-term monitoring of site conditions presents no significant implementation challenges.

*Cost*—Monitored natural recovery is generally a lower cost option as compared to active remediation, which involves containment, removal, or treatment of sediment. Long-term monitoring costs vary widely depending upon the regulatory expectations, media of concern, and residual risks.

*Screening result*— Monitored natural recovery technology is considered appropriate as a component of a combined remedial alternative applicable to the MRC, but it is not considered as the sole component of a remedy. It is retained for consideration in the FS.

#### 4.3.3 Evaluation and Screening of Enhanced Natural Recovery

Enhanced natural recovery accelerates MNR by adding a thin layer of clean material (typically 15 to 23 centimeters (cm) [six to nine inches]) over areas with relatively low contaminant concentrations to enhance or encourage natural recovery processes already demonstrated to be occurring at a site.

Enhanced natural recovery differs from capping in that it is not designed to provide long-term isolation. Rather it accelerates natural depositional processes, immediately reduces concentrations of contaminants available for exposure, facilitates re-establishment of benthic organisms, and minimizes short-term disruption of the benthic community (as compared to other active remediation technologies) while ongoing recovery processes that reduce the bioavailability or toxicity of contaminants in sediments (Merritt et al., 2009).

*Effectiveness*— Enhanced natural recovery alone may have low to moderate effectiveness in achieving RAOs in all areas of the MRC. However, in areas where hazards posed by contaminated sediment are relatively low (e.g., COC concentrations equal to or less than two times the PRGs), ENR is expected to be moderately to highly effective in immediately achieving RAOs by reducing COC concentrations in the surface layer in the long term primarily due to the dilution effect. Enhanced natural recovery effectiveness can be increased by adding reactive media such as activated carbon in a thin layer of clean material to promote chemical immobilization of contaminants and reduce their bioavailability.

*Implementability*— Enhanced natural recovery is technically implementable for site conditions. It will require substantive compliance with Sections 404 and 401 of the Clean Water Act and Endangered Species Act. In-water work will need to be conducted during a seasonal window (i.e., time of year restriction) to minimize potential impacts to important fish, wildlife, and habitat resources in the area. The timing of the in-water work restrictions will be determined by the State of Maryland during the process of reviewing the project application for a water quality certification. Dark Head Cove is a federally authorized navigation channel where the project depth is -10 feet mean lower low-water (MLLW). Placement of ENR materials will reduce existing water depths. Administrative implementability of ENR is considered low because of the federal navigation channel status of the site, and associated difficulties in obtaining USACE concurrence. Resources needed for ENR are readily available from multiple vendors, and procurable through competitive bidding. Numerous marine contractors, suitable construction equipment, and sufficient skilled labor are available in the region to implement a monitoring program or execute placement of a thin layer of material over contaminated sediment at the MRC.

*Cost*—The major cost activity of enhanced natural recovery is placement of a thin layer of clean granular material. Enhanced natural recovery costs generally range from low to moderate, and

therefore fall between the low cost generally associated with MNR and the higher costs associated with containment and/or removal. Use of reactive media increases raw materials costs. Enhanced natural recovery monitoring costs may be significant depending on the term and magnitude of the monitoring program. Long-term monitoring costs vary widely depending upon regulatory expectations, media of concern, and residual risks.

*Screening result*—Enhanced natural recovery technology is considered applicable to the MRC as a component of a combined remedial alternative, but not as the sole component of a remedy, and is therefore retained for consideration in the FS.

#### 4.3.4 Evaluation and Screening of Containment Technologies

Containment in the context of impacted MRC sediments, involves in situ capping.

*Effectiveness*—Conventional and composite capping technologies are effective in achieving the RAOs for all site COC. Capping isolates contaminants from the overlying water column, prevents direct contact with aquatic biota, and provides new clean substrate for re-colonization by benthic organisms. Capping is considered very effective in areas where groundwater flux is low, and for low-solubility and highly sorbed contaminants such as polychlorinated biphenyls (PCBs), for which the principal transport mechanism is sediment resuspension and deposition. Caps must be designed to withstand the bottom shear stresses that develop during normal and extreme (storm) conditions to prevent the release and resuspension of contaminated sediment.

The use of geotextiles (composite cap) may be an effective substitute for sand or clean sediment, but would likely require some form of armoring to remain in place. The sorbent/sequestering capacity of a cap can be improved by increasing the organic carbon content of the capping material. A reactive cap containing a single reactive media-type may be effective at achieving RAOs for a particular COC, but may not be effective for a suite of multiple COC with varying characteristics.

*Implementability*—Physical site conditions influence the selection and implementability of sediment caps. For instance, sediment caps may result in bed elevation changes that result in unacceptable impacts to navigation, floodplain, or ecological habitat. Conventional sediment caps require underlying sediments with sufficient bearing strength to support the cap. Additionally, sediment caps may not be stable in areas with steep bed slope or highly erosive hydrodynamic conditions.

All capping technologies and process options are technically implementable at the MRC. With respect to administrative implementability, the primary institutional or administrative issue of capping relates to federal navigation channel status, riparian land ownership and requirements for long-term site use, and cap monitoring. Institutional controls will be required with any capping alternative, including restrictive covenants, deed or use restrictions, and potential waterway use restrictions for activities able to disturb a cap, as well as commitment to a long-term operation, maintenance and monitoring plan.

Capping will require compliance with Sections 404 and 401 of the Clean Water Act and the Endangered Species Act. In-water capping will need to be conducted during a seasonal window to minimize potential impacts to important fish, wildlife, and habitat resources in the area. The timing of the in-water work restrictions will be determined by the State of Maryland during the process of reviewing the project application for a water quality certification. Numerous marine contractors, suitable construction equipment, and sufficient skilled labor are available in the region to execute a contaminated-sediment capping project. Resources for capping are available from multiple vendors and procurable through competitive bidding. Conventional sediment caps have an established history of successful implementation nationwide.

*Cost*—Capping costs are moderate compared to other remedial technologies and process options such as dredging, dewatering, treatment, and disposal. Costs are influenced by the required thickness of the cap and complexity of design (e.g., multiple layers or materials), any reactive media to be used (e.g., activated carbon), and long-term monitoring and implementation of institutional controls. The costs of composite and reactive caps are moderate to high compared to the conventional cap.

*Screening summary*—All capping technologies are retained for consideration as a component of a combined remedial alternative in the FS.

#### 4.3.5 Evaluation and Screening of Removal Technologies

Dredging is the most common way to remove contaminated sediment from a body of water. Excavation removes sediments in the absence of overlying water, whereas dredging removes sediment through the water column. For dredging projects, several site-specific characteristics must be considered, including the depth of the water column, volume of material to be removed, width and depth of the dredge cut, sediment characteristics, the possibility of disturbing a protected or beneficial habitat, and the presence of debris. Three types of dredging were considered: mechanical dredging, hydraulic dredging, and specialty dredging.

*Effectiveness*—Environmental dredging attempts toremove sediment that is contaminated above certain action levels, while minimizing the spread of contaminants to the surrounding environment through dredging. Removal technologies using mechanical and hydraulic dredging and excavation technologies are all effective in achieving the RAOs. Removal effectiveness depends on the site-specific characteristics and resolution of major issues relevant to environmental dredging projects, known as the "4Rs" (Bridges et al., 2008). These include: (1) sediment *resuspension* from dredging operations; (2) *release* of contaminants from bedded and suspended sediment in connection with dredging; (3) *residual* contaminated sediment produced by and/or remaining after dredging; and (4) environmental *risks* that are the target of and associated with dredging practices to address these issues. Release of contaminants from suspended sediments during dredging is monitored in pilot dredging studies and full-scale dredging projects. Monitoring data from pilot dredging projects performed in Fox River and Grasse River and other early studies showed that two to three percent of dredged PCBs were transported downstream from the project area (Bridges et al., 2008).

Recently, the effectiveness of dredging at Superfund megasites in United States, where remedial cost is expected to exceed 50 million dollars, has been assessed by National Research Council (NRC, 2007). The committee found that dredging alone achieved the desired contaminant-specific cleanup levels at only a few of the 26 reviewed megasite dredging projects. Placement of a layer of clean material over sediments with elevated contaminant concentrations (i.e., undisturbed residuals) after dredging was often necessary to achieve cleanup levels.

Hydraulic and specialty dredging equipment entrains a larger volume of water into dredged sediments (which must be subsequently managed) than does a mechanical dredge. A wide range of percent-solids for hydraulic dredges is reported, but 5 to 10 percent solids can be expected for most environmental dredging projects, whereas mechanical dredging removes the sediment at nearly the same solids content as the *in situ* sediments (USEPA, 2005a). Hydraulically dredged sediments are typically pumped in slurry form to a dewatering area and dewatered in settling basins,

sediment processing facilities, or in geotextile dewatering tubes. Hydraulic and specialty dredging is generally more effective than mechanical dredging in less dense sediments (i.e., those with a greater water content). The nature and extent of debris in the sediment may also greatly limit the effectiveness of hydraulic dredging; therefore, typically debris is removed prior to hydraulic dredging.

Mechanical dredge equipment is particularly effective in removing stiff or dense sediments. It is most suitable for removing gravel, dense sand, and very cohesive sediments such as clay, glacial till, peat, and highly consolidated silts. Mechanical dredging minimizes the volume of sediments and additional water to be managed. Excavation technologies are effective for shoreline areas and shallower intertidal areas that are partially exposed during low tides; however, overall applicability is restricted due to the limited area for which this technology may be appropriate or effective. Excavation equipment may be additionally effective at removing debris in certain areas. Cutterhead, plain suction, horizontal auger, and pneumatic specialty dredge heads are subject to clogging by debris and are incapable of removing larger pieces of loose rock and debris.

*Implementability*—All of the dredging technologies described above are technically implementable at the MRC. The factors affecting effectiveness also influence implementability. Removal technologies and the availability of equipment and skilled operators are important factors. Hydraulic dredging requires an initial debris sweep and upland facilities to process the sediment and water slurry generated.

With respect to administrative feasibility, dredging will require compliance with Sections 404 and 401 of the Clean Water Act and the Endangered Species Act. In-water dredging will need to be conducted during a seasonal window of time to minimize potential impacts to important fish, wildlife, and habitat resources in the area. The timing of the in-water work restrictions will be determined by the State of Maryland during the process of reviewing the project application for a water quality certification. Any off-site disposal of dredged material must be at a landfill that meets USEPA criteria. All generator requirements related to off-site transport and disposal of the dredged material must be met. Resources for these removal technologies are available from multiple vendors and procurable through competitive bidding. Numerous marine contractors, suitable construction equipment, and sufficient skilled labor are available in the region to execute a contaminated-sediment removal project.

*Cost*—The cost of a removal action is higher than other GRAs, due to costs for confirmation sampling and the ancillary technologies associated with removal, such as sediment transport, dewatering, and disposal, water treatment, and residuals management. Critical cost factors for mechanical dredging include operator skill, water depths, requirements to minimize sediment loss or re-suspension (among other factors), all of which influence dredge cycle-time (i.e., the time required to capture and release one bucket load of sediment). Excavation approaches incorporate moderate costs when conducted at shoreline areas or during low tide. Excavation approaches used in conjunction with dewatering of the area to be excavated in the dry (by using measures such as sheet piling or cofferdams) may impose higher costs. Hydraulic dredging costs are influenced by the space and resources required to handle and process dredged sediments, as well as costs to treat the water used to slurry the sediment during dredging. A cost-comparison analysis of cofferdam installation, followed by excavation versus treatment of water released from hydraulically-dredged sediment during dewatering, can be performed in the design phase to evaluate the feasibility of these technologies for the specific application at MRC.

Screening summary—All removal technologies are retained in the FS for further consideration.

#### 4.3.6 Evaluation and Screening of Ancillary Technologies

The ancillary technologies and process options (i.e., dewatering, wastewater treatment, transportation) are associated with removal technology. Screening of ancillary technology types and process options is summarized in Table 4-2.

*Evaluation*—The anticipated effectiveness of ancillary technologies associated with removal of MRC sediments is considered moderate to high. All ancillary technologies are applicable to MRC sediments and technically implementable for conditions within the MRC. Selection of specific ancillary technology will be refined during design.

*Screening summary*—All ancillary technology types and process options are retained for further consideration in the FS.

#### 4.3.7 Evaluation and Screening of *In Situ* Treatment Technologies

Treatment technologies for sediments reduce or eliminate toxicity, mobility, or volume of a chemical of concern by implementing a process that alters, bonds with, isolates, or completely destroys the chemical.

*Evaluation*—The anticipated effectiveness of *in situ* treatment technologies for MRC sediments is considered moderate to high. Although no *in situ* treatment technologies (e.g., biological, physical, and chemical) have been implemented full-scale at a contaminated site. Laboratory research and pilot-scale applications of *in situ* remediation with sorbent amendments (e.g., activated carbon) show a reduction in the bioavailability of various pollutants such as PCBs, polycyclic aromatic hydrocarbons (PAHs), and metals (Ghosh et al., 2011). Ongoing monitoring of pilot-scale *in situ* amendment projects shows the effectiveness of sorbents in reducing contaminant bioavailability, with no significant adverse effects to the benthic community (Menzie and Ghosh, 2011).

Critical barriers to adopting *in situ* remediation approaches are the availability of efficient methods for delivering amendments to contaminated sediments and understanding the physical, chemical, and biological processes in the field that control the effectiveness of this technology. Other challenges requiring resolution are potential negative impacts on the water column by sediment disturbance during application of the reactive materials or amendments; controlling the treatment process to provide uniform results throughout the sediment; effectiveness of the process under saturated, anaerobic conditions at ambient temperatures; and the development of methods to treat deeper sediment deposits.

*Screening summary*—Adding reactive material as an *in situ* treatment technology is retained for further consideration in the FS.

#### 4.3.8 Evaluation and Screening of *Ex Situ* Treatment Technologies

For most sediment removed from Superfund sites (MRC is not a Superfund site) in the United States, *ex situ* treatment is not conducted before disposal, generally because sediment sites often have widespread low-level contamination (USEPA, 2005a). However, pretreatment, such as particle-size separation for hazardous/nonhazardous waste disposal, is common. The COC concentrations at the MRC, as with most sediment sites, are classified as low-level-threat waste.

*Evaluation*—*Ex situ* treatment options with potential applicability to the MRC include conventional soil washing/particle separation, sediment washing, solidification, and thermal treatment (incineration, low or high temperature thermal desorption). The primary objective of sediment treatment is to decontaminate the sediment such that it could meet standards for beneficial re-use, which would avoid landfill disposal costs.

To date, *ex situ* treatment of sediments, although a subject of considerable interest nationwide, has mostly been limited to soil washing in full-scale sediment remediation projects. The process of soil washing includes sorting dredged sediments for oversized objects, applying high-pressure water in a preprocessor, and placing in a tank where air is used to turn organic materials into foam, with the subsequent removal of foam. An oxidant is introduced to the remaining sediments to clean contaminants, and the water is separated by centrifuging. The water is put back into the system or disposed of offsite while the sediment is turned into a reusable product. A recent pilot test of soil washing was conducted for the Passaic River sediments. The study was deemed ineffective by the USEPA, and the results of the study did not justify application of the technology at full scale for the Passaic River sediments.

A key limitation of soil washing and other *ex situ* treatment technologies is the fines content, because contamination is predominately adsorbed to fine sediment particles (silts and clays). Geotechnical data from sediment samples obtained from Cow Pen Creek and Dark Head Cove, indicate that the MRC surface and subsurface sediments are predominantly fine-grained (passing a #200 sieve) and are approximately 83% silts and clay (Tetra Tech, 2012a). Given that these sediments would likely still contain residual contamination in fines following treatment, the potential for reuse acceptance is considered low. Consequently, sediments would likely require disposal at an off-site facility even after treatment.

Solidification is another proven *ex situ* treatment technology that reduces the moisture content of dredged sediments and reduces the leachability of some metals. This process consists of adding cement, kiln dust, or other absorbent, and a solidification agent. As with soil washing, this process does not treat all COC in site sediment, and the sediment would still require landfill disposal. Furthermore, solidification would have to be limited to ensure that the pH of the treated waste isn't elevated to the point of creating a hazardous waste. Materials such as straw and sawdust have

sometimes been used to absorb water in sediment to avoid a pH adjustment that could increase the leaching of metals.

Technologies that destroy or detoxify contaminants have been accepted at very few cleanup projects involving contaminated sediment sites for two main reasons: (1) balancing treatment costs with a beneficial reuse market for the material is difficult, and (2) in general, upland and in-water disposal alternatives are much less expensive. The MRC remediation project is not expected to produce a large volume of sediment over a sufficiently long period to meet the economic and implementability criteria requirements; therefore, incorporating an *ex situ* treatment technique into a remedial alternative is not justified for the site.

The anticipated effectiveness of *ex situ* treatment technologies, such as thermal or biological treatment for sediments at the MRC, is low because none of these technologies alone would treat both organic and inorganic sediment contaminants. A combination of technologies would be needed for them to be effective. For example, thermal and biological treatment could be considered for organic contaminants, but metals cannot be treated with these technologies. Metals can be treated with soil washing, extraction technologies, or by solidification. In general, these treatment technologies are expected to provide limited incremental benefit regarding toxicity reduction, destruction, and immobilization, relative to the benefit obtained by removing the contaminated sediment from the ecosystem and disposing of this sediment at an off-site landfill.

*Screening summary*—*Ex situ* treatment technologies such as sediment washing, thermal treatment, separation, and solidification are not carried forward for detailed analysis in the FS based on the evaluation presented above. However, *ex situ* treatment technologies may still need to be further evaluated during design because regulatory requirements may mandate treatment before disposal of removed MRC sediments. Therefore, these technologies are retained for design.

#### 4.3.9 Evaluation and Screening of Disposal/Reuse Technologies

Disposal actions are typically combined with removal actions. Dredged material may be disposed of on-site or at an off-site waste disposal facility. In both cases, final placement of the material must be in a manner that will prevent the contaminated dredge material from returning to the environment. On-site disposal can be done on land, in a near-shore confined disposal facility (CDF), or in a

confined aquatic disposal (CAD) facility. Off-site disposal can be either at an aquatic disposal site or at an approved upland waste disposal facility.

*Effectiveness*—Off-site disposal at permitted landfills is considered effective. On-site disposal is potentially effective but has other limitations. The effectiveness of a disposal technology depends upon the residual concentrations of COC in the dredged or treated sediments. Subtitle D landfills are suitable for all contaminants not designated by the state as dangerous waste, as Resource Conservation and Recovery Act (RCRA) hazardous waste, or as Toxic Substances Control Act (TSCA) remediation waste. Sediments or sediment intervals identified as containing PCBs at concentrations greater than 50 parts per million are considered hazardous wastes under TSCA, and are required to be either disposed of in an approved TSCA landfill or destroyed. However, if USEPA approves a risk-based option (40 Code of Federal Regulations [CFR] 761.61[c]) for PCB remediation waste, solid waste landfills or RCRA Subtitle C hazardous waste landfills may also be used, if consistent with the disposal facility permit and state regulations.

Beneficial reuse is defined as the reuse of dredged material or some portion of it as a resource instead of disposing of it as a solid waste. It provides for the use of the dredged material in a productive manner, such as to create or restore habitat, or for landscaping, soil/material enhancement, construction fill, land reclamation, etc. Dredged material may thus have some economic, social, or environmental value if applied for beneficial reuse. Segregating sand from contaminated sediment could potentially reduce the volume of dredged material requiring disposal.

Geotechnical data obtained from sediment samples collected from Cow Pen Creek and Dark Head Cove indicates the range of sand content in sediment is estimated at zero to 20%, and greater sand fractions are mostly found at depths of five feet and below. Removal at these depths is not likely to be required based on the vertical extent of site COC. Therefore, the volume of sand, if separated from the MRC sediments, is unlikely to provide any savings relative to the total disposal cost. Sand can be segregated from sediment using soil-washing and hydrocyclone separators.

In general, beneficial reuse has limited effectiveness due to limitations of the associated treatment technologies. Treatment and permitting issues aside, beneficial reuse presents an opportunity to reduce the quantity of imported backfill for use as cap material if the reused material is acceptable for use on-site. Treated materials must meet dredged material management plan (DMMP) guidelines

for beneficial use at in-water locations other than at the MRC (e.g., as capping material or habitat enhancements).

The DMMP guidelines determine the suitability of treated material for beneficial reuse. Several factors, including the physical and chemical characteristics of the material, regulatory criteria and approvals, and environmental concerns, must be considered in the DMMP. In all cases, federal, state, and local laws incorporate provisions such that any beneficial use of treated dredged sediments must not result in a regulatorily unacceptable risk to human health or the environment, and must not be used in a manner that degrades application-site conditions in soil, surface water, groundwater, and air. Beneficial reuse of dredged material will be further evaluated during the remedial design phase.

*Implementability*—Off-site disposal of dredged sediments at permitted landfills is routinely implemented. On-site disposal is more difficult to implement given the time required to fully investigate, design, site, and permit a containment facility. Beneficial reuse of dredged material is more difficult to implement given treatment limitations and permitting requirements.

*Costs*—The cost assessment of the disposal options is based on the relative cost of a disposal process-option as compared to others. Off-site disposal at permitted landfills may have moderate to high associated costs, depending on waste characterization. Developing an on-site disposal option will require significant expenditures to evaluate, design, acquire land, and construct, after which additional costs are incurred to operate and monitor the facility. Costs associated with beneficial reuse of dredged material may be moderate to high depending on the treatment technique, reuse requirements, and the effectiveness/usability of dredged materials for the intended purpose.

*Screening summary*—Off-site upland disposal technologies (i.e., permitted landfills) are retained for evaluation as part of remedial alternatives in the FS. Other off-site disposal options and beneficial reuse options are retained for consideration during design, but are not carried forward for detailed analysis in the FS (Table 4-2).

#### 4.4 SUMMARY OF RETAINED TECHNOLOGIES

This section discusses how potentially applicable remedial technologies and process options were identified and screened for use in developing and evaluating site-wide remedial alternatives for the

MRC FS. This screening was based on site-specific conditions and the major risk drivers for MRC sediments. Each technology was evaluated for its effectiveness, implementability, and relative cost.

Figure 4-2 and Table 4-2 list the remedial technologies retained for further consideration, based on the results presented above. Of the retained technologies, *ex situ* treatment techniques, open water disposal, and beneficial reuse will be further evaluated during design, but not carried forward for detailed analysis in this FS. These technologies are retained for potential incorporation into alternatives during design, should further development of the current alternatives demonstrate a need to expand or replace the currently assembled suite of technologies.

#### Table 4-1

#### Identification of Candidate General Response Actions, Remedial Technologies, and Process Options

#### Middle River Complex, Middle River, Maryland

Page 1 of 6

| GRA                       | Technology Type               | Process Option                                              | Brief Description                                                                                                                                                                                                                                                                                                                                             |
|---------------------------|-------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No Action                 | None                          | Not Applicable                                              | No active remedy.                                                                                                                                                                                                                                                                                                                                             |
| Institutional<br>Controls | Physical,<br>Engineering, or  | Consumption<br>Advisories                                   | Advisories to indicate that consumption of fish and shellfish in the area may present a health risk.                                                                                                                                                                                                                                                          |
|                           | Legislative<br>Restrictions   | Access Restrictions                                         | Constraints, such as fencing and signs, placed on property access.                                                                                                                                                                                                                                                                                            |
|                           | Restrictions                  | Proprietary Controls                                        | Easements, covenants, deed restrictions.                                                                                                                                                                                                                                                                                                                      |
|                           |                               | Waterway Use<br>Restrictions                                | Regulatory constraints on uses such as vessel wakes, anchoring, and dredging.                                                                                                                                                                                                                                                                                 |
| Natural Recovery          | Monitored Natural<br>Recovery | Biodegradation                                              | Degradation of site organic contaminants by chemical or biological processes. Low molecular weight hydrocarbons may be partially or completely degraded. High molecular weight hydrocarbons, including polychlorinated biphenyls (PCB)s can be degraded, but it usually requires long time periods. Metals may become chemically bound, but are not degraded. |
|                           |                               | Sedimentation                                               | Contaminated sediments are buried (by naturally occurring sediment deposition) to deeper intervals that are less biologically available.                                                                                                                                                                                                                      |
|                           |                               | Recovery Modeling                                           | Recovery modeling through desorption, dispersion, diffusion, dilution, volatilization, resuspension, and transport.                                                                                                                                                                                                                                           |
|                           |                               | Long-term Monitoring                                        | Long-term site monitoring designed to ensure that contaminants are being sequestered, degraded, or controlled at expected rates and permanence to adequately protect human health and the environment.                                                                                                                                                        |
|                           | Enhanced Natural<br>Recovery  | Thin-layer placement<br>to augment natural<br>sedimentation | Application of a thin layer of clean sediments and natural resorting, sedimentation, or bioturbation to mix the contaminated and clean sediments, resulting in acceptable chemical concentrations.                                                                                                                                                            |

#### Page 2 of 6

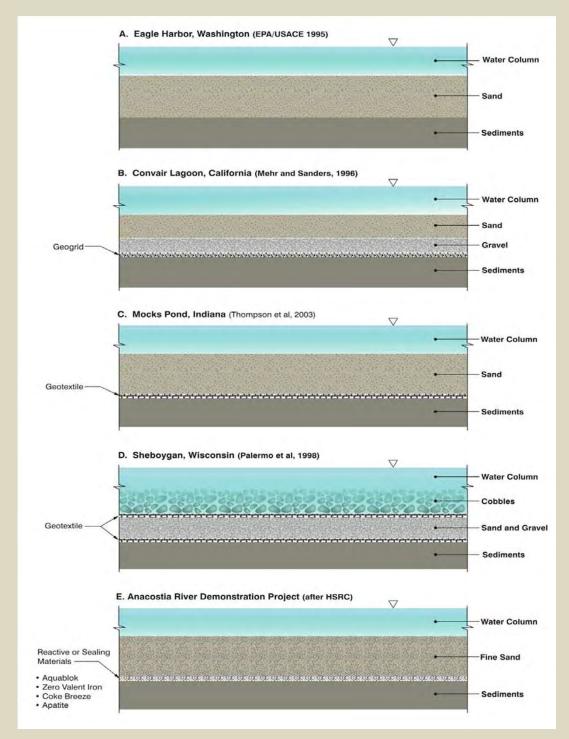
| GRA         | Technology Type           | Process Option        | Brief Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------|---------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Containment | Capping                   | Conventional Sediment | Use of commercially obtained clean sandy materials or dredged fine-grained sediments to achieve contaminant isolation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |                           | Armored Cap           | Cobbles, pebbles, or larger material are incorporated into the cap to prevent erosion in high-energy environments or to prevent cap breaching by bioturbation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |                           | Composite Cap         | Soil, media, and geotextile cap placed over contaminated material to inhibit migration of contaminated porewater and/or inhibit bioturbation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                           | Reactive Cap          | Incorporation of materials such as granular activated carbon or iron filings to provide chemical binding of contaminants migrating in porewater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Removal     | Dredging                  | Hydraulic Dredging    | Hydraulic dredges cut and slurry sediments with water so that the material can be transported through a pipeline to a selected land-based dewatering facility.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |                           | Mechanical Dredging   | A barge-mounted floating crane maneuvers a dredging bucket. The bucket is lowered into the sediment; when the bucket is withdrawn, the jaws of the bucket are closed, retaining the dredged material.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             |                           | Specialty Dredging    | These specialty dredges may combine aspects of both hydraulic and mechanical dredges such as the Bonacavor hydraulic excavator, Amphibex, Dry Dredge (DRE Technologies), and IHC Holland Crawl Cat Cutter Suction Dredge.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | Excavation                | Excavator             | This removal option includes erecting sheet pile walls or a cofferdam around the contaminated sediments to dewater. Removal then involves conventional excavation (backhoe) equipment. Removal during low tides may not require sheet pile walls or cofferdams.                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | Ancillary<br>Technologies | Dewatering            | Passive dewatering on-barge: mechanically dredged sediments are placed within a barge, which either allows excess water to flow into the water, or to accumulate in an on-board sump where it is removed and treated. Passive dewatering at lagoons/ponds: dredged sediments are placed within constructed lagoons where sediments are allowed to gravity settle. Passive dewatering in geotubes: hydraulically dredged sediments are pumped into geotubes, polymer is added to enhance gravity consolidation and dewatering. Mechanical dewatering includes dewatering by centrifugation, belt press, hydrocyclone, diaphragm or plate-and-frame filter press. |
|             |                           | Wastewater Treatment  | Dredged water treatment by sedimentation, filtration, coagulation aid, flocculation and settling, adsorption carbon filter, and oxidation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |                           | Transportation        | Transportation of dredged sediments by truck, rail, barge, or pipeline.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### Page 3 of 6

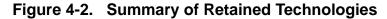
| GRA               | Technology Type                  | Process Option                          | Brief Description                                                                                                                                                                                                                                                                                              |
|-------------------|----------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In Situ Treatment | Biological                       | <i>In Situ</i> Slurry<br>Biodegradation | Anaerobic, aerobic, or sequential anaerobic/aerobic degradation of organic compounds with indigenous or exogenous microorganisms. Oxygen, nutrients, and pH are controlled to enhance degradation. Requires sheet piling around entire area and slurry treatment performed using aerators and possibly mixers. |
|                   |                                  | <i>In Situ</i> Aerobic Biodegradation   | Aerobic degradation of sediment <i>in situ</i> with the injection of aerobic biphenyl enrichments or other co-metabolites. Oxygen, nutrients, and pH are controlled to enhance degradation.                                                                                                                    |
|                   |                                  | <i>In-situ</i> Anaerobic Biodegradation | Anaerobic degradation <i>in situ</i> with the injection of a methanogenic culture, anaerobic mineral medium, and routine supplements of glucose to maintain methanogenic activity. Nutrients and pH are controlled to enhance degradation.                                                                     |
|                   | Chemical                         | <i>In Situ</i> Slurry<br>Oxidation      | Oxidation of organics using oxidizing agents such as ozone, peroxide, or Fenton's reagent.                                                                                                                                                                                                                     |
|                   |                                  | Dechlorination                          | The process mixes contaminated sediment with an alkali metal-hydroxide based polyethylene glycol reagent.                                                                                                                                                                                                      |
|                   | Physical-Extractive<br>Processes | In Situ Oxidation                       | An array of injection wells is used to introduce oxidizing agents such as ozone to degrade organics.                                                                                                                                                                                                           |
|                   |                                  | Sediment Flushing                       | Water or other aqueous solution is circulated through contaminated sediment. An injection or infiltration process introduces the solution to the contaminated area and the solution is later extracted along with dissolved contaminants. Extraction fluid must be treated and is often recycled.              |
|                   | Physical-<br>Immobilization      | Reactive Material<br>Addition           | Reactive material such as granulated activated carbon (GAC) or organoclay is worked into surface sediments. Organics and some metals become preferentially bound to the GAC and are thus are no longer biologically available.                                                                                 |
|                   |                                  | Electro-chemical<br>Oxidation           | Proprietary technology in which an array of single steel piles is installed and low current is applied to stimulate oxidation of organics.                                                                                                                                                                     |
|                   |                                  | Vitrification                           | Uses an electric current <i>in situ</i> to melt sediment or other earthen materials at extremely high temperatures (2,900-3,650°F). Inorganic compounds are incorporated into the vitrified glass and crystalline mass and organic pollutants are destroyed by pyrolysis.                                      |
|                   |                                  | Aqua MecTool™<br>Stabilization          | A caisson (18 by 18 feet) is driven into the sediment and a rotary blade is used to mix sediment and add stabilizing agents. A bladder is placed in the caisson to reduce total suspended solids (TSS) and the vapors may be collected at the surface and treated.                                             |

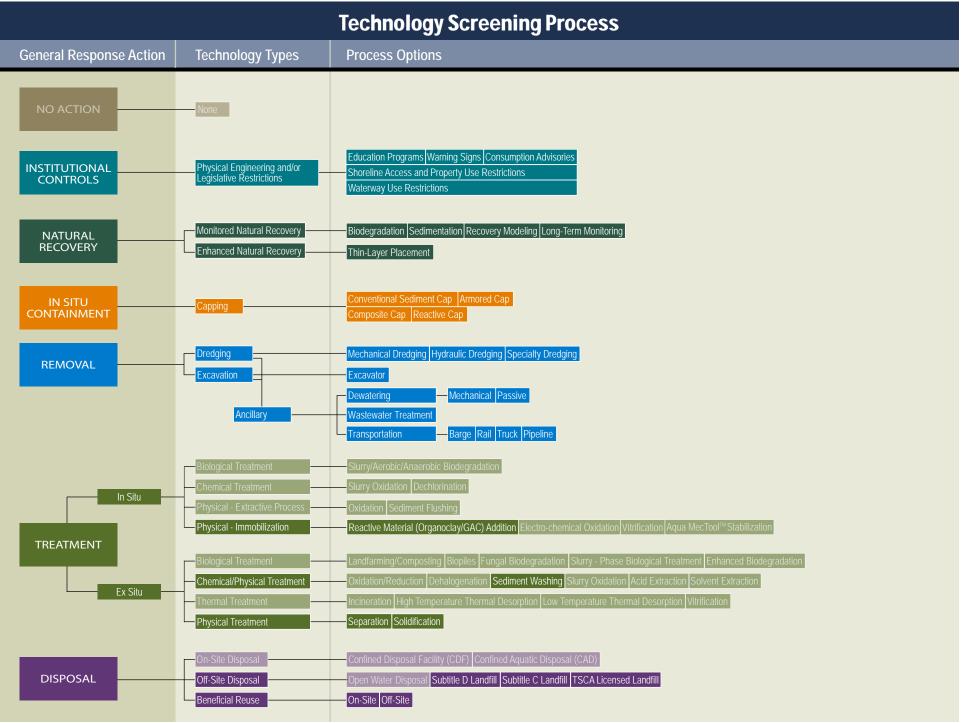
#### Page 4 of 6

| GRA                         | Technology Type   | Process Option                       | Brief Description                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------|-------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Ex Situ</i><br>Treatment | Biological        | Landfarming/<br>Composting           | Sediment is mixed with amendments and placed on a treatment area that typically<br>includes leachate collection. The sediment and amendments are mixed using<br>conventional tilling equipment or other means to provide aeration. Moisture, heat,<br>nutrients, oxygen, and pH can be controlled to enhance biodegradation. Other organic<br>amendments such as wood chips, potato waste, or alfalfa are added to composting<br>systems. |
|                             |                   | Biopiles                             | Excavated sediments are mixed with amendments and placed in aboveground<br>enclosures. This is an aerated static pile composting process in which compost is<br>formed into piles and aerated with blowers or vacuum pumps. Moisture, heat, nutrients,<br>oxygen, and pH can be controlled to enhance biodegradation.                                                                                                                     |
|                             |                   | Fungal Biodegradation                | Fungal biodegradation refers to the degradation of a wide variety of organo-pollutants by using fungal lignin-degrading or wood-rotting enzyme systems (example: white rot fungus).                                                                                                                                                                                                                                                       |
|                             |                   | Slurry-phase<br>Biological Treatment | Aqueous slurry is created by combining sediment with water and other additives. The slurry is mixed to keep solids suspended and microorganisms in contact with the contaminants. Upon completion of the process, the slurry is dewatered and the treated sediment is removed for disposal (example: sequential anaerobic/aerobic slurry-phase bioreactors).                                                                              |
|                             |                   | Enhanced<br>Biodegradation           | Addition of nutrients (oxygen, minerals, etc.) to the sediment to improve the rate of natural biodegradation.                                                                                                                                                                                                                                                                                                                             |
|                             | Chemical/Physical | Oxidation/Reduction                  | Oxidation/ Reduction chemically converts hazardous contaminants to nonhazardous or less toxic compounds that are more stable, less mobile, and/or inert. The oxidizing agents most commonly used are hypochlorites, chlorine, and chlorine dioxide.                                                                                                                                                                                       |
|                             |                   | Dehalogenation                       | Dehalogenation process in which sediment is screened, processed with a crusher and pug mill, and mixed with sodium bicarbonate (base catalyzed decomposition) or potassium polyethylene glycol. The mixture is heated to above 630 °F in a rotary reactor to decompose and volatilize contaminants. Process produces biphenyls, olefins, and sodium chloride.                                                                             |
|                             |                   | Sediment Washing                     | Contaminants sorbed onto fine soil particles are separated from bulk soil in an aqueous-<br>based system on the basis of particle size. The wash water may be augmented with a<br>basic leaching agent, surfactant, pH adjustment, or chelating agent to help remove<br>organics and heavy metals.                                                                                                                                        |


#### Page 5 of 6

| GRA                                     | Technology Type                  | Process Option                                   | Brief Description                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------|----------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Ex Situ</i> Treatment<br>(continued) | Chemical/Physical<br>(continued) | Slurry Oxidation                                 | The same as slurry-phase biological treatment with the exception that oxidizing agents are added to decompose organics. Oxidizing agents may include ozone, hydrogen peroxide, and Fenton's reagent.                                                                                                                                      |
|                                         |                                  | Acid Extraction                                  | Contaminated sediment and acid extractant are mixed in an extractor, dissolving the contaminants. The extracted solution is then placed in a separator, where the contaminants and extractant are separated for treatment and further use.                                                                                                |
|                                         |                                  | Solvent Extraction                               | Contaminated sediment and solvent extractant are mixed in an extractor, dissolving the contaminants. The extracted solution is then placed in a separator, where the contaminants and extractant are separated for treatment and further use (example: B.E.S.T. <sup>TM</sup> and propane extraction process).                            |
|                                         | Thermal                          | Incineration                                     | Temperatures greater than 1,400 °F are used to volatilize and combust organic chemicals. Commercial incinerator designs are rotary kilns equipped with an afterburner, a quench, and an air pollution control system.                                                                                                                     |
|                                         |                                  | High-temperature<br>Thermal Desorption<br>(HTTD) | Temperatures in the range of 600-1,200 °F are used to volatilize organic chemicals. These thermal units are typically equipped with an afterburner and baghouse for destruction of air emissions.                                                                                                                                         |
|                                         |                                  | Low-temperature<br>Thermal Desorption<br>(LTTD)  | Temperatures in the range of 200-600 °F are used to volatilize and combust organic chemicals. These thermal units are typically equipped with an afterburner and baghouse for treatment of air emissions.                                                                                                                                 |
|                                         |                                  | Vitrification                                    | Current technology uses oxy-fuels to melt soil or sediment materials at extremely high temperatures (2,900-3,650 °F).                                                                                                                                                                                                                     |
|                                         | Physical                         | Separation                                       | Contaminated fractions of solids are concentrated through gravity, magnetic, or sieving separation processes.                                                                                                                                                                                                                             |
|                                         |                                  | Solidification                                   | The mobility of constituents in a "solid" medium is reduced through addition of immobilization additives. Dredged sediments can also be mixed with amendments (e.g., Portland cement, lime, or fly ash mixture) or materials such as straw or sawdust to produce a product that passes regulatory requirements (e.g., paint filter test). |


#### Page 6 of 6


| GRA      | Technology Type   | Process Option                                                          | Brief Description                                                                                                                                                                                                                                      |
|----------|-------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Disposal | On-site Disposal  | Confined Disposal<br>Facility (CDF)                                     | Untreated sediment is placed in a near shore confined disposal facility that is separated from the river by an earthen berm or other physical barrier and capped to prevent contact. A CDF may be designed for habitat purposes.                       |
|          |                   | Contained Aquatic<br>Disposal (CAD)                                     | Untreated sediment is placed within a lateral containment structure (i.e., bottom depression or subaqueous berm) and capped with clean sediment.                                                                                                       |
|          | Off-site Disposal | Dredged Material<br>Management Program<br>(DMMP) Open-water<br>Disposal | Treated or separated sediment is placed at an open water disposal site. Requires that the placed sediment be at, or below, DMMP disposal criteria for priority pollutants and potentially bioaccumulative chemicals.                                   |
|          |                   | Subtitle D Landfill                                                     | Off-site disposal at a licensed commercial facility that can accept nonhazardous sediment.                                                                                                                                                             |
|          |                   | Subtitle C Landfill                                                     | Off-site disposal at a licensed commercial facility that can accept hazardous dewatered sediment removed from dredging or excavation. Depends on analytical data from dredged sediment. Dewatering required reducing water content for transportation. |
|          |                   | Toxic Substances<br>Control Act (TSCA)-<br>licensed Landfill            | Off-site disposal at a licensed commercial facility that can accept TSCA sediment.<br>Dewatering required reducing water content for transportation.                                                                                                   |
|          | Beneficial Reuse  | On-site                                                                 | Cleaned sediments treated to below state or federal guidelines may be beneficially reused for habitat creation, capping, or residual management.                                                                                                       |
|          |                   | Off-site                                                                | Treated or untreated sediment is placed at an off-site location. Requires that sediment<br>be at, or treated to, a concentration at or below cleanup levels for unrestricted land use<br>and meet non-degradation standards.                           |

#### Figure 4-1. Example Cap Designs



Source: Electric Power Research Institute (EPRI), 2007.





TSCA=Toxic Substances Control Act; AC=activated carbon

# Section 5 Development of Remedial Alternatives

This section presents the rationale, assembly, and description of the remedial alternatives evaluated to clean up Middle River Complex (MRC) contaminated sediments. The alternatives are assembled in a manner consistent with the federal Comprehensive Environmental Resource Compensation, and Liability Act (CERCLA, or Superfund) guidance (United States Environmental Protection Agency [USEPA], 1988). The set of alternatives developed herein represents combinations of remedial technologies and process options that are implementable and feasible. Except for Alternative 1 (No Action), these alternatives address the remedial action areas and remedial action objectives (RAOs), while allowing variation in the degree to which active remedial measures are applied to the whole site.

These remedial alternatives present a range in the extent of active remediation (i.e., areas of potential action), remedial technologies, and costs. For this feasibility study (FS), active remediation refers to dredging, capping, *in situ* treatment, enhanced natural recovery (ENR), and reactive ENR, whereas passive remediation refers to monitored natural recovery (MNR). This range of characteristics across the candidate remedial alternatives permits a detailed evaluation and comparative analysis (see Sections 6 and 7). The process used to develop these remedial alternatives is outlined in the following sections:

- Section 5.1, "Potential Remediation Action Areas and Remedial Action Levels," discusses the areas of potential concern (AOPC) areas with elevated contaminant concentrations and higher levels of potential risk. Remedial action levels are used in the remedial alternatives to address potential risks and determine the appropriate remedial technology and application, such as capping, dredging, and ENR.
- Section 5.2, "Site-Specific Technology Evaluation," discusses and evaluates the effectiveness of each remedial technology based on site-specific properties, engineering assumptions, and other considerations.

- Section 5.3, "Assembly of Remedial Alternatives," includes the long list of alternatives and a general description of each remedial alternative.
- Section 5.4, "Common Remedy Elements," describes the elements applicable to all remedial alternatives.
- Section 5.5, "Description of Alternatives," provides a description of the remedial alternatives evaluated in this FS.
- Section 5.6, "Screening Analysis of Alternatives," presents the initial screening evaluation of the long-list of alternatives in terms of effectiveness, implementability, and cost.
- Section 5.7, "Community Outreach Process," summarizes Lockheed Martin Corporation (Lockheed Martin) efforts to inform and receive input from the community regarding remedial actions related to MRC sediments.
- Section 5.8, "Short List of Remedial Alternatives," presents the short list of remedial alternatives based on initial qualitative screening analysis and input from the community. The short list of alternatives is assembled and carried forward for detailed and comparative analyses in Sections 6 and 7 of this FS.

#### 5.1 POTENTIAL REMEDIATION ACTION AREAS AND REMEDIAL ACTION LEVELS

This section defines the areas of potential concern, which are areas where elevated contaminant concentrations and higher levels of potential risk have been identified. The section also presents the remedial action levels (RALs) used in the remedial alternatives to address potential risks and determine the application of the appropriate remedial technology (e.g., dredging, *in situ* treatment, reactive ENR, ENR, MNR). The AOPC and the RALs are then used in assembling the suite of remedial alternatives for the site.

#### 5.1.1 Areas of Potential Concern

The AOPC are areas of the site where sediment contaminant concentrations potentially pose a risk to human health or the environment and therefore may require remedial action. The AOPC are based upon the extent of potential risk-driver contamination and established preliminary remediation goals (PRGs) for MRC sediments. The AOPC footprints are established using the distribution of chemicals of concern (COC), as presented in the sediment characterization reports. Thiessen polygons were generated to estimate the extent of influence around each sampling location. The AOPC footprints are based on interpretation of sediment sample networks that are

delineated with these Thiesssen polygons, rather than spatially interpolated concentration values. The Thiessen polygon approach is practical for the purposes of development and comparison of remedial alternatives; however, the actual extent of area requiring management based on selected RALs is likely to be over-estimated. During design, a refined spatial map of data in comparison to RALs will likely be used, and final areas and volumes subject to remediation may be refined as a result. Based on the Thiessen polygon approach, the following AOPC footprints were established in this FS:

- AOPC addressing the COC to 52 inches below the sediment surface (Figure 5-1a)
- AOPC addressing RAOs in surface sediments (Figure 5-1b)

The larger AOPC footprint (Figure 5-1a) represents any exceedance of PRGs to the depth of 52 inches (i.e., deepest depth of the sample analysis for characterization). Ongoing natural recovery through sediment deposition at the site has reduced surface contaminant concentrations in parts of Dark Head Cove and Dark Head Creek to the degree that cleanup goals in the biologically active zone have been achieved. Therefore, the surface AOPC footprint (Figure 5-1b) represents the area necessary to meet RAOs, and is based on exposure in the biologically active zone (i.e., zero to six inches). The AOPC are generally the focus of this FS, since these are the areas that pose a current risk to human health or the environment. The application of one or more remedial technologies within these areas is considered in developing the alternatives. The boundaries of AOPC may need to be refined during remedial design and remedial implementation.

#### 5.1.2 Remedial Action Levels

The RALs are chemical-specific sediment concentrations that trigger remediation. The RALs are used in this FS to define the areas for application of different remedial technologies within the AOPC, and to meet the PRGs for RAOs 1, 2, and 3. The AOPC and the RALs are used in assembling the suite of remedial alternatives for the site.

Table 5-1 summarizes RALs for the risk-driver COC. The RALs to achieve RAOs 1 and 2 are different (i.e., higher) than the PRGs. These RALs determine where a combination of active and passive measures would be applied to achieve site-wide PRGs. For example, a site-wide polychlorinated biphenyl (PCB) RAL of 1,100 ppb (i.e., remediating areas where concentrations of PCBs are greater than or equal to 1,100 ppb) would result in a site-wide area weighted-average

concentration of 195 ppb, which is the RAO 1 PRG for PCBs. The RALs to achieve point-based RAO 3 PRGs are same as the PRGs. Ultimately, the most conservative RALs are used in this FS to determine application of the appropriate remedial technology. Therefore, RALs that can achieve point-based RAO 3 PRGs for the applicable COC (i.e., PCBs, lead, cadmium, copper, mercury, and zinc) will be used.

Remedial alternatives are developed using these RALs and a combination of active and passive remedial technologies. Once active remediation has been completed, the achievement of the RAO-specific PRGs at the end of construction and over the longer term is determined based on a site-wide surface area weighted-average concentration for RAOs 1 and 2 and on a point-based evaluation for RAO 3. To determine remedy effectiveness in this FS, longer term reduction of surface sediment concentrations through natural recovery processes is considered. As discussed in Section 2, remedial actions in upland areas of MRC are ongoing and expected to control any ongoing sources to the adjacent sediments. Therefore, the assumption that newly deposited sediments will be clean, and no long-term increase in COC will occur due to possible contaminant contributions from off-site sources, is used in this FS.

### 5.2 SITE-SPECIFIC TECHNOLOGY EVALUATION

The technology screening in Section 4.3 resulted in retained remedial technologies to be incorporated into the remedial alternatives. These include: removal, capping, ENR, reactive ENR, MNR, and *in situ* treatment. This section presents general site- and project-specific considerations, and provides an evaluation of these remedial technologies, based on site-specific information gathered through remedial investigations completed to date (see Section 2).

#### 5.2.1 Site- and Project-Specific Considerations

Section 2 summarizes the physical characteristics and history of the site, and the nature and extent of contamination. Other site- and project-specific considerations used in developing remedial alternatives include the following:

• Project stakeholders include Wilson Point and Hawthorne residents and other nearby neighbors, the Maryland Department of the Environment (MDE) and USEPA as primary regulators, the United States Army Corps of Engineers (USACE), Baltimore County, Chesapeake Bay environmental groups, and fishing/boating/recreational users.

- Dark Head Cove and Dark Head Creek are part of the Middle River federal navigation channel. The project depth established by the USACE is -10 feet mean lower-low water (MLLW). Activities in navigable waters require USACE concurrence that they will not conflict with the navigational purpose.
- In-water work will need to be restricted to certain times of the year to minimize potential impacts to important fish, wildlife, and habitat resources. Based on the timing of typical maintenance dredging projects in Baltimore County, the in-water work window is October 15 to February 15. However, the actual schedule of the time restrictions will be determined by the State of Maryland, during the review of the project application for a Water Quality Certification, and with consultation of National Marine Fisheries Services and Maryland Department of Natural Resources (DNR). In addition, the timing of recreational use of the waterway will also be considered.
- Estimated sedimentation-rate ranges are as follows: 1.1 to 1.7 centimeters per year (cm/year) in the confluence of Dark Head Cove and Cow Pen Creek, downstream of the site; 0.8 to 0.99 cm/year in Dark Head Cove; and 0.3 to 0.51 cm/year at the mouth of Cow Pen Creek (Tetra Tech, 2011a).
- In Cow Pen Creek, special consideration is required to ensure that if a remedy includes material placement, it will not reduce water depths or alter the flow-carrying capacity of the creek. Any remedial action in the creek will at a minimum maintain and preferably improve existing habitat conditions.
- Sediments consist of elastic silt, fat clay, lean clay, sandy elastic silt, sandy lean clay, organic silt, and silty sand (Tetra Tech, 2012a).
- Hydrodynamic analysis shows that the sediment bed in the study area is stable, except for the upstream area of Cow Pen Creek. A 100-year, 24-hour storm event could transport eroded material from Cow Pen Creek to outside of the study area. During such an event, the corresponding suspended-sediment-concentration range at the mouth of Dark Head Creek could range between 140 to 1,000 milligrams per liter (mg/L), and the depth of erosion from the one-day event could be as much as 10 centimeters (cm) in upstream areas of Cow Pen Creek.
- Current use of the waterway includes boating, fishing, swimming, watersports (windsurfing, water skiing, and jet skiing), and wading by individuals from the neighboring communities. The land-based portion of the MRC waterfront is not currently in active use.
- Future use of the site by the neighboring communities is likely to resemble present uses. Future development of the MRC shoreline may include continued industrial use, commercial use, a marina or hotel, third-party residential areas (e.g., condominiums), or mixed commercial/residential use. Single-family homes are unlikely. A public dock (on Hawthorne) and a Wilson Point Park extension (Tax Block D Panhandle) have been proposed.

#### 5.2.2 Removal

Removal may involve mechanical dredging using a conventional barge-mounted clamshell dredge and/or environmental bucket, or hydraulic dredging with transport through a pipeline in slurry form and dewatering in geotextile tubes. Conventional excavation technologies, such as backhoes, loaders, or barge-mounted precision excavators, are applicable for use, as necessary, in shallow water operations such as parts of Cow Pen Creek, shoreline areas, in front of bulkheads, and debris removal.

#### 5.2.2.1 Volume Estimates

The distribution of chemical concentrations in MRC sediments and their horizontal and vertical extent were determined at four depth intervals - zero to six inches, six to 18 inches, 18 to 30 inches, and 30 to 52 inches. Concentrations of COC in sediment samples are presented in Thiessen polygons assembled around the sampling locations (i.e., half the distance to the next sampling point) at each of these depth intervals. The areas of these polygons and the depth intervals were used to calculate the volume of contaminated sediments for the removal alternatives. The depth of removal varies based on the extent of the COC and the RALs to meet the RAOs.

The estimated volumes were estimated using the concentrations of COC in the discrete core interval data to estimate the dredge prisms, which are the required removal limits for FS-level analysis purposes. The dredge prisms will be refined during design for dredge operational considerations. Typically, as part of the FS, contingency volumes are included to account for volume creep. Volume creep contingencies that will be applied to the initial estimated dredge volumes include: (a) a typical 1.0-foot overdredging allowance; (b) allowance for additional sediment characterization (i.e., presence of contaminants beyond the currently estimated depth); (c) typical cleanup passes for residuals management; and (d) dredge cut-slope stability issues identified during design.

For FS-analysis purposes, and to account for these various causes of volume creep, estimated dredge neat-line volumes are increased by 50%. This adjustment is supported by the findings of a recent study on *in situ* volume creep for environmental dredging projects (Palermo and Gustavson, 2009), which recommends an adjustment factor of 50% (that is, an estimated dredge-prism volume equal to 1.5 times the neat-line prism volume) for FS-level considerations under typical site conditions. Sediment bathymetry profiles are provided in Appendix C. *AutoCAD/Civil3D*<sup>®</sup> engineering-design software will be used to refine removal volumes during design.

#### 5.2.2.2 Environmental Controls during Dredging

Column settling test results (refer to Section 2.3.9) will be used to assess potential water quality impacts during dredging by estimating: (a) the mass rate at which bottom sediments become suspended in the water column as a result of dredging operations; (b) the resulting suspended sediment concentrations; and (c) the size and extent of the suspended sediment plume. Slow settling behavior of MRC sediments may require slower dredging operations and effective-engineering best-management practices to meet turbidity standards in the construction area.

The dredge elutriate test (DRET) data suggest limited COC releases from sediment to the water column occur during potential dredging. The partition coefficients calculated from the total and dissolved DRET results are associated with COC of limited mobility. Most of the detected concentrations of trace metals are associated with particles, except for antimony, arsenic, selenium, and thallium. Therefore, filtration will remove a significant amount of the COC waste load from the discharge of any future treatment system. In general, DRET results from all tests are relatively similar, with no significant COC releases noted in tests using different initial total suspended solids (TSS) concentrations or aeration times.

The release of COC through sediment resuspended during dredging is a major concern impacting the effectiveness of environmental dredging projects (refer to Section 4.3.5). Releases of PCB have been monitored in pilot dredging studies and full-scale dredging projects. Monitoring data from pilot dredging projects performed in Fox River and Grasse River, and other early studies, showed that two to three percent of the dredged PCBs were transported downstream from the project area (Bridges et al., 2008). For example, if total dredged sediments contain 60 kilograms of PCBs, approximately 1.5 kilograms is expected to be released into the water column. Dissolved contaminants are more bioavailable, are more likely to migrate farther in the water column, and may cause short-term increases of PCB concentrations in fish tissue. Engineering controls (e.g., silt curtains, semi-permeable silt curtains, structural barriers, etc.) will likely be applied in the dredging zone to limit or contain suspended particulates to the immediate area of operation.

#### 5.2.2.3 Residuals Management

Some contaminated sediment will be resuspended into the water column during dredging operations and will settle back onto the dredged surface. Operational in-water controls are typically developed during remedial design to manage such residuals. Residuals management, ENR, or a sediment cap may be required following removal, depending on the removal depth and the contamination levels remaining at the dredged surface. For the purposes of the FS, we have assumed that removal will be followed by placement of a 6-inch layer of sand covering the dredge footprint.

#### 5.2.2.4 Dewatering

Removed sediment will have to be dewatered to produce a material that is easier to handle, to meet transportation and landfill disposal requirements, and to minimize the weight and cost of material to be transported and disposed.

Considerations in evaluating and selecting dewatering methods include the following:

- the estimated volume of water generated by removal technology (e.g., the lower the volume of water generated, the easier and more cost-effective the dewatering process)
- the optimal water content of dewatered sediment (e.g., the lower the water content, the more cost-effective the material transport and disposal)
- the dredge production and rate
- upland or barge staging-area space limitations

During the design phase, considerations for dewatering methods will be evaluated with respect to project needs, project duration, and transport needs. Timely completion of the project, the need to meet performance standards for resuspension, release, and residuals, and compatibility among dredging, transport, treatment, and disposal requirements are not always mutually achievable. These considerations will therefore be appropriately balanced in the project design. A range of production rates may be calculated for a range of dredge sizes, and the numbers and sizes of dredges can be selected to meet performance standards or the desired project duration (Palermo et al., 2008).

Both mechanical and passive dewatering techniques will be considered during design. In this FS, both mechanical and hydraulic dredging are considered. Mechanically dredged sediments are assumed to be dewatered at a dewatering and transloading area. The dewatering pad will be designed to allow drainage and collection of decanted water. An existing asphalt laydown area can be used, if available, or a new one will be constructed as part of mobilization.

A protective barrier will be designed and constructed over the new pad or existing area. It will consist of geotextile fabric and an impermeable liner to prevent any dredged water infiltration into

the subsurface. The subgrade protective barrier will be sloped to direct decant water and precipitation to a sump area, where site contact water will be collected and pumped to a water treatment plant. The pad will be able to support low ground pressure equipment to spread sediment during offloading, roll sediment to promote drying, and remove sediment by trucks during processing.

If sediments are removed hydraulically, a sediment/water slurry will be pumped via pipelines into geotextile tubes placed over the dewatering pad and allowed to gravity drain. A temporary water holding tank may be utilized to manage water associated with hydraulic dredging. During transport to the geotubes, environmentally safe polymers will be added to the sludge, which make the solids bind together and water separate and enhance dewatering of the dredged sediments. Effluent water with any exceess polymers will be collected and treated before discharge. If needed, the dewatered sediments may also be mixed with a stabilizing reagent to improve the strength of the sediments. If the sediments are mechanically dredged, the sediments will be transported to the dewatering pad and may be mixed with stabilizing agents to help dry and improve the strength of the sediments. The dewatering pad capacity will vary depending on the recommended alternative and will be designed to accommodate the volume of removed sediment and its associated dewatering and processing. Dewatering processes will incorporate best management practices during design. Surface water control structures and erosion control measures will be installed to protect air and surface water quality.

#### 5.2.2.5 Dredge Water Management

Standard practice in remedial dredging involves dewatering dredged sediment on the dredge scows and allowing it to discharge back into the active dredge area. Appropriate best management practices (e.g., straw bales and filter fabric) are installed to filter these discharges and to comply with water quality criteria established for the dredging operations. We have assumed that water from dewatering will be released within the limits of the dredge operating area protected by silt curtains, and subject to compliance with water quality criteria.

The dredged water may need to be treated before it can be discharged, depending on agreed water quality compliance criteria. Water management is a necessary part of dredged-material transloading operations. Storm water and drainage from sediments generated in the transloading facility are assumed to be captured, stored, treated, and either discharged to the local sanitary sewer under a

Baltimore County discharge authorization, or returned to surface water subject to water quality compliance criteria. To account for water management, the FS-level cost estimates include daily water management to treat and discharge water back to the water body, or to discharge dredged water to the sewer and publicly owned treatment works under a permit with the Baltimore County industrial waste program.

#### 5.2.2.6 Transloading and Upland Disposal

Dredged material placed in the barge will be transported to a dewatering and transloading area where it will be dewatered and transferred to lined shipping containers and/or trucks for disposal at the landfill. Other methods of transloading sediment, such as direct container loading on barges, may be considered during remedial design. The logistics and actual capacity of the transloading operations will also be determined during remedial design. The FS-level cost estimates include establishing a dewatering and transloading area, sediment handling and transport to the landfill, and disposal of sediment at the landfill.

In this FS, Grows North Landfill in Morrisville, Pennsylvania, a Lockheed Martin–approved disposal site, is assumed to be the upland disposal facility for removal alternatives. Additional disposal locations may be considered during the design phase. Grows North Landfill is a permitted Subtitle D landfill, approved to receive sediments that pass the paint filter test. The hazardous waste landfill identified for any Toxic Substances Control Act (TSCA) waste (i.e., sediments or sediment intervals with PCB concentrations greater than 50 parts per million [ppm]) is Chemical Waste Management in Model City, New York.

#### 5.2.2.7 Slope Stability and Bulkhead Stability

Dredging in sloped areas will be carefully evaluated during remedial design to prevent sloughing and slope failure during remedial activities. Existing shoreline slopes are at a ratio of approximately 1 vertical to 2 horizontal (approximately 26 degrees). or flatter. For this FS, dredging and capping slopes are assumed to be at a 1 vertical to 3 horizontal ratio (approximately 17 degrees), or flatter.

Recently, a reconnaissance study was completed to document approximately 1,800 linear feet of site shoreline features and conditions, and the bulkhead along Dark Head Cove (Tetra Tech, 2012c). The shoreline within the limits of this reconnaissance study comprised of stone riprap/broken concrete

and overgrown vegetation, reinforced concrete bulkhead constructed on embedded steel sheet-piling and wooden fender piles, and stone riprap with concrete overlayment.

During the reconnaissance study, the condition of the concrete bulkhead was observed to be poor; deteriorating and extensive erosion was evident on the shore side and under certain sections of the bulkhead. Cracks, spalling, and missing deck/slab were noted at various locations. The record drawings suggest that the bulkhead is mainly supported by sheet piling. Numerous areas of erosion were noted between the bulkhead deck and the adjacent grade. The shoreline condition in the area of stone riprap with concrete overlay varies. Major cracking of the concrete overlayment was observed at some locations. In general, the degree of erosion and undermining of adjacent areas varies along the shoreline (Tetra Tech, 2012c).

Removal in front of the existing bulkhead in Dark Head Cove could destabilize this aged bulkhead; dredging activities have the potential to undermine the structure. The structural and geotechnical stability of the bulkhead will be further evaluated, and a protective set back distance will be established during remedial design.

#### 5.2.3 Capping and Enhanced Natural Recovery (ENR)

Conventional sand cap would be used for the alternatives involving containment of contaminated sediment. During design, USACE capping guidance will be used to determine the thickness and gradation of the cap (Palermo et al., 1998; Clarke et al., 2001), based on evaluation of various factors including bioturbation, consolidation, erosion, and operational considerations such as propeller scour, chemical isolation, and required navigation and water depths. For this FS, and consistent with USACE capping guidance, a sand cap thickness of three feet was assumed for all cap areas.

Thinner or thicker caps may be developed during remedial design, depending on surface COC concentrations, elevation considerations such as navigation depths, or to accommodate unrestricted use of benthic resources. The gradation of cap material depends on factors such as habitat, erosion, and scour potential. No assumptions regarding a specific material gradation have been made in this FS because the range of material unit costs for sand capping material of different gradations is very narrow, and is not be expected to significantly affect estimated costs.

Enhanced natural recovery is included in areas where COC concentrations are greater than RALs as an alternative to conventional isolation capping which will not be required to achieve RAOs. During design, the ENR material will be evaluated to ensure that the placed ENR layer is appropriate for benthos in the area. The ENR thickness will be determined based on the surface COC concentrations, so that ENR will result in a surface layer with contaminant concentrations within regulatorily acceptable levels.

A fully mixed layer of surface sediment would result following application of a layer of clean material (approximately equal to the thickness of the 10 centimeter [four inch] biologically active zone) through bioturbation and other mixing mechanisms. At long-term, steady-state condition, this mixed layer would be comprised of one-half clean, applied material and one-half existing surface sediment. Assuming the bioturbation activity depth is five to 10 centimeters (National Research Council [NRC], 2001), and that a clean layer of sediments approximately 10 centimeters thick has been placed during ENR implementation, the long-term steady-state equilibrium condition (assuming complete mixing of the ENR material with the underlying sediment) could reduce contaminant concentrations in the biologically active zone by as much as 50%. This is a conservative assumption because natural sedimentation is ongoing at the site; during construction, a more typical clean-layer thickness will be 15 to 23 centimeters (six to nine inches), which will provide a greater contaminant concentration reduction than noted above. For cost estimating purposes, it is assumed that ENR application will be a minimum of six inches wherever it is applied.

Reactive ENR enhances the performance of the natural recovery layer by using *in situ* sorbent amendments. The reactive material (such as activated carbon) in the active layer reduces migration of dissolved contaminants in sediment porewater by binding them through adsorptive processes. In this FS, we have assumed that a reactive ENR layer would reduce total surface COC through both dilution (the application of a thin layer of sand) and adsorption (to the reactive material).

All in-water construction associated with capping and removal will be conducted during the designated in-water work window. The MDE has established a time of year restriction, also known as a seasonal window, from October 15 to February 15 for typical in-water construction projects in Baltimore County. The final work window will be defined and coordinated in consultation with other resource agencies before implementation.

#### 5.2.3.1 Maintaining Water Depths

In federal navigation areas, where minimum elevations are required to be maintained, capping is restricted to areas where the existing surface sediment elevation provides adequate clearance for navigation and future maintenance activities. For capping projects in navigation channels, USACE typically requires a four-foot differential depth between the top of the cap and the deepest permitted maintenance depth. This depth would allow for a two-foot safety clearance and a two-foot maintenance over-dredge.

Middle River is a federal navigation channel with a project depth of -10 feet MLLW. Current depths in Dark Head Cove have been surveyed at -10  $\pm$ 2 feet MLLW (USACE, 2012). Maintenance dredging has never been conducted, and Middle River is not in use as a navigation channel. The USACE may not allow placement of a conventional three-foot cap, or a thin six- to 12-inch ENR layer, in Dark Head Cove. Nonetheless, in this FS, alternatives that use containment and ENR components were carried forward for initial screening and detailed evaluation.

In Cow Pen Creek, special consideration will be given to ensuring that the material placement does not reduce water depths or alter the flow-carrying capacity of the creek. Any remedial action in the creek should at a minimum maintain and preferably improve existing habitat conditions.

#### 5.2.3.2 Geotechnical Issues

Cap stability, bearing capacity, and sliding failures are typical geotechnical issues encountered in placing material (e.g., residuals management backfill after dredging, enhanced natural recovery, conventional sediment capping) over soft deposits. As discussed in Section 2.4, MRC sediments are considered very soft to soft based on *in situ* and laboratory shear-strength test results. The low shear-strength capacity of MRC sediments will not restrict material placement, but the placement technique will require slow installation of layers in thin lifts to minimize disturbance (i.e., pushing sediment sideways and upwards by the weight of sand) and mixing of underlying sediments.

The FS-level analysis of consolidation test results indicates that MRC sediments are over-consolidated, which means the MRC sediments have experienced higher load and stress (i.e., pre-consolidation stresses) than the current existing conditions. Pre-consolidation stresses are higher than the anticipated additional load of a conventional cap and ENR, suggesting that these sediments would not be expected to undergo significant primary consolidation during cap placement. Therefore, over-consolidation of sediments under a conventional cap, ENR, or residuals management loading is not a major concern for MRC sediments.

#### 5.2.4 Monitored Natural Recovery

Monitored natural recovery relies on natural processes to return sediment concentrations to background levels. Monitored natural recovery requires an adequate sedimentation rate and deposition of less contaminated material over existing sediments to reduce surface concentrations to meet cleanup goals within a specified period, usually within 10 to 30 years. Sedimentation-rate analyses for sediments in Dark Head Cove, Cow Pen Creek, and the confluence of the two water bodies downstream of the site indicate that the highest sedimentation rates are expected in the confluence of Dark Head Cove and Cow Pen Creek downstream of the site (1.1 to 1.7 cm/year).

Sedimentation rates in Dark Head Cove and at the mouth of Cow Pen Creek are between 0.8 to 0.99 cm/year and 0.3 to 0.51 cm/year, respectively (Tetra Tech, 2011a). These sedimentation rates suggest that MNR alone has moderate to high effectiveness in achieving the RAOs in depositional areas of the site. The effectiveness of MNR at the confluence and in Dark Head Creek is supported by surface COC concentrations; no exceedances of PRGs have been observed in this area (Figure 5-1b).

Monitored natural recovery assumes a quasi steady-state equilibrium condition of continual mixing of newly deposited layer with the underlying sediment through bioturbation and other physical mixing processes. Such an approach can reduce contaminant concentrations in the biologically active zone by up to 50%. In this FS, we have conservatively assumed that 15 centimeters of sedimentation would be required to achieve a 50% reduction in surface contaminant concentrations. The average time needed to achieve this 50% reduction in COC concentrations (i.e., intrinsic half time) through natural sedimentation is typically approximated by exponential decay curves. The reason for this approximation is because a steady supply of sediment from upstream areas, and its deposition and mixing with the bioavailable zone (near-surface) sediment, predicts mathematically that the rate of change in bioavailable zone COC concentration changes exponentially over time toward the concentration of COC in incoming sediment. The intrinsic half times for a mixed layer depth of 15 cm associated with an average deposition rate of 0.8 cm/yr, is estimated as 13 years for Dark Head Cove and Dark Head Creek. Most of the Cow Pen Creek is subject to erosional forces

(see Section 2.3.5), and natural sedimentation is expected to occur only at the mouth of the creek. Therefore, no natural recovery is assumed in Cow Pen Creek.

#### 5.2.5 *In situ* Treatment

In this FS, surface broadcasting of bulk activated carbon (AC) pellets, without additional capping material, is assumed as the *in situ* treatment technology used to reduce the bioavailability of MRC COC. Currently, two such products are available in the market: AquaGate and SediMite<sup>TM</sup>. Both of these products are agglomerates comprised of a treatment agent (usually AC), a weighting agent to make it sink and resist resuspension, and an inert binder. They are designed to cause minimal environmental impact, and can thus be used whenever a primary goal is to limit destruction of existing habitat. The most viable remedial applications for AC include depositional environments that are hydrodynamically stable and have low erosion potential, and sensitive environments where minimizing habitat disruption is a goal (e.g., contaminated sediments in aquatic or marine grass beds and wetlands).

Dark Head Cove and Dark Head Creek are depositional environments with estimated sediment deposition rates of about 1 cm/year; therefore, in *situ* treatment through surface broadcasting of AC pellets is considered a viable remedial technology for these areas. Hydraulic modeling based on a 100-year storm event has determined that shear forces sufficient to erode sediment (>0.1 Newtons per square meter  $[N/m^2]$ ) have been found only in Cow Pen Creek. These data indicate that: (1) material in Cow Pen Creek could migrate into Dark Head Cove and Dark Head Creek, (2) *in situ* remedies may not be appropriate for Cow Pen Creek due to its susceptibility to erosion, and (3) *in situ* remedies may be applicable in Dark Head Cove and Dark Head Creek. Figure 2-7 illustrates sedimentation rates in these areas, based on the results of hydraulic modeling and average sedimentation rates determined by sediment age dating.

Activated carbon delivered through bulk AC pellets can treat sediments contaminated with PCBs, polycyclic aromatic hydrocarbons (PAHs), and other hydrophobic chemicals and, to a lesser extent, metals. Both the AC products mentioned above are designed to withstand dispersal through the water column with minimal release of active ingredients, followed by their slow disintegration and mixing into the sediment bioactive zone through natural sediment mixing processes such as bioturbation. Research in the last two decades has demonstrated that black carbonaceous particles (such as activated carbon, soot, coal, and charcoal) bind very strongly to hydrophobic organic

compounds such as PCBs. The presence of such particles in sediments reduces exposure to these compounds (Lohmann et al., 2005; Ghosh et al., 2011), often by an order of magnitude or more when compared to natural organic matter lacking such particles. Natural-contaminant sequestration of contaminants in native sediments can be greatly enhanced by adding clean, manufactured, carbonaceous materials such as AC into sediments (Ghosh et al., 2011).

Recent field pilot-tests and laboratory studies show that adding AC to sediments can reduce PCB bioavailability by 50 to 95%. During a 2006 field pilot-study at Hunters Point, California, bulk AC was mixed with tidal mud-flat sediment using a Rototiller and slurry injection. Hunters Point is a net depositional site, with an average sedimentation rate of 1 cm/year. Ongoing monitoring at this site shows a 50 to 70% reduction in aqueous PCB (Cho et al., 2012).

A field pilot-study at Grasse River, New York, also conducted in 2006, mixed bulk AC with sediments at a water depth of 15 feet, using a Rototiller and tine sled to achieve a reported reduction of up to 95% in PCB uptake in benthic invertebrates (e.g., clams and worms) (Greenberg, 2012). Another pilot study in James River, Virginia, implemented surface broadcasting of pelletized AC (SediMite<sup>TM</sup>), which reduced PCB biouptake in freshwater oligochaete by 90% (Ghosh, 2012). Recent research also indicates that AC is effective for *in situ* treatment of sediments contaminated by mercury, PAHs, and other metals.

Application of SediMite<sup>TM</sup> at the Aberdeen (Maryland) Proving Ground pilot-test area has shown that amending freshwater sediment with SediMite<sup>TM</sup> reduced mercury bioaccumulation in a freshwater oligochaete by 84%, and reduced methyl-mercury bioaccumulation by 90% (Ghosh, 2012). Laboratory research on applying AC to cadmium-contaminated sediments reduced cadmium bioavailability by 20 to 50% (Ghosh et al., 2008). Manufacturers of another sorbent, Thiol-SAMMs, claim that it can reduce cadmium bioavailability by up to 90%; however, to date no pilot-scale studies have been conducted using this sorbent.

In Norway, another pilot test for *in situ* treatment of persistent organic pollutants via placement of a thin reactive layer showed a reduction in PAH flux from contaminated sediments of up to 99% when a thin, two- to five-centimeter thick layer of sand mixed with AC was placed over contaminated sediments (Eek et al., 2011).

In this FS, the effectiveness of *in situ* treatment was evaluated using the assumption that a reduction in bioavailability of COC is correlated to effective reductions in bulk sediment concentrations and results in a reduction in the total concentration of COC, thereby resulting in a reduction in COC bioavailability. Based on the most recent research and pilot studies regarding AC application and its effectiveness in reducing the bioavailability of PCBs, PAHs and metals in sediments, we have conservatively assumed the effectiveness of *in situ* treatment is a 50% reduction in total PCBs, benzo(a)pyrene equivalents (BaPEq), and mercury concentrations, and 20% reduction in total metal concentrations.

### 5.3 ASSEMBLY OF REMEDIAL ALTERNATIVES

Remedial alternatives are developed by combining representative technologies and associated process options into assemblages applicable to site-specific features. These assemblages focus on removal (dredging), containment (capping/ENR), and *in situ* treatments as the primary active response actions to reduce risks, and these approaches are supplemented by passive measures such as MNR as necessary to achieve RAOs. The assemblages of remedial alternatives were developed based on the analyses and findings summarized in previous sections of this FS. These include the following:

- regulatory requirements (e.g., applicable or relevant and appropriate requirements [ARARs]), RAOs, and PRGs
- areas of potential concern discussed above and identified by the nature and extent of contamination evaluated in Section 2
- remedial action levels
- representative remedial technologies that were screened in Section 4
- site-specific technology evaluation

The long list of remedial alternatives, and the goals each alternative is designed to achieve, are as follows:

- *Alternative 1—No action:* This alternative provides a baseline against which to compare the other remedial alternatives; inclusion is required by CERCLA.
- *Alternative 2—Complete containment:* This alternative would contain risk-driver COC in the AOPC footprint, addressing COC to a depth of 52 inches by conventional capping.

- *Alternative 3—Complete removal:* This alternative would dredge sediments having the highest concentration of risk-driver COC in the AOPC footprint, addressing them to a depth of 52 inches, where risk-driver COC concentrations are greater than RALs for any depth. Complete removal has two subalternatives (i.e., 3A and 3B) that define the extent of removal within the AOPC footprint.
- Alternative 4—Combined action: This alternative would combine active and passive remedial technologies in the AOPC footprint to address MRC RAOs in surface sediments. This general alternative includes 10 subalternatives (i.e., 4A, 4B, 4C, 4D, 4E, 4F, 4G, 4H, 4I, 4J) to address the AOPC using a range of remedial technologies. The removal areas are focused on Cow Pen Creek and in front of the bulkhead in Dark Head Cove, where the removal depth is up to 52 inches. In remaining areas, a combination of other active or passive technologies (e.g., capping, ENR, thick ENR [i.e., 12 to 18 inches], reactive ENR, *in situ* treatment, and MNR) will be implemented over surface sediments where risk-driver COC concentrations are greater than RALs.

The components of these alternatives are illustrated in Figures 5-2 to 5-14. Common remedy elements for each alternative are discussed in the following section.

## 5.4 COMMON REMEDY ELEMENTS

#### 5.4.1 Shoreline and Habitat Improvements

Removal actions in Cow Pen Creek and Dark Head Cove may require shoreline stabilization and habitat improvements after remedial construction. Following the removal action in near-shore areas, shoreline slopes are assumed to be stabilized with riprap or other shoreline stabilization measures as needed to ensure long-term slope stability. Habitat mix may be placed in the interstices of riprap to provide a more favorable environment for aquatic species. Treatment of shoreline areas and restoration of Cow Pen Creek after the remedial construction will be coordinated with MDE and stakeholders during remedial design. The FS-level cost estimates include the costs of shoreline stabilization, habitat enhancement, and riparian planting after remedial construction.

#### 5.4.2 Institutional Controls

Current institutional controls (ICs) (including regional fish and shellfish consumption advisories pertaining to the greater Middle River study area issued by MDE, community information, and education) will remain as part of any remedial alternative. Lockheed Martin has an ongoing community outreach program to inform the community about remedial actions related to MRC sediments. This process is expected to continue to inform and educate the community about the

long-term ICs that would remain as part of the constructed remedy. Section 5.7 contains more details about Lockheed Martin's community outreach.

Depending on the remedy, an IC plan may need to be developed during design to protect human health and the environment from any remaining contaminated sediments and to prevent use inconsistent with maintenance of the remediated area. If capping of contaminated sediments is part of a remedy, additional ICs to prevent the disturbance of any contaminated sediments that remain in place would be required. These ICs will include waterway use restrictions such as constraints on boating operations and anchorage and limitations on pile driving and dredging.

#### 5.4.3 Monitoring

Monitoring is a sediment-remediation assessment technology to verify achievement of project RAOs. For this FS, the following two monitoring categories are assumed: (1) construction monitoring, which is short-term during construction to ensure operational performance; and (2) long-term operation and maintenance (O&M) monitoring, to confirm that the technologies are operating as intended and that remediation objectives are being achieved. Construction monitoring ensures construction quality assurance/quality control through bathymetric surveys and verification sediment sampling. These steps, along with water quality monitoring, will confirm that human health and the environment are protected during construction. We have assumed that long-term monitoring will be needed at areas that are not remedied by removal. The scope of the monitoring program will vary depending on the remedy selected.

The details of long-term monitoring, performance standards and benchmarks, and associated contingency actions will be outlined in an operations, maintenance, and monitoring plan (OMMP) that will be developed during design, before construction. The OMMP will cover the post-construction monitoring and maintenance required to ensure long-term remedy performance. The OMMP will also outline performance expectations and potential courses of action that should be taken based on sampling results, the passage of time, or the occurrence of natural phenomena such as earthquakes or significant weather events that could disturb remedy effectiveness.

### 5.5 DESCRIPTION OF ALTERNATIVES

This section describes each alternative in detail. A summary of actively remediated areas, volumes, and the (rough order of magnitude) costs associated with each remedial alternative is presented in Table 5-2. The components of each alternative are illustrated in Figures 5-2 to 5-14.

#### 5.5.1 Alternative 1—No Action

The USEPA CERCLA guidance requires that the No Action alternative be considered for every site (USEPA, 1988). The No Action alternative reflects the site conditions described in the baseline risk assessment and remedial investigation. Under this alternative, no active remedial actions would be taken. This alternative does not meet the RAOs, but has been retained in theis FS, consistent with *National Contingency Plan* (NCP) requirements, for its use as a standard for comparing remedies.

#### 5.5.2 Alternative 2—Complete Containment

Under Alternative 2, conventional sediment capping is used to contain contaminated sediments within the remedial action area, creating a clean surface suitable for reestablishing aquatic biota. The cap will be of sufficient thickness and particle size gradation to ensure isolation of impacted sediments, and will be able to withstand erosional forces. The complete containment area covers approximately 28 acres of the AOPC, as illustrated in Figure 5-2. This alternative meets RAOs upon completion of the remedy. Common remedy elements apply0. Additional ICs are required to protect the cap.

The ICs plan for this alternative include using restrictive covenants as the primary proprietary control. Owners of property subject to the covenant will be prevented from conducting any activity that could result in the release of residual contamination or its exposure to the environment. Regulators will work closely with property owners as new developments occur to ensure that development can proceed alongside implementation of short-term controls to minimize potential residual risks. The ICs will also require regular site inspections to verify and enforce continued application of these controls.

#### 5.5.3 Alternative 3—Complete Removal

Complete-removal remedial alternatives include removal of contaminated sediments containing concentrations of risk-driver COC that are elevated above PRGs. These alternatives address

contaminant-mass removal concerns and achieve RAOs at the end of construction. Removal areas and volumes are presented in Table 5-2. Two subalternatives were developed under the complete removal scenario.

#### 5.5.3.1 Alternative 3A—Removal within AOPC Addressing Depth to 52 inches at Cow Pen Creek, Dark Head Cove, and Dark Head Creek

Alternative 3A includes removal of contaminated sediments containing elevated concentrations of risk-driver COC (i.e., concentrations above PRGs) to a depth of 52 inches. About 143,000 cubic yards of sediment over approximately 28 acres of the AOPC would be removed under this alternative. The overall removal footprint and removal areas at four depth intervals (i.e., zero to six inches, six to 18 inches, 18 to 30 inches, and 30 to 52 inches) are illustrated in Figures 5-3a and 5-3b. Common remedy elements described above will also apply.

#### 5.5.3.2 Alternative 3B—Removal within AOPC Addressing Depth to 52 inches at Cow Pen Creek and Dark Head Cove

About 99,500 cubic yards of sediment from approximately 23 acres within the AOPC will be removed under this subalternative. Alternative 3B does not include an area of approximately five acres in Dark Head Creek where RAOs for surface sediments have already been achieved through MNR. The overall removal footprint and removal areas at four depth intervals are illustrated in Figures 5-4a and 5-4b. Common remedy elements will also apply.

#### 5.5.4 Alternative 4—Combined Action

Under Alternatvie 4, a combination of active and passive remedial technologies is used to develop combined-action alternatives for the AOPC footprint to address MRC RAOs for surface sediments. This general alternative includes 10 subalternatives (i.e., 4A, 4B, 4C, 4D, 4E, 4F, 4G, 4H, 4I, 4J) to address contamination within the AOPC. Each subalternative uses a different combination of various remedial technologies (e.g., removal, capping, ENR, thick ENR, reactive ENR, *in situ* treatment, and MNR). The following methodology was applied in developing combined-action alternatives:

• *Remediation of Cow Pen Creek contaminated sediments*—Removal is considered the most appropriate cleanup action for this area, due to the shallow and (potential) erosional environment of the creek. Elevated cadmium concentrations extending to a depth of 30 inches could be re-exposed in this area, and could cause further disruption to the

benthic community by exceeding the cadmium PRGs. Removal would also allow natural restoration of creek habitat.

• *Remediation of Dark Head Cove contaminated sediments*—A combination of technologies was considered for this area, and a range of alternatives was developed. The general strategy used for selecting specific technologies was as follows:

#### Step 1: Determine the size of the removal footprint:

- a. Limited removal—areas in front of Outfall 5, where the highest PCB concentrations are located, including areas exceeding 50 ppm. These high PCB concentration areas are targeted for removal to meet project RAOs and TSCA 40 Code of Federal Regulations [CFR] 761.61 requirements. Removal is the preferred remedy at these locations, and will allow potential future development planned in front of outfalls and along the bulkhead.
- b. Expanded removal—includes the limited removal area above, plus an additional area in front of the bulkhead where elevated concentrations of PCBs, PAHs, and metals have been found. Removal in this area allows potential future development planned along the bulkhead.

## Step 2: Assign other active remedial technologies in remaining areas of the AOPC, based on their effectiveness:

- a. Capping is an effective technology to remediate all contaminated sediments in Dark Head Cove. Application of capping was limited to a few alternatives (Alternatives 4A, 4D, 4E) due to concerns about the federal navigation status of Dark Head Cove.
- b. Enhanced natural recovery reduces sediment contaminant concentrations in the active zone by up to 50%. Concentrations of each COC in each polygon were evaluated to determine if ENR alone is effective inachieving PRGs at the end of the construction.
  - For areas in which ENR alone is sufficient to meet the PRGs at the end of the construction, the technology was applied (Alternatives 4A, 4D, 4E).
  - For areas in which ENR alone is not sufficient to meet the PRGs at the end of construction, thick ENR, which reduces sediment concentrations further, or MNR, was considered (Alternatives 4A, 4D, 4E).
- c. *In situ* treatment by application of activated carbon may reduce total PCBs, BaPEq, and mercury concentrations by 50%, and metal concentrations by 20% (Section 5.2.4). Concentrations of each COC in each polygon were evaluated to determine if *in situ* treatment alone would be effective in achieving PRGs at the end of the construction.
  - For areas where *in situ* treatment alone is sufficient to meet the PRGs at the end of the construction, the technology was applied (Alternatives 4B, 4G, 4J).

- For areas where *in situ* treatment alone is not sufficient to meet the PRGs at the end of construction, additional ENR (which would further reduce sediment concentrations) and/or MNR were considered (Alternatives 4B, 4G).
- d. Reactive ENR provides the effectiveness of both ENR and *in situ* treatment technologies by mixing activated carbon with sand, then placing it as a thin layer over the sediments. Concentrations of each COC in every polygon in Dark Head Cove would achieve PRGs at the end of the construction through reactive ENR. Application of reactive ENR was limited to a few alternatives, due to concerns about the federal navigation status of Dark Head Cove (Alternatives 4C, 4F).
- e. Monitored natural recovery was considered at locations where ENR or in situ treatment technologies will not achieve PRGs at the end of the construction (Alternatives 4B, 4D, 4G). Monitored natural recovery was also evaluated as the sole remedial technology for individual areas (Alternative 4E, 4H, 4J).
- f. Additional removal was considered for locations where an active remediation technology will be applied (e.g., *in situ* treatment), but further MNR is needed to achieve PRGs, and where the MNR duration was estimated to be longer than 20 years (Alternatives 4I, 4J).

Actively remediated areas and volumes are summarized in Table 5-2. Combined-action alternatives will all eventually meet RAOs, but the time to completion for each remedy varies. The performance of each subalternative in meeting RAOs is discussed in the screening evaluation of the alternatives (see Section 5.6).

#### 5.5.4.1 Alternative 4A—Removal in Cow Pen Creek, Limited Removal in Front of the Dark Head Cove Bulkhead, Capping, ENR, Thick ENR, and MNR

Components of this alternative are illustrated in Figure 5-5. Removal areas are focused on Cow Pen Creek and a small area in front of the Dark Head Cove bulkhead where the highest PCB concentrations (20 to 54 ppm) in MRC sediments are located. About 26,600 cubic yards of contaminated sediment will be removed within seven acres of the AOPC (Table 5-2). Capping will be the next remedial technology, to be applied over an additional seven acres of sediment in front of the bulkhead. The rest of the AOPC will be managed through a combination of thick ENR (two acres), ENR (two acres), and MNR (three acres). Common remedy elements will also be applied, and additional ICs for property and water use restrictions will be required to protect the cap areas.

#### 5.5.4.2 Alternative 4B—Removal in Cow Pen Creek, Limited Removal in Front of the Dark Head Cove Bulkhead, in situ Treatment, ENR, and MNR

This alternative is similar to Alternative 4A, but targets removal of about one more acre of elevated PCB concentration (greater than 4 ppm) sediment in front of the bulkhead. Thus, approximately 29,700 cubic yards of contaminated sediment will be removed (over about eight acres) within AOPC. *In situ* treatment will be applied to the rest of the AOPC (approximately 13 acres). To meet RAOs, 1.6 acres of the 13 acres will receive ENR and 5.3 acres will require MNR, in addition to the *in situ* treatment.

The components of the remedy are illustrated in Figure 5-6, and remedy metrics are summarized in Table 5-2. Common remedy elements will also be applied. Additional ICs related to property and water use restrictions will not be needed because there is no cap area under this alternative. *In situ* treatment and ENR areas are designed to meet RAOs through complete mixing of surface sediments. Disturbance of these areas through property and water use activities is therefore not an issue and no additional IC beyond common remedy elements will be required.

#### 5.5.4.3 Alternative 4C—Removal in Cow Pen Creek, Limited Removal in Front of the Dark Head Cove Bulkhead, and Reactive ENR

Alternative 4C (Figure 5-7) includes the same removal footprint and volume as in Alternative 4B. The rest of the AOPC (about 13 acres) will be remediated by reactive ENR (an assumed 6-inch layer of sand mixed with activated carbon). Common remedy elements will also be applied. No additional ICs beyond common remedy elements will be required. The components of the remedy are illustrated in Figure 5-7, and its metrics are summarized in Table 5-2.

#### 5.5.4.4 <u>Alternative 4D—Removal in Cow Pen Creek and in Front of the Dark</u> Head Cove Bulkhead, Capping, ENR, and MNR

The components of this alternative are illustrated in Figure 5-8a. Removal areas are focused on Cow Pen Creek and in front of the bulkhead. About 48,800 cubic yards of sediments will be removed over 12.5 acres within the AOPC. The removal area targets high PCB locations to meet RAO 1, and is designed to remove the most contaminant mass relative to total dredge volume. Figure 5-8b shows the removal areas divided into four depth intervals. About 1.5 acres will be capped in front of the Wilson Point Park, a location of elevated PCB and mercury concentrations.

This alternative also includes about four acres of ENR and five acres of MNR (Table 5-2). Common remedy elements will be applied. Additional ICs for property and water use restrictions will be required to protect the cap areas.

#### 5.5.4.5 <u>Alternative 4E—Removal in Cow Pen Creek and in Front of the Dark</u> <u>Head Cove Bulkhead, Capping, ENR, Thick ENR, and MNR</u>

Alternative 4E is similar to 4D in that the removal and capping areas are the same. Alternative 4E includes applying a thicker ENR layer (12 to 18 inches) over two acres to achieve RAOs at the end of the construction. and to reduce MNR areas by two acres within the AOPC. Common remedy elements will also be applied. Additional ICs for property and water use restrictions will be required to protect the cap areas. Components of this remedy are illustrated in Figure 5-9, and its metrics are summarized in Table 5-2.

#### 5.5.4.6 Alternative 4F—Removal in Cow Pen Creek and in Front of the Dark Head Cove Bulkhead plus Reactive ENR

Alternative 4F includes a removal volume similar to those of Alternatives 4D and 4E, and will target removal areas in Cow Pen Creek and in front of the Dark Head Cove bulkhead (Figure 5-10). About 48,800 cubic yards of contaminated sediments will be removed over 12.5 acres within the AOPC (Table 5-2). Reactive ENR will be applied to the rest of the 8.5-acre area. This combined-action alternative is designed to meet RAOs at the end of construction due to the effectiveness of reactive ENR (i.e., placing a thin layer of activated-carbon-amended sand over the contaminated sediments). Common remedy elements will be applied.

#### 5.5.4.7 <u>Alternative 4G—Removal in Cow Pen Creek and in Front of the Dark</u> <u>Head Cove Bulkhead, in situ Treatment, and MNR</u>

Alternative 4G would involve removal of the same volume of material as in Alternative 4F (Figure 5-11). *In situ* treatment will be applied to the rest of the 8.5-acre area. Conservative assumptions regarding the effectiveness of activated carbon treatment indicate that about four acres of the *in situ* treatment area will require natural recovery (MNR) to meet RAOs. Common remedy elements would be applied.

#### 5.5.4.8 Alternative 4H—Removal in Cow Pen Creek and in Front of the Dark Head Cove, and Bulkhead MNR

Alternative 4H includes removal of the same volume of material as in Alternatives 4D, 4E, 4F and 4G (Figure 5-11). The rest of the AOPC (about 8.5 acres) will be monitored to verify that natural recovery (MNR) is meeting RAOs. This alternative is designed as the most efficient way of removing contaminated mass from the site, and does not disturb the rest of the AOPC. Common remedy elements will be applied.

#### 5.5.4.9 Alternative 4I—Removal in Cow Pen Creek and Dark Head Cove, and MNR

Alternative 4I is similar to Alternative 4H, but it expands the removal area by approximately 3.5 acres. The additional area includes more Dark Head Cove polygons that contain high COC concentrations (Figures 5-13a and 5-13b), and will require a longer period of MNR to meet RAOs. About 62,900 cubic yards of contaminated sediment will be removed over 16 acres within the AOPC (Table 5-2) under this alternative. The rest of the AOPC, about five acres, will be monitored to verify that MNR is meeting RAOs. Figure 5-13b shows the removal areas divided into four depth intervals. Common remedy elements will also apply.

#### 5.5.4.10 <u>Alternative 4J—Removal in Cow Pen Creek and Dark Head Cove,</u> in situ Treatment, and MNR

Alternative 4J involves the same removal footprint and volume as in Alternative 4I, entails *in situ* treatment of about two acres, and MNR of about three acres within the AOPC (Figure 5-14 and Table 5-2). This alternative is designed to minimize reliance on MNR (compared to Alternative 4I) and *in situ* treatment (compared to Alternative 4G) to achieve RAOs. The size of the *in situ* treatment area is designed to match typical *in situ* treatment pilot-tests. Common remedy elements will be applied.

#### 5.6 SCREENING ANALYSIS OF ALTERNATIVES

Screening analysis of the long list of remedial alternatives was performed per USEPA CERCLA guidance (USEPA, 1988). The guidance recommends that the long list of defined alternatives be evaluated according to three broad criteria: *effectiveness, implementability,* and *cost.* The screening evaluation is intended to reduce the number of alternatives that will undergo the detailed analysis.

The evaluation screening criteria used and evaluation results are discussed below. The screening evaluation of the long list of MRC remedial alternatives is summarized in Table 5-3.

#### 5.6.1 Effectiveness Evaluation

Each alternative was evaluated qualitatively as to its effectiveness in providing human health and environmental protection and the reducing toxicity, mobility, or volume of COC (Table 5–3). Both short- and long-term effectiveness components were considered. Alternatives with *in situ* treatment components provide effectiveness through reduced COC bioavailability via application of activated carbon.

Complete-capping and removal alternatives (Alternative 2, 3A, 3B) are highly effective for overall protection of human health and environment when compared to the combined-action alternatives. Most combined-action alternatives provide moderate to high effectiveness; RAOs would be achieved for the combined alternatives in varying durations after the end of the construction, depending on performance of *in situ* treatment and MNR components. Areas addressed by thick ENR and reactive ENR would be highly effective in meeting RAOs immediately following construction. No alternative was screened out due to its effectiveness.

#### 5.6.2 Implementability Evaluation

Implementability is a measure of the technical and administrative feasibility of constructing, operating, and maintaining a remedial action alternative. Specific site characteristics considered during the technology screening in Section 4 were also considered during the implementability evaluation of the remedial alternatives. Technical feasibility refers to the ability to construct, operate, and meet technology-specific regulations. It also includes the long-term operation, maintenance, replacement, and monitoring of technical components of the alternative, if needed. Administrative feasibility refers to the ability to obtain approvals from government agencies, the availability of treatment, storage, and disposal services, and the capacity and availability of equipment and technical expertise. Thus, the more difficult the administrative procedures and approvals are, and the more federal requirements exist for an alternative, the lower is its administrative feasibility.

The most important implementability restriction associated with evaluating the alternatives is the use of Dark Head Cove as part of the Middle River authorized federal navigation channel, which is

subject to maintenance by the USACE. Any construction that would decrease the depth of surface water shallower than the authorized project depth of -10 feet MLLW would not likely be allowed by the USACE. Alternatives 2, 4A, 4C, 4D, 4E were screened out due to their low administrative feasibility (Table 5-3). Alternative 4F is retained even though it has a reactive ENR component. It was retained for consideration by USEPA and MDE, and for further coordination by USACE, in case reactive ENR is a remedy component preferred by these agencies.

Future land uses were another evaluation factor regarding alternative implementability. Alternatives that leave contamination in front of the bulkhead (i.e., 4A, 4B, and 4C) were not retained because residuals contamination would limit options for potential future development along the bulkhead in Dark Head Cove.

#### 5.6.3 Cost Evaluation

For screening analysis purposes, rough order of magnitude cost estimates were computed for the alternatives evaluated (Table 5-2). Screening-level cost estimates were developing using generic unit costs, conventional cost-estimating guides, and earlier similar estimates as modified by site-specific information. The relative cost of each alternative was considered, but no MRC remedial alternatives was screened out due to its cost.

### 5.7 COMMUNITY OUTREACH PROCESS

In addition to evaluating remedial alternatives using criteria of effectiveness, implementability, and cost, community input through Lockheed Martin's community outreach efforts was considered in identifying the short list of alternatives. Lockheed Martin organized a public information session and three follow-up working group meetings to keep the community informed about environmental cleanup activities associated with sediments at MRC. The public information session was held on January 18, 2012, during which Lockheed Martin's plan for evaluating cleanup options for sediments near the MRC was presented (Lockheed Martin, 2011). Following the information session, three monthly education and involvement working group meetings were held on February 23, March 21, and April 26, 2012. Sediment characterization, risk assessment, remedial technologies and approaches, and a subset of remedial alternatives and evaluations were reviewed during these meetings.

The outreach process also enabled community input for evaluation of the alternatives. A summary of this input and a matrix of comments received from the community are included in Appendix D.

The working group members noted that the cost may be excessive compared to the benefits for complete removal alternatives, even though a total cleanup is considered ideal. Long construction periods and short-term disruption to the community were among other concerns related to the complete-removal alternatives.

Alternatives with partial removal and with components of *in situ* treatment and MNR received supportive comments from the public because they would meet all RAOs and are associated with lower cost, shorter construction time, and less disruption to the environment and community. The community also noted their concerns regarding the length of recovery through MNR in certain areas, the introduction of activated carbon to the water, and the effectiveness of activated carbon treatment. All the remedial alternatives reviewed by the public, as well as two additional alternatives (Alternatives 4I and 4J) developed based on the feedback received during the outreach process, are retained in the short list of alternatives and carried forward for detailed evaluation (see Section 5.8).

## 5.8 SHORT LIST OF REMEDIAL ALTERNATIVES

A short list of remedial alternatives (see Table 5-3) was established for MRC sediments based on the initial screening process (Section 5.6) and community input (Section 5.7). The alternatives carried forward for detailed and comparative evaluation in this FS are as follows:

- *Alternative 1—No action:* This alternative is retained to provide a baseline against which to compare the other remedial alternatives.
- *Alternative 3—Complete removal:* This alternative involves dredging sediments with the highest concentration of risk-driver COC in the AOPC footprint, where risk-driver COC concentrations are greater than RALs at any depth. This alternative has two subalternatives (i.e., 3A and 3B) that define the extent of removal within the AOPC footprint; both are retained for further detailed evaluation. Section 5.5.3 contains a detailed description of removal alternatives.
- Alternative 4—Combined action: The combined-action alternatives use a combination of active and passive remedial technologies in the AOPC footprint to address MRC RAOs in surface sediments. Five of the 10 subalternatives (i.e., 4F, 4G, 4H, 4I, 4J) are retained for further evaluation. The remedial technologies of removal, ENR, reactive ENR, *in situ* treatment, and MNR address the AOPC. Combined-action alternatives meet the RAOs upon completion of each remedy, but the time to achieve RAOs varies. The performance of each subalternative that meets RAOs is discussed in the detailed evaluation of the alternatives. Section 5.5.4 contains a detailed description of the retained combined-action alternatives.

#### Table 5-1

#### Summary of Preliminary Remediation Goals and Remedial Action Levels for Risk-Driver Chemicals of Concern at

Lockheed Martin Middle River Complex

| Risk-driver<br>chemical of<br>concern | Spatial scale of exposure | PRG               | AOPC RAL             |
|---------------------------------------|---------------------------|-------------------|----------------------|
| Total PCBs                            | Site-wide                 | 195 (background)  | $1,100^{(1)}$        |
| (µg/kg dw)                            | Point                     | 676               | 676                  |
| BaPEq<br>(µg TEQ/kg                   | Site-wide                 | 700 (background)  | 6,500 <sup>(2)</sup> |
| dw)                                   | Point                     | N/A               | N/A                  |
| Arsenic                               | Site-wide                 | 18.3 (background) | N/A <sup>(3)</sup>   |
| (mg/kg dw)                            | Point                     | N/A               | N/A                  |
| Lead                                  | Site-wide                 | N/A               | N/A                  |
| (mg/kg dw)                            | Point                     | 190               | 190 <sup>(4)</sup>   |
| Cadmium                               | Site-wide                 | N/A               | N/A                  |
| (mg/kg dw)                            | Point                     | 9.96              | 9.96 <sup>(4)</sup>  |
| Copper                                | Site-wide                 | N/A               | N/A                  |
| (mg/kg dw)                            | Point                     | 298               | 298 <sup>(4)</sup>   |
| Mercury                               | Site-wide                 | N/A               | N/A                  |
| (mg/kg dw)                            | Point                     | 1.06              | 1.06 <sup>(4)</sup>  |
| Zinc                                  | Site-wide                 | N/A               | N/A                  |
| (mg/kg dw)                            | Point                     | 459               | 459 <sup>(4)</sup>   |

Notes:

<sup>1</sup>RAL to achieve the site-wide PCB PRG. However, the RAL to achieve the point-based PRG for PCB is 676 ppb. Therefore, the AOPC RAL for PCBs is 676 ppb.

<sup>2</sup>RAL to achieve the site-wide BaPEq PRG. Baseline site-wide area weighted-average concentration (SWAC) for BaPEq is 763 ppb and BAP coexists with PCBs where a remedial action is applied to meet the point-based PRGs for PCBs. Therefore, the applied RAL for BaPEq varies and is less than 6,500 ppb.

<sup>3</sup>RAL to achieve the site-wide PRG for arsenic is not applicable. Baseline SWAC for arsenic is 7.8 ppm and meets site-wide PRG for arsenic.

<sup>4</sup>RALs to achieve the point-based PRGs

AOPC = Area of Potential Concern; PRG = Preliminary Remediation Goal; RAL = Remedial Action Level; N/A=Not Applicable.

| Remedial Alterr         | natives | Description                                                                                                     | Removal Area<br>(Acres) | Dredge<br>Volume (cy)<br>(Neat Volume) <sup>1/</sup> | Dredge<br>Volume (cy)<br>(FS Volume) <sup>1/</sup> | Cap Area<br>(Acres) | MNR Area<br>(Acres) | ENR Area<br>(Acres) | Thick ENR<br>Area (Acres) | In situ<br>Treatment<br>Area (Acres) |         | Reactive ENR<br>Area (Acres) | Cap and Dredge<br>Residual<br>Backfill Volume<br>(cy) <sup>2/</sup> | ENR<br>Volume<br>(cy) <sup>2/</sup> | Reactive ENR<br>Volume (cy) <sup>2/</sup> | ROM FS Level<br>Capital Cost<br>Estimate<br>(MM\$) <sup>3/</sup> | ROM FS Level<br>OM&M Cost<br>Estimate<br>(MM\$) <sup>4/</sup> | ROM FS Level<br>Total Cost<br>Estimate |
|-------------------------|---------|-----------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------|----------------------------------------------------|---------------------|---------------------|---------------------|---------------------------|--------------------------------------|---------|------------------------------|---------------------------------------------------------------------|-------------------------------------|-------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------|
| No Action               | 1       | Baseline alternative used for comparison to other<br>alternatives.                                              | n/a                     | n/a                                                  | n/a                                                | n/a                 | n/a                 | n/a                 | n/a                       | n/a                                  | n/a     | n/a                          | n/a                                                                 | n/a                                 | n/a                                       | n/a                                                              | n/a                                                           | n/a                                    |
| Complete<br>Containment | 2       | Capping over the AOPC (combined COCs footprint)                                                                 | 0.00                    | 0.00                                                 | 0.00                                               | 27.99               | 0.00                | 0.00                | 0.00                      | 0.00                                 | 0.00    | 0.00                         | 158,100                                                             | 0.00                                | 0.00                                      | \$20.6                                                           | \$14.00                                                       | \$34.5                                 |
| Complete<br>Removal     | ЗA      | Removal over the AOPC (combined COCs footprint)                                                                 | 27.99                   | 95,419                                               | 143,128                                            | 0.00                | 0.00                | 0.00                | 0.00                      | 0.00                                 | 0.00    | 0.00                         | 33,300                                                              | 0.00                                | 0.00                                      | \$43.0                                                           | \$0.00                                                        | \$43.0                                 |
| Removal                 | 3B      | Removal at CPC, DHC                                                                                             | 23.21                   | 66,365                                               | 99,547                                             | 0.00                | 0.00                | 0.00                | 0.00                      | 0.00                                 | 0.00    | 0.00                         | 25,500                                                              | 0.00                                | 0.00                                      | \$30.2                                                           | \$0.00                                                        | \$30.2                                 |
| Combined Action         | 4A      | Cow Pen Creek partial removal, Dark Head Cove<br>limited removal, capping, thick ENR, MNR over the<br>AOPC.     | 6.95                    | 17,731                                               | 26,597                                             | 6.78                | 3.15                | 2.17                | 1.97                      | 0.00                                 | 0.00    | 0.00                         | 46,800                                                              | 8,400                               | 0.00                                      | \$14.4                                                           | \$7.03                                                        | \$21.4                                 |
|                         | 4B      | Cow Pen Creek partial removal, Dark Head Cove<br>limited removal, in situ treatment, ENR, MNR over<br>the AOPC. | 7.87                    | 19,784                                               | 29,676                                             | 0.00                | 5.33                | 1.58                | 0.00                      | 13.14                                | 410,480 | 0.00                         | 9,600                                                               | 3,900                               | 0.00                                      | \$12.4                                                           | \$6.57                                                        | \$19.0                                 |
|                         | 4C      | Cow Pen Creek partial removal, Dark Head Cove<br>limited removal, reactive ENR over the AOPC.                   | 7.87                    | 19,784                                               | 29,676                                             | 0.00                | 0.00                | 0.00                | 0.00                      | 0.00                                 | 0       | 13.14                        | 9,600                                                               | 0                                   | 21,300                                    | \$12.5                                                           | \$6.57                                                        | \$19.0                                 |
|                         | 4D      | Cow Pen Creek and Dark Head Cove partial<br>removal, capping, ENR, MNR over the AOPC.                           | 12.49                   | 32,522                                               | 48,783                                             | 1.50                | 5.12                | 3.87                | 0.00                      | 0.00                                 | 0       | 0.00                         | 23,700                                                              | 6,300                               | 0.00                                      | \$17.1                                                           | \$4.26                                                        | \$21.3                                 |
|                         | 4E      | Cow Pen Creek and Dark Head Cove partial<br>removal, capping, thick ENR, MNR over the AOPC.                     | 12.49                   | 32,522                                               | 48,783                                             | 1.50                | 3.15                | 1.91                | 1.97                      | 0.00                                 | 0       | 0.00                         | 23,700                                                              | 7,900                               | 0.00                                      | \$17.3                                                           | \$4.26                                                        | \$21.5                                 |
|                         | 4F      | Cow Pen Creek and Dark Head Cove partial<br>removal, reactive ENR over the AOPC.                                | 12.49                   | 32,522                                               | 48,783                                             | 0.00                | 0.00                | 0.00                | 0.00                      | 0.00                                 | 0       | 8.52                         | 15,200                                                              | 0                                   | 13,800                                    | \$17.2                                                           | \$4.26                                                        | \$21.5                                 |
|                         | 4G      | Cow Pen Creek and Dark Head Cove partial<br>removal, in situ treatment, MNR over the AOPC.                      | 12.49                   | 32,522                                               | 48,783                                             | 0.00                | 3.72                | 0.00                | 0.00                      | 8.52                                 | 266,094 | 0.00                         | 15,200                                                              | 0                                   | 0                                         | \$16.9                                                           | \$4.26                                                        | \$21.1                                 |
|                         | 4H      | Cow Pen Creek and Dark Head Cove partial<br>removal, MNR over the AOPC.                                         | 12.49                   | 32,522                                               | 48,783                                             | 0.00                | 8.52                | 0.00                | 0.00                      | 0.00                                 | 0       | 0.00                         | 15,200                                                              | 0.00                                | 0.00                                      | \$15.1                                                           | \$4.26                                                        | \$19.4                                 |
|                         | 41      | Cow Pen Creek and Dark Head Cove partial<br>removal, MNR over the AOPC.                                         | 15.95                   | 41,927                                               | 62,890                                             | 0.00                | 5.06                | 0.00                | 0.00                      | 0.00                                 | 0       | 0.00                         | 19,300                                                              | 0.00                                | 0.00                                      | \$19.5                                                           | \$2.53                                                        | \$22.0                                 |
|                         | 4J      | Cow Pen Creek and Dark Head Cove partial<br>removal, in situ treatment, MNR over the AOPC.                      | 15.95                   | 41,927                                               | 62,890                                             | 0.00                | 3.15                | 0.00                | 0.00                      | 1.91                                 | 59,640  | 0.00                         | 19,300                                                              | 0.00                                | 0.00                                      | \$19.9                                                           | \$2.53                                                        | \$22.4                                 |

Table 5-2 Remedial Alternatives - Actively Remediated Area, Volume and Cost Summary

#### Notes:

<sup>1/</sup>Neat dredge volumes were estimated by utilizing Thiessen polygons. For FS costing purpose, neat dredge volume was increased by 50% to account for the various causes of volume creep following the guidance by Palermo and Gustavson (2009).

<sup>2/</sup> Cap volume was estimated using 3.5 ft layer of sand over cap footprint to reach minimum 3 feet coverage. ENR material volume was estimated assuming 12 inch layer of sand over the footprint to reach minimum 6 inch coverage. Thick ENR material volume was estimated assuming 18 inch layer of sand over the footprint to reach minimum 6 inch coverage. Reactive ENR volumewas estimated assuming 12 inch layer of sand over the footprint to reach minimum 6 inch coverage. Dredge residual backfill material volume was estimated assuming 9 inch layer of sand over the footprint to reach minimum 6 inch coverage. Dredge residual backfill material volume was estimated assuming 9 inch layer of sand over the footprint to reach minimum 6 inch coverage. Activated carbon amount was estimated as 35,000 kg/ha (31,232 lb/acre).

<sup>37</sup> Total direct, indirect costs (e.g. labor, equipment, material costs), and contingencies. ROM level cost estimate expected accuracy range is -50 to +100 percent. ROM capital unit cost is \$270/cy for dredge; \$130/cy for cap, ENR, dredge residual backfill placement; \$200K/acre for in situ treatment; \$150/cy for capital unit cost is \$270/cy for dredge; \$130/cy for cap, ENR, dredge residual backfill placement; \$200K/acre for in situ treatment; \$150/cy for capital unit cost is \$270/cy for dredge; \$130/cy for cap, ENR, dredge residual backfill placement; \$200K/acre for in situ treatment; \$150/cy for capital unit cost is \$270/cy for dredge; \$130/cy for cap, ENR, dredge residual backfill placement; \$200K/acre for in situ treatment; \$150/cy for cap, ENR, dredge residual backfill placement; \$200K/acre for in situ treatment; \$150/cy for cap, ENR, dredge residual backfill placement; \$150/cy for cap, ENR, dredge residual backfill placement; \$200K/acre for in situ treatment; \$150/cy for cap, ENR, dredge residual backfill placement; \$200K/acre for in situ treatment; \$150/cy for cap, ENR, dredge residual backfill placement; \$200K/acre for in situ treatment; \$150/cy for cap, ENR, dredge residual backfill placement; \$200K/acre for in situ treatment; \$150/cy for cap, ENR, dredge residual backfill placement; \$200K/acre for in situ treatment; \$150/cy for cap, ENR, dredge residual backfill placement; \$1

<sup>4/</sup> Total periodic costs (e.g. O&M, monitoring, ICs). ROM level cost estimate expected accuracy range is -50 to +100 percent. ROM OM&M unit cost is \$0 for dredge; \$50K/acre for other areas in 30 years assuming 10 monitoring events.

AOPC=Area of potential concern; COC=Contaminant of concern; ENR=Enhanced natural recovery; MNR=Monitored natural recovery; FS=Feasibility study; ROM=Rough order of magnitude

# Table 5-3Screening Analysis of Draft Remedial AlternativesMiddle River Complex, Middle River, Maryland

| Remedial Alt            | ternatives <sup>1/</sup>                                               | Description/Highlights                                                                                                                                                                                                                                                                                 | Effectiveness    | Implementability                                                                                                        | Cost            | Screening Decision                                                                                                |
|-------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------|
| No Action               | 1                                                                      | • CERCLA baseline alternative used for comparison to other alternatives.                                                                                                                                                                                                                               | None             | High                                                                                                                    | None            | Retained<br>Baseline alternative                                                                                  |
| Complete<br>Containment | 2                                                                      | <ul> <li>Containment of impacted surface sediments by conventional capping over the AOPC</li> <li>28 acre cap; 158,100 cy cap; 28 acre long-term OM&amp;M</li> <li>\$34.5M</li> </ul>                                                                                                                  | High             | Low administrative<br>feasibility due federal<br>navigation channel status of<br>DHC                                    | High            | Not retained<br>Cost prohibitive<br>Capping is not likely to<br>be permittable by the<br>USACE                    |
| Complete<br>Removal     | 3A                                                                     | <ul> <li>Removal of impacted sediments over the AOPC</li> <li>143,200 cy removal; 33,300 cy backfill</li> <li>\$43M</li> </ul>                                                                                                                                                                         | High             | Low implementability due to<br>complexity of large scale<br>removal                                                     | High            | Retained                                                                                                          |
|                         | 3B                                                                     | <ul> <li>Removal of impacted sediments over the AOPC</li> <li>99,600 cy removal; 25,500 cy backfill</li> <li>\$30.2M</li> </ul>                                                                                                                                                                        | High             | Low implementability due to<br>complexity of large scale<br>removal                                                     | High            | Retained                                                                                                          |
| Combined<br>Action      | 4A<br>Limited Removal,<br>Cap, Thick layer<br>ENR, MNR                 | <ul> <li>Removal in CPC, limited removal in DHC with high concentration COCs (polygons 9, 27, 58).</li> <li>26,600 cy removal over 7 acre; 55,200 cy cap, ENR, backfill; 3.2 acre MNR; 14 acre long-term OM&amp;M</li> <li>\$21.4M</li> </ul>                                                          | Moderate to high | Low administrative<br>feasibility of cap and ENR<br>due federal navigation<br>channel status of DHC                     | Moderate        | Not retained<br>Capping is not likely to<br>be not permittable by<br>the USACE                                    |
|                         | 4B<br>Limited Removal, <i>In</i><br><i>situ</i> Treatment,<br>ENR, MNR | <ul> <li>Removal in CPC, limited removal in DHC with high concentration COCs (polygons 9, 27, 28, 58, 59, 88).</li> <li>29,700 cy removal over 8 acre; 13,500 cy backfill, ENR; 13 acre in situ treatment; 5.3 acre MNR; 13 acre long-term OM&amp;M</li> <li>\$19M</li> </ul>                          | Moderate to high | Moderate to high                                                                                                        | Low to moderate | Not retained<br>Leaving contamination<br>along the bulkhead in<br>DHC may limit options<br>for future development |
|                         | 4C<br>Limited Removal,<br>Reactive ENR,<br>MNR                         | <ul> <li>Removal in CPC, limited removal in DHC bulkhead<br/>and outfalls with high concentration COCs (polygons<br/>9, 27, 28, 58, 59, 88).</li> <li>29,700 cy removal over 8 acre; 9,600 cy backfill; 13<br/>acre reactive ENR (21,300 cy); 13 acre long-term<br/>OM&amp;M</li> <li>\$19M</li> </ul> | Moderate to high | Low to moderate<br>Low administrative<br>feasibility of reactive ENR<br>due federal navigation<br>channel status of DHC | Low to moderate | Not retained<br>Leaving contamination<br>along the bulkhead in<br>DHC may limit options<br>for future development |
|                         | 4D<br>Partial Removal,<br>Cap, ENR, MNR                                | <ul> <li>Removal in CPC, DHC bulkhead and outfalls</li> <li>48,800 cy removal over 12.5 acres; 30,000 cy cap,<br/>ENR, backfill; 5.1 acre MNR; 8.5 acre long-term<br/>OM&amp;M</li> <li>\$21.3M</li> </ul>                                                                                             | Moderate to high | Low administrative<br>feasibility of cap and ENR<br>due federal navigation<br>channel status of DHC                     | Moderate        | Not retained<br>Capping is not likely to<br>be permittable by the<br>USACE                                        |

## Table 5-3 (continued)Screening Analysis of Draft Remedial AlternativesMiddle River Complex, Middle River, Maryland

| Remedial Al                   | Iternatives <sup>1/</sup>                                              | Description/Highlights                                                                                                                                                                                                                                                                                                       | Effectiveness    | Implementability                                                                                                              | Cost                                                                                                              | Screening Decision                                                                                                    |
|-------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Combined<br>Action<br>(con't) | 4E<br>Partial Removal,<br>Cap, Thick layer<br>ENR, MNR                 | <ul> <li>Removal in CPC, DHC bulkhead and outfalls</li> <li>48,800 cy removal over 12.5 acres; 31,600 cy cap,<br/>ENR, backfill; 3 acre MNR; 8.5 acre long-term<br/>OM&amp;M</li> <li>\$21.5M</li> </ul>                                                                                                                     | Moderate to high | Low administrative<br>feasibility of cap and ENR<br>due federal navigation<br>channel status of DHC                           | Moderate                                                                                                          | Not retained<br>Capping and thick ENR<br>is not likely to be<br>permittable by the<br>USACE                           |
|                               | 4F<br>Partial Removal,<br>Reactive ENR                                 | <ul> <li>Removal in CPC, DHC bulkhead and outfalls.</li> <li>48,800 cy removal over 12.5 acres; 15,200 cy backfill;<br/>8.5 acre reactive ENR (13,800 cy); 8.5 acre long-term<br/>OM&amp;M</li> <li>\$21.5M</li> </ul>                                                                                                       | High             | Low to moderate<br>Low administrative<br>feasibility of reactive ENR<br>areas due federal navigation<br>channel status of DHC | trative Even thoug<br>reactive ENR reactive EN<br>leral navigation likely to per<br>retained for<br>consideration | Retained<br>Even though the<br>reactive ENR is not<br>likely to permittable,<br>retained for agency<br>considerations |
|                               | 4G<br>Partial Removal, <i>In</i><br><i>situ</i> Treatment,<br>MNR      | <ul> <li>Removal in CPC, DHC bulkhead and outfalls.</li> <li>48,800 cy removal over 12.5 acres; 15,200 cy backfill;<br/>8.5 acre in situ treatment; 3.7 acre MNR; 8.5 acre<br/>long-term OM&amp;M</li> <li>\$21.1M</li> </ul>                                                                                                | Moderate to high | Moderate to high                                                                                                              | Moderate                                                                                                          | Retained                                                                                                              |
|                               | 4H<br>Partial Removal at<br>DHC, CPC, and<br>MNR                       | <ul> <li>Removal in CPC, DHC bulkhead and outfalls.</li> <li>48,800 cy removal over 12.5 acres; 15,200 cy backfill;<br/>8.5 acre of MNR and long-term OM&amp;M</li> <li>\$19.4M</li> </ul>                                                                                                                                   | Moderate         | Moderate to high                                                                                                              | Low to moderate                                                                                                   | Retained                                                                                                              |
|                               | 4I<br>Partial Removal at<br>DHC, CPC, and<br>MNR                       | <ul> <li>Removal in CPC, DHC bulkhead and outfalls, additional removal in DHC and in front of the Wilson Point Park over 3.5 acre (polygons 30, 96, 98, 64, 89)</li> <li>62,900 cy removal over 16 acres; 19,300 cy backfill; 5 acre MNR; 5 acre long-term OM&amp;M</li> <li>\$22.0M</li> </ul>                              | Moderate to high | Moderate to high                                                                                                              | Moderate                                                                                                          | Retained                                                                                                              |
|                               | 4J<br>Partial Removal at<br>DHC, CPC, <i>In situ</i><br>Treatment, MNR | <ul> <li>Removal in CPC, DHC bulkhead and outfalls, additional removal in DHC and in front of the Wilson Point Park over 3.5 acre (polygons 30, 96, 98, 64, 89)</li> <li>62,900 cy removal over 16 acres; 19,300 cy backfill; 2 acres in situ treatment; 3 acres MNR ; 5 acre long-term OM&amp;M</li> <li>\$22.4M</li> </ul> | Moderate to high | Moderate to high                                                                                                              | Moderate                                                                                                          | Retained                                                                                                              |

<sup>1/</sup> Notes:

1. Refer to Table 5-2 for remedial action areas, volumes and the rough order of magnitude cost estimates.

| 2. | Retained alternatives are highlighted.                                         |                                    |
|----|--------------------------------------------------------------------------------|------------------------------------|
|    | Acronyms:                                                                      | ENR – enhanced natural recovery    |
|    | CERCLA – Comprehensive Environmental Resource, Compensation, and Liability Act | MNR – monitored natural recover    |
|    | CPC – Cow Pen Creek                                                            | \$M – million dollars              |
|    | cy – cubic yards                                                               | OM&M – operation, maintenance, and |
|    | DHC – Dark Head Cove                                                           | USACE – United States Army Corps   |

nd monitoring s of Engineers

### Section 6 Detailed Evaluation of Remedial Alternatives

In this section, each of the short list remedial alternatives developed in Section 5 is evaluated individually according to the standard criteria specified by the United States Environmental Protection Agency (USEPA, 1988) and the *National Contingency Plan* (NCP). A comparative evaluation of the remedial alternatives is presented in Section 7 to assess the relative performance of each alternative with respect to each evaluation criterion and action level, and to identify the key tradeoffs among them.

#### 6.1 NATIONAL CONTINGENCY PLAN EVALUATION CRITERIA

The USEPA (1988) and the NCP (40 *Code of Federal Regulations* [CFR] Section 300.430[e][9][iii]) require consideration of nine evaluation criteria when evaluating remedial alternatives at Superfund sites. The NCP evaluation criteria are intended to provide a framework for assessing the risks, costs, and benefits of each remedial alternative. These nine evaluation criteria, categorized into three sets, form the basis for conducting detailed analyses and subsequently selecting an appropriate remedial action:

- *Threshold criteria:* Under the Comprehensive Environmental Resource, Compensation, and Liability Act (CERCLA), each alternative must meet the following threshold criteria to be eligible for selection as the preferred alternative:
  - o overall protection of human health and the environment
  - o compliance with applicable or relevant and appropriate requirement (ARARs)
- *Primary balancing criteria:* The five criteria listed below represent the primary criteria upon which the analysis is based:
  - o long-term effectiveness and permanence
  - o reduction of toxicity, mobility, and volume through treatment

- short-term effectiveness
- o implementability (technical and administrative feasibility)
- o cost
- *Modifying criteria:* The following modifying criteria are typically evaluated following the comment period for the proposed remedial action plan:
  - o regulatory agency acceptance
  - o community acceptance

In this feasibility study (FS), the relative performance of each alternative is assessed individually and comparatively with respect to the first seven of the nine CERCLA evaluation criteria. The two modifying criteria are typically assessed after the proposed plan has been reviewed by the Maryland Department of the Environment (MDE) and USEPA and discussed in a public meeting. During development of this FS, Lockheed Martin Corporation (Lockheed Martin) has worked directly with MDE and USEPA on the site characterization and risk assessment process, and has briefed them on draft remedial alternatives. In addition, Lockheed Martin has received input and comments from the public on the draft remedial alternatives through the community outreach process (see Section 5.7). These comments were incorporated into the detailed evaluation of the alternatives described in the sections below. They describe key ideas and concepts of the specific evaluations in this FS to determine how well an alternative addresses a particular criterion.

#### 6.1.1 Overall Protection of Human Health and the Environment

This evaluation criterion assesses whether each alternative, as a whole, achieves and maintains adequate protection of human health and the environment. In this FS, the evaluation of each alternative is focused on whether that specific alternative achieves adequate protection, and describes how site risks posed via each identified pathway are being eliminated, reduced, or controlled through treatment or engineering and institutional controls. The evaluation also considers whether an alternative poses any regulatorily unacceptable short-term impacts (USEPA, 1988).

### 6.1.2 Compliance with Applicable or Relevant and Appropriate Requirements

This evaluation criterion considers whether the remedial alternative complies with the chemical-, location-, and action-specific ARARs. The federal and state ARARs applicable to the site are

provided in Section 3 (Tables 3-1, 3-2 and 3-3). The screening described in this section is for those ARARs that relate to actions taken to implement the remedial alternatives. Approval and performance of the remedial alternatives will require that such actions comply with ARARs, to the extent practicable.

Maryland surface water quality criteria must be considered for for any alternative that involves discharges to surface water. Similarly, dredging and other in-water construction must meet specific standards under the Clean Water Act that apply to any construction activity in or near state waters. Resource Conservation and Recovery Act (RCRA) land disposal restrictions, the Toxic Substances Control Act (TSCA), and the Solid Waste Disposal Act are considered regarding disposal of dredged sediments. These ARARs are not discussed explicitly as part of the remedial alternative evaluation. All retained remedial alternatives are designed to comply with these ARARs, and required regulatory reviews and the remedial action work plan will ensure that the selected remedy also complies.

#### 6.1.3 Long-Term Effectiveness and Permanence

Long-term effectiveness and permanence provide a means of evaluating, for each alternative, final site risks once the active remedial work has been completed. General analysis factors to be considered, as appropriate, follow:

- *Magnitude of residual risk remaining at the conclusion of remedial activities:* The characteristics of residuals will be considered, to the degree that they remain hazardous, taking into account their volume, toxicity, mobility, and propensity to bioaccumulate.
- Adequacy and reliability of controls: Containment systems and institutional controls are necessary to manage residuals. These may include an assessment of controls to determine if they are sufficient to ensure that any exposure to human and environmental receptors is within protective levels.

Evaluating the magnitude of residual risks will involve identifying the residuals remaining after completion of a given remedy (i.e., remaining sediments with chemicals of concern [COC] concentrations above cleanup goals) and the time required to meet remedial action objectives (RAOs).

*Magnitude of sediment residual risks*—The magnitude of residual risks was evaluated by assessing the surface and subsurface sediment contamination remaining after implementation of a specific

remedy. The magnitude of surface contamination remaining under each remedial alternative was evaluated by estimating a site-wide area weighted-average concentration (SWAC) in residual contamination, determined for each sampling point from the historical sampling data. The weighted-average concentrations were calculated using the areas and contaminant concentrations associated with each polygon. Larger polygons were therefore given more weight in the calculation than smaller ploygons. For alternatives with a dredging component, the concentration of sediments underlying the removal interval at each location was used for the resulting initial residual surface sediment concentration.

For alternatives with an *in situ* treatment component, the site-wide residual COC concentrations in the *in situ* treatment areas were calculated by following the assumptions discussed in Section 5.2.5. The surface concentration of total polychlorinated biphenyls (PCBs), benzo(a)pyrene equivalents (BaPEq), and mercury were assumed to be reduced by 50%, and total metal concentrations were assumed to be reduced by 20% with the addition of activated carbon to surface sediments. If a location was in a reactive enhanced nautral recovery (ENR) area, the surface concentration at that location was reduced another 50%, to reflect the complete mixing of the thin layer (e.g., six inches) of clean material with the underlying surface sediments.

This site-wide area weighted-average residual surface concentration was used to determine if remedial activities applied in a given alternative will reach the preliminary remediation goals (PRGs) needed to acheive the (RAOs. The performance of each alternative in achieving PRGs for RAO 1 was assessed by estimating an incremental risk reduction (i.e., progress toward reaching RAO 1 PRGs from mean baseline conditions [the concentrations under the No Action alternative]). First, SWACs for each risk-driver COC were estimated for each remedial alternative. Then, the calculated SWACs were compared to the baseline (No Action alternative) SWACs. The results of this analysis are summarized in Table 6-2 and discussed in the detailed evaluation of each alternative.

Residual risk in subsurface sediment was evaluated by reviewing the contaminant mass remaining under surface sediments (i.e., below six inches) after the completion of the remedy, and estimating the potential risk of re-exposure. Potential mechanisms for re-exposing subsurface sediment include high-flow scour, propeller wash, construction activities, and seismic events. Sediment stability conditions of Cow Pen Creek and Dark Head Cove are discussed in Section 2.3.5. The subsurface

contaminant mass (calculated based on sum of all risk-driver COC concentrations in the dredge volume) removed under each alternative is summarized in Table 6-1, and the potential risk of reexposure is discussed in the detailed evaluation of each alternative.

*Time to meet RAOs through monitored natural recovery*—Assumptions associated with estimating the period of natural recovery necessary to meet RAOs are discussed in Section 5.2.3. The alternatives with a monitored natural recovery (MNR) component were evaluated by assuming it would take 13 years for areas in Dark Head Cove and Dark Head Creek to reach a total sediment deposition of 15 centimeters (assuming an average sedimentation rate of 0.8 centimeters per year [cm/year]); this is the amount needed to reduce concentrations of surface COC by 50%. No natural recovery is assumed for Cow Pen Creek. The results of this analysis are summarized in Tables 6-1 and 6-2, and discussed in the detailed evaluation of each alternative.

*Adequacy and reliability of controls*—Assessing the adequacy and reliability of controls focuses on monitoring, maintenance, and institutional controls (ICs). The No Action alternative is assumed to have none of these. The analysis focuses on the following considerations:

- likelihood that the remedial technologies will meet required process efficiencies or performance specifications
- type and degree of long-term management required
- long-term monitoring requirements
- operation, maintenance, and monitoring (OM&M) functions required
- difficulties and uncertainties associated with long-term OM&M functions
- potential need to replace technical components
- magnitude of threats or risks, should technical components need replacement
- confidence that controls can adequately handle potential problems
- uncertainties associated with land disposal of residuals and untreated wastes

For each combined-action alternative, site-wide monitoring and bathymetric surveys will be used to determine the condition of the remedy. Monitoring will be conducted at identified time intervals to assess the effectiveness of the remedy. Repairs, if needed, would be consistent with the original remedial design intent.

Other controls include ICs and source control. Current ICs on community information and education will remain part of any remedial alternative. The regional fish and shellfish consumption advisory program is administrated by MDE, and is independent of remedial activities to be performed at the site. These regional seafood consumption advisories will also remain in effect. Remediation of contaminated sediments in Dark Head Cove and Cow Pen Creek will reduce the baseline PCB SWAC from approximately 1,000 µg/kg to the regional background concentration of 195  $\mu$ g/kg (i.e., RAO 1 PRG). However, the calculated risk (i.e., 3.1×10<sup>-5</sup>) associated with the regional background PCB concentration also exceeds the acceptable MDE excess lifetime cancer risk of  $1 \times 10^{-5}$ . Site-specific bioaccumulation studies (sediment to fish) have not been conducted for the study area. However, remediation of sediments within the study area may not significantly reduce fish tissue concentrations (and thus risk), because the range of the fish (and therefore exposure) is beyond the study area. Fish at the site may not uniquely reflect site exposure in their tissue concentrations, but rather exposure from migration over much larger home ranges. The regional consumption advisories promulgated by MDE are due to the other sources of contamination. These sources will likely prevent reduction of fish tissue contamination levels to protective levels associated with unlimited fish consumption, regardless of the remedial action implemented at the Middle River Complex (MRC) site.

Potential recontamination is another important consideration related to long-term effectiveness and permanence under all remedial alternatives evaluated for the MRC site. As discussed in Section 2, remedial actions in upland areas of MRC are ongoing and expected to control any ongoing sources to the adjacent sediments. In this FS, potential sediment recontamination via in-water sources is a common uncertainty for each remedial alternative.

In addition to long-term institutional controls and the current fish consumption advisories, the alternatives with a removal component may also require short-term fish consumption advisories. Short-term impacts may occur during remedial construction when the highest sediment contaminant concentrations are being actively dredged. Releases of PCB have been monitored in pilot dredging studies and full-scale dredging projects. Monitoring data from pilot dredging projects performed in Fox River and Grasse River (and other early studies) showed that two to three percent of dredged PCBs were transported downstream of the project area (Bridges et al., 2008). Dissolved contaminants are more likely to migrate farther in the water column and, because they are more bioavailable, may cause short-term increases of PCB concentrations in

fish tissue. Fish captured during other large-scale removal projects (e.g., at Lower Fox River Operable Unit 1, Hudson River, Bryant Mill Pond, and as part of the Allied Paper/Kalamazoo River/Portage Creek Superfund Site) indicate that tissue concentrations of PCB may increase during dredging, but then quickly decline thereafter (Wisconsin Department of Natural Resources [WDNR], 2011).

#### 6.1.4 Reductions in Toxicity, Mobility, and Volume through Treatment

The degree to which site media are treated to permanently and significantly reduce the toxicity, mobility, or volume of site contaminants is assessed under this criterion. This assessment analyzes the destruction of toxic contaminants, the reduction of the total mass of toxic contaminants, the irreversible reduction in contaminant mobility, or the reduction in total volume of contaminated material that is accomplished by one or more treatment components of the remedial alternative. Site-specific technology evaluation of *in situ* treatment and reactive ENR are considered viable and effective remedial technologies for MRC sediments in Dark Head Cove and Dark Head Creek (refer to Section 5.2). Reductions in risk-driver COC bioavailability for each alternative with an *in situ* treatment component were evaluated under this criterion.

*In situ* treatment of MRC sediments through surface broadcasting of activated carbon pellets (or by mixing the pellets in with a thin sand layer) applied as reactive ENR was incorporated into some alternatives. As discussed in Section 4.3.8, *ex situ* treatment technologies were retained for design, but were not retained for further consideration in the MRC FS; therefore, no retained remedial alternative has an *ex situ* treatment component.

#### 6.1.5 Short-Term Effectiveness

Short-term effectiveness is evaluated based on impacts to human health and the environment during implementation of the active remediation components of each alternative. The following factors are addressed as appropriate for each alternative:

• Protection of the community during remedial actions – This aspect of short-term effectiveness addresses any risk that results from implementation of the proposed remedial action, such as dust from excavation, transportation of dredged materials, air-quality impacts from construction equipment and truck traffic, or construction noise, that may affect human health.

- Protection of workers during remedial actions This factor assesses potential physical hazard risks, and risks to workers from exposure to contaminants and operational hazards such as light, noise, and air emissions. It also assesses the effectiveness and reliability of protective measures that will be taken.
- Environmental impacts This factor addresses the potential adverse environmental impacts that may result from the construction and implementation of an alternative, including habitat disturbance, consumption of natural resource materials (e.g., for capping), landfill capacity utilization, transportation mileage, particulate matter emissions, and gas emissions, and evaluates the reliability of the available mitigation measures in preventing or reducing the potential impacts.
- Time until remedial response objectives are achieved This factor includes an estimate of the time required to achieve protection for either the entire site, or individual elements associated with specific site threats or areas.

Short-term environmental impacts of the active remedial actions were evaluated using the Naval Facilities Engineering Command (NAVFAC) *SiteWise* tool for green and sustainable remediation to calculate the environmental footprint of the remedial alternatives (NAVFAC, 2011). This method is consistent with Lockheed Martin's policy to implement green and sustainable remediation, and is consistent with the USEPA green remediation policy to enhance the environmental benefits of federal cleanup programs by promoting sustainable technologies and practices (USEPA, 2008, 2010, 2012b).

Green remediation evaluation is not a criterion for remedy selection. However, a green evaluation is presented in this FS to enhance the short-term effectiveness evaluation of each alternative.. Currently, USEPA plans to issue an Office of Solid Waste and Emergency Response (OSWER) policy on how green remediation strategies can factor into the NCP's nine evaluation criteria for remedy selection and the Superfund evaluation criteria (USEPA, 2010).

The *SiteWise* tool quantified the short-term environmental impacts (i.e., environmental footprint) of each retained remedial alternative. The potential environmental footprint of a cleanup action is associated with: (a) greenhouse gas emissions (GHG) such as carbon dioxide ( $CO_2$ ) and others contributing to climate change; (b) energy use; (c) air emissions of criteria pollutants, including nitrogen oxides ( $NO_x$ ), sulfur oxides ( $SO_x$ ), and particulate matter ( $PM_{10}$ ); (d) water consumption; (e) resource consumption; (f) landfill space; and (g) worker safety. The *SiteWise* methodology and analysis results are in Appendix F.

The Lockheed Martin and USEPA green remediation strategy recognizes that opportunities exist to decrease the environmental footprint of cleanup activities and maximize the environmental outcome of a cleanup exist throughout the life of a project, extending from site investigation through development of cleanup alternatives and remedy design, construction, operation, and monitoring (USEPA, 2008). Consistent with the Lockheed Martin green and sustainable strategy in remediation projects and the USEPA green remediation strategy, Lockheed Martin will, to the maximum extent possible during remedial design and implementation, explore and implement sustainability measures that reduce the environmental footprint of cleanup activities developed in this FS. These sustainability measures are not discussed under the detailed evaluation of short-term environmental impacts for each alternative; however, potential measures and best management practices that can be applied during cleanup activities are briefly discussed in Appendix F.

Short-term environmental impacts also include potential elevated contamination increases in fish tissues due to resuspension of contaminated sediments and release of contamination into dissolved phase during removal. Monitoring data from dredging of PCB-contaminated sediments at other sites showed that two to three percent of the dredged PCBs were transported downstream, and into the water column, resulting in short-term increases in PCB concentrations in fish tissue (refer to Section 6.1.3). Short-term institutional controls will be needed to protect human health during, and shortly after, the construction for any alternative with a removal component, to prevent human health risks when the highest sediment contaminant concentrations are being actively dredged during remedial construction.

#### 6.1.6 Implementability

This evaluation criterion considers the technical and administrative feasibility of implementing the remedial alternatives. The following implementability factors are considered:

- *Technical feasibility:* the relative ease of implementing or completing the remedial alternative, based on site-specific constraints (e.g., the constructability and operational reliability of the remedial alternative, as well as the ability to monitor the effectiveness of the remedial alternative)
- *Administrative feasibility:* coordination with other agencies (e.g., the steps required to coordinate with regulators, to establish long-term or future coordination among regulators, and the ease of obtaining permits for off-site activities, if required)

• Availability of services and materials: the availability of adequate treatment or storage facility capacity, handling/disposal facilities/services, and the availability of adequate equipment and specialists

#### 6.1.7 Cost

This criterion refers to the total cost necessary to implement each remedial alternative. Total cost represents the sum of direct capital costs (e.g., materials, equipment, labor), indirect capital costs (e.g., engineering, management, contingency allowances), and annual and periodic costs (e.g., operation and maintenance [O&M] costs, monitoring, ongoing administration). These total costs, developed to allow comparison of the remedial alternatives, are estimated with expected accuracies of -30 to +50%, in accordance with USEPA (1988) guidance.

The cost estimates developed in this FS are expressed in current (2012) dollars, and the costs of remedial alternatives are compared using the estimated present value of the alternative based on the discount factor of seven percent. The net present value method allows costs for remedial alternatives to be compared by discounting all costs according to the year that the alternative is implemented. The USEPA suggests that the period of analysis for the present value analysis be set equivalent to the expected duration of a project to provide a complete life-cycle cost estimate of the remedial alternative (USEPA, 2000).

Most of the combined remedial alternatives developed for the MRC site require long-term activities, and are calculated using discount factors consistent with USEPA estimation guidance. The discount factor is assumed to be seven percent for institutional controls and long-term operation and maintenance costs. The FS cost estimates of all alternatives were calculated for a 10 to 50 year duration, based on the expected effectiveness of each alternative (i.e., the time required to meet project RAOs at areas where MNR is implemented). Indirect costs, including bid and scope contingency, project management, remedial design, and construction management/field activity oversight, were added to capital costs as percentages of the total cost. These percentages are based on the uncertainty, total cost, and/or complexity of the project. Detailed FS cost estimates and the cost estimate assumptions used for each alternative are provided in Appendix E.

#### 6.1.8 Modifying Criteria

Modifying criteria are regulator and community acceptance, which may modify aspects of the preferred alternative. Modifying criteria are typically evaluated after the proposed plan has been

submitted to the regulators and released for public review, and following analysis of public comment on the proposed plan. During development of this FS, Lockheed Martin has worked directly with MDE and USEPA on the site characterization and risk assessment process, and has briefed both agencies on draft remedial alternatives. In addition, during development of this FS, community comments were elicited and received through Lockheed Martin's community outreach process. These comments are summarized in Section 5.7, and the complete community input matrix is provided in Appendix D. Detailed evaluation of the retained alternatives includes an assessment of community acceptance regarding the remedial actions. Agency acceptance of remedial alternatives is unknown at this time, and is therefore not discussed in the detailed evaluation of alternatives that follow.

### 6.2 DETAILED ANALYSIS OF ALTERNATIVE 1: NO ACTION

The No Action alternative reflects baseline site conditions. Alternative 1 does not include any active remediation, monitoring, or institutional controls, and contaminated sediments would be left in place.

#### 6.2.1 Threshold Criteria

The No Action alternative would not protect human health and the environment. RAOs would not be achieved in a reasonable period, the threshold criterion of achieving RAOs, one of which is to reduce ecological and human health risks associated with sediment contamination within the site to regulatorily acceptable levels, will not be met. Recent risk assessments show regulatorily unacceptable risks to human health and the environment (Tetra Tech, 2011c) under current site conditions.

All current risks would remain unabated under the No Action alternative. Natural recovery through degradation and other fate-and-transport processes will likely continue to reduce the COC concentrations. Under the No Action alternative, it will take approximately 30 years to achieve human health seafood consumption RAO 1, and up to 100 years to achieve benthic RAO 3, through natural recovery. However, changes in overall risk from the site are difficult to assess because under this alternative no monitoring would be performed.

#### 6.2.2 Primary Balancing Criteria

The magnitude of residual risks remains the same because this alternative includes no remedial actions. Any future changes will occur only through natural processes. Untreated contamination in sediment will continue to pose risks to human health and the environment. The No Action alternative is the lowest-cost alternative, but it provides limited adequacy and reliability in terms of long-term risk controls, source control, and reduction of exposure pathways. The alternative is easy to implement because no action is being taken, and would have no associated costs.

#### 6.3 DETAILED ANALYSIS OF ALTERNATIVE 3: COMPLETE REMOVAL

Alternative 3 involves removing sediments within the MRC site in areas of potential concern (AOPC) where risk-driver COC exceed PRGs, disposing the removed sediments off-site. This removal alternative includes two subalternatives (3A and 3B), that actively remediate approximately 28 or 23 acres of the AOPC, respectively (Figures 5-3 and 5-4).

#### 6.3.1 Overall Protection of Human Health and the Environment

Removal alternatives meet RAOs immediately following construction. Alternative 3A, addressing COC to a depth of 52 inches, will remove about 99 metric tons of contaminant mass, while Alternative 3B will remove about 72.2 metric tons of contaminant mass from the MRC study area. The estimated construction period for the removal alternatives is two to four years. The remedial action area, removal volume, construction time, costs, and total contaminated mass removal for each alternative is provided in Table 6–1.

Increased risks to workers and the community from the general physical hazards of construction, noise, particulate emissions, and elevated contaminant concentrations in fish and shellfish tissue can potentially occur with increased removal quantities and increased time for removal activities. Protection of workers and the community from physical injury is manageable with appropriate planning and standard construction practices. In addition to the current regional fish consumption advisories issued by MDE, institutional controls will likely be required to protect consumers of resident seafood during construction.

Removal alternatives will not leave any subsurface sediment with contaminant concentrations above PRGs; therefore, re-exposure potential following active remediation is expected to be negligible.

Long-term monitoring will not be required because all subsurface contamination is removed, and the post-remedy residual surface concentrations meet all RAO PRGs. Regional institutional controls via informational devices such as education, public outreach, and seafood consumption advisories issued by MDE will remain. Removal alternatives may also require short-term fish consumption advisories, because short-term impacts may occur when the highest sediment contaminant concentrations are being actively dredged. Removal alternatives are further evaluated for their overall protectiveness of human health and the environment via the long-term effectiveness and permanence criteria and short-term effectiveness criteria provided below.

#### 6.3.2 Compliance with ARARs

Alternative 3 would comply with the ARARs and to be considered (TBC) criteria provided in Tables 3-1 to 3-3 through adequate engineering design and the agency review process that ensures the remedy complies with these ARARs. Compliance decisions would be made and prepared during design, based on details in the remedial design and remedial action work plan and associated sections (e.g., environmental protection plan, construction quality control plan, waste management plan, transportation and disposal plan, storm water pollution and spill prevention plan, best management practices).

#### 6.3.3 Long-Term Effectiveness and Permanence

General analysis factors considered in the detailed evaluation of alternatives for their respective long-term effectiveness and permanence are the magnitude of residual risks, time to meet RAOs, and the adequacy and reliability of controls. Removal alternatives satisfy ecological and human health RAOs because receptor exposure to contaminated sediments is prevented. Alternatives 3A and 3B meet RAOs at the end of construction, and leave no surface or subsurface contamination greater than PRGs. About 72.2 to 99 metric tons of COC mass (calculated by summing all risk-driver COC concentrations in the dredge volume) will be removed by dredging 99,500 to 143,100 cubic yards of sediment, under Alternatives 3A and 3B. No long-term monitoring and maintenance requirements are needed for complete-removal alternatives.

Alternative 3A has the largest dredge area (28 acres), and thus requires a proportionately larger effort to manage dredging residuals. Alternative 3A also has the largest dredge volume (143,100 cubic yards), and requires more material handling, dredge water management, transporting, and upland disposal, compared to Alternative 3B, which involves dredging

approximately 23 acres and removing 99,500 cubic yards of sediment. The construction duration of Alternative 3A is estimated at two to four construction years; time to construct Alternative 3B is estimated at two to three years.

Post-removal-action confirmation sampling and analysis will be conducted after construction to directly measure residual conditions. Corrective actions will be taken if dredged areas fail to meet performance requirements. Current ICs associated with regional seafood consumption advisories, public outreach, and education will remain.

#### 6.3.4 Reduction in Toxicity, Mobility, or Volume through Treatment

No reduction of toxicity, mobility, or volume will be achieved through treatment under the removal alternatives, because no treatment is implemented.

#### 6.3.5 Short-Term Effectiveness

Alternative 3 risks to workers and the community from the general physical hazards of construction, noise, particulate emissions, and elevated contaminant concentrations in fish and shellfish tissue are the highest compared to other alternatives, and risks increase with increased removal quantities. Elevated COC concentrations in fish tissue often occur in large dredging projects during dredging, followed by a decline shortly after remediation is completed, typically within a year or less (WDNR, 2011). Local transportation impacts (e.g., traffic and noise) from implementing these alternatives is proportional to the estimated number of truck miles needed to support material hauling operations, and increases with proposed dredged volume increases: Alternative 3A - 9,550 truck trips, at 2,400,000 miles; Alternative 3B - 6,640 truck trips, at 1,660,000 miles; see Table 6-3).

Short-term environmental impacts for active remedial actions were estimated using the Naval Facilities Engineering Command *SiteWise* tool that assesses the environmental footprint of cleanup activities (NAVFAC, 2011). That analysis is included in Appendix F, and the results are summarized in Table 6-3.

Air emissions of criteria pollutants (including nitrogen oxides  $[NO_x]$ , sulfur oxides  $[SO_x]$ , and particulate matter  $[PM_{10}]$ ) generated from all combustion activities (e.g., dredging, residual management backfill, dredge material handling, transportation, and disposal) under Alternatives 3A and 3B are estimated at 76 metric tons and 53 metric tons, respectively. The volume of greenhouse gas generated from all combustion activity is estimated to range from 7,000 (Alternative 3B) to 10,000 (Alternative 3A) metric tons. As recommended by the USEPA green remediation policy (USEPA, 2012b), possible sustainable best-management practices that can be applied to minimize the carbon footprint for construction for all remedial alternatives were also identified (see Appendix F).

#### 6.3.6 Implementability

Technologies associated with the handling, transportation, and off-site disposal of dredged sediment are all considered technically feasible and proven technologies that have been implemented nationwide. Incidental technologies, such as dewatering, and the treatment and discharge of treated decant water, are also considered technically feasible and proven technologies. Section 5.2 describes implementation of common remedy elements associated with removal, such as residuals management, dewatering, dredge water management, transloading, and upland disposal.

Considerations used to evaluate dewatering methods include the volume of water generated by the removal technology and upland or barge staging-area space limitations. Both mechanical and hydraulic dredging are removal technologies that can be implemented for MRC sediments. Dewatering/transloading areas will be designed to accommodate the volume of sediments to be removed during each construction season (Alternative 3A: two to four construction years; Alternative 3B: two to three construction years). If mechanical dredging is used, stockpiling the dredged sediments for dewatering and processing will require an upland area of approximately 2.5 acres for Alternative 3B and 3.5 acres for Alternative 3A. If sediments are hydraulically dredged, additional upland area will be needed to place geotextile tubes (Table 6-3).

Construction of an upland dewatering/transloading area at MRC sufficient to accommodate dredged sediments per construction year is implementable for either hydraulic or mechanical dredging. Water generated at the dewatering pad will go through a water treatment process that may include pumping through bag filters, sand filters, and carbon adsorbers before being discharged back to surface water. A temporary water treatment system will be installed near the dewatering pad for dredge water management. Water generated during dredging and through dewatering including any excess polymers or other additives if used during dewatering process may need to be treated before it is allowed to be discharged, based on water quality compliance criteria. Water management is a necessary part of dredged-material transloading operations.

If both the Dark Head Cove and Cow Pen Creek contaminated sediments are removed by mechanical dredging, the volume of water generated under Alternatives 3A and 3B is estimated to be 8.7 million gallons and 6.0 million gallons, respectively. If hydraulic dredging is used to remove the sediments from Dark Head Cove, the volume of dredged water to be treated may be as much as 220 million gallons for Alternative 3A and 140 million gallons for Alternative 3B (Table 6-3). A water treatment facility will be designed and constructed to handle the estimated volume of dredged water generated each construction year.

Environmental considerations such as fish windows (construction season limited to October 15 to February 15), climate, weather, hydraulic conditions, and hydrologic conditions can be incorporated into the dredging design and implementation schedule. Dredging success can be verified through multiple methods, including real-time surveys, bathymetric surveys, and sediment sampling. Construction quality assurance/quality control and monitoring are designed to verify dredging performance.

With respect to administrative feasibility, dredging will require compliance with Sections 404 and 401 of the Clean Water Act and the Endangered Species Act. All generator requirements related to off-site transport and disposal of dredged material will be met. Resources for the removal technology are available from multiple vendors and procurable through competitive bidding.

#### 6.3.7 Costs

The estimated total cost to implement Alternatives 3A and 3B is \$41.7 and \$30.2 million, respectively; costs rise as the dredged area and volume increase. Cost information is summarized in Table 6-1. Detailed cost estimates are provided in Appendix E.

#### 6.3.8 Modifying Criteria

Modifying criteria will be evaluated after the proposed plan has been submitted to and reviewed by the regulators and released for public review. Analysis of any additional public comments on the proposed plan will be considered at that time. Regulator acceptance of Alternatives 3A or 3B is unknown at this time, but community comments were received through Lockheed Martin's community outreach process during development of this FS (see Section 5.7). Working group members expressed concern over the excessive cost of the remedy compared to its benefits for complete removal alternatives, even though a total cleanup is considered ideal. Other concerns

include the long construction period and short-term disruption to the community. Appendix D contains information related to community outreach.

## 6.4 DETAILED ANALYSIS OF ALTERNATIVE 4: COMBINED ACTION

The combined-action alternatives include various combinations of removal, ENR, reactive ENR, *in situ* treatment, and MNR technologies. Five subalternatives, Alternatives 4F, 4G, 4H, 4I and 4J, are carried forward for detailed evaluation (Figures 5-10 to 5-14). Application of the various technologies for each of the subalternatives is summarized in Table 6-1 and illustrated in Figure 6-1.

#### 6.4.1 Overall Protection of Human Health and the Environment

All retained combined-action alternatives meet RAOs, but vary in the time to reach RAOs following the completion of each remedy. The performance of each alternative in meeting RAOs is summarized in Table 6-2, and discussed in Section 6.4.3 in the long-term effectiveness and permanence evaluation. Alternative 4F will meet RAOs immediately following construction. Under Alternative 4G, site-wide RAO 1 PRGs will be met within the first year after the end of the construction (estimated at 0.3 years), but meeting point-based benthic RAO 3 may take up to 13 years. Alternative 4H would achieve 83% progress towards reaching RAO 1 PRG for PCBs (from mean baseline conditions) at the end of construction; meeting point-based RAO 3 may take up to 26 years. Alternatives 4I and 4J will meet site-wide RAO 1 PRGs at the end of construction, but in areas that undergo MNR, it could take as much as 12 and three years, respectively, to meet point-based RAO 3.

A construction duration of one to two years is estimated for the combined-action alternatives. Risks to workers and the community from the general physical hazards of construction, noise, particulate emissions, and contaminant concentrations in fish and shellfish tissue will all increase with increased removal quantities. Protection of workers and the community from physical injury is manageable with appropriate planning and standard construction practices. In addition to the current regional consumption advisories issued by MDE, short-term institutional controls will likely be required to protect consumers of resident seafood during construction.

Alternatives 4F, 4G, 4I, and 4J meet RAOs associated with human health risks related to fish consumption and direct contact with sediments (i.e., RAOs 1 and 2) at the end, or within the first

year, of construction (Table 6-2). Therefore, the re-exposure risk for these alternatives is expected to be negligible, due to the lack of potential exposure mechanisms. Long-term monitoring (to reduce risks to benthic invertebrates) will be required at areas not meeting point-based RAO 3 at the end of construction. Any re-exposure will affect the performance of the remedy in meeting RAO 3 by causing localized short-term disruption to the benthic community in the affected zone.

Alternative 4H will meet the site-wide PCB PRG for human health risks related to fish consumption (RAO 1) within approximately 10 years after the end of construction. Exposure risk that could affect RAOs 1 and 2 following active remediation of Alternative 4H is also considered negligible for Alternative 4H, due to the lack of potential exposure mechanisms. Similar to the other variants of Alternative 4, performance of this remedy in meeting RAO 3 will be affected if re-exposure occurs because of elevated COC concentrations in deeper sediments. A delay in meeting the PCB PRG for RAO 1 is expected to be negligible beyond the estimated time of 10 years needed to meet RAO 1, because localized elevated COC concentrations would have a minor effect on the SWAC. Long-term monitoring of the MNR area will verify any re-exposure and the overall performance effectiveness of the remedy. Post-remedy residual surface contaminant-concentrations will verify the effectiveness of the remedy at the end of the construction.

All combined alternatives will leave subsurface COC concentrations greater than PRGs at depths of six to 30 inches in Dark Head Cove. Potential exposure to this contamination is considered negligible, because sediment disturbance mechanisms (such as high-flow scour, seismic events, and propeller scour) at this location rarely occur. Any exposure to subsurface contamination will therefore be localized, and may cause short-term disruption to the benthic community in the affected zone, but will not pose any risk to human health through fish consumption or direct contact with sediments. These areas will be monitored under the long-term OM&M program, and contingency actions will be taken if necessary. The removal portion of the alternatives may also require short-term fish consumption advisories during remedial construction when sediments with the highest contaminant concentrations are actively dredged. Current institutional controls of informational devices such as education, public outreach, and regional seafood consumption advisories issued by MDE will remain.

#### 6.4.2 Compliance with ARARs

All combined alternatives will comply with the federal and state chemical- and location-specific ARARs and TBCs provided in Table 3-1 to 3-3. Adequate engineering planning, design, and agency review will ensure that the remedy complies with ARARs.

#### 6.4.3 Long-Term Effectiveness and Permanence

The detailed evaluation of alternatives, in terms of long-term effectiveness and permanence, includes an assessment of the magnitude of residual risks, the time to meet RAOs, and the adequacy and reliability of controls. Performance of each alternative in terms of meeting RAOs (i.e., magnitude of surface sediment residual risk) at the end of the construction, time to meet RAOs, and contaminant mass removed, are summarized in Tables 6-1 and 6-2. Alternative 4F will meet RAOs 1, 2, and 3 immediately following construction by removing about 48,800 cubic yards of sediment, containing 40.1 metric tons of contaminant mass over 12.5 acres, and applying reactive ENR over 8.5 acres.

Alternative 4G involves the same amount of sediment removal as Alternative 4F, but *in situ* treatment will be applied over 8.5 acres, instead of using reactive ENR. Site-wide PRGs for RAOs 1 and 2 will be met at the end or shortly after the end of the construction, based on the assumptions made regarding the effectiveness of *in situ* treatment. However, meeting the point-based benthic RAO 3 over approximately 3.5 acres may take up to 13 years.

Alternative 4H has the same removal footprint as Alternatives 4F and 4G, but the rest of the AOPC will not receive any active remedial actions, but will be monitored for natural recovery. At the end of construction, an estimated 83% progress towards reaching RAO 1 PRG for PCBs on a site-wide basis will be achieved compared to mean baseline conditions. Estimates of the rate of natural recovery suggest that meeting the point-based RAO 3 over approximately nine acres of the AOPC may take up to 26 years.

Alternatives 4I and 4J expand the removal volume to about 63,000 cubic yards over 16 acres, with 49.3 metric tons of contaminant mass removed. The rest of the AOPC will be remediated by MNR or *in situ* treatment. Site-wide RAOs 1 and 2 will be met at the end of construction, and MNR to meet the point-based RAO 3 may take up to 12 years for Alternative 4I, and up to three years for Alternative 4J at certain locations.

All combined alternatives will leave subsurface contamination after the remedy completion. Most subsurface COC concentrations exceeding PRGs are between six and 30 inches below the sediment surface, in areas of Dark Head Cove where dredging will not be implemented. Hydrodynamic analysis and a seismic stability assessment of the Dark Head Cove sediments do not indicate any potential re-exposure risks.

Other potential re-exposure mechanisms include propeller wash and some construction activities.. Any re-exposure due to these activities will be localized, and may cause short-term disruption to the benthic community in the affected zone. If this occurs, such re-exposure may adversely affect the ability to meet point-based PRGs associated with RAO 3. These localized exposures will not affect site-wide PRGs for meeting RAO 1. The areas remediated by reactive ENR, *in situ* treatment, and MNR will be monitored to assess occurrence of any subsurface residual re-exposure. Post-removalaction confirmation sampling and analysis will be conducted after construction to directly measure residual conditions. Corrective actions will be taken if dredged areas fail to meet performance requirements.

*In situ* treatment and natural recovery are considered viable and effective remedial technologies for Dark Head Cove due to its stable sediment environment. Long-term monitoring is needed to verify performance of the remedy at areas remediated by *in situ* treatment and MNR. The operations, maintenance, and monitoring plan (OMMP) developed during design of this remedy will outline the sampling program, performance standards, and associated contingency actions, if needed, based on these monitoring data. Current ICs (regional seafood consumption advisories issued by MDE, public outreach, and education) will remain.

#### 6.4.4 Reduction in Toxicity, Mobility, or Volume

Reduction in COC bioavailability through application of a thin reactive ENR layer or *in situ* treatment is incorporated in Alternatives 4F, 4G, and 4J. Under Alternative 4F, the reactive material (i.e., activated carbon) is mixed with sand and applied over 8.5 acres in a thin reactive ENR layer. This layer reduces contaminant migration by binding contaminants through adsorptive processes. Similarly, *in situ* treatment application under Alternatives 4G (over 8.5 acres) and 4J (over 1.9 acres) reduces the bioavailability of contaminants by applying activated carbon directly to surface sediments.

A conservative assumption based on recent research and pilot studies suggest that *in situ* treatment can effectively reduce total PCBs, BaPEq, and mercury by 50%, and total metal concentrations by 20% (Section 5.2.4). During design, an MRC-sediment treatability study will be conducted to test if the site-specific sediments are amenable to bioavailability reduction. The effectiveness assumptions made in this FS may need to be adjusted based on the treatability study results. The *in situ* treatment is considered irreversible. Long-term monitoring will gauge the effectiveness of the remedy. Institutional controls are required to prevent disturbance of *in situ* treatment areas and the underlying contaminated sediments.

#### 6.4.5 Short-Term Effectiveness

Short-term environmental impacts from the active remedial actions were estimated using the Naval Facilities Engineering Command *SiteWise* tool for assessing the environmental footprint of cleanups (Table 6-3 and Appendix F). As discussed in Section 6.3.5, the general physical hazards of construction, noise, and air emissions associated with construction pose risks to workers and the community. Local transportation impacts will be proportional to the number of truck miles estimated to transport dredged material (Alternatives 4F, 4G, 4H=3,300 truck trips and 815,000 miles; Alternatives 4I, 4J=4,200 truck trips and 1,050,000 miles). Air pollution emissions from all combustion activities correlate to the remedial action construction activities (Alternative 4F=27 metric tons; Alternatives 4G and 4H=26 metric tons; Alternatives 4I and 4J=34 metric tons). Greenhouse gas from all combustion activity is estimated between 3,450 (Alternatives 4G, 4H) and 4,500 metric tons (Alternatives 4I, 4J). Possible sustainable bestmanagement practices that can be applied all the remedial alternatives to minimize the carbon footprint during construction are provided in Appendix F, and will be considered during design.

#### 6.4.6 Implementability

Technologies associated with the handling, transportation, and off-site disposal of dredged sediment, and the application of reactive ENR, are all considered technically feasible and proven technologies. Surface broadcasting of activated carbon for *in situ* treatment of contaminated sediments has been conducted in pilot-scale projects, typically on approximately 2-acre plots. The same technology would be applied over 8.5 acres under Alternative 4G, and over 1.9 acres for Alternative 4J. Technologies incidental to the removal action, such as dewatering and the treatment and discharge of treated decant water, are also considered technically feasible, proven technologies.

Section 6.3.6 contains information regarding the technical implementability of ancillary technologies, environmental considerations, and administrative feasibility aspects of dredging. As part of ancillary removal technologies, a dewatering/transloading area will be designed to accommodate the volume of sediments to be removed during each construction season. Combined-action alternatives are expected to be completed in one to two construction years.

If mechanical dredging is used, combined-action alternatives will require an upland area of approximately one acre for Alternatives 4F, 4G, 4H, and an upland area of 1.5 acres for Alternatives 4I and 4J, to stockpile dredged sediments for dewatering and handling. Additional upland area will be needed to place geotextile tubes if sediments are hydraulically dredged. Construction of an upland dewatering/transloading area at the MRC sufficient to accommodate dredged sediments is implementable. Decant water from the dewatering pad will likely go through water treatment, which will include being pumped through bag filters, sand filters, and carbon adsorbers before being discharged back to surface water. A temporary water treatment system will be installed near the dewatering pad to manage dredge water.

Compliance with water quality criteria may necessitate treatment of water from dredging and dewatering before it can be discharged. As shown in Table 6-3, if contaminated sediments from both Dark Head Cove and Cow Pen Creek are removed by mechanical dredging, the volume of dredged water is estimated at approximately three million gallons (Alternatives 4F, 4G, 4H) to 3.8 million gallons (Alternatives 4I, 4J). If hydraulic dredging is used to remove sediments from Dark Head Cove, the volume of dredged water to be treated would reach 46 million gallons for Alternatives 4F, 4G, 4H, and 71 million gallons for Alternatives 4I and 4J. This volume of dredged water will require the design of a water treatment facility.

The administrative feasibility of Alternative 4F is low because Dark Head Cove is part of the Middle River navigation channel. The United States Army Corps of Engineers (USACE) would not likely allow placement of any material that would reduce the navigation depth. Resources for dredging, reactive ENR, and *in situ* treatment technologies are available from multiple vendors and procurable through competitive bidding.

#### 6.4.7 Costs

The estimated range of total costs to implement Alternative 4F through Alternative 4J is from \$18.1 to \$22.1 million (Table 6-1). Detailed cost estimates are included in Appendix E.

#### 6.4.8 Modifying Criteria

As discussed in Section 6.3.8, regulator acceptance of any combined action under Alternative 4 is unknown at this time, but community comments have been received during development of this FS through Lockheed Martin's community outreach process. Combined-action alternatives with partial removal, *in situ* treatment, and MNR received supportive comments from the public due to their lower cost and construction time, and because disruption to the environment and the community for these alternatives would be minimal compared to the complete-removal alternatives. The community noted their concerns regarding the length of recovery associated with MNR in certain areas (i.e., Alternative 4H), the introduction of activated carbon into the water, and the effectiveness of activated carbon treatment. The public comments matrix is provided in Appendix D.

|                           |                         | Remeular A         | iternatives – 500                          | ope, cost, and               | Contaminar                            | t Mass Removal a                                       | buillinary                       |                                   |                                                                |
|---------------------------|-------------------------|--------------------|--------------------------------------------|------------------------------|---------------------------------------|--------------------------------------------------------|----------------------------------|-----------------------------------|----------------------------------------------------------------|
|                           |                         |                    |                                            |                              | Remed                                 | lial Alternative                                       |                                  |                                   |                                                                |
|                           |                         | 1<br>No Action     | 3A<br>Removal at<br>CPC, DHC,<br>Dark Head | 3B<br>Removal at<br>CPC, DHC | 4F<br>Partial<br>Removal,<br>Reactive | 4G<br>Partial<br>Removal, <i>In</i><br>situ Treatment, | 4H<br>Partial<br>Removal,<br>MNR | 4I<br>Partial+<br>Removal,<br>MNR | 4J<br>Partial+<br>Removal, <i>In</i><br><i>situ</i> Treatment, |
| Technology App            | olication Summary       |                    |                                            | -                            |                                       |                                                        |                                  |                                   |                                                                |
| Actively                  | Dredge                  | 0                  | 28.0                                       | 23.2                         | 12.5                                  | 12.5                                                   | 12.5                             | 16.0                              | 16.0                                                           |
| Remediated Are            | a MNR                   | 0                  | 0.0                                        | 0.0                          | 0.0                                   | 3.7                                                    | 8.5                              | 5.1                               | 3.2                                                            |
| (Acre) <sup>1/</sup>      | In situ Treatment       | 0                  | 0.0                                        | 0.0                          | 0.0                                   | 8.5                                                    | 0.0                              | 0.0                               | 1.9                                                            |
| • •                       | Reactive ENR            | 0                  | 0.0                                        | 0.0                          | 8.5                                   | 0.0                                                    | 0.0                              | 0.0                               | 0.0                                                            |
| Total Actively Re         |                         | 0                  | 28.0                                       | 23.2                         | 21.0                                  | 21.0                                                   | 21.0                             | 21.0                              | 21.0                                                           |
| Dredge Volume (           |                         | 0                  | 143.1                                      | 99.5                         | 48.8                                  | 48.8                                                   | 48.8                             | 62.9                              | 62.9                                                           |
| Construction Tim          | e (years) <sup>4∕</sup> | 0                  | 2 to 4                                     | 2 to 3                       | 1 to 2                                | 1 to 2                                                 | 1 to 2                           | 1 to 2                            | 1 to 2                                                         |
| Cost Summary              |                         |                    |                                            |                              |                                       |                                                        |                                  |                                   |                                                                |
|                           | Capital                 | 0                  | 41.7                                       | 30.2                         | 20.5                                  | 18.4                                                   | 17.2                             | 21.1                              | 21.5                                                           |
| Cost (MM\$) <sup>5/</sup> | ICs, OM&M               | 0                  | 0.0                                        | 0.0                          | 1.0                                   | 1.0                                                    | 0.9                              | 0.6                               | 0.6                                                            |
|                           | Total Cost              | 0                  | 41.7                                       | 30.2                         | 21.5                                  | 19.4                                                   | 18.1                             | 21.7                              | 22.1                                                           |
| Contaminant Ma            | ass Removed (metric t   | ton) <sup>₅/</sup> |                                            |                              |                                       |                                                        |                                  |                                   |                                                                |
|                           | Total PCBs              | 0                  | 0.088                                      | 0.082                        | 0.060                                 | 0.060                                                  | 0.060                            | 0.077                             | 0.077                                                          |
|                           | BaP Equivalents         | 0                  | 0.143                                      | 0.128                        | 0.096                                 | 0.096                                                  | 0.096                            | 0.108                             | 0.108                                                          |
|                           | Arsenic                 | 0                  | 1.045                                      | 0.699                        | 0.266                                 | 0.266                                                  | 0.266                            | 0.387                             | 0.387                                                          |
|                           | Lead                    | 0                  | 28.58                                      | 22.40                        | 14.10                                 | 14.10                                                  | 14.10                            | 16.24                             | 16.24                                                          |
| COCs                      | Cadmium                 | 0                  | 3.715                                      | 3.049                        | 2.158                                 | 2.158                                                  | 2.158                            | 2.384                             | 2.384                                                          |
|                           | Copper                  | 0                  | 12.421                                     | 8.245                        | 3.565                                 | 3.565                                                  | 3.565                            | 4.948                             | 4.948                                                          |
|                           | Mercury                 | 0                  | 0.120                                      | 0.086                        | 0.033                                 | 0.033                                                  | 0.033                            | 0.050                             | 0.050                                                          |
|                           | Zinc                    | 0                  | 52.83                                      | 37.48                        | 19.86                                 | 19.86                                                  | 19.86                            | 25.12                             | 25.12                                                          |
|                           | Total                   | 0.0                | 99.0                                       | 72.2                         | 40.1                                  | 40.1                                                   | 40.1                             | 49.3                              | 49.3                                                           |

 Table 6-1

 Remedial Alternatives – Scope, Cost, and Contaminant Mass Removal Summary

Notes:

1/ Actively remediated area is approximate but consitent between the alternatives because the size of the sampling polygon varies by depth.

2/ Remediated area of Alt 3A address AOPC to any depth; Alt. 4s address AOPC to meet RAOs; Alt. 3B adds 2.2. acre in Dark Head Creek confluence to Alt. 4s footprint.

3/ The performance dredge volume is the neat dredge volume increased by 50%.

4/ One construction year is assumed as 180 days. See Appendix F for construction duration estimates.

5/ See Appendix E for detailed cost estimates.

6/ Based on removal volume and COC concentrations by depth.

CPC=Cow Pen Creek; DHC=Dark Head Cove; MNR=Monitored natural recovery; ENR=Enhanced natural recovery; cy = cubic yard; ICs=Institutional controls; MM=Millions; OM&M=Operation, maintenance, monitoring; COC=Contaminant of concern; PCB=Polychlorinated biphenyl; BaP=Benzo(a)pyrene; RAO=remedial action opbjective; AOPC=Area of potential concern.

|                                                  |                              |                |                                                         |                                                   | trations and Predicted Outo              |                                       |                                               |
|--------------------------------------------------|------------------------------|----------------|---------------------------------------------------------|---------------------------------------------------|------------------------------------------|---------------------------------------|-----------------------------------------------|
|                                                  |                              |                | RAO 1: Hum<br>Seafood Co                                |                                                   | RAO 2: Human Health –<br>Direct Contact  | RAO 3: Ecolog<br>Ben                  |                                               |
|                                                  | PRGs                         |                | SWAC:                                                   | ilsumption                                        | SWAC:                                    | Point Base:                           |                                               |
|                                                  |                              |                | Total PCBs:                                             | 195 ug/kg (Nat.                                   | Total PCBs: 1000 ug/kg                   | Total PCBs:                           | 676 ug/kg                                     |
|                                                  |                              |                |                                                         | Bkd.)                                             | BaP Equivalents: 700 ug/kg               | Lead:                                 | 190 mg/kg (Nat.                               |
|                                                  |                              |                | Arsenic:                                                | Bkd.)                                             | (Nat. Bkd.)<br>Arsenic: 18.3 mg/kg (Nat. | Cadmium:                              | Bkd.)<br>9.96 mg/kg                           |
|                                                  |                              |                |                                                         | Bkd.)                                             | Bkd.)                                    | Copper:                               | 298 mg/kg                                     |
|                                                  |                              |                |                                                         |                                                   |                                          | Mercury:                              | 1.06 mg/kg                                    |
|                                                  |                              |                |                                                         |                                                   |                                          | Zinc:                                 | 459 mg/kg                                     |
| Remedial Alternative                             | Residual Site-Wide           | Area Weighted- | Pr                                                      | edicted Outcor                                    | nes - Reaching RAO PRGs                  |                                       | loo inging                                    |
|                                                  | Average Conc                 | entration      | RAO 1: Hum                                              |                                                   | RAO 2: Human Health –                    | RAO 3: Ecolo                          |                                               |
|                                                  |                              |                | Seafood Cor                                             | -                                                 | Direct Contact <sup>1/</sup>             | Bent                                  |                                               |
|                                                  | Risk Driver                  | Mean           | Percentage<br>Progress to<br>Achieve Site-<br>Wide PRGs | Number of<br>Years to<br>Reach Site-<br>Wide PRGs |                                          | Percent Area<br>Meeting RAO 3<br>PRGs | Number of<br>Years to<br>Reach PRGs<br>by MNR |
| 1<br>No Action (Baseline)                        | Total PCBs (ug/kg):          | 945            | 0%                                                      | 30                                                | 100%                                     | 71%                                   | 1 to 80                                       |
|                                                  | BaP Equivalents<br>(ug/kg):  | 763            | 0%                                                      | 2                                                 | 91%                                      | not a COC                             | -                                             |
|                                                  | Arsenic (mg/kg):             | 7.8            | 100%                                                    | 0                                                 | 100%                                     | not a COC                             | -                                             |
|                                                  | Lead (mg/kg):                | 264            | not a COC                                               | -                                                 | not a COC                                | 93%                                   | 1 to 100                                      |
|                                                  | Cadmium (mg/kg):             | 9.00           | not a COC                                               |                                                   | not a COC                                | 82%                                   | 1 to 65                                       |
|                                                  | Copper (mg/kg)               | 91             | not a COC                                               |                                                   | not a COC                                | 0%                                    | 0                                             |
|                                                  | Mercury (mg/kg)              | 0.38           | not a COC                                               |                                                   | not a COC                                | 98%                                   | 1 to 20                                       |
|                                                  | Zinc (mg/kg):                | 283            | not a COC                                               |                                                   | not a COC                                | 93%                                   | 1 to 6                                        |
| 3A<br>Removal at CPC, DHC and<br>Dark Head Creek | Total PCBs (ug/kg):          | 116            | 100%                                                    | 0                                                 | 100%                                     | 100%                                  | 0                                             |
|                                                  | BaP Equivalents<br>(ug/kg):  | 327            | 100%                                                    | 0                                                 | 100%                                     | not a COC                             | -                                             |
|                                                  | Arsenic (mg/kg):             | 4.9            | 100%                                                    | 0                                                 | 100%                                     | not a COC                             | -                                             |
|                                                  | Lead (mg/kg):                | 44             | not a COC                                               |                                                   | not a COC                                | 100%                                  | 0                                             |
|                                                  | Cadmium (mg/kg):             | 3.27           | not a COC                                               |                                                   | not a COC                                | 100%                                  | 0                                             |
|                                                  | Copper (mg/kg)               | 45             | not a COC                                               |                                                   | not a COC                                | 100%                                  | 0                                             |
|                                                  | Mercury (mg/kg)              | 0.16           | not a COC                                               |                                                   | not a COC                                | 100%                                  | 0                                             |
|                                                  | Zinc (mg/kg):                | 92             | not a COC                                               |                                                   | not a COC                                | 100%                                  | 0                                             |
| 3B<br>Removal at CPC and DHC                     | Total PCBs (ug/kg):          | 125            | 100%                                                    | 0                                                 | 100%                                     | 100%                                  | 0                                             |
|                                                  | BaP Equivalents              | 393            | 100%                                                    | 0                                                 | 100%                                     | not a COC                             | -                                             |
|                                                  | (ug/kg):<br>Arsenic (mg/kg): | 5.5            | 100%                                                    | 0                                                 | 100%                                     | not a COC                             | -                                             |
|                                                  | Lead (mg/kg):                | 50             | not a COC                                               |                                                   | not a COC                                | 100%                                  | 0                                             |
|                                                  | Cadmium (mg/kg):             | 5.14           | not a COC                                               |                                                   | not a COC                                | 100%                                  | 0                                             |
|                                                  | Copper (mg/kg)               | 51             | not a COC                                               | -                                                 | not a COC                                | 100%                                  | 0                                             |
|                                                  | Mercury (mg/kg)              | 0.18           | not a COC                                               | -                                                 | not a COC                                | 100%                                  | 0                                             |
|                                                  | Zinc (mg/kg):                | 114            | not a COC                                               | -                                                 | not a COC                                | 100%                                  | 0                                             |
| 4F<br>Partial Removal, Reactive ENF              | Total PCBs (ug/kg):          | 140            | 100%                                                    | 0                                                 | 100%                                     | 100%                                  | 0                                             |
|                                                  | BaP Equivalents<br>(ug/kg):  | 177            | 100%                                                    | 0                                                 | 100%                                     | not a COC                             | -                                             |
|                                                  | (ug/kg):<br>Arsenic (mg/kg): | 5.7            | 100%                                                    | 0                                                 | 100%                                     | not a COC                             | -                                             |
|                                                  | Lead (mg/kg):                | 54             | not a COC                                               | -                                                 | not a COC                                | 100%                                  | 0                                             |
|                                                  | Cadmium (mg/kg):             | 2.70           | not a COC                                               |                                                   | not a COC                                | 100%                                  | 0                                             |
|                                                  | Copper (mg/kg)               | 57             | not a COC                                               | -                                                 | not a COC                                | 100%                                  | 0                                             |
|                                                  | Mercury (mg/kg)              | 0.19           | not a COC                                               |                                                   | not a COC                                | 100%                                  | 0                                             |
|                                                  | Zinc (mg/kg):                | 145            | not a COC                                               | -                                                 | not a COC                                | 100%                                  | 0                                             |

Table 6-2 Remedial Alternatives - Residual Site-Wide Area Weighted-Average Concentrations and Predicted Outcomes

|                                              |                                        |                |                                                             |                                                                                   | RAOs                                                                                                               |                                                                                 |                                                                                            |
|----------------------------------------------|----------------------------------------|----------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|                                              |                                        |                | RAO 1: Hum<br>Seafood Co                                    |                                                                                   | RAO 2: Human Health –<br>Direct Contact                                                                            | RAO 3: Ecolog<br>Bent                                                           |                                                                                            |
|                                              | PRGs                                   |                | <u>SWAC:</u><br>Total PCBs:<br>BaP Equivalents:<br>Arsenic: | 195 ug/kg (Nat.<br>Bkd.)<br>700 ug/kg (Nat.<br>Bkd.)<br>18.3 mg/kg (Nat.<br>Bkd.) | SWAC:<br>Total PCBs: 1000 ug/kg<br>BaP Equivalents: 700 ug/kg<br>(Nat. Bkd.)<br>Arsenic: 18.3 mg/kg (Nat.<br>Bkd.) | Point Base:<br>Total PCBs:<br>Lead:<br>Cadmium:<br>Copper:<br>Mercury:<br>Zinc: | 676 ug/kg<br>190 mg/kg (Nat<br>Bkd.)<br>9.96 mg/kg<br>298 mg/kg<br>1.06 mg/kg<br>459 mg/kg |
| Remedial Alternative                         | Residual Site-Wide                     | Area Weighted- | Pr                                                          | edicted Outcor                                                                    | nes - Reaching RAO PRGs                                                                                            |                                                                                 | loo inging                                                                                 |
|                                              | Average Conc                           | entration      | RAO 1: Hum<br>Seafood Cor                                   |                                                                                   | RAO 2: Human Health –<br>Direct Contact <sup>1/</sup>                                                              | RAO 3: Ecolog<br>Benth                                                          |                                                                                            |
|                                              | Risk Driver                            | Mean           | Percentage<br>Progress to<br>Achieve Site-<br>Wide PRGs     | Number of<br>Years to<br>Reach Site-<br>Wide PRGs                                 |                                                                                                                    | Percent Area<br>Meeting RAO 3<br>PRGs                                           | Number of<br>Years to<br>Reach PRGs<br>by MNR                                              |
| 4G<br>Partial Removal, <i>In situ</i>        |                                        | 198            | 99.5%                                                       | 0.3                                                                               | 100%                                                                                                               | 93%                                                                             | 1 to 13                                                                                    |
| Treatment, MNR                               | Total PCBs (ug/kg):<br>BaP Equivalents | 236            | 100%                                                        | 0.5                                                                               | 100%                                                                                                               | not a COC                                                                       | -                                                                                          |
|                                              | (ug/kg):<br>Arsenic (mg/kg):           | 6.9            | 100%                                                        | 0                                                                                 | 100%                                                                                                               | not a COC                                                                       | -                                                                                          |
|                                              | Lead (mg/kg):                          | 61             | not a COC                                                   | -                                                                                 | not a COC                                                                                                          | 100%                                                                            | 0                                                                                          |
|                                              | Cadmium (mg/kg):                       | 3.08           | not a COC                                                   |                                                                                   | not a COC                                                                                                          | 99.5%                                                                           | 1                                                                                          |
|                                              | Copper (mg/kg)                         | 64             | not a COC                                                   |                                                                                   | not a COC                                                                                                          | 100%                                                                            | 0                                                                                          |
|                                              | Mercury (mg/kg)                        | 0.21           | not a COC                                                   |                                                                                   | not a COC                                                                                                          | 98%                                                                             | 9                                                                                          |
|                                              | Zinc (mg/kg):                          | 168            | not a COC                                                   | -                                                                                 | not a COC                                                                                                          | 100%                                                                            | 0                                                                                          |
| H<br>Partial Removal at DHC, CPC,<br>and MNR | Total PCBs (ug/kg):                    | 324            | 83%                                                         | 10                                                                                | 100%                                                                                                               | 82%                                                                             | 1 to 26                                                                                    |
|                                              | BaP Equivalents                        | 547            | 100%                                                        | 0                                                                                 | 100%                                                                                                               | not a COC                                                                       | -                                                                                          |
|                                              | (ug/kg):<br>Arsenic (mg/kg):           | 7.1            | 100%                                                        | 0                                                                                 | 100%                                                                                                               | not a COC                                                                       | -                                                                                          |
|                                              | Lead (mg/kg):                          | 133            | not a COC                                                   |                                                                                   | not a COC                                                                                                          | 100%                                                                            | 0                                                                                          |
|                                              | Cadmium (mg/kg):                       | 3.42           | not a COC                                                   | -                                                                                 | not a COC                                                                                                          | 99%                                                                             | 3                                                                                          |
|                                              | Copper (mg/kg)                         | 67             | not a COC                                                   | -                                                                                 | not a COC                                                                                                          | 100%                                                                            | 0                                                                                          |
|                                              | Mercury (mg/kg)                        | 0.29           | not a COC                                                   |                                                                                   | not a COC                                                                                                          | 98%                                                                             | 22                                                                                         |
|                                              | Zinc (mg/kg):                          | 184            | not a COC                                                   | -                                                                                 | not a COC                                                                                                          | 100%                                                                            | 0                                                                                          |
| ll<br>Partial Removal at DHC, CPC,           | Total PCBs (ug/kg):                    | 194            | 100%                                                        | 0                                                                                 | 100%                                                                                                               | 89%                                                                             | 1 to 12                                                                                    |
| and MNR                                      | BaP Equivalents                        | 513            | 100%                                                        | 0                                                                                 | 100%                                                                                                               | not a COC                                                                       | -                                                                                          |
|                                              | (ug/kg):<br>Arsenic (mg/kg):           | 7.0            | 100%                                                        | 0                                                                                 | 100%                                                                                                               | not a COC                                                                       | -                                                                                          |
|                                              | Lead (mg/kg):                          | 64             | not a COC                                                   |                                                                                   | not a COC                                                                                                          | 100%                                                                            | 0                                                                                          |
|                                              | Cadmium (mg/kg):                       | 3.32           | not a COC                                                   |                                                                                   | not a COC                                                                                                          | 100%                                                                            | 0                                                                                          |
|                                              | Copper (mg/kg)                         | 59             | not a COC                                                   |                                                                                   | not a COC                                                                                                          | 100%                                                                            | 0                                                                                          |
|                                              | Mercury (mg/kg)                        | 0.21           | not a COC                                                   |                                                                                   | not a COC                                                                                                          | 100%                                                                            | 0                                                                                          |
|                                              | Zinc (mg/kg):                          | 162            | not a COC                                                   | -                                                                                 | not a COC                                                                                                          | 100%                                                                            | 0                                                                                          |
| IJ<br>Partial Removal at DHC, CPC,           | Total PCBs (ug/kg):                    | 168            | 100%                                                        | 0                                                                                 | 100%                                                                                                               | 93%                                                                             | 1 to 3                                                                                     |
| <i>n situ</i> Treatment, MNR                 | BaP Equivalents                        | 493            | 100%                                                        | 0                                                                                 | 100%                                                                                                               | not a COC                                                                       | -                                                                                          |
|                                              | (ug/kg):<br>Arsenic (mg/kg):           | 7.0            | 100%                                                        | 0                                                                                 | 100%                                                                                                               | not a COC                                                                       | -                                                                                          |
|                                              | Lead (mg/kg):                          | 57             | not a COC                                                   | -                                                                                 | not a COC                                                                                                          | 100%                                                                            | 0                                                                                          |
|                                              | Cadmium (mg/kg):                       | 3.23           | not a COC                                                   |                                                                                   | not a COC                                                                                                          | 100%                                                                            | 0                                                                                          |
|                                              | Copper (mg/kg)                         | 62             | not a COC                                                   |                                                                                   | not a COC                                                                                                          | 100%                                                                            | 0                                                                                          |
|                                              | Mercury (mg/kg)                        | 0.20           | not a COC                                                   | -                                                                                 | not a COC                                                                                                          | 100%                                                                            | 0                                                                                          |
|                                              |                                        |                | 1                                                           |                                                                                   |                                                                                                                    | 1                                                                               |                                                                                            |

<sup>1/</sup> Based on calculated mean residual site-wide area weighted-average surface sediment concentrations. Percentage progress towards achieving RAO PRGs from baseline conditions at the end of construction.

<sup>2/2</sup> Based on calculated point basis residual surface sediment concentrations. Reported as the ratio of the area of point basis exceedance to total AOPC. Number of years based on calculated point basis residual sediment concentrations, responded as the failed on the area of point basis exceedance to total AOPC. Number of years to reach RAO PRGs by MINR was estimated using the results of sediment age-dating and approximation of intrinsic half-time through exponential decay. SWAC=Site-wide area weighted-average concentration; MRC=Middle River Complex; CPC=Cow Pen Creek; DHC=Dark Head Crek; COC=Contaminant of concern; AOPC=Area of potential concern; RAO=Remedial action objective; PRG=Preliminary remediation goal; ENR=Enhanced natural recovery; MNR=Monitored natural recovery; n/a=Not applicable; Nat. Bkd.=natural background; PCB=Polychlorinated biphenyl, BaP=Benzo(a)pyrene; ug/kg=micrograms per kilogram; mg/kg=milligrams per kilogram.

Table 6-3 Summary of Short-term Effectiveness and Estimates of Implementability Metrics

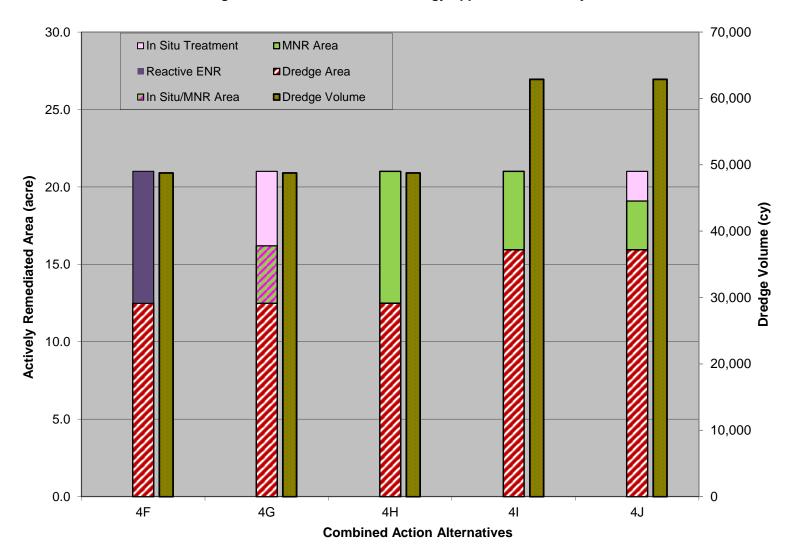
|                                          |                                                                                                     |                |                                                  |                              | Remedial                               | Alternative                                                       |                               |                                |                                                                 |
|------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------|------------------------------|----------------------------------------|-------------------------------------------------------------------|-------------------------------|--------------------------------|-----------------------------------------------------------------|
|                                          |                                                                                                     | 1<br>No Action | 3A<br>Removal at CPC,<br>DHC, Dark Head<br>Creek | 3B<br>Removal at CPC,<br>DHC | 4F<br>Partial Removal,<br>Reactive ENR | 4G<br>Partial Removal, <i>In</i><br><i>situ</i> Treatment,<br>MNR | 4H<br>Partial Removal,<br>MNR | 4I<br>Partial+ Removal,<br>MNR | 4J<br>Partial+ Removal, <i>In</i><br><i>situ</i> Treatment, MNR |
|                                          | Dredge volume at CPC and DHC <sup>a/</sup>                                                          | 0              | 143,200                                          | 99,600                       | 48,800                                 | 48,800                                                            | 48.800                        | 62,900                         | 62,900                                                          |
| Remedial Action                          | Backfill, reactive ENR volume at CPC and DHC (cy) <sup>b/</sup>                                     | 0              | 33,300                                           | 25,500                       | 29,000                                 | 15,200                                                            | 15,200                        | 19,300                         | 19,300                                                          |
| Construction                             | In situ treatment - activated carbon (cy) $c'$                                                      | 0              | 0                                                | 0                            | 0                                      | 500                                                               | 0                             | 0                              | 110                                                             |
|                                          |                                                                                                     |                |                                                  | -                            | -                                      |                                                                   | -                             |                                |                                                                 |
|                                          | Mechanical dredging - Dredged material stockpile (acre)                                             | 0              | 3.3                                              | 2.3                          | 1.1                                    | 1.1                                                               | 1.1                           | 1.4                            | 1.4                                                             |
| Upland Work Area <sup>d/</sup>           | Hydraulic dredging - geotubes (acre)                                                                | 0              | 3.5 to 10                                        | 2.5 to 8.0                   | 1.0 to 2.5                             | 1.0 to 2.5                                                        | 1.0 to 2.5                    | 1.0 to 4.0                     | 1.5 to 4.0                                                      |
|                                          | Hydraulic dredging - geotubes of 200 feet each (number)                                             | 0              | 80                                               | 60                           | 20                                     | 20                                                                | 20                            | 30                             | 30                                                              |
|                                          |                                                                                                     |                |                                                  |                              |                                        |                                                                   |                               |                                |                                                                 |
|                                          | Water treatment volume by mechanical dredging (million gallon)                                      | 0              | 8.7                                              | 6.0                          | 3.0                                    | 3.0                                                               | 3.0                           | 3.8                            | 3.8                                                             |
| Water Treatment <sup>e/</sup>            | Water treatment volume by mechanical dredging at CPC and hydraulic dredging at DHC (million gallon) | 0              | 217                                              | 138                          | 46                                     | 46                                                                | 46                            | 71                             | 71                                                              |
|                                          |                                                                                                     |                |                                                  |                              |                                        |                                                                   |                               |                                |                                                                 |
|                                          | Backfill material to site - barge trips                                                             | 0              | 42                                               | 32                           | 38                                     | 20                                                                | 20                            | 26                             | 26                                                              |
| Transportation f/                        | Dredge material to landfill - truck trips                                                           | 0              | 9,550                                            | 6,640                        | 3,260                                  | 3,260                                                             | 3,260                         | 4,200                          | 4,200                                                           |
| Transportation <sup>f/</sup>             | Activated carbon to site - truck trips                                                              | 0              | 0                                                | 0                            | 0                                      | 40                                                                | 0                             | 0                              | 10                                                              |
|                                          | Dredge material to landfill - truck miles                                                           | 0              | 2,387,500                                        | 1,660,000                    | 815,000                                | 815,000                                                           | 815,000                       | 1,050,000                      | 1,050,000                                                       |
|                                          |                                                                                                     |                |                                                  |                              |                                        |                                                                   |                               |                                |                                                                 |
| Environmentel                            | Total energy use (MMBTU)                                                                            | 0              | 135,000                                          | 94,000                       | 47,800                                 | 46,600                                                            | 46,400                        | 59,700                         | 59,700                                                          |
| Environmental<br>Footprint <sup>g/</sup> | Greenhouse gas emissions (metric ton)                                                               | 0              | 10,000                                           | 7,000                        | 3,600                                  | 3,500                                                             | 3,450                         | 4,500                          | 4,500                                                           |
| loopint                                  | Air pollution emissions (metric ton)                                                                | 0              | 76                                               | 53                           | 27                                     | 26                                                                | 26                            | 34                             | 34                                                              |

Notes:

a/ Neat dredge volumes were estimated by utilizing Thiessen polygons and increased by 50% for Feasibility Study (FS) analysis to account for the various causes of volume creep.

<sup>b/</sup> Reactive ENR volume was estimated assuming 12 inch layer of sand mixed with activated carbon over the footprint to reach minimum 6 inch coverage. Dredge residual backfill material volume was estimated assuming 9 inch layer of sand over the footprint to reach minimum 6 inch coverage.

c/ 35,000 kg granulated activated carbon per hactare (31,230 lb/ha) (Ghosh, 2011), converted to cubic yard.


d/ Assumptions: 1) mechanically dredged material require about 1 sqft/cy; 2) for hydraulically dredged material, approximate capacity of each 200-ft geotube is 1,500 cy; 3) one 200-ft geotube base footprint is approximately 5,500 sqft; 4) range of geotubes upland area depends on geotubes stacked up in 1 to 3 layers.

e/ Assumptions: 1) assume dewatered volume of dredged material is same as in-situ FS level dredge volume; 2) water to be treated collected by mechanical dredging is 30% of dredged material including additional stormwater that may need to be collected at dewatering area; 3) hydraulically dredged material is 10% slurry mixture therefore 9x dredge vol. of water treatment required.

<sup>f/</sup> Assumptions: 1) dredged material will be transported by trucks from the transloading area to Grows North landfill in Morrisville, PA (15 cy/truck, 250 mile/round trip) and from landfill offloading site to the disposal cell (15 cy/truck); 2) Activated carbon will be delivered by trucks (10 cy/truck); 3) ENR and backfill material will be delivered by barge (barge capacity: 1,600 cy); 4) trucks and barge trips are round trips.

<sup>g/</sup> Greenhouse gas emissions include carbon dioxide, methane, and nitrous oxide emissions. Air polllution emissions include nitrogen oxide, sulfur oxide, particulate matter emissions. See Appendix F for detailed environmental footprint estimates.

cy=cubic yard; ENR=Enhanced natural recovery; MNR=monitored natural recovery; gal=gallon; CPC=Cow Pen Creek; DHC=Dark Head Cove; MMBTU=Million metric British Thermal unit; sqft=square feet; ft=feet.



#### Figure 6-1. Alternative 4 - Technology Application Summary

### Section 7 Comparative Analysis of Remedial Alternatives

This section provides a comparative evaluation of the Middle River Complex (MRC) site remedial alternatives developed in Section 5 and evaluated individually in Section 6 to assess the relative performance of each alternative with respect to each of the evaluation criteria (e.g., threshold, balancing, and modifying criteria) under the Comprehensive Environmental Resource, Compensation and Liability Act (CERCLA, or Superfund), and to identify key tradeoffs among them. In this feasibility study (FS), the remedial alternatives evaluated were assembled as the No Action alternative (Alternative 1), removal alternatives (Alternatives 3A and 3B) and combined-action alternatives (Alternatives 4F, 4G, 4H, 4I, and 4J). Figure 7-1 illustrates actively remediated areas and how these various technologies have been applied for each of the alternatives.

#### 7.1 COMPARATIVE ANALYSIS METHODOLOGY

The candidate alternatives are first evaluated for whether or not they meet the threshold criteria (i.e., overall protection of human health and the environment and compliance with applicable or relevant and appropriate requirements [ARARs]). These are threshold determinations, in that any alternative must meet them to be eligible for selection. The balancing criteria (i.e., long-term effectiveness and permanence; reduction of toxicity, mobility, and volume through treatment; short-term effectiveness; implementability; and cost) are then considered. They generally require more discussion because the major tradeoffs among alternatives are typically related to these criteria (USEPA, 1988).

A comparative evaluation of MRC remedial alternatives was conducted using both a qualitative comparative analysis and a more quantitative multi-criteria comparative analysis. The methodology for each type of analysis is discussed below. Details of the multi-criteria comparative analysis are included in Appendix G.

#### 7.1.1 Qualitative Comparative Analysis

A qualitative comparative analysis evaluated the relative overall ranking of each remedial alternative based on the detailed evaluation conducted in Section 6. A five-star ranking system (corresponding to low, low-medium, medium, medium-high, and high levels) assessed the relative performance of each alternative. The evaluation framework follows the CERCLA threshold, balancing, and modifying criteria, which are represented by one or more individual metrics. Two levels of evaluation criteria were established to incorporate those metrics: Level 1 criteria are the major threshold, balancing and modifying criteria; Level 2 criteria include factors considered in evaluating the Level 1 criteria.

This qualitative framework and the evaluation are presented in Table 7-1, along with a discussion regarding performance of the alternatives under each CERCLA criterion. Some Level 2 criteria were evaluated based on the metrics for each alternative (e.g., estimated time to meet remedial action objectives [RAOs], removal volume, years of construction, depleted resources of backfill materials and landfill). A qualitative comparison was performed and a star ranking was assigned for each Level 1 criterion. A summary at the bottom of the table shows the overall star ranking of each alternative. The general outcome of the qualitative comparison is that the combined-action alternatives scored better than removal alternatives and the No Action alternative, and Alternativers 4F, 4G, and 4J scored the best among the combined-action alternatives (See discussion in Section 7.5).

The qualitative comparison produces a fairly similar ranking for many of the alternatives, and does not provide enough detail to distinguish similarities and dissimilarities among the alternatives, specifically within the combined-action alternatives. A more quantitative analysis method (i.e., multi-criteria decision analysis) provided a basis for further evaluation and distinguishing differences among the alternatives. This method allowed consideration of multiple factors under each CERCLA criterion by assigning scores and weightings to these metrics. The methodology for the multi-criteria decision analysis and detailed discussion of the comparative analysis are presented in the following sections.

#### 7.1.2 Multi-Criteria Comparative Analysis

A multi-criteria comparative decision analysis was performed to support selection of the recommended alternative. Multi-parameter analysis tools were developed based on the multi-criteria

decision analysis, which offer a scientifically sound decision framework for managing contaminated sediments. This method is useful because criteria such as environmental benefits, impacts, risk, economics, and stakeholder participation cannot be easily condensed into simple evaluation matrices. Other benefits associated with a multi-parameter analysis tool include having the decision criteria for remedy selection, the weighting of each criterion considered, and the score applied to each remedial alternative clearly defined and readily available for review when using this method.

In this FS, the multi-parameter analysis tool Criterium Decision Plus<sup>®</sup> (CDP) was used to weight and score remedial alternatives for the MRC site. Criterium Decision Plus<sup>®</sup> is a decision analysis tool that uses decision-making techniques such as the analytical hierarchy process, the Multi-Attribute Utility Theory, and the simple multi-attribute rating technique that is incorporated into the tool (InfoHarvest, 2001). To build the decision hierarchy and incorporate all the decision factors, each CERCLA evaluation criterion is represented by one or more individual metrics. To account for those metrics, up to three levels of evaluation criteria were established: Level 1 criteria are the major balancing and modifying criteria; Level 2 criteria have factors considered in evaluation of Level 1 criteria; and Level 3 has further subcomponents with which to evaluate the Level 2 criteria. The framework for comparative evaluation of alternatives is summarized in Table 7-2, and an illustration of the decision analysis framework and interactions among the various levels of criteria is in Figure 7-2.

Overall protection of human health and the environment and compliance with ARARs are threshold criteria, and all alternatives would meet these criteria; they were therefore not included in the CDP evaluations. The contribution of the balancing and modifying CERCLA criteria to the overall evaluation was calculated by applying a weighting factor to each criterion. An environmental criterion was also added to support short-term effectiveness metrics among the alternatives where the differences in energy use, air emissions, and impacts to water resources of a remedy were evaluated. The criterion was added to be consistent with Lockheed Martin's policy to implement green and sustainable remediation, and the USEPA green remediation policy to enhance the environmental benefits of federal cleanup programs by promoting sustainable technologies and practices.

For the primary balancing criteria, a 20% weight was assigned to the criteria of long-term effectiveness, permanence, and implementability. A weight of 10% was assigned to the reduction

of toxicity, mobility, or volume through treatment, short-term effectiveness, and environmental concerns criteria. A weight of 15% was given to costs and a weight of 15% is associated with regulator and community acceptance. The overall sum of weighting factors for the primary balancing criteria is 100%. These weights are subjective but provide an initial basis for comparative evaluation of the alternatives. A sensitivity analysis was also performed after the initial CDP analysis. Appendix G contains the CDP analysis framework and CDP scoring guidelines.

Metrics were developed for the scoring criteria in Table 7-2, based on a zero to 10 rating scale; they are presented in Table 7-3. The rating scale is a linear relationship, with a minimum performance receiving a rating of zero and the maximum performance (with full achievement) receiving a rating of 10. The input data and information for each Level 2 and Level 3 criterion used to calculate a score are provided in non-shaded rows. The scoring input to the CDP analysis for each evaluation criteria is shown in the shaded rows. When a criterion has multiple metrics, the individual metric scores were averaged to give an overall score for the criterion. For example, two individual metrics were evaluated to assess prevention of human health risks under the long-term effectiveness of an alternative, which are achievement of RAO 1 and RAO 2. The data for these two metrics are entered into the first and second rows of Table 7-3. Based on the input data, the scores of each alternative to meet RAO 1 and RAO 2 were calculated, then these two scores were averaged to grovide an overall average score for prevention of human health risks criterion shown in the third (shaded) row, which then is entered to the CDP analysis. The bases for each of the metrics used to develop the scores in Table 7-3 are described under the evaluation of each criterion in the following sections.

After calculating an average for each criterion, an overall score was calculated for the overall comparison and for input to the CDP tool. Regulator acceptance is unknown at this time, so it was not incorporated into the evaluations. Community input received during this FS process led to two sets of CDP evaluations being conducted: one incorporating community input, the other not incorporating community input.

In the following sections, a comparative evaluation of the alternatives is based on the detailed evaluation in Section 6, and the information in Tables 7-1 and 7-3.

# 7.2 THRESHOLD CRITERIA

USEPA (1988) guidance and the NCP (40 CFR 300.430[e][9][iii]) require evaluation of remedial alternatives in terms of their ability to satisfy two threshold criteria: (1) overall protection of human health and the environment and (2) compliance with ARARs.

### 7.2.1 Overall Protection of Human Health and the Environment

Alternative 1, the No Action alternative, takes no measures to protect human health and the environment. Other alternatives meet the threshold criterion of overall protection of human health and the environment and achieve RAOs by implementing an engineered remedy and monitoring to ensure that the PRGs associated with the RAOs are achieved. Complete-removal alternatives would meet RAOs immediately following construction.

The time for combined-action alternatives to achieve RAOs upon completion of each remedy varies. The performance of alternatives in meeting RAOs is compared in the first two rows of Table 7-1, under the achievement of RAOs and time to achieve RAOs evaluation criteria. The alternatives were also compared using the same categories listed in the first two rows of Table 7-3, under the "prevent human health risks" and "minimize ecological risks" criteria.

Time to meet RAOs for Alternative 4 and its variants are estimated in Table 6-2, and summarized in Tables 7-1 and 7-3. For achieving the remedial objectiverelated to mitigating human health risks associated with consumption of fish (RAO 1), Alternative 4H scored 9.2 due to the extended time (approximately 10 years) it takes to reach the RAO PRGs when compared to the other active remedial alternatives, all of which scored 10 (Table 7-3). At the end of construction, all alternatives would achieve remedial objective RAO 2 (except the No Action alternative), which addresses human health risks associated with direct-contact exposure to contamination.

Removal alternatives 3A and 3B and Alternative 4F achieve the benthic-related remedial objective RAO 3 by the end of the construction. Other combined-action alternatives meet RAO 3 within 82% (Alternative 4H) to 93% (Alternative 4J) of the AOPC area by the end of construction. The period to meet RAO 3 is up to three years for Alternative 4J, up to 13 years for Alternative 4G, up to 12 years for Alternative 4I, and up to 26 years for Alternative 4H. With respect to achieving the benthic-related remedial objectives of RAO 3, Alternative 4H scored the lowest (8.2), Alternative 4I scored

8.9, Alternative 4G and 4J scored 9.3, Alternatives 3A, 3B, and 4F scored 10, and No Action alternative scored 7.1; all scores are based on the time to reach RAO 3 PRGs and the area affected.

Graphical presentations of RAO achievement, as related to removal volumes, are presented in Figures 7-3 and 7-4. Consistent with the discussion above and scoring of the alternatives, Figure 7-3 shows that the human health RAO 1 is achieved at the end of the construction under the combinedaction alternatives 4F, 4G, 4I, and 4J, with a smaller removal volume than the complete-removal alternatives. Figure 7-4 shows the benthic RAO 3 achievement in terms of the percentage of the area within the AOPC for which each alternative meets the RAO at the end of construction. This graph illustrates that 100% of the AOPC would meet RAO 3 under Alternatives 3A, 3B, and 4F at the end of construction, and 82 to 93% of AOPC would meet RAO 3 under Alternatives 4G, 4H, 4I, and 4J at the end of construction.

# 7.2.2 Compliance with Applicable or Relevant and Appropriate Requirements

All alternatives except No Action comply with federal and state chemical- and location-specific ARARs and TBCs. Adequate engineering planning, design and agency review will ensure that these remedies would comply with ARARs.

## 7.3 PRIMARY BALANCING CRITERIA

The primary balancing criteria weigh effectiveness and cost tradeoffs among alternatives. The alternatives were compared with regard to how well they satisfy the five CERCLA balancing criteria, presented below.

#### 7.3.1 Long-Term Effectiveness and Permanence

The general analysis factors considered during the comparative evaluation of alternatives for their long-term effectiveness and permanence are preventing human health risks, minimizing ecological risks, the residual potential risk of each alternative, and technology reliability. Other factors evaluated under long-term effectiveness and permanence in Section 6 include time to meet RAOs (which measures the performance of alternatives in meeting RAOs) and the adequacy and reliability of controls to manage any remaining contamination. These factors are incorporated into metrics for achieving RAOs and technology reliability.

The performance of each remedial alternative in terms of preventing human health risks (RAOs 1 and 2) and to minimize ecological risks (RAO 3) is summarized in Section 7.2.1. The residual potential risk of alternatives is compared in the third row of Tables 7-1 and 7-3, under the long-term effectiveness criterion. In Table 7-3, residual potential risk was evaluated based on the Level 3 criteria of achieving RAOs and residual exposure risk, where the risk is also correlated to the reliability of the remedial technologies.

Technology reliability of the alternatives was also evaluated in Tables 7-1 and 7-3. In Table 7-3, the technology reliability score of each alternative was calculated based on the areas where the technologies would be applied, and a technology reliability weighting assigned to each technology. A weighting of 9 was assigned to removal technologies due to issues of resuspension and contaminant release during dredging, and remaining residuals.

MNR received a weighting of 5 because recovery depends on the natural deposition of clean sediments. *In situ* treatment received a weighting of 8, based on the research and field applications of activated carbon in reducing COC bioavailability. A weighting of 8 was also assigned to reactive ENR because it reduces the migration of contaminants by binding through adsorptive processes.

The area of each technology was multiplied by its reliability-weighting factor and divided by the total area to compute a score under the technology reliability criterion. The area the technologies would be applied to and the weighting assigned to them led to Alternative 4H receiving the lowest reliability score (7.4), due to its reliance on MNR. This was followed by Alternatives 4I, 4G, 4J, and 4F in ascending order (with scores of 8.0 to 8.6). Alternatives 3A and 3B were assigned a score of 9 in the technology reliability evaluation (Table 7-3).

Under the "residual potential risk" criterion, the No Action alternative poses the greatest potential of residual risk. The magnitude of surface contamination remaining at the end of construction of each remedial alternative was evaluated under the "achievement of RAOs" criterion. Complete-removal alternatives would leave no residual surface or subsurface contamination, so no risk of exposure would be expected. Combined-action alternatives would leave subsurface contamination at levels higher than PRGs in areas that are not subject to removal.

Alternative 4F is considered as protective as Alternatives 3A and 3B through application of reactive ENR in non-removal areas. For the other combined-action alternatives, exposure of remaining

subsurface contamination is negligible due to lack of sediment disturbance mechanisms in Dark Head Cove (e.g., high-flow scour, seismic events, and propeller scour). Residual potential risk also correlates with technology reliability. Alternative 4H therefore ranks lowest (8.1) due its reliance on MNR, followed by Alternative 4I (8.8), which is the other combined-action alternative with removal and MNR components. Alternative 4J (9.0) is ranked slightly higher than 4G (8.9) because of its larger removal volume and lower remaining contaminant mass. Alternatives 4F, 3A, and 3B score higher than the other alternatives with respect to the residual potential risk criterion (9.3 to 9.5) because they leave no residual contamination and due to the reliability of removal and reactive ENR technologies.

The long-term effectiveness and permanence evaluation of alternatives is illustrated in Figures 7-5a and 7-5b, where contaminant mass removals versus dredge volumes are graphed for each alternative. These graphs also show the ratio of relative contaminant mass versus dredge volumes, and show which alternatives are optimized for the most contaminant-mass removal per volume of material removed. Alternatives 4F, 4G and 4H would remove 48,800 cubic yards of sediments from Cow Pen Creek and in front of the Dark Head Cove bulkhead. These alternatives have the most optimized contaminant mass removal as compared to the other alternatives. Alternatives 4I and 4J also have a better contaminant mass removal ratio than complete removal Alternatives 3A and 3B.

#### 7.3.2 Reductions in Toxicity, Mobility, and Volume through Treatment

No reduction of toxicity, mobility, or volume through treatment would be achieved under the No Action, complete removal, and combined-action alternatives of 4H and 4I because no treatment would be implemented. Alternatives 4F, 4G and 4J were given credit because they incorporate *in situ* treatment (Table 7-1 and 7-3). Under Alternative 4J, up to 10% of contaminants would be expected to be treated by reducing bioavailability, and a score of 1 is given; Alternatives 4F and 4G are scored 2 (20–40% of contaminants would be expected to be managed by *in situ* treatment). The treatment is considered non-reversible, so Alternatives 4F, 4G, 4J are scored 10. The rest of the alternatives scored 0 under the irreversibility of treatment criterion (Table 7-3).

#### 7.3.3 Short-Term Effectiveness and Environmental Criteria

Alternatives with longer construction times and those that handle larger amounts of contaminated material present proportionately larger risks to workers, the community, and the environment. Longer construction periods increase equipment and vehicle emissions, noise, and the use of various

resources. Larger actively remediated footprints increase the short-term disturbance of the existing benthic community and other resident aquatic life and generate more releases of bioavailable chemicals over a longer period. The comparative ranking of each alternative for the short-term effectiveness criterion is based on differences in construction time and the quantity of contaminated sediment removed. The nature of dredging and its ancillary technologies contribute the most to impacts associated with short-term effectiveness and the environmental metrics of energy use, air emissions, and impacts to water resources (e.g., the volume of decant water to be treated).

In Table 7-1, protection of community and worker exposure and ecological disturbance are correlated to construction duration where removal alternatives (two to four construction years) rank less than the combined-action alternatives (one to two construction years). Depleted natural resources (through use of sand and gravel backfill, and reactive ENR placement) and landfill capacity use correlated to dredge volumes are also considered in the comparative evaluations. In Table 7-3, Level 3 metrics of the criteria related to relative impacts to human health and ecological receptors are subjectively ranked as low (8.0), low to moderate (7.0), moderate (6.0), and high (0).

Alternative 1, No Action, received the highest score of 10 in this category, since no actions would be taken and no short-term impacts would be produced. Alternatives 3A and 3B received the lowest score (0) due to high short-term impacts. The combined-action alternatives scored higher (6.0 to 8.0) due to their shorter construction periods and smaller removal volumes and associated dredge components (Table 7-3).

Time to achieve RAOs is also incorporated under the short-term effectiveness evaluation criterion to balance the short-term impacts to the benefits of each alternative. Under the "time to achieve RAOs" criterion, Alternatives 3A, 3B, 4F scored 10, followed by Alternative 4J (9.9), Alternatives 4G and 4I (9.7), and Alternative 4H, which gets the lowest score (8.2) due to the areas that require a longer period of MNR.

In Table 7-3, environmental criteria are also incorporated into the comparative evaluation (i.e., the fifth Level 1 criteria). Energy use, greenhouse gas and air pollution emissions, and impacts on water resources due to treating decant water are considered as Level 2 and Level 3 criteria in the evaluation. These metrics are estimated in detail in Appendix F, and are discussed in the detailed evaluation of alternatives in Section 6. These metrics were used to calculate a linear scoring for each

alternative, where No Action (Alternative 1) received 10 and the most extensive removal alternative (3A) received zero.

In this category, Alternative 3B scored 3, Alternatives 4F, 4G, and 4H scored 6.2 to 6.6, and Alternatives 4I and 4J scored 5.6 (Table 7-3). To visualize potential environmental impacts, Figure 7-6 compares the alternatives' environmental metrics (i.e., greenhouse gas emissions versus air pollution emissions) correlated to the number of construction days. Consistent with the discussion above, environmental impacts are directly correlated to the extent of removal volume; therefore, the impacts of the alternatives with the same removal volume would be similar (Alternatives 4F, 4G, 4H; and Alternatives 4I, 4J). The most impacts would be expected under Alternatives 3A and 3B (Figure 7-6).

#### 7.3.4 Implementability

This evaluation criterion considers the technical and administrative feasibility of implementing the remedial alternatives and the availability of services and materials. The evaluation is based on technical and administrative implementability, because resources for the remedial technologies are available from multiple vendors and procurable through competitive bidding nationwide. In general, the potential for technical problems and schedule delays increases in direct proportion to the duration and complexity of the alternatives. Complete-removal alternatives have more complex technical and administrative (e.g., coordination with agencies) implementability issues due to the complexity of dredging and ancillary technologies (i.e., transloading, transporting, water management, disposal, monitoring, and residuals management).

Similarly, Alternatives 4I and 4J would remove a greater volume of material and require a longer construction period, and would have a comparatively higher potential for problems and delays than would Alternatives 4H and 4G, which are designed to remove smaller volumes of material and have shorter construction times. Alternative 4F has low administrative implementability due to the federal navigation channel status of Middle River. In Table 7-1, implementability of alternatives was evaluated qualitatively; Alternative 3A scored the lowest, followed by Alternatives 3B and 4F. Alternatives 4G and 4H rank higher than Alternatives 4I and 4J due to a smaller removal volume.

In Table 7-3, implementability of alternatives was evaluated under the Level 2 criteria of obtaining other approvals, constructability, availability of experts and technology, availability to

modify and update as necessary, and effectiveness of monitoring. Under constructability, Level 3 criteria were considered based on the area to which each remedial technology would be applied, the weighting assigned to each technology, and the estimated construction period. An implementability weighting factor of five was assigned to implementability of dredging, ten was assigned to MNR, and seven was assigned to *in situ* treatment and reactive ENR. The area of each technology was multiplied by the weighting factor and then divided by the total area to compute a score under the constructability criterion. The other Level 2 criteria (obtaining other approvals, availability of experts and technology, availability to modify and update as necessary, and effectiveness of monitoring) are evaluated as moderate, moderate to high, or high, and a score was given to each alternative reflecting the discussion above (Table 7-3).

## 7.3.5 Cost

This assessment evaluates the capital costs (engineering, construction, and supplies) and annual or periodic costs (operation and maintenance [O&M] costs, monitoring, institutional controls, and ongoing administration) of each alternative. Capital cost for the alternatives range from \$17.2 million (Alternative 4H) to \$41.7 million (Alternative 3A). Operation, maintenance, and monitoring (OM&M) costs for the alternatives range from \$0 (Alternative 3A, 3B) to \$1.06 million (Alternative 4G). Alternatives are scored linearly to reflect their cost. The No Action alternative received the highest score (10), and is the least expensive alternative. Alternative 3A scored zero. Detailed cost estimates for each remedial alternative are included in Appendix E and summarized in Tables 7-1 and 7-3.

## 7.4 MODIFYING CRITERIA

Evaluation of the modifying criteria will be completed after the proposed plan has been submitted to the regulators and released for public review, and following analysis of public comment on the proposed plan. As an initial evaluation of community acceptance, community input on remedial alternatives received through Lockheed Martin's community outreach process during development of this FS was incorporated into the evaluation matrix (Tables 7-1 and 7-3). The CDP decision analysis model was then built for two cases: one with community acceptance metrics incorporated and one without them incorporated. Community acceptance of the recommended alternative will be reevaluated by the agencies after the public hearing of the proposed plan. The No Action alternative is regulatorily unacceptable and gets a score of zero. Alternative 4H gets a score of three due to

concerns about longer natural recovery times to reach benthic RAOs. Alternatives 3A and 3B are scored five due to their cost and short-term impacts. Alternative 4F is scored seven due to concerns regarding placement of a thin layer of reactive ENR in a navigation channel. Alternatives 4I, 4G, and 4J get the highest score of eight. Alternatives 4I, 4G, and 4J all meet RAOs in a reasonable period, with lower cost and fewer short-term impacts than the complete-removal alternatives. These alternatives would remove the most contaminant mass, and manage the rest of the contaminated sediments by *in situ* treatment and MNR.

## 7.5 COMPARATIVE ANALYSIS SUMMARY AND CDP DECISION ANALYSIS

A qualitative comparative analysis and a multi-criteria comparative analysis compared the suite of MRC remedial alternatives considered in this FS. The methodology of each evaluation and the detailed comparative analyses of the alternatives are discussed above. The qualitative comparative analysis is summarized in Table 7-1. The last row of Table 7-1 incorporates all CERCLA evaluation criteria and provides an overall summary.

The analysis shows that Alternatives 4F, 4G and 4J would be the best performing alternatives, closely followed by Alternatives 4H and 4I. Alternative 3B ranked lower than the combined-action alternatives. Alternatives 3A and No Action are the lowest performing alternatives. This simple qualitative comparison makes Alternatives 4F, 4G, and 4J candidates for the best performing alternatives. Multi-criteria decision analysis was also performed using the CDP tool, because the qualitative comparison produces similar rankings for the alternatives and does not incorporate factors that distinguish similarities and dissimilarities among them. The analysis methodology and the comparative evaluation based on that analysis are discussed in the sections above.

Once the framework for the evaluation criteria was established, the alternatives were scored for each factor under the evaluation criteria (Table 7-3). Using the metric scores as an input, a CDP decision analysis model was built for two cases: one with community acceptance metrics incorporated (Figure 7-7) and one without community acceptance criteria incorporated (Figure 7-8). The reason for running the model using two cases is that modifying criteria are usually considered after the proposed plan has been accepted by the regulators and reviewed by the public, not during the FS process.

In this FS, community input was received during the FS process and used in the comparative analysis. Both cases of CDP analyses identified Alternative 4G as the most robust alternative, followed by Alternatives 4J and 4F. Below these three alternatives, a difference in the order of alternatives occurs when community input is considered: Alternative 4I scores higher than Alternative 4H, and Alternative 3B scores higher than the No Action alternative. The range of decision scores when community input is included is 0.459 to 0.655; when community input is not included, it is 0.491 to 0.692. Alternative 3A gets the lowest score, and Alternative 4G gets the highest score in both analyses.

Multi-criteria comparative analysis outputs of the CDP model are also graphed by including the cost trend-line to visualize the overall-benefit ranking of each alternative as compared to its cost (Figures 7-9 and 7-10). Another way of assessing cost/benefits is presented in Figure 7-11, which provides a benefits-to-cost ratio trend-line. Figures 7-9 through 7-11 indicate that Alternative 4G offers the best performance for its cost as compared to the other combined-action alternatives. Complete-removal alternatives do not perform well because they have higher FS-level cost estimates as compared to the combined-action alternative performs similarly or better than the complete-removal alternatives.

After completion of the initial CDP analysis, sensitivity analyses were performed to assess the robustness of the scoring and ranking. Sensitivity curves are used to identify any cases where only slight changes (i.e., under 10%) in criteria weights would cause a change in the score sufficient to change the ranking of alternatives. If that were the case, the weighting of that particular criterion was revisited and the ranking of the alternatives re-assessed. Sensitivity analysis was performed based on the difference in decision scores between Alternatives 4G and 4J, the highest scoring alternatives, and by identifying the criteria that would produce difference in the scores. The analysis shows that Alternative 4G is a robust alternative. A slight change in criteria weights does not change the decision score enough to change the ranking of the alternatives. The sensitivity analysis is in Appendix G.

# 7.6 **RECOMMENDED ALTERNATIVE**

This section discusses the rationale for identifying and selecting the recommended alternative and provides a general description. The determination is based on both the individual evaluations of the

remedial alternatives against the CERCLA evaluation criteria (Section 6) and the comparative evaluation of the remedial alternatives presented above.

#### 7.6.1 Rationale for Recommendation

The No Action alternative was retained for comparative purposes as the baseline condition. Considering all rating criteria presented in Table 7-3, the decision score of alternatives falls into a fairly narrow range of 0.459 to 0.692 (Figures 7-7 and 7-8). However, the results demonstrate fundamental differences among the alternatives.

More dredging does not necessarily result in higher overall scores because of higher short-term impacts to workers, the community, and environment; lower technical and administrative feasibility; relatively similar time to achieve RAOs compared to combined-action alternatives; and high cost. The complete-removal alternatives actually result in a decision score below or slightly above the No Action alternative, because the benefits-to-impacts balance of complete removal is similar to conditions under no further action. Managing contaminated sediments through thin layer placement, *in situ* treatment, and MNR results in higher scores due to the benefits in meeting RAOs, reduced short-term impacts, and high technical and administrative feasibility.

Figures 7-9 and 7-10 show decision scores for each alternative, with an overlay of cost. These figures indicate that the higher cost alternatives show little or no increase in overall benefit over lower cost alternatives. These figures also show that the combined-action alternatives, specifically Alternatives 4F, 4G, 4I, and 4J, perform very similarly from an overall benefit and cost standpoint. Figure 7-11 includes the benefit-to-cost ratio trend-line. The comparative analyses summarized in Figures 7-9 to 7-11 demonstrate that Alternative 4G is the most cost-effective and protective remedy for MRC sediments.

#### 7.6.2 Description of the Recommended Alternative

The detailed comparative evaluation of the remedial alternatives identified Alternative 4G as the recommended alternative for the MRC site. Figure 7-12 illustrates the remedial actions comprising the recommended alternative. The remedial footprint associated with the selected alternative would likely be refined in the design phase through a refined exposure map (i.e., an interpolated surface of sediment COC concentrations at the specific depth intervals) and through design of constructable dredge prisms. The recommended alternative involves the following:

- removal of about 48,800 cubic yards of contaminated sediments targeting the high contamination areas over 12.5 acres of the AOPC, targeting Cow Pen Creek and in front of the Dark Head Cove bulkhead
- *in situ* treatment of contaminated sediments over 8.5 acres (the rest of the AOPC)
- monitored natural recovery of about four acres of the *in situ* treatment area
- shoreline stabilization, habitat enhancement, and riparian planting after the remedial construction (if necessary)
- long-term monitoring O&M program of *in situ* treatment areas to verify the remedy
- institutional controls, including public outreach, education, and seafood consumption advisories (in conjunction with regional Middle River advisories issued by Maryland Department of the Environment).

|                                                              |                                                                                                  |                                                                                             |                                                                                                          |                                                                                                                        |                                                                | Remedial /                                                                                                                                                                            |                                                                          |                                                                          |                                                                                                                                                                            |                                                                   |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|                                                              | Evaluation Criteria                                                                              |                                                                                             | 1<br>No Action                                                                                           | 3A<br>Removal at CPC, DHC,<br>Dark Head Creek                                                                          | 3B<br>Removal at CPC, DHC                                      | 4F<br>Partial Removal, Reactive<br>ENR                                                                                                                                                | 4G<br>Partial Removal, <i>In situ</i><br>Treatment, MNR                  | 4H<br>Partial Removal+MNR                                                | 4I<br>Partial+ Removal, MNR                                                                                                                                                | 4J<br>Partial+ Removal, <i>In situ</i><br>Treatment, MNR          |
| Level 1                                                      |                                                                                                  | Level 2                                                                                     | The RAOs would not be                                                                                    |                                                                                                                        |                                                                |                                                                                                                                                                                       |                                                                          |                                                                          |                                                                                                                                                                            |                                                                   |
|                                                              | Achievement of RAOs                                                                              |                                                                                             | achieved in a reasonable<br>timeframe                                                                    |                                                                                                                        |                                                                | All remedial alt                                                                                                                                                                      | ernatives achieve RAOs at varyi                                          | ng performance                                                           | 1                                                                                                                                                                          |                                                                   |
|                                                              | Time to Achieve RAOs                                                                             | Time to Achieve Human Health RAOs after the<br>completion of construction (RAO 1 and RAO 2) | 30                                                                                                       | 0                                                                                                                      | 0                                                              | 0<br>All remedial alternatives achiev                                                                                                                                                 | 0<br>e RAO 2 at baseline conditions                                      | 10                                                                       | 0                                                                                                                                                                          | 0                                                                 |
| Overall Protection of<br>Human Health and the<br>Environment |                                                                                                  | Time to Achieve Benthic RAOs after the completion<br>of construction (RAO 3)                | 100                                                                                                      | 0                                                                                                                      | 0                                                              | 0                                                                                                                                                                                     | 13                                                                       | 26                                                                       | 12                                                                                                                                                                         | 3                                                                 |
| Linnonment                                                   | Potential for exposing remaining co                                                              | Intamination                                                                                | Greatest potential for re-<br>exposure                                                                   | None - no surface and subsurfa<br>remains within AOPC                                                                  | ce residual contamination                                      | Negligible - non-removal areas         Negligible - higher risk than           would be protected by reactive         Alternative 4J due to less           ENR         removal volume |                                                                          | Negligible - higher risk than<br>other Alt. 4s due to reliance on<br>MNR | Negligible - similar risk to 4G<br>due to larger removal volume<br>but MNR the rest                                                                                        | Negligible - lower risk than 40 due to larger removal volume      |
|                                                              | Adequacy and reliability of controls                                                             | Institutional Controls, Monitoring and Maintenance                                          | Current regional ICs remain, no<br>OM&M                                                                  | <sup>D</sup> Current regional ICs remain, no OM&M                                                                      |                                                                | Current regional ICs remain, ON                                                                                                                                                       | 1&M over 8.5 acre                                                        |                                                                          | Current regional ICs remain, OI                                                                                                                                            | V&M over 5.1 acre                                                 |
|                                                              | Summary of Short-term Effectivene                                                                | ss                                                                                          | None                                                                                                     |                                                                                                                        |                                                                | Short-term impacts are less that<br>removal volume                                                                                                                                    | n Alts.4I and 4J due to less                                             | Least short-term impacts withir<br>Alt. 4s due to MNR over 8.5<br>acre   | Short-term impacts are higher t<br>larger removal volume                                                                                                                   | nan Alts. 4F, 4G, 4H due to                                       |
| Comply with ARARs                                            | Cor                                                                                              | mpliance with ARARs                                                                         | Not expected to comply                                                                                   |                                                                                                                        |                                                                | All re                                                                                                                                                                                | medial alternatives comply with A                                        | ARARs                                                                    |                                                                                                                                                                            |                                                                   |
|                                                              | riteria (Overall Protection of Huma                                                              | n Health and the Environment and Compliance                                                 | *                                                                                                        | ****                                                                                                                   | ****                                                           | ****                                                                                                                                                                                  | ***                                                                      | **                                                                       | ***                                                                                                                                                                        | ****                                                              |
| with ARARs)<br>Long-term Effectiveness                       | Prevent Human Health Risks                                                                       | Level of risk mitigation to protect human health                                            | Not protective of human health                                                                           | High level of risk mitigation to p                                                                                     | rotect human health                                            | High level of risk mitigation to pr                                                                                                                                                   | otect human health                                                       | Moderate to high level of risk<br>mitigation                             | High level of risk mitigation to p                                                                                                                                         | rotect human health                                               |
|                                                              | Minimize Ecological Risks                                                                        | Level of risk mitigation to protect ecological<br>receptors                                 | Not protective of environment                                                                            | High level of risk mitigation to p                                                                                     | rotect ecological receptors                                    | High level of risk mitigation to<br>protect ecological receptors                                                                                                                      | RAO 3 exceedance in 7% of<br>area, up to 13 years to meet<br>RAO 3       | RAO 3 exceedance in 18.4% of<br>area, up to 26 years to meet<br>RAO 3    | F RAO 3 exceedance in 10% of area, up to 12 years to meet RAO 3                                                                                                            | RAO 3 exceedance in 7% of<br>area, up to 3 years to meet<br>RAO 4 |
|                                                              | Residual Potential Risk                                                                          | Potential exposure pathways to remaining COCs                                               | Highest potential risk                                                                                   | None - no surface and subsurfa<br>remains within AOPC                                                                  |                                                                |                                                                                                                                                                                       | Negligible - higher risk than Alts. 4I and 4J due to less removal volume |                                                                          | Negligible - less risk than Alts. 4<br>volume                                                                                                                              | 4F, 4G, 4H due to larger remova                                   |
|                                                              | Technology Reliability                                                                           | Success in achieving RAOs                                                                   | The RAOs would not be<br>achieved in a reasonable<br>timeframe                                           | High                                                                                                                   | High                                                           | High                                                                                                                                                                                  | Moderate to high                                                         | Moderate                                                                 | Moderate to high                                                                                                                                                           | Moderate to high                                                  |
|                                                              | Summary of Long-term Effectiveness                                                               |                                                                                             | *                                                                                                        | ****                                                                                                                   | ****                                                           | ****                                                                                                                                                                                  | ***                                                                      | ***                                                                      | ****                                                                                                                                                                       | ****                                                              |
| Reduction of Toxicity,                                       | Destruction or Immobilization of<br>Hazardous Constituents                                       | Estimated amount of destruction or stablization of COCs                                     | No treatment                                                                                             | No tre                                                                                                                 | eatment                                                        | Treatment over 8.5 acre                                                                                                                                                               | •<br>•                                                                   | No treatment                                                             | No treatment                                                                                                                                                               | Treatment over 5.1 acre                                           |
| Mobility, or Volume<br>through Treatment                     | Irreversibility of Treatment                                                                     | Potential of COCs to reoccur after remedy<br>implementation                                 | No treatment                                                                                             | No tre                                                                                                                 | eatment                                                        | Irreversible                                                                                                                                                                          |                                                                          | No treatment                                                             | No treatment                                                                                                                                                               | Irreversible                                                      |
|                                                              | Summary of Reduction of Toxicity, Mobility, or Volume through Treatment                          |                                                                                             | *                                                                                                        | *                                                                                                                      | *                                                              | ****                                                                                                                                                                                  | ****                                                                     | *                                                                        | *                                                                                                                                                                          | ****                                                              |
| Short-Term Effectiveness                                     | Environmental Energy consumption, greenhouse gas (GHG), air pollution emissions (NOx, SOx, PM10) |                                                                                             | 0                                                                                                        | High short-term environmental i<br>to large volume to be dredged                                                       | impacts compared to Alt. 4s due                                | Less short-term impacts than Al volume                                                                                                                                                | ts.4I and 4J due to less removal                                         | Least short-term impacts within<br>Alt. 4s due to MNR over 8.5<br>acre   | <sup>1</sup> Higher short-term impacts than<br>removal volume                                                                                                              | Alts. 4F, 4G, 4H due to larger                                    |
|                                                              | Protection of community exposure<br>worker exposure and ecological<br>disturbance                | Years of construction                                                                       | 0                                                                                                        | 2 to 4                                                                                                                 | 2 to 3                                                         | 1 to 2                                                                                                                                                                                | 1 to 2                                                                   | 1 to 2                                                                   | 1 to 2                                                                                                                                                                     | 1 to 2                                                            |
|                                                              | Depleted natural resources                                                                       | Sand, gravel for in-water placement (backfill, ENR)                                         |                                                                                                          |                                                                                                                        |                                                                | 10.000                                                                                                                                                                                | 15 000                                                                   | 15 000                                                                   | 10.000                                                                                                                                                                     | 10.000                                                            |
|                                                              | Landfill capacity used                                                                           | 1.2 times dredge volume (cy)                                                                | 0                                                                                                        | 33,300<br>171,800                                                                                                      | 25,500<br>119,500                                              | 19,000<br>58,600                                                                                                                                                                      | 15,200<br>58,600                                                         | 15,200<br>58,600                                                         | 19,300<br>75,500                                                                                                                                                           | 19,300<br>75,500                                                  |
|                                                              | Summary of Short-Term Impacts                                                                    |                                                                                             | ****                                                                                                     | *                                                                                                                      | **                                                             | ****                                                                                                                                                                                  | ****                                                                     | ****                                                                     | ***                                                                                                                                                                        | ***                                                               |
| Implementability                                             | Technical Implementability                                                                       | Levels of sophistication of construction oversight<br>and planning                          |                                                                                                          | Less than Alt. 4s. Potential for to<br>the dredge volume associated c                                                  | echnical difficulties increase with<br>construction activities | Moderate                                                                                                                                                                              | Moderate                                                                 | Moderate to high                                                         | Moderate                                                                                                                                                                   | Moderate                                                          |
|                                                              | Administrative Implementability                                                                  | Number and difficulty in obtaining permits and approvals from agencies                      | No potential for technical/<br>administrative difficulties,<br>availability of services and<br>materials | Less than Alt. 4s. Potential for a schedule delays increase with the                                                   |                                                                | Low administrative<br>implementability due to<br>navigation channel status of<br>Middle River                                                                                         | Moderate                                                                 | Moderate                                                                 | Moderate                                                                                                                                                                   | Moderate                                                          |
|                                                              | Availability of Services and<br>Materials                                                        | Accessibility of special expertise and equipment that is required                           |                                                                                                          | Resources for the removal technology are available from<br>multiple vendors and procurable through competitive bidding |                                                                | Resources for the removal, reactive ENR, in situ treatment techr                                                                                                                      |                                                                          | nologies are available from multi                                        | ple vendors and procurable throu                                                                                                                                           | gh competitive bidding                                            |
|                                                              | Summary of Implementability                                                                      |                                                                                             | ****                                                                                                     | *                                                                                                                      | **                                                             | **                                                                                                                                                                                    | ****                                                                     | ****                                                                     | ***                                                                                                                                                                        | ***                                                               |
| Costs                                                        | Capital and OM&M (MM\$)                                                                          | NPV \$s                                                                                     | 0                                                                                                        | 41.7                                                                                                                   | 30.2                                                           | 21.5                                                                                                                                                                                  | 19.4                                                                     | 18.1                                                                     | 21.7                                                                                                                                                                       | 22.1                                                              |
|                                                              | Summary of Costs                                                                                 |                                                                                             | ****                                                                                                     | *                                                                                                                      | **                                                             | ***                                                                                                                                                                                   | ***                                                                      | ****                                                                     | ***                                                                                                                                                                        | ***                                                               |
|                                                              | Regulatory Agency                                                                                |                                                                                             |                                                                                                          |                                                                                                                        |                                                                |                                                                                                                                                                                       |                                                                          |                                                                          |                                                                                                                                                                            |                                                                   |
| Modifying Criteria                                           | Community                                                                                        | Level of acceptability relative to the least                                                |                                                                                                          | the benefits, long construction period and short-term disruption a                                                     |                                                                | Supportive comments due to the alternatives while meeting all RA                                                                                                                      |                                                                          |                                                                          | ne, and less disruption to the environment and the community compared to complete ecovery in certain areas through MNR (i.e., Alternative 4H), introduction of activated c |                                                                   |
|                                                              | Summary of Modifying Criteria                                                                    |                                                                                             |                                                                                                          |                                                                                                                        |                                                                |                                                                                                                                                                                       |                                                                          |                                                                          |                                                                                                                                                                            |                                                                   |
|                                                              | Summary of Modifying Criteria                                                                    |                                                                                             | *                                                                                                        | **                                                                                                                     | ***                                                            | ****                                                                                                                                                                                  | ****                                                                     | ***                                                                      | ****                                                                                                                                                                       | ****                                                              |

diameter 10 µm or less; OM&M=Operation maintenance and monitoring; MM\$=Million Dollar; NPV=Net present value.

| Ranking Index = | *   | **         | ***    | ****        | **** |
|-----------------|-----|------------|--------|-------------|------|
|                 | Low | Low-Medium | Medium | Medium-High | High |

| Evaluation Criteria Levels and Typical Weights  |                                                              |                                                                                                                           |                                                                                                                                                                          |  |  |  |  |
|-------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Level 1                                         | Lev                                                          | el 2                                                                                                                      | Level 3                                                                                                                                                                  |  |  |  |  |
| Long-term Effectiveness<br>20%                  | Prevent Human Health Risks                                   | Level of risk mitigation to protect<br>human health                                                                       | Achievement of RAO 1: Human Seafood Consumption at the end of<br>construction (%)<br>Achievement of RAO 2: Human Health Direct Contact at the end of<br>construction (%) |  |  |  |  |
|                                                 | Minimize Ecological Risks                                    | Level of risk mitigation to protect<br>Ecologiocal Receptors                                                              | RAO 3: Benthic Organisms at the end of construction (%)                                                                                                                  |  |  |  |  |
|                                                 | Potential exposure pathways to<br>remaining COCs             | Potential exposure pathways to remaining COCs                                                                             | Achievement of RAOs<br>Residual reexposure risk                                                                                                                          |  |  |  |  |
|                                                 | Technology Reliability                                       | Success in achieving RAOs                                                                                                 | Total dredge area (acres)<br>Total MNR area (acres)<br>Total <i>in situ</i> treatment area (acres)<br>Total reactive ENR area (acres)                                    |  |  |  |  |
| Reduction of Toxicity,                          | Destruction or Immobilization of<br>Hazardous Constituents   | Estimated amount of destruction or                                                                                        | stablization of COCs                                                                                                                                                     |  |  |  |  |
| Mobility, or Volume<br>through Treatment<br>10% | Irreversibility of Treatment                                 | Potential of COCs to reoccur after a                                                                                      | remedy implementation                                                                                                                                                    |  |  |  |  |
|                                                 | Time to Achieve RAOs (years)                                 |                                                                                                                           | Time to Achieve RAO 1<br>Time to Achieve RAO 2<br>Time to Achieve RAO 3                                                                                                  |  |  |  |  |
| Short-Term Effectiveness<br>10%                 |                                                              |                                                                                                                           | Protect Community (Relative impacts to Human Health - compared to<br>Alternative with the highest impact)                                                                |  |  |  |  |
|                                                 | Un-mitigable Adverse Impacts<br>During Construction and OM&M | Relative impacts to Human Health<br>and Ecological Receptors (i.e.<br>compared to Alternative with the<br>highest impact) | Protect Construction Workers (Relative impacts to Human Health - compare<br>to Alternative with the highest impact)                                                      |  |  |  |  |
|                                                 |                                                              | ingress impacty                                                                                                           | Minimize Environmental Impacts (Relative impacts to Ecological Receptor<br>compared to Alternative with the highest impact)                                              |  |  |  |  |
|                                                 | Obtain Other Approvals                                       |                                                                                                                           | permits and approvals from agencies not related to the remedy approval (e.g. portation agencies, water purveyors, etc.), relative to the most difficult                  |  |  |  |  |
|                                                 | Constructability                                             | Levels of sophistication of<br>construction oversight<br>and planning relative to the most<br>complex Alternative         | Total dredge area (acres)<br>Total MNR area (acres)<br>Total <i>in situ</i> treatment area (acres)<br>Total reactive ENR area (acres)<br>Construction Period (days)      |  |  |  |  |
| Implementability<br>20%                         | Availability of Experts and<br>Technology                    | Accessibility of special expertise at that is required                                                                    | essibility of special expertise and equipment<br>is required                                                                                                             |  |  |  |  |
|                                                 | Availability to Modify/Update, as necessary                  | Ease with which changes can be made compared<br>to the least adaptable Alternative                                        |                                                                                                                                                                          |  |  |  |  |
|                                                 | Effectiveness of Monitoring                                  | Reliability of assessing Alternative                                                                                      | performance by monitoring                                                                                                                                                |  |  |  |  |
|                                                 | Energy Use (MMBTU)                                           |                                                                                                                           |                                                                                                                                                                          |  |  |  |  |
| Environmental                                   | Air Emissions                                                |                                                                                                                           | GHG emissions (tons) NO <sub>x</sub> emissions (tons)                                                                                                                    |  |  |  |  |
| 10%                                             | AII EIIIISSIOIIS                                             | Toxic and GHG emissions                                                                                                   | SO <sub>x</sub> emissions (tons)<br>PM <sub>10</sub> Emissions (tons)                                                                                                    |  |  |  |  |
|                                                 | Impacts on Water Resources                                   |                                                                                                                           |                                                                                                                                                                          |  |  |  |  |
| Costs                                           | Capital (MM\$)                                               | NPV \$s                                                                                                                   |                                                                                                                                                                          |  |  |  |  |
| 15%                                             | OM&M (MM\$)                                                  | NPV \$s                                                                                                                   |                                                                                                                                                                          |  |  |  |  |
| Acceptance<br>15%                               | State and Local Agency<br>Community                          | Level of acceptability relative to the least acceptable Alternative                                                       |                                                                                                                                                                          |  |  |  |  |
|                                                 |                                                              | Level of acceptability relative to th                                                                                     | e was acceptable Anemative                                                                                                                                               |  |  |  |  |

| Table 7-2                                                                    |
|------------------------------------------------------------------------------|
| Framework for Multi-Criteria Comparative Evaluation of Remedial Alternatives |
|                                                                              |

RAO=Remedial action objective; COC=Contaminant of concern; ENR=Enhanced natural recovery; MNR=Monitored natural recovery; OM&M=Operation maintenance and monitoring; MMBTU=Million metric British thermal units; GHG=Greenhouse gas; NOx= Nitrogen oxides; SOx=Sulfur oxides; PM10 = particulated matter with diameter 10 µm or less; MM\$=Million Dollar; NPV=Net present value.

Table 7-3 Multi-Criteria Comparative Analysis of Remedial Alternatives - CDP Input Scoring

|                                        |                                                                                        |                                                                                      | IVIUN                                                                                                                                                   | I-Criteria Compara                                                                     | ative Analysis of R                              | emedial Alternativ           | ves - CDP Input Scorin                 | g<br>dial Alternative                                             |                              |                                |                                                             |
|----------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------|----------------------------------------|-------------------------------------------------------------------|------------------------------|--------------------------------|-------------------------------------------------------------|
|                                        |                                                                                        |                                                                                      |                                                                                                                                                         | 1                                                                                      | 2.4                                              | 20                           | 4F                                     |                                                                   | 411                          | 41                             | 41                                                          |
|                                        |                                                                                        | Evaluation Criteria                                                                  |                                                                                                                                                         | •                                                                                      | 3A<br>Removal at CPC,<br>DHC, Dark Head<br>Creek | 3B<br>Removal at CPC,<br>DHC | 4۲<br>Partial Removal,<br>Reactive ENR | 4G<br>Partial Removal, <i>In</i><br><i>situ</i> Treatment,<br>MNR | 4H<br>Partial<br>Removal+MNR | 4I<br>Partial+ Removal,<br>MNR | 4J<br>Partial+ Removal,<br><i>In situ</i> Treatment,<br>MNR |
| Level 1                                | Lev                                                                                    | vel 2                                                                                | Level 3 <sup>1/</sup>                                                                                                                                   |                                                                                        |                                                  |                              |                                        |                                                                   |                              |                                |                                                             |
| Long-term                              | Prevent Human Health Risks                                                             | Level of risk mitigation to                                                          | Achievement of RAO 1: Human Seafood<br>Consumption at the end of construction $(\%)^{2'}$                                                               | 0                                                                                      | 100.0                                            | 100.0                        | 100.0                                  | 99.5                                                              | 83.0                         | 100.0                          | 100.0                                                       |
| Effectiveness                          |                                                                                        | protect human health                                                                 | Achievement of RAO 2: Human Health Direct<br>Contact at the end of construction (%)                                                                     | 91                                                                                     | 100                                              | 100                          | 100                                    | 100                                                               | 100                          | 100                            | 100                                                         |
|                                        |                                                                                        |                                                                                      |                                                                                                                                                         | 4.6                                                                                    | 10.0                                             | 10.0                         | 10.0                                   | 10.0                                                              | 9.2                          | 10.0                           | 10.0                                                        |
|                                        | Minimize Ecological Risks                                                              | Level of risk mitigation to<br>protect Ecologiocal Receptors                         | RAO 3: Benthic Organisms at the end of construction (%) <sup>3/</sup>                                                                                   | 71.0                                                                                   | 100.0                                            | 100.0                        | 100.0                                  | 92.7                                                              | 82.1                         | 89.4                           | 93.4                                                        |
|                                        |                                                                                        |                                                                                      |                                                                                                                                                         | 7.1                                                                                    | 10.0                                             | 10.0                         | 10.0                                   | 9.3                                                               | 8.2                          | 8.9                            | 9.3                                                         |
|                                        |                                                                                        | Potential exposure pathways                                                          | Achievement of RAOs 4/                                                                                                                                  | 5.4                                                                                    | 10.0                                             | 10.0                         | 10.0                                   | 9.7                                                               | 8.8                          | 9.6                            | 9.8                                                         |
|                                        | Residual Potential Risk                                                                | to remaining COCs                                                                    | Residual reexposure risk <sup>5/</sup>                                                                                                                  | 0                                                                                      | 9.0                                              | 9.0                          | 8.6                                    | 8.1                                                               | 7.4                          | 8.0                            | 8.3                                                         |
|                                        |                                                                                        | 1                                                                                    |                                                                                                                                                         | 2.7                                                                                    | 9.5                                              | 9.5                          | 9.3                                    | 8.9                                                               | 8.1                          | 8.8                            | 9.0                                                         |
|                                        |                                                                                        | 1                                                                                    | Total dredge area (acres) 9                                                                                                                             | 0                                                                                      | 27.51                                            | 21.01                        | 12.49                                  | 12.49                                                             | 12.49                        | 15.95                          | 15.95                                                       |
|                                        |                                                                                        | a                                                                                    | Total MNR area (acres)   5                                                                                                                              | 0                                                                                      | 0.00                                             | 0.00                         | 0.00                                   | 3.46                                                              | 8.52                         | 5.06                           | 3.15                                                        |
|                                        | Technology Reliability                                                                 | Success in achieving RAOs 67                                                         | Total in situ   treatment area (acres)   8                                                                                                              | 0                                                                                      | 0.00                                             | 0.00                         | 0.00                                   | 8.52                                                              | 0.00                         | 0.00                           | 1.91                                                        |
|                                        |                                                                                        |                                                                                      | Total reactive ENR area (acres) 8                                                                                                                       | 0                                                                                      | 0.00                                             | 0.00                         | 8.52                                   | 0.00                                                              | 0.00                         | 0.00                           | 0.00                                                        |
|                                        |                                                                                        |                                                                                      |                                                                                                                                                         | 0                                                                                      | 9.0                                              | 9.0                          | 8.6                                    | 8.1                                                               | 7.4                          | 8.0                            | 8.3                                                         |
| Reduction of<br>Toxicity, Mobility, or | Destruction or Immobilization<br>of Hazardous Constituents                             | Estimated amount of destruction                                                      | on or stablization of COCs                                                                                                                              | No treatment                                                                           | No treatment                                     | No treatment                 | Immobilization of COCs in 8.5<br>acres | Immobilization of COCs in 8.5<br>acres                            | No treatment                 | No treatment                   | Immobilization of COCs in 2<br>acres                        |
| Volume through                         |                                                                                        |                                                                                      |                                                                                                                                                         | 0                                                                                      | 0                                                | 0                            | 2                                      | 2                                                                 | 0                            | 0                              | 1                                                           |
| Treatment                              | Irreversibility of Treatment                                                           | Potential of COCs to reoccur a                                                       | after remedy implementation                                                                                                                             | No treatment                                                                           | No treatment                                     | No treatment                 | Non-reversible                         | Non-reversible                                                    | No treatment                 | No treatment                   | Non-reversible                                              |
|                                        |                                                                                        |                                                                                      |                                                                                                                                                         | 0                                                                                      | 0                                                | 0                            | 10                                     | 10                                                                | 0                            | 0                              | 10                                                          |
|                                        | Time to Achieve RAOs (years) Time to Achieve RAO 2 Time to Achieve RAO 3 <sup>7/</sup> |                                                                                      | 30                                                                                                                                                      | 0                                                                                      | 0                                                | 0                            | 0                                      | 10                                                                | 0                            | 0                              |                                                             |
|                                        |                                                                                        |                                                                                      | 0                                                                                                                                                       | 0                                                                                      | 0                                                | 0                            | 0                                      | 0                                                                 | 0                            | 0                              |                                                             |
|                                        |                                                                                        |                                                                                      | 100                                                                                                                                                     | 0                                                                                      | 0                                                | 0                            | 13                                     | 26                                                                | 12                           | 3                              |                                                             |
| Short-Term                             |                                                                                        |                                                                                      |                                                                                                                                                         | 0                                                                                      | 10.0                                             | 10.0                         | 10.0                                   | 9.7                                                               | 8.2                          | 9.7                            | 9.9                                                         |
| Effectiveness                          |                                                                                        | Relative impacts to Human<br>Health and<br>Ecological Receptors (i.e.<br>compared to | Protect Community (Relative impacts to Human<br>Health - compared to Alternative with<br>the highest impact)                                            | n/a                                                                                    | High                                             | High                         | Low to moderate                        | Low to moderate                                                   | Low                          | Moderate                       | Moderate                                                    |
|                                        |                                                                                        |                                                                                      |                                                                                                                                                         | 10                                                                                     | 0                                                | 0                            | 7.0                                    | 7.0                                                               | 8.0                          | 6.0                            | 6.0                                                         |
|                                        | Un-mitigable Adverse Impacts<br>During Construction and<br>OM&M                        |                                                                                      | Protect Construction Workers (Relative impacts to<br>Human Health - compared to Alternative with the<br>highest impact)                                 | n/a                                                                                    | High                                             | High                         | Low to moderate                        | Low to moderate                                                   | Low                          | Moderate                       | Moderate                                                    |
|                                        | Owiew                                                                                  | Alternative with the highest                                                         |                                                                                                                                                         | 10                                                                                     | 0                                                | 0                            | 7.0                                    | 7.0                                                               | 8.0                          | 6.0                            | 6.0                                                         |
|                                        |                                                                                        | impact)                                                                              | Minimize Environmental Impacts (Relative<br>Impacts to Ecological Receptors - compared to<br>Alternative with the highest impact)                       | n/a                                                                                    | High                                             | High                         | Moderate                               | Low                                                               | Low                          | Low to moderate                | Low to moderate                                             |
|                                        |                                                                                        |                                                                                      |                                                                                                                                                         | 10                                                                                     | 0                                                | 0                            | 6.0                                    | 8.0                                                               | 8.0                          | 7.0                            | 7.0                                                         |
|                                        | Obtain Other Approvals                                                                 | related to the remedy approval                                                       | ining permits and approvals from agencies not<br>(e.g. from local cities and counties, transportation<br>.), relative to the most difficult Alternative | No construction period. No<br>potential for technical/<br>administrative difficulties. | Moderate to high                                 | Moderate to high             | High                                   | Moderate                                                          | Moderate                     | Moderate                       | Moderate                                                    |
|                                        |                                                                                        | •                                                                                    |                                                                                                                                                         | 10                                                                                     | 5                                                | 5                            | 2.5                                    | 7.5                                                               | 7.5                          | 7.5                            | 7.5                                                         |
|                                        |                                                                                        | Lougla of contriction of the                                                         | Total dredge area (acres) 5                                                                                                                             | 0                                                                                      | 27.51                                            | 21.01                        | 12.49                                  | 12.49                                                             | 12.49                        | 15.95                          | 15.95                                                       |
|                                        |                                                                                        | Levels of sophistication of<br>construction oversight                                | Total MNR area (acres) 10                                                                                                                               | 0                                                                                      | 0.00                                             | 0.00                         | 0.00                                   | 3.46                                                              | 8.52                         | 5.06                           | 3.15                                                        |
|                                        | Constructability 8/                                                                    | and planning relative to the                                                         | Total <i>in situ</i> treatment area (acres) 7                                                                                                           | 0                                                                                      | 0.00                                             | 0.00                         | 0.00                                   | 8.52                                                              | 0.00                         | 0.00                           | 1.91                                                        |
|                                        |                                                                                        | most complex Alternative                                                             | Total reactive ENR area (acres) 7                                                                                                                       | 0                                                                                      | 0.00                                             | 0.00                         | 8.52                                   | 0.00                                                              | 0.00                         | 0.00                           | 0.00                                                        |
| Implementability                       |                                                                                        | I                                                                                    | Construction Period (days)                                                                                                                              | 0                                                                                      | 230                                              | 170                          | 100                                    | 110                                                               | 90                           | 110                            | 120                                                         |
|                                        | Availability of Experts and                                                            | Accessibility of special expert                                                      | ise and equipment                                                                                                                                       | 10<br>n/a                                                                              | 5.0<br>High                                      | 5.7<br>High                  | 6.8<br>High                            | 7.0<br>Moderate to high                                           | 7.0<br>High                  | 6.9<br>High                    | 6.7<br>Moderate to high                                     |
|                                        | Technology                                                                             | that is required                                                                     |                                                                                                                                                         |                                                                                        |                                                  |                              |                                        | -                                                                 |                              |                                | -                                                           |
|                                        | Availability to Modify/Update, as necessary                                            | Ease with which changes can to the least adaptable Alternation                       |                                                                                                                                                         | 10<br>n/a                                                                              | 10<br>High                                       | 10<br>High                   | 10<br>Moderate to high                 | 8<br>Moderate                                                     | 10<br>High                   | 10<br>High                     | 8<br>Moderate                                               |
|                                        |                                                                                        |                                                                                      |                                                                                                                                                         | 0                                                                                      | 10                                               | 10                           | 8                                      | 6                                                                 | 10                           | 10                             | 6                                                           |
|                                        | Effectiveness of Monitoring                                                            | Reliability of assessing Alterna                                                     | ative performance by monitoring                                                                                                                         | n/a                                                                                    | High                                             | High                         | Moderate to high                       | Moderate                                                          | Moderate to high             | Moderate to high               | Moderate                                                    |
|                                        |                                                                                        |                                                                                      | · -                                                                                                                                                     |                                                                                        |                                                  |                              | ,                                      |                                                                   |                              |                                |                                                             |
|                                        |                                                                                        |                                                                                      |                                                                                                                                                         | 0                                                                                      | 10                                               | 10                           | 8                                      | 6                                                                 | 8                            | 8                              | 6                                                           |

**Remedial Alternative** 3A 3B 4F 4G **Evaluation Criteria** No Action Removal at CPC, Removal at CPC, Partial Removal, In Partial Removal, DHC, Dark Head DHC **Reactive ENR** Remo situ Treatment, Creek MNR Level 1 Level 2 Level 3<sup>1/</sup> nergy Use (MMBTU) 0 135,000 94,000 47,800 46,600 10 0.0 3.0 6.5 6.5 GHG emissions (tons) 9,995 6,964 3,573 3,462 0 10 0.0 3.0 6.4 6.5 NO<sub>x</sub> emissions (tons) 0 27.70 19.30 10.60 9.81 Environmental 10 0.0 3.0 6.2 6.5 Toxic and GHG emissions Air Emissions Ox emissions (tons) 8.37 5.83 2.87 2.86 0 3.0 6.6 6.6 10 0.0 PM10 Emissions (tons) 0 40.10 27.90 13.80 13.70 10 0.0 3.0 6.6 6.6 mpacts on Water Resources 8,672,000 6,032,000 2,956,000 2,956,000 None 10 3.0 6.6 6.6 Capital (MM\$) NPV \$s 41.7 30.2 20.5 18.4 0 Costs 10 0.0 2.8 5.1 5.6 OM&M (MM\$) NPV \$s 0.00 0.00 1.01 1.06 0 10.0 10.0 0.4 0.0 10 tate and Local Agency Level of acceptability relative to the least acceptable Alternative Acceptance Level of acceptability relative to the least acceptable Alternative 0 5 5 7 8 nunitv

 Table 7-3

 Multi-Criteria Comparative Analysis of Remedial Alternatives - CDP Input Scoring

Notes:

1/ The alternatives are scored on a linear scale between the high and low points within Level 3 criteria. A score of 0 represents a low ranking and a score of 10 represents a high ranking for a given metric. Level 3 sublevels are scored individually and averaged to compute Level 2 scores presented in shaded rows as input into the CDP analysis.

2/ Percentage performance towards achieving RAO 1 PRGs from the baseline (no action ) conditions.

3/ Percentage area within the area of concern achieving RAO 3 PRGs.

4/ Average performance of RAO 1, RAO 2, and RAO 3.

5/ Residual reexposure risk is scored based on the reliability of remedial technology.

6/ Success in achieving RAOs is scored based on the area of each technology applied multiplied by the assigned technology reliability weighting divided by acreage of the study area.

7/ Maximum number of years to achieve point base RAO 3 is reported and scored for each alternative.

8/ Constructability scoring is based on the average of scores computed for the area over which the technology is applied multiplied by the technology constructability factor divided by the acreage of the construction area and the number of construction days.
9/ Level 3 sublevels in air emissions are scored individually as an input to the CDP analysis.

RAO=Remedial action objective; COC=Contaminant of concern; PRG=Preliminary remedial goal; CDP= Criterium decision plus; ARARs=Applicable or relevant and appropriate requirements; ICs=institutional controls; AOPC=Area of potential concern; ENR=Enhanced natural recovery; MNR=Monitored natural recovery; cy=cubic yard; CPC=Cow Pen Creek; DHC=Dark Head Cove; GHG=Greenhouse gas; NOx= Nitrogen oxides; SOx=Sulfur oxides; PM10 = particulated matter with diameter 10 µm or less; OM&M=Operation maintenance and monitoring; MMBTU= Million British thermal unit; MM\$=Million Dollar; NPV=Net present value.

| 4H<br>Partial<br>oval+MNR | 4I<br>Partial+ Removal,<br>MNR | 4J<br>Partial+ Removal,<br><i>In situ</i> Treatment,<br>MNR |
|---------------------------|--------------------------------|-------------------------------------------------------------|
| 46,400                    | 59,700                         | 59,700                                                      |
| 6.6                       | 5.6                            | 5.6                                                         |
| 3,441                     | 4,425                          | 4,430                                                       |
| 6.6                       | 5.6                            | 5.6                                                         |
| 9.65                      | 12.40                          | 12.40                                                       |
| 6.5                       | 5.5                            | 5.5                                                         |
| 2.86                      | 3.68                           | 3.68                                                        |
| 6.6                       | 5.6                            | 5.6                                                         |
| 13.70                     | 17.60                          | 17.60                                                       |
| 6.6                       | 5.6                            | 5.6                                                         |
| 2,956,000                 | 3,811,000                      | 3,811,000                                                   |
| 6.6                       | 5.6                            | 5.6                                                         |
| 17.2                      | 21.1                           | 21.5                                                        |
| 5.9                       | 4.9                            | 4.8                                                         |
| 0.95                      | 0.62                           | 0.59                                                        |
| 1.1                       | 4.2                            | 4.4                                                         |
|                           |                                |                                                             |
| 3                         | 8                              | 8                                                           |

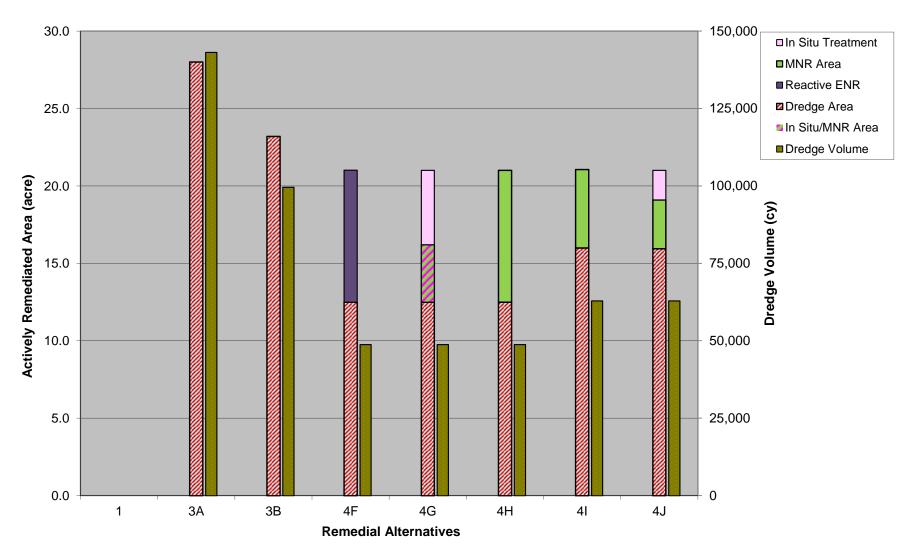
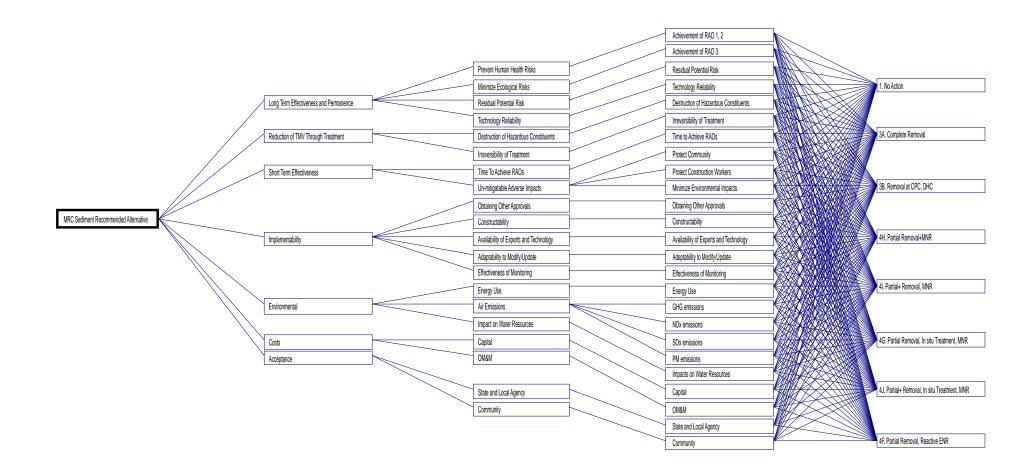




Figure 7-1. Comparative Analysis - Technology Application Summary

#### Figure 7-2. Criterium Decision Plus Analysis Model



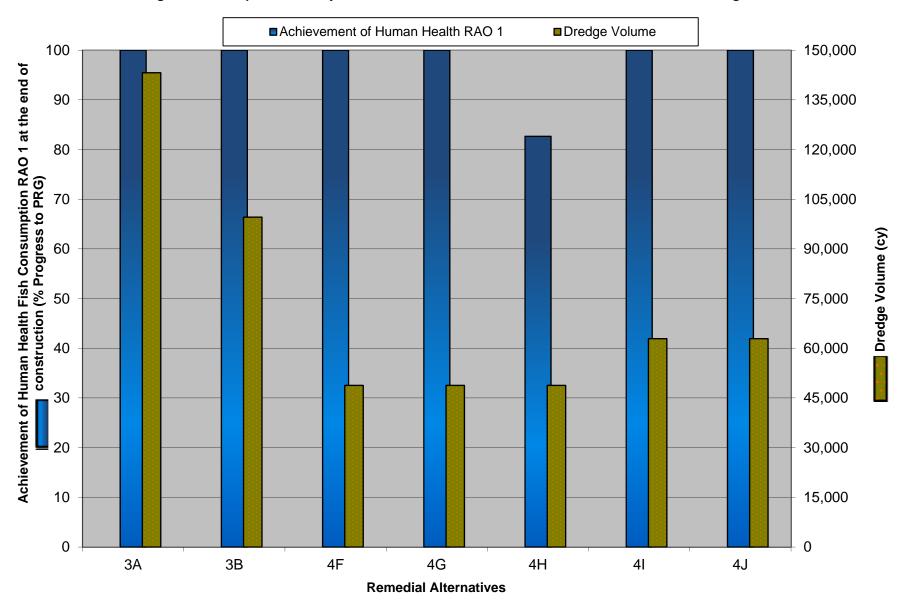



Figure 7-3. Comparative Analysis - Achievement of RAO 1 at the End of Construction to Dredge Volume

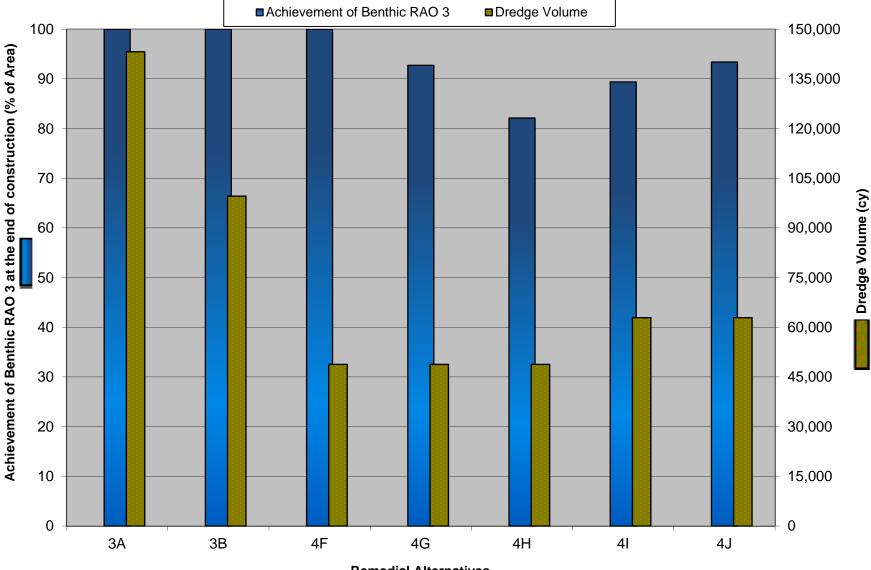



Figure 7-4. Comparative Analysis - Achievement of RAO 3 at the End of Construction to Dredge Volume

**Remedial Alternatives** 

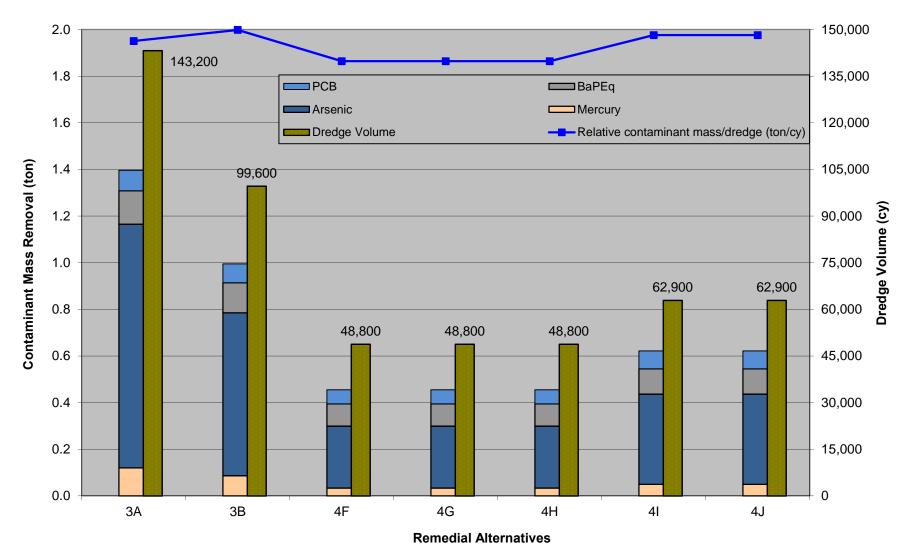



Figure 7- 5a. Contaminant Mass Removal of COCs (PCB, BaPEq, As, Hg) to Dredge Volume

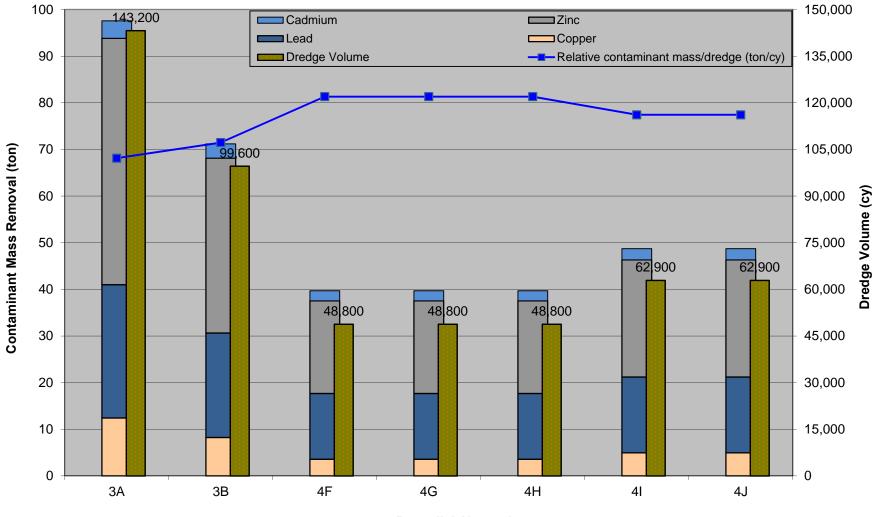



Figure 7- 5b. Contaminant Mass Removal of COCs (Cd, Zn, Pb, Cu) to Dredge Volume

**Remedial Alternatives** 

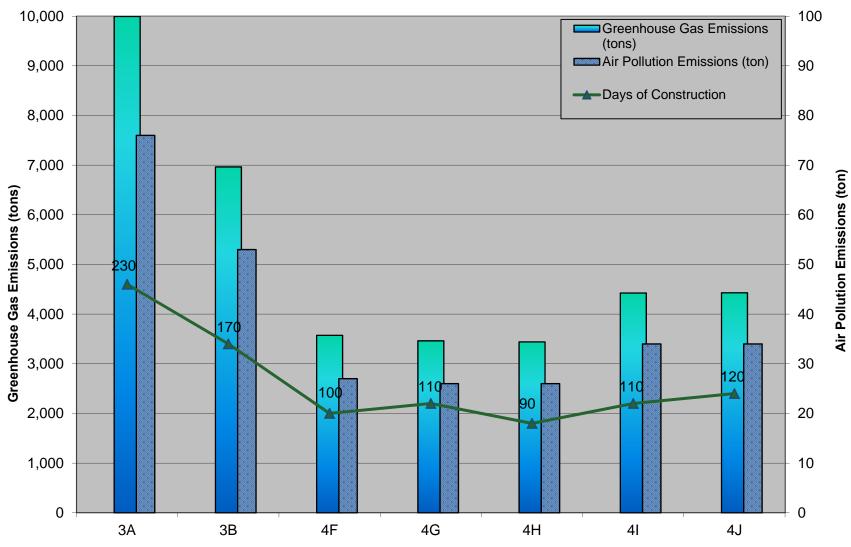
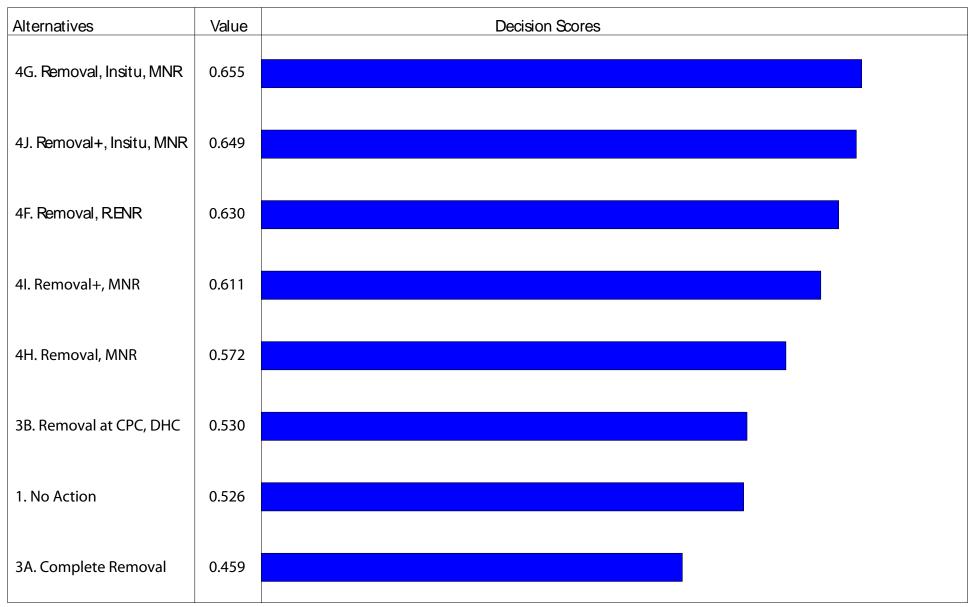
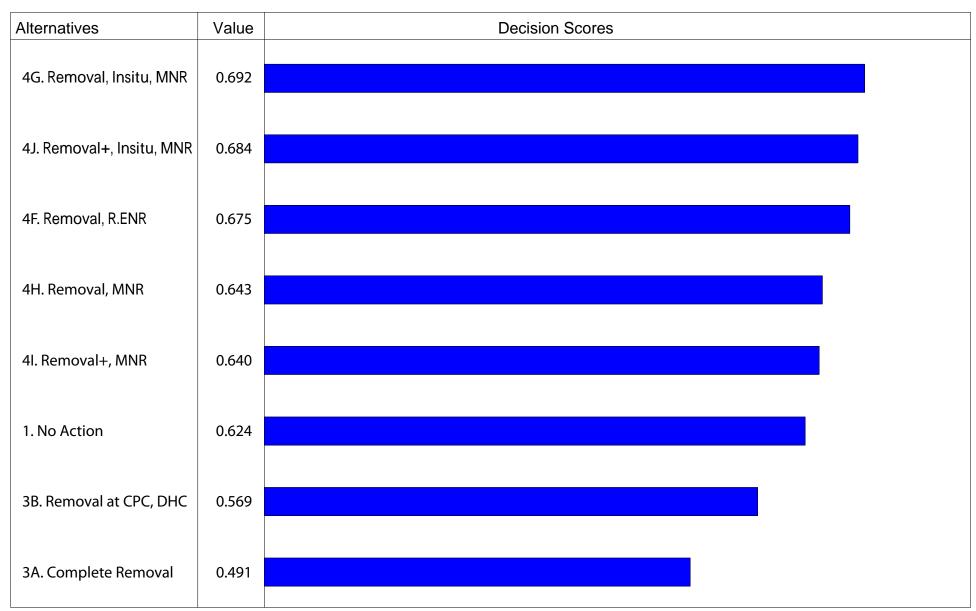



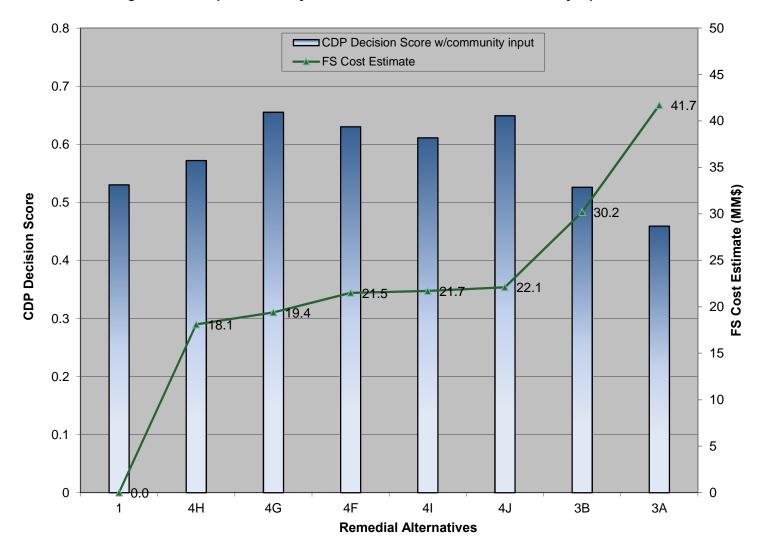

Figure 7-6. Comparative Analysis - Environmental Metrics

**Remedial Alternatives** 

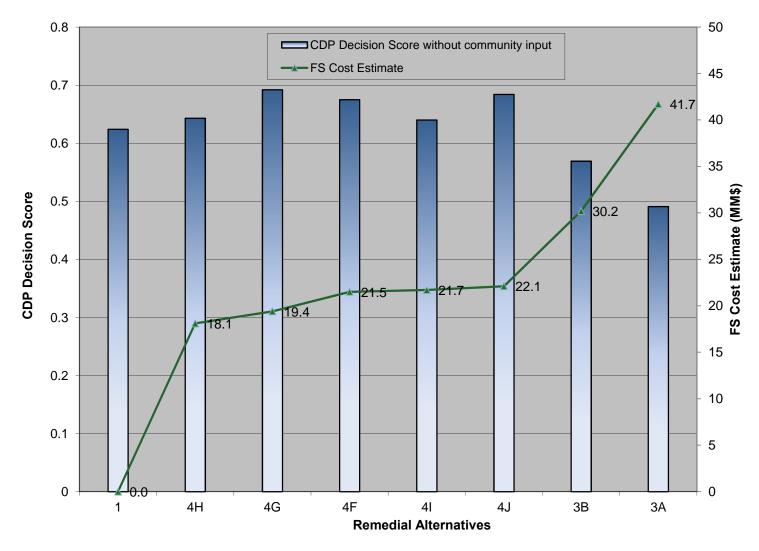
### Figure 7-7. Multi-Criteria Comparative Analysis by CDP Model with Community Acceptance



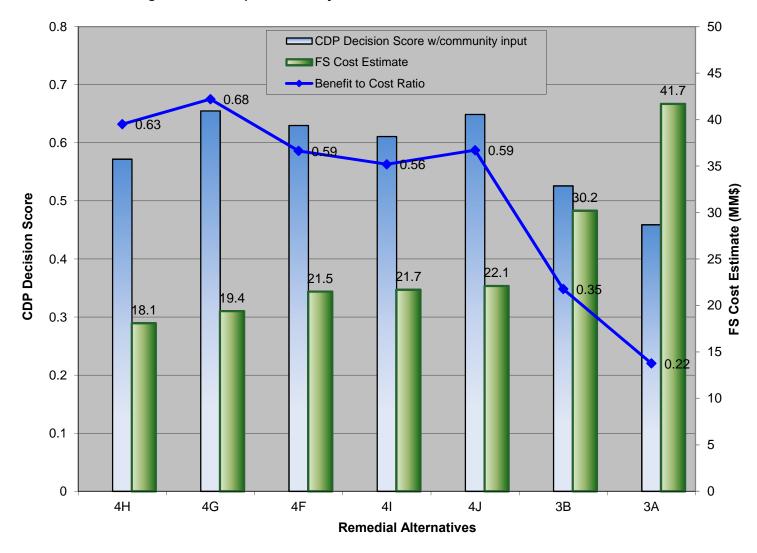

MNR=Monitored Natural Recovery; R.ENR=Reactive Enhanced Natural Recovery; CPC=Cow Pen Creek; DHC=Dark Head Cove


Nov 15 2012 12:42 PM

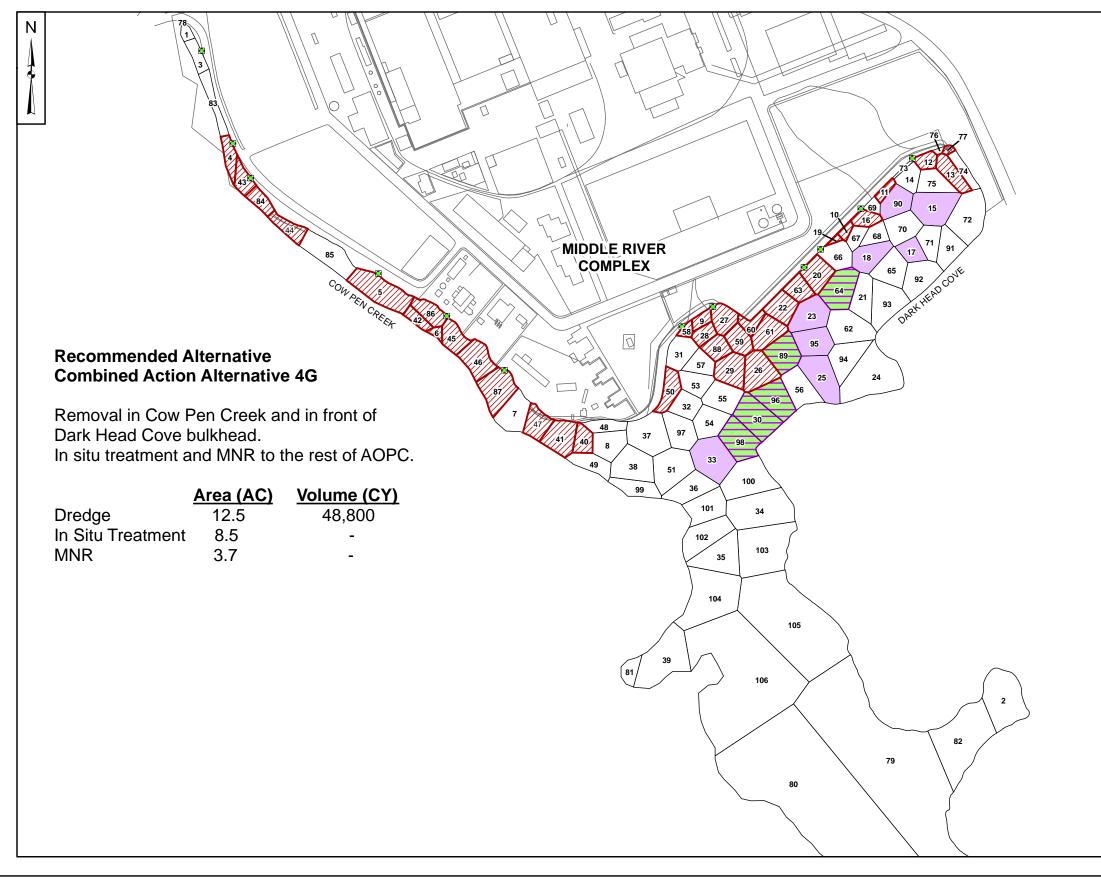
Lockheed Martin Corporation

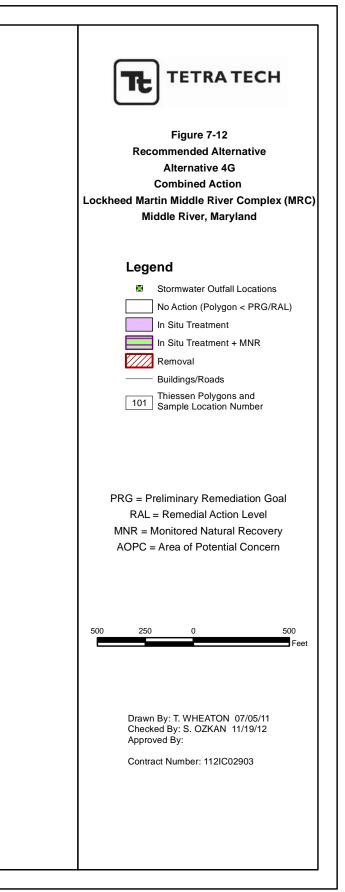

#### Figure 7-8. Multi-Criteria Comparative Analysis by CDP Model without Community Acceptance




MNR=Monitored Natural Recovery; R.ENR=Reactive Enhanced Natural Recovery; CPC=Cow Pen Creek; DHC=Dark Head Cove




#### Figure 7-9. Comparative Analysis - CDP Decision Score with Community Input




#### Figure 7-10. Comparative Analysis - CDP Decision Score without Community Input



#### Figure 7-11. Comparative Analysis - CDP Decision Score with Benefits to Cost Ratio





PGH:P:\GIS\MIDDLE\_RIVER\MAPDOCS\MXD\AUG2010\_THIESSEN\COMBINEDCOC\_THIESSEN\_AUG2010\_SS\_ALT4\_CDPRG\_ALT4G\_REVISED1.MXD 11/19/2012 JN

# Section 8 References

- 1. Baltimore County. 2011. Department of Public Works Bureau of Utilities. "Industrial User Permit Number WWDP#1579." Issued to Middle River Aircraft Systems, Chesapeake Park Plaza, Baltimore, Maryland.
- Berry, W. J., D. J. Hansen, J. D. Mahony, D. L. Robson, D. M. Di Toro, B. P. Shipley, B. "Rogers, J. M. Corbin and W. S. Boothman. 1996. "Predicting the Toxicity of Metal-Spiked Laboratory Sediments Using Acid-Volatile Sulfide and Interstitial Water Normalizations." *Environmental Toxicology and Chemistry*. Vol. 15(12), pp. 2067–2079.
- 3. Blama, R. N., 2012. Personal communication (interview) by M. Martin of Tetra Tech, Inc. with Mr. Blama of U.S. Army Corps of Engineers Navigation Section. March 21.
- 4. Bridges, T. S., S. Ells, D. Hayes, D. Mount, S. C. Nadeau, M. R. Palermo, C. Patmont, and P. Schroeder, 2008. *The Four Rs of Environmental Dredging: Resuspension, Release, Residual, and Risk.* ERDC/EL TR-08-4. Washington, D.C.
- 5. Cassell, J.R., 1977. Drainage Area Map—"Existing Storm Water Drains, Chesapeake Park Plaza/Dark Head Cover Road;" Sheet A1 of 7. July.
- 6. Cho. Y. and R. Luthy, 2012. "Hunters Point Pilot Study Experiences: Long-Term Effectiveness." Lower Duwamish Waterway Workshop, Seattle, Wash. February 14–15, 2012.
- Clarke, D., M. Palermo, and T. Sturgis. 2001. Subaqueous Cap Design: Selection of Bioturbation Profiles, Depths, and Rates. DOER Technical Notes Collection (ERDC TN-DOER-C21). U.S. Army Engineer Research and Development Center. Vicksburg, MS.
- 8. Earth Tech, 2003. *Draft Phase I Environmental Assessment, Chesapeake Industrial Park.* February.
- Eek, E., A. Oen, G. D. Breedveld, M. Schaanning, G. Cornelissen, 2011. "Reducing Bioavailability at the Sediment–Water Interface by Active and Passive Thin Capping— Field Testing in Norway." Society of Environmental Toxicology and Chemistry North America 32<sup>nd</sup> Annual Meeting, "Navigating Environmental Challenges: Historical Lessons Guiding Future Directions." Boston, Mass. November 13–17.
- 10. EPRI (Electric Power Research Institute), 2007. Handbook of Remedial Alternatives for MGP Site with Contaminated Sites. EPRI, Palo Alto, California.

- Furota, T., and R. L. Emmett, 1993. "Seasonal Changes in the Intertidal and Subtidal Macrobenthic Invertebrate Community Structure in Baker Bay, Lower Columbia River Estuary." U.S. Department of Commerce, National Oceanic and Atmospheric Administration Technical Memorandum. NMFS-NWFSC-5, p. 68. January.
- 12. Garcia, M. (editor), 2008. "Sedimentation Engineering: Processes, Measurements, Modeling, and Practice." *ASCE Manuals and Reports on Engineering Practice No. 110.* American Society of Civil Engineers. 1132 pp.
- 13. Greenberg. M., 2012. "Grasse River, New York Activated-Carbon Pilot Study." Lower Duwamish Waterway Workshop, Seattle, Wash. February 14–15.
- 14. Ghosh, U., 2012. "New Advances in Contaminated Sediment Remediation by Controlling Bioavailability." Lower Duwamish Waterway Workshop, Seattle, Wash. February 14–15.
- Ghosh, U., R. G. Luthy, G. Cornelissen, D. Werner, C. A. Menzie, 2011. "In situ Sorbent Amendments: A New Direction in Contaminated Sediment Management." Environ. Sci. Technol. 45 (4), pp. 1163–1168 DOI: 10.1021/es102694h publication date (Web): January 19.
- 16. Ghosh, U., B. E. Reed, S. Kwon, J. Thomas, T. Dridges, D. Farrar, V. Vagar, and L. Levine, 2008. *Rational Selection of Tailored Amendment Mixtures and Composites for* in situ *Remediation of Contaminated Sediments*. SERDP Project ER-1491.
- 17. InfoHarvest, Inc., 2001. Criterium Decision Plus<sup>®</sup>. "The Complete Decision Formulation, Analysis, and Presentation for Windows Version 3.0 User's Guide Tutorial." Seattle, Wash.
- 18. ITRC. 2011. Incorporating Bioavailability Considerations into the Evaluation of Contaminated Sediment Sites. The Interstate Technology and Regulatory Council, Contaminated Sediments Team. February.
- 19. Lockheed Martin, 2011. A Citizen's Guide to Understanding Lockheed Martin's Path Forward for Sediment Cleanup near the Middle River Complex. http://www.lockheedmartin.com/content/dam/lockheed/data/corporate/documents/remedi ation/middle-river/middle-river-citizens-guide-dec2011.pdf
- Lohmann, R., J. K. Macfarlane, and P. M. Gschwend, 2005. "Importance of Black Carbon to Sorption of Native PAHs, PCBs, and PCDDs in Boston and New York Harbor Sediment." *Environ. Sci. Technol.* 2005, 39, 141–148.
- 21. Maa, J. P. Y., L. Sanford, and J. P. Halka, 1998. "Sediment Resuspension Characteristics in the Baltimore Harbor." *Marine Geology*, 146:147–145: <u>http://www.vims.edu/people/maa\_jp/pubs/maa\_etal\_MG\_98.pdf</u>
- 22. Maa, J. P. Y. and S. C. Kim, 2002. "A Constant Erosion Rate Model for Fine Sediment in the York River, Virginia." *Environmental Fluid Mechanics*, 1, pp. 343–360: http://www.vims.edu/people/maa\_jp/pubs/maa\_Kim\_2002.pdf

- 23. Maa, J. P. Y., 2008. "Sediment Erosion Characteristics in the Anacostia River." *Journal of Hydraulic Engineering*, 134(8), pp. 1102–1109: http://www.vims.edu/people/maa jp/pubs/maa JHE 2008.pdf
- MacDonald, D. D., R. S. Carr, F. D. Calder, E. R. Long, and C. G. Ingersoll, 1996. "Development and evaluation of sediment quality guidelines for Florida coastal waters." Ecotoxicology. 5: 253-278.
- 25. MacDonald, D. D., C. G. Ingersoll, and T. A. Berger, 2000a. "Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems." Archives of Environmental Contamination and Toxicology, Vol. 39, pp. 20–31.
- MacDonald, D. D., L. M. Dipinto, J. Field, C. G. Ingersoll, E. R. Long, and R. C. Swartz, 2000b. "Development and Evaluation of Consensus-Based Sediment-Quality Guidelines for Polychlorinated Biphenyls." *Environmental Toxicology and Chemistry*, Vol. 19, No. 5. pp. 1403–1413.
- 27. MDE (Maryland Department of the Environment), 2003. Industrial Discharge Permits Division, Water Management Administration. NPDES permit 00DP0298, issued to LMC Properties, Inc., Chesapeake Park Plaza, Baltimore, Maryland.
- 28. Menzie, C. and U. Ghosh, 2011. "Monitoring the Efficacy and Potential Environmental Effects of *in situ* Remediation." Society of Environmental Toxicology and Chemistry (SETAC) North America 32<sup>nd</sup> Annual Meeting, "Navigating Environmental Challenges: Historical Lessons Guiding Future Directions." Boston, Mass. November 13–17.
- 29. Merritt, K., J. Conder, V. Magar, V. J. Kirtay, and D. B. Chadwick, 2009. *Enhanced Monitored Natural Recovery (EMNR) Case Studies Review. Technical Report 1983.* SSC Pacific, San Diego, Calif. 39 pp.
- 30. NAVFAC (Naval Facilities Engineering Command), 2011. SiteWise Version 2 User Guide. Battelle Memorial Institute, Columbus, Ohio. June.
- 31. NRC (National Research Council), 2001. "A Risk-Management Strategy for PCB-Contaminated Sediments." Committee on Remediation of PCB-Contaminated Sediments. Prepared for the National Academy of Sciences and the United States Environmental Protection Agency. National Academy Press, Washington, D.C.
- 32. NRC (National Research Council), 2007. Sediment Dredging at Superfund Megasites Assessing the Effectiveness. National Academic Press. Washington, D.C.
- 33. Palermo, M.R., Clausner, J.E., Rollings, M.P., Williams, G.L., Myers, T.E., Fredette, T.J., and Randall, R.E. 1998. Guidance for Subaqueous Dredged Material Capping. DOER Technical Report (DOER-1), U.S. Army Engineer Research and Development Center, Vicksburg, MS.
- 34. Palermo, M. R., and K. Gustavson, 2009. "In situ Volume Creep for Environmental Dredging Remedies." Fifth International Conference on Remediation of Contaminated Sediments, Jacksonville, Fla. 2009.

- 35. Palermo, M. R., P. R. Schroeder, T. J. Estes, and N. R. Francingues, 2008. *Technical Guidelines for Environmental Dredging of Contaminated Sediments*. ERDC/EL TR-08-29. September.
- 36. Suter II, G. W. and C. L. Tsao, 1996. *Toxicological Benchmarks for Screening Potential Constituents of Concern for Effects on Aquatic Biota: 1996 Revision*. Environmental Sciences Division, Oak Ridge National Laboratory. ES/ER/TM-96/R2.
- 37. Tetra Tech (Tetra Tech, Inc.), 2004. *Historical Research Report, Lockheed Martin Middle River Complex*. August.
- 38. Tetra Tech (Tetra Tech, Inc.), 2006. Surface Water and Sediment Sampling Report, Lockheed Martin Middle River Complex. April.
- 39. Tetra Tech (Tetra Tech, Inc.), 2009. Sediment Characterization Report for Cow Pen Creek and Dark Head Cove, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland. October.
- 40. Tetra Tech (Tetra Tech, Inc.), 2011a. Additional Characterization and Sediment Sampling Data Summary Report, Lockheed Martin Middle River Complex. March.
- 41. Tetra Tech (Tetra Tech, Inc.), 2011b. Fish Tissue Report, Middle River Complex, 3232 Eastern Boulevard, Middle River, Maryland. April.
- 42. Tetra Tech (Tetra Tech, Inc.), 2011c. Sediment Risk Assessment, Lockheed Martin Middle River Complex, 2323 Eastern Boulevard, Middle River, Maryland. May.
- 43. Tetra Tech (Tetra Tech, Inc.), 2012a. Additional Sediment Characterization Report, Lockheed Martin Middle River Complex. June.
- 44. Tetra Tech (Tetra Tech, Inc.), 2012b. Groundwater Response Action Plan, Lockheed Martin Middle River Complex 2323 Eastern Boulevard, Middle River, Maryland. August.
- 45. Tetra Tech (Tetra Tech, Inc.), 2012c. Reconnaissance Report for Bulkhead/Shoreline Evaluation, Blocks D and F, Lockheed Martin Middle River Complex, Middle River, Maryland. August.
- 46. UBC (*Uniform Building Code*), 2006. International Code Council. ICC Publications. Illinois.
- 47. USACE (U.S. Army Corps of Engineers), 1998. *Multi-user Disposal Sites (MUDS) for Contaminated Sediments from Puget Sound—Subaqueous Capping and Confined Disposal Alternatives*. United States Army Corps of Engineers, Seattle District.
- USACE (U.S. Army Corps of Engineers), 2012. Reports of Channel Conditions and Surveys: <u>http://www.nab.usace.army.mil/Navigation/DepthRpts.htm#002</u>. Accessed on June 11.

- USEPA (U.S. Environmental Protection Agency). 1988. Interim Final Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA. Publication 9355.3-01. EPA/540/G-89/004. October. Washington, DC.
- USEPA (U.S. Environmental Protection Agency), 1989. *Risk Assessment Guidance for Superfund*. EPA 540/1-89/002. Office of Emergency and Remedial Response. U.S. Environmental Protection Agency. Washington, D.C. December.
- 51. USEPA (U.S. Environmental Protection Agency), 1992. Guidance for Data Usability in Risk Assessment. Publication 9285.7-09A. Office of Emergency and Remedial Response. U.S. Environmental Protection Agency. Washington, D.C. April.
- 52. USEPA (U.S. Environmental Protection Agency), 1997a. *Rules of Thumb for Superfund Remedy Selection*. USEPA 540-R-97-013, OSWER 9355.0-69. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency. Washington, D.C.
- 53. USEPA (U.S. Environmental Protection Agency), 1997b. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments. USEPA/540/R-97/006. Interim Final. Environmental Response Team, U.S. Environmental Protection Agency. Edison, N.J.
- 54. USEPA (U.S. Environmental Protection Agency), 1998. Assessment and Remediation of Contaminated Sediments (ARCS) Program Guidance for in situ Subaqueous Capping of Contaminated Sediments. USEPA 905/B-96/004.
- 55. USEPA (U.S. Environmental Protection Agency), 1999. A Guide for Preparing Superfund Proposed Plans, Records of Decision, and Other Remedy Selection Decision Documents. USEPA 540R-98-031. U.S. Environmental Protection Agency, Washington, D.C. July.
- 56. USEPA (U.S. Environmental Protection Agency), 2000. A Guide to Developing and Documenting Cost Estimates during the Feasibility Study. USEPA 540-R-00-002, OSWER 9355.0-75. July.
- 57. USEPA (U.S. Environmental Protection Agency), 2005a. *Contaminated Sediment Remediation Guidance for Hazardous Waste Sites*. USEPA-540-R-05-012, OSWER Directive 9355.0-85. December.
- 58. USEPA (U.S. Environmental Protection Agency), 2005b. Institutional Controls: A Citizen's Guide to Understanding Institutional Controls at Superfund, Brownfields, Federal Facilities, Underground Storage Tank, and Resource Conservation and Recovery Act Cleanups. USEPA- 540-R-04-003, OSWER 9355.0-98. February.
- 59. USEPA (U.S. Environmental Protection Agency), 2005c. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver, and Zinc). Office of Research and Development. USEPA-600-R-02-011. January.

60. USEPA (U.S. Environmental Protection Agency), 2006a. Region 3 Freshwater Surface Water Screening Benchmarks. July.

http://www.epa.gov/reg3hwmd/risk/eco/btag/sbv/fw/screenbench.htm

61. USEPA (U.S. Environmental Protection Agency), 2006b. Region 3 Marine Surface Water Screening Benchmarks. July.

http://www.epa.gov/reg3hwmd/risk/eco/btag/sbv/marine/screenbench.htm

- 62. USEPA (U.S. Environmental Protection Agency), 2008. Green Remediation: Incorporating Sustainable Environmental Practices into Remediation of Contaminated Sites. April.
- 63. USEPA (U.S. Environmental Protection Agency), 2009. *National Recommended Water Quality Criteria*. Office of Water, Office of Science and Technology (4304T). http://www.epa.gov/ost/criteria/wgctable
- 64. USEPA (U.S. Environmental Protection Agency), 2010. *Superfund Green Remediation Strategy*. USEPA Office of Superfund Remediation and Technology Innovation. September.
- 65. USEPA (U.S. Environmental Protection Agency), 2012a. USEPA Permit Compliance System (PCS) and Integrated Compliance Information System (ICIS) Database. Accessed on June 11.
- 66. USEPA (U.S. Environmental Protection Agency), 2012b. Green Remediation Best Management Practices: Overview of USEPA's Methodology to Address the Environmental Footprint of Site Cleanup. USEPA Office of Superfund Remediation and Technology Innovation. USEPA 542-F-12-023. March.
- 67. USGS (United States Geological Survey), 2011. National Earthquake Information Center. "M5.8 Central Virginia Earthquake of 23 August 2011 Summary Map." <u>ftp://hazards.cr.usgs.gov/maps/sigeqs/20110823b/20110823b.pdf</u>. Accessed on July 18.
- 68. WDNR (Wisconsin Department of Natural Resources), 2011. *Lower Fox River Operable Unit 1 Post-Remediation Executive Summary*. Prepared by Boldt, the Agencies/Oversight Team. Madison, Wisc. March.

## APPENDIX A—DEVELOPMENT OF HUMAN HEALTH PRELIMINARY REMEDIATION GOALS

## TABLE OF CONTENTS

|          | A DEVELOPMENT OF HUMAN HEALTH PRELIMINARY<br>REMEDIATION GOALS                                                                                                                                                | 1    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| A.1      | CALCULATION OF RISK-BASED PRGS FOR THE RECREATIONAL<br>FISHER CONSUMING FISH (RAO 1)                                                                                                                          | 2    |
| A.2      | CALCULATION OF RISK-BASED PRGS FOR THE RECREATIONAL USER CONTACTING SEDIMENT (RAO 2)                                                                                                                          | 8    |
| A.3      | SELECTION OF PRGS FURTHER EVALUATED IN THE FEASIBILITY STUDY                                                                                                                                                  | 12   |
|          | <ul><li>A.3.1 Recommended Preliminary Remediation Goal for PCBs</li><li>A.3.2 Recommended Preliminary Remediation Goal for PAHs</li><li>A.3.3 Recommended Preliminary Remediation Goals for Arsenic</li></ul> | 13   |
| ATTACHME | ENT A Evaluation of Regional Background Concentrations for Select Chemicals                                                                                                                                   | s in |
|          | Chesapeake Bay Sediments                                                                                                                                                                                      |      |
| ATTACHME | ENT B Preliminary Remedial Goal Calculations                                                                                                                                                                  |      |

## LIST OF TABLES

| Table A-1. | Support Information for Preliminary Remediation Goals for Risk-Driver<br>Chemicals in Lockheed Middle River Complex Sediment | 15 |
|------------|------------------------------------------------------------------------------------------------------------------------------|----|
| Table A-2. | Summary of Preliminary Remediation Goals for Risk Driver Chemicals of<br>Concern in Lockheed MRC                             | 16 |

# APPENDIX A Development of Human Health Preliminary Remediation Goals

This appendix presents the development of human health preliminary remediation goals (PRGs) recommended for chemicals of concern (COC) in the sediments evaluated in this Feasibility Study (FS). The COCs, initially identified in the Final Sediment Risk Assessment, Lockheed Martin, Middle River Complex (Tetra Tech, 2011), are listed below and in Table A-1:

| Receptor of Concern/<br>Exposure Scenario                                                                                        | Chemicals of Concern                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Recreational Fisher (Consumption of fish taken<br>from Cow Pen Creek and Dark Head Cove).<br>(Remedial Action Objective [RAO 1]) | <ul> <li>Polychlorinated biphenyl compounds (PCBs)</li> <li>Arsenic (As)</li> <li>Polycyclic aromatic hydrocarbons (PAHs), specifically those used to calculate the benzo(a)pyrene equivalent concentration (BaPEq<sup>1</sup>):         <ul> <li>benzo(a)pyrene,</li> <li>benzo(a)anthracene,</li> <li>benzo(b)fluoranthene,</li> <li>benzo(k)fluoranthene,</li> <li>chrysene,</li> <li>dibenz(a,h) anthracene,</li> <li>indeno(1,2,3-cd)pyrene</li> </ul> </li> </ul> |
| Recreational User (Direct human contact with the sediments of Cow Pen Creek and Dark Head Cove). (RAO 2)                         | <ul> <li>Arsenic (As)</li> <li>PCBs</li> <li>BaPEq</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                           |
| Benthic Organisms (Direct contact with the<br>sediments of Cow Pen Creek and Dark Head<br>Cove). (RAO 3)                         | <ul> <li>PCBs</li> <li>Cadmium</li> <li>Copper</li> <li>Mercury</li> <li>Lead</li> <li>Zinc</li> </ul>                                                                                                                                                                                                                                                                                                                                                                  |

1) These PAHs will be referred to as the BaPEqs throughout the following narrative

Table A-1 also includes:

• Descriptive statistics for site-specific background sediment data for samples from the following locations in the general vicinity of the Middle River: Bowleys Quarters, Marshy Point, MRC-SW/SD-1, SD-1, and SD-78. (The reader is referred to Section 4 of the *Final Sediment Risk Assessment* for the detailed analytical results.)

- Descriptive statistics for sediment concentration data for numerous sampling locations across the upper Chesapeake Bay. The data were extracted and summarized from EPA and NOAA websites as described in Attachment A of this appendix. This dataset (and the associated descriptive statistics) provide a regional understanding of chemical concentrations in sediments across the upper Chesapeake Bay.
- Risk-based concentrations (RBCs) for the recreational fisher routinely consuming fish taken from Cow Pen Creek/Dark Head Cove and the recreational user directly exposed to sediments in Cow Pen Creek/Dark Head Cove while recreating (e.g., boating, fishing, swimming, wading). These RBCs are potential PRGs for the site and represent the one-in-one million (1x10<sup>-6</sup>), one-in-one hundred thousand (1x10<sup>-5</sup>), and one-in-ten thousand (1x10<sup>-4</sup>) cancer risk levels (i.e., incremental increased cancer risk) and/or hazard index of one (i.e., the no adverse non-cancer effect level) for COCs detected in the sediments. These RBCs were calculated using the methodology described below in Sections A.1 and A.2; detailed calculations are presented in Attachment B of this appendix.
- Recommended risk-based PRGs for benthic organisms exposed to site sediments. The development of the values presented is discussed in Appendix B of the FS.

PRGs were selected for further evaluation in the FS based on the information presented in Table A-1 and are presented in Table A-2. The rationale for the selection is presented in Section A.3.

### A.1 CALCULATION OF RISK-BASED PRGS FOR THE RECREATIONAL FISHER CONSUMING FISH (RAO 1)

Sediment preliminary remediation goals (PRGs) protective of recreational fish consumption were developed by first calculating target fish tissue concentrations and then using available literature and site-specific data to calculate corresponding sediment concentrations protective of the target fish tissue concentrations. The methodology presented below along with PRGs for all chemicals are presented in **Attachment B.** 

Risk-based concentrations (RBCs) for chemicals in fish tissue (RBCfish) associated with a target hazard index (HI) of 1.0 (for non-carcinogens) and a 1E-06 target cancer risk level (for carcinogens) were calculated as follows:

Non-carcinogenic RBCfish (mg/kg) = THI × RfDo / Intake for non-carcinogens

where:

THI = target hazard index = 1.0

| RfDo =   | chemical-specific oral reference dose (mg/kg/day) |
|----------|---------------------------------------------------|
| Intake = | calculated (kg/kg/day) (see below)                |

Carcinogenic RBCfish (mg/kg) = TCR / (CSFo × Intake for carcinogens)

where:

| TCR =    | target cancer risk = $1E-06$                             |
|----------|----------------------------------------------------------|
| CSFo =   | chemical-specific oral cancer slope factor (mg/kg/day)-1 |
| Intake = | calculated (kg/kg/day) (see below)                       |

The United States Environmental Protection Agency (USEPA) has defined a "target cancer risk" range of 1E-04 to 1E-06 (i.e., a one-in-10,000 to one-in-one-million excess lifetime cancer risk). Maryland Department of the Environment (MDE) has defined an upper end cancer risk threshold of 1E-05 (i.e., a one-in-100,000 probability of developing cancer based on site exposure) for carcinogenic risk. Thus, a target cancer risk of 1E-06 (the lower end of the USEPA target cancer risk range) was used in the RBCfish calculations. HIs, which are the sum of the individual hazard quotients (HQs), are typically evaluated by both USEPA and MDE using a value of 1.0. Generally, adverse non-carcinogenic health effects are not anticipated if an HQ or HI (developed on a target organ/effect-specific basis) does not exceed 1.0. Thus, a target HI of 1.0 was used in the RBCfish calculations.

Chemical-specific oral RfDs and CSFs used in the RBC calculations are presented in **Attachment B**.

Non-carcinogenic and carcinogenic intakes for the fish ingestion exposure route were estimated using the following equation (USEPA, 1989):

Ingestion Intake = 
$$\frac{IR \times FI \times EF \times ED}{BW \times AT}$$

where:

| Intake | = | recreational fish ingestion intake (kg/kg/day)        |
|--------|---|-------------------------------------------------------|
| IR     | = | ingestion rate (kg/meal)                              |
| FI     | = | fraction ingested from contaminated source (unitless) |
| EF     | = | exposure frequency (meals/year)                       |

ED = exposure duration (years) BW = body weight (kg) AT = averaging time (days):For non-carcinogens,  $AT = ED \times 365 days/yr$ ; For carcinogens,  $AT = 70 yr \times 365 days/yr$ 

| Parameter<br>Code | Parameter Definition          | Units      | Value  | Reference             |
|-------------------|-------------------------------|------------|--------|-----------------------|
| IR                | Ingestion rate of fish        | kg/meal    | 0.129  | USEPA, August 1997    |
| FI                | Fraction ingested from source | unitless   | 1.0    | Professional judgment |
| EF                | Exposure frequency            | meals/year | 52     | Professional judgment |
| ED                | Exposure duration             | years      | 30     | USEPA, May 1993       |
| BW                | Body weight                   | kg         | 70     | USEPA, May 1993       |
| AT-C              | Averaging time (cancer)       | days       | 25,550 | USEPA, December 1989  |
| AT-N              | Averaging Time (Non-Cancer)   | days       | 10,950 | USEPA, December 1989  |

The exposure assumptions used for the RBCs are presented below:

Most of the exposure assumptions used to estimate chemical intakes for the ingestion of fish exposure pathway are based on default assumptions described in the standard USEPA guidance. However, the PRGs specifically assume that receptors consume one meal's worth of fish caught once per week for each week of the year, yielding an exposure frequency (EF) of 52 meals/year. The fish tissue ingestion rate was set at 0.129 kg/meal (USEPA, 1997a) or 18.4 g/day. This daily ingestion rate is the value USEPA recommends for recreational fishers based on information from several studies cited in the *Exposure Factors Handbook* (Section 10.10.3) (USEPA, 1997a).

The exposure duration (ED) was defined as 30 years (USEPA, 1993). The 30-year ED, used in conjunction with other conservative exposure factors (e.g., conservative estimates of EF), is recommended by the USEPA when defining a reasonable maximum exposure (RME) for a long-term residential type of setting. The recommendation is based on lifestyle and human activity data (e.g., the number of years a family lives at one particular location) evaluated by USEPA and published in the USEPA's *Exposure Factors Handbook*. In aggregate, the exposure factor assumptions selected for this assessment (all valid RME assumptions), are intended to result in

an evaluation of the highest exposure that is reasonably expected to occur at a site. The FI from the contaminated source is assumed to be 1.0 (100%), as no specific information on the dietary habits of local residents is available. This conservatively assumes that 100% of the fish caught and ingested by the recreational fisher comes from the study area.

The calculation of ingestion intake for non-carcinogens is as follows:

Ingestion Intake (non-carcinogens) = 
$$\frac{0.129 \text{ kg/meal} \times 1.0 \times 52 \text{ meals/year} \times 30 \text{ years}}{70 \text{ kg} \times 10,950 \text{ days}}$$
$$= 2.63\text{E-04 kg/kg/day}$$

The calculation of ingestion intake for carcinogens is as follows:

Ingestion Intake (carcinogens) = 
$$\frac{0.129 \text{ kg/meal} \times 1.0 \times 52 \text{ meals/year} \times 30 \text{ years}}{70 \text{ kg} \times 25,550 \text{ days}}$$
$$= 1.13\text{E-04 kg/kg/day}$$

These intake values for non-carcinogens and carcinogens (2.63E-04 kg/kg/day and 1.12E-04 kg/kg/day, respectively) were used to calculate PRGs for all chemicals.

Fish tissue PRGs were calculated as in the following example (using polychlorinated biphenyls [PCBs]):

Non-carcinogenic RBCfish for PCBs\* =  $1.0 \times 2.0E-05 \text{ mg/kg/day} / 2.63E-04 \text{ days}^{-1}$ 

= 7.6E-02 mg/kg

\* The oral reference dose (RfDo) for Aroclor-1254 was used for PCBs.

Carcinogenic RBCfish for PCBs =  $1E-06 / [2.0E+00 (mg/kg/day)^{-1} \times 1.13E-04 days^{-1}]$ 

4.4E-03 mg/kg

These values represent the target fish tissue concentrations for PCBs for the exposure assumptions defined above.

FS Lockheed Middle River Complex

=

Once target fish tissue concentrations were calculated, sediment chemical concentrations protective of these target fish tissue concentrations were calculated using biota-sediment accumulation factors (BSAFs) (from literature). BSAFs were used in the calculation of sediment PRGs for both metals and organic parameters.

Site-specific total organic carbon (TOC) data and percent lipids data were additionally used in the calculation of sediment PRGs for organic parameters. TOC was analyzed in a subset of sediment samples in each depth interval. Average TOC for each depth interval was used in the PRG calculations. The average TOC concentrations were greatest in the surface sediment and least in the deep subsurface sediment (>30 - 52"). Therefore, sediment PRGs calculated using the average TOC from surface sediment are least conservative, and sediment PRGs calculated using the average TOC from >30 - 52" subsurface sediment are most conservative. The average percent lipids from the fish tissue samples collected from the Middle River Complex site was used in the PRG calculations.

Sediment PRGs for metals were calculated using BSAFs as follows:

Sediment PRGs for metals = RBCfish/BSAF

Sediment-to-aquatic-invertebrate BSAFs from Oak Ridge National Laboratory (ORNL) (1998) were used to estimate metals concentrations in fish tissue because sediment-to-fish BSAFs are not available for all metals. Using sediment to aquatic invertebrate BSAFs is likely to result in BSAFs that are biased high, because invertebrates are generally assumed to have more contact with sediment than fish. Also, although invertebrate BSAFs may be derived for metals, metals may be well regulated by organisms, so concentrations of metals in an organism may not relate linearly to the concentrations of metals in sediment. Therefore, uncertainty exists in predicting metals concentrations in fish tissue from metals concentrations in sediment and, thus, unrealistically low PRGs may be calculated for metals using this approach. Because BSAFs for metals are not normalized to lipids or TOC, sediment concentrations protective of fish consumption were estimated by dividing each metal's target fish tissue concentration by its associated BSAF. (The BSAF was converted to a wet weight by multiplying by 0.16.)

Sediment screening levels for organics were derived as follows:

where:

|          | Sedim      | ent PRG for      | RBCfish×% TOC                  |
|----------|------------|------------------|--------------------------------|
|          | organi     | cs =             | BSAF×% Lipids                  |
| :        |            |                  |                                |
| BSAF     | =          | biota sediment-a | ccumulation factor             |
| % TOC    | =          | average TOC in   | sediment                       |
| (%)      | ), depth-s | specific         |                                |
| % Lipids | =          | average percent  | lipids concentration from site |
| fish     | i tissue d | ata = 1.2%       |                                |

The preceding equations assume that the fish in Cow Pen Creek or Dark Head Cove are in routine contact with the study area contaminants to be conservative. As noted above, sediment-to-fish consumption COPC screening levels were developed assuming that chemicals in sediments may be transferred to fish tissue, which would then be consumed by human receptors.

Example sediment PRGs protective of fish consumption are provided below for PCBs in >30 - 52" subsurface sediment:

| Non-cancer sediment PRG (PCBs) =                             |   | $\underline{7.6 \ E\text{-}02 \ mg/kg \times 1.14\%}$ |
|--------------------------------------------------------------|---|-------------------------------------------------------|
| (>30 – 52" subsurface sediment)                              |   | $1.85 \times 1.2\%$                                   |
|                                                              | = | 3.9E-02 mg/kg                                         |
| Cancer sediment PRG (PCBs) = (>30 – 52" subsurface sediment) |   | <u>4.4 E-03 mg/kg × 1.14%</u><br>1.85 × 1.2%          |
|                                                              | = | 2.3E-03 mg/kg                                         |

### A.2 CALCULATION OF RISK-BASED PRGS FOR THE RECREATIONAL USER CONTACTING SEDIMENT (RAO 2)

PRGs for direct contact with sediment were developed by calculating RBCs protective of recreational use. RBCs for direct contact (incidental ingestion and dermal contact) with sediments were calculated for recreational users per the sediment evaluation methodology presented in Section 4 of the 2005 Surface Water and Sediment Sampling Report for the Lockheed Martin Middle River Complex, Middle River, Maryland (Tetra Tech, 2005). The referenced methodology along with a copy of the risk assessment spreadsheets used to calculate the RBCs for the direct contact exposure pathways are presented in Attachment B. RBCs were calculated for child, adolescent, adult, and lifelong recreational users directly contacting study area sediments.

RBCs for chemicals in sediment (RBCsed) associated with the target HI of 1.0 (for non-carcinogens) and the 1E-06 target cancer risk level (for carcinogens) were calculated as follows:

| Ionows.         | RBC -           |                        | IHI                                           |
|-----------------|-----------------|------------------------|-----------------------------------------------|
| NT '            | $RBC_{sed} = 0$ | Intake <sub>oral</sub> | $+\left(\frac{\text{Intake}_{derm}}{}\right)$ |
| Non-carcinogens |                 | RfD <sub>oral</sub>    | └                                             |

where:

| THI                    | = | target hazard index                                 |
|------------------------|---|-----------------------------------------------------|
| Intake <sub>oral</sub> | = | Oral intake, calculated (kg/kg/day) (see below)     |
| Intake <sub>derm</sub> | = | Dermal intake, calculated (kg/kg/day) (see below)   |
| RfD <sub>oral</sub>    | = | chemical-specific oral reference dose (mg/kg/day)   |
| RfD <sub>derm</sub>    | = | chemical-specific dermal reference dose (mg/kg/day) |

| Carcinogens | RBC <sub>sed</sub> =   | $= \frac{\text{TCR}}{\text{Intake}_{\text{oral}} \cdot \text{CSF}_{\text{oral}} + \text{Intake}_{\text{derm}} \cdot \text{CSF}_{\text{derm}}}$ |                                                |    |
|-------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----|
|             | where:<br>TCR          | _                                                                                                                                              | target cancer risk = $1E-06$                   |    |
|             | Intake <sub>oral</sub> | =                                                                                                                                              | Oral intake, calculated (kg/kg/day) (see below | ') |

| Intake <sub>derm</sub> | = | Dermal intake, calculated (kg/kg/day) (see below)                      |
|------------------------|---|------------------------------------------------------------------------|
| CSF <sub>oral</sub>    | = | chemical-specific oral cancer slope factor (mg/kg/day) <sup>-1</sup>   |
| CSF <sub>derm</sub>    | = | chemical-specific dermal cancer slope factor (mg/kg/day) <sup>-1</sup> |

Chemical-specific RfDs and CSFs used in the RBC calculations are presented in Attachment B.

Oral and dermal intakes were calculated using the following equations:

Intake<sub>oral</sub> = 
$$\frac{IR \ x \ EF \ x \ ED \ x \ FI \ x \ CF}{BW \ x \ AT} \ x \ ADAF$$
Intake<sub>derm</sub> = 
$$\frac{SA \ x \ AF \ x \ ABS \ x \ EF \ x \ ED \ x \ CF}{BW \ x \ AT} \ x \ ADAF$$

The definitions of these parameters and the exposure assumptions used for the direct exposure pathway are summarized in the following table.

| Exposure assumptions for direct contact with sediment |                                               |                            |                               |                                                                        |  |  |
|-------------------------------------------------------|-----------------------------------------------|----------------------------|-------------------------------|------------------------------------------------------------------------|--|--|
| Parameter                                             | Child                                         | Adolescent                 | Adult                         | Definition                                                             |  |  |
| IR = :                                                | 200                                           | 100                        | 100                           | Soil ingestion rate (mg/day)                                           |  |  |
| CF = :                                                | 1.0E-06                                       | 1.0E-06                    | 1.0E-06                       | Conversion factor (kg/mg)                                              |  |  |
| FI = :                                                | 1                                             | 1                          | 1                             | Fraction from contaminated source (unitless)                           |  |  |
| SA = :                                                | 2800                                          | 4320                       | 5700                          | Skin surface available for contact (cm <sup>2</sup> /day)              |  |  |
| AF = :                                                | 0.2                                           | 0.07                       | 0.07                          | Soil to skin adherence factor (mg/cm <sup>2</sup> )                    |  |  |
| ABS = :                                               | Che                                           | mical-specific             | Absorption factor (unitless)  |                                                                        |  |  |
| EF = :                                                | 70                                            | 70                         | 70                            | Exposure frequency (days/year)                                         |  |  |
| ED = :                                                | 6 10 14                                       |                            | 14                            | Exposure duration (years)                                              |  |  |
| BW = :                                                | 15 40 70                                      |                            | Body weight (kg)              |                                                                        |  |  |
| ATc = :                                               | 25,550                                        | 25,550                     | 25,550                        | Averaging time for carcinogenic exposures (days)                       |  |  |
| ATn = :                                               | 2,190                                         | 3,650                      | 5,110                         | Averaging time for non-carcinogenic<br>Exposures (days)                |  |  |
| ADAF = :                                              | 10 (for ages 0-2 years)3 (for ages 2-6 years) | 3 (for ages 6-16<br>years) | 1 (for ages 16<br>= 30 years) | Age-dependent adjustment factor (for chemicals that act mutagenically) |  |  |

Chemical-specific absorption factor (ABS) values used in the PRG calculations are presented in **Attachment B.** 

In evaluating early life exposures, USEPA's *Supplemental Guidance for Assessing Susceptibility from Early Life Exposure to Carcinogens* (USEPA, 2005) recommends adjusting the toxicity of carcinogenic chemicals that act mutagenically. The guidance recommends using age-dependent adjustment factors (ADAFs) combined with age-specific exposure estimates when assessing cancer risks. In the absence of chemical specific data, the supplemental guidance recommends the following default adjustments, which reflect that cancer risks are generally higher from early life exposures than from similar exposures later in life:

- for exposures before two years of age (i.e., spanning a two-year interval from the first day of birth up until a child's second birthday), a 10 times adjustment
- for exposures between two and greater than 16 years of age (i.e., spanning a 14-year time interval from a child's second birthday up until their sixteenth birthday), a 3 times adjustment
- for exposures after turning 16 years of age, no adjustment

These adjustments were applied using the same method used by USEPA in developing the regional screening levels (RSLs). Children were evaluated as two age groups: ages zero to two years and ages two to six years; adolescents were evaluated as one age group: ages six to 16 years; adults were evaluated as one age group: ages greater than 16 years. Using this approach, intakes for recreational users were calculated as follows:

Intake Child = Intake (ages 0–2 years)×10 + Intake (ages 2–6 years)×3 Intake Adolescent = Intake (ages 6–16 years)×3 Intake Adult (ages >16 years)×1

This approach was used only for those chemicals identified as mutagenic in the USEPA RSL table (e.g., benzo(a)pyrene and related polycyclic aromatic hydrocarbons [PAHs]).

Example calculations for intake (both oral and dermal) for the child recreational user and sediment PRGs for PCBs follow:

Ingestion intake for non-carcinogens for the child recreational user:

 $Ingestion Intake (non-carcinogens) = \frac{200 \text{ mg/day} \times 70 \text{ days/year} \times 6 \text{ years} \times 1 \times 1\text{E}-06}{15 \text{ kg} \times 2,190 \text{ days}}$ 

Ingestion intake for non-mutagenic carcinogens for the child recreational user:

Ingestion Intake (carcinogens) =  $\frac{200 \text{ mg/day} \times 70 \text{ days/year} \times 6 \text{ years} \times 1 \times 1\text{E-06}}{15 \text{ kg} \times 25,550 \text{ days}}$ 

= 2.19E-07 kg/kg/day

Dermal intake for non-carcinogens for the child recreational user:

Dermal Intake (non-carcinogens) =  $\frac{2,800 \text{ cm}^2/\text{day} \times 0.2 \text{ mg/cm}^2 \times 0.14 \times 70 \text{ days/year} \times 6 \text{ years} \times 1\text{E-06}}{15 \text{ kg} \times 2,190 \text{ days}}$ 

= 1.00E-06 kg/kg/day

Dermal intake for non-mutagenic carcinogens for the child recreational user:

Dermal Intake  $2,800 \text{ cm}2/\text{day} \times 0.2 \text{ mg/cm}2 \times 0.14 \times 70 \text{ days/year} \times 6 \text{ years} \times 1\text{E}-06$ (carcinogens) =  $15 \text{ kg} \times 25,550 \text{ days}$ 

= 8.59E-08 kg/kg/day

Associated sediment RBCs for the child recreational user for PCBs are calculated as follows:

<u>1</u>

RBCsed (non-carcinogens) (PCBs\*) =

<u>2.55E-06 kg/kg/day</u> + <u>1.00E-06 kg/kg/day</u> 2.0E-05 mg/kg/day 2.0E-05 mg/kg/day

= 5.6 mg/kg

\* The RfD for Aroclor-1254 was used for PCBs.

RBCsed (carcinogens) (PCBs) =

1E-06

 $2.19E-07 \text{ kg/kg/day} \times 2.0E+00 (\text{mg/kg/day})^{-1} + 8.59E-08 \text{ kg/kg/day} \times 2.0E+00 \text{ mg/kg/day}$ 

= 1.6 mg/kg

The child recreational user sediment PRGs were used as the overall PRGs for direct contact with non-carcinogens in sediment. The lifelong recreational user sediment PRGs were used as the overall PRGs for direct contact with carcinogens in sediment. The child and lifelong recreational users are the most conservative receptors for noncarcinogens and carcinogens, respectively.

### A.3 SELECTION OF PRGS FURTHER EVALUATED IN THE FEASIBILITY STUDY

This section presents the rationale for the PRGs selected for further evaluation in the FS. PRGs for protection of human health (RAO 1 and 2) were the lesser of the RBCs representing the  $1 \times 10^{-6}$  cancer risk level and a hazard index of 1, or background concentrations if calculated RBCs were less than background concentrations. The PRGs selected for further evaluation in the FS are presented in **Table A-2**.

### A.3.1 Recommended Preliminary Remediation Goal for PCBs

The PRG recommended for PCBs is 195  $\mu$ g/kg as a site-wide average. As detailed in **Attachment A**, this concentration is a regional background level (the 95% upper prediction limit [UPL]) calculated based on data collected across the upper Chesapeake Bay by the United States Environmental Protection Agency (USEPA) and the National Oceanic and Atmospheric Administration (NOAA). The 95% UPL was chosen because it is a commonly used and relatively conservative statistical benchmark for background. In general, UPLs are recommended as estimates of background values. The UPL is the upper limit of the estimate of an interval in which future observations will fall. If the background and site contaminant distributions are comparable, then a typical site concentration should lie below a 95% UPL, based upon a background data set with probability 0.95. A site observation exceeding the background 95%

UPL can be considered as providing some evidence of contamination due to site-related industrial activities. The regional background level (195  $\mu$ g/kg) for PCBs is the recommended PRG because, as summarized on Table A-1, calculated risk-based PRGs for the recreational fisher consuming fish are 2.3 to 23  $\mu$ g/kg for the 1E-06 and 1E-05 cancer risk level, respectively. These risk-based concentrations are significantly less than the regional background level and are, thus, not suitable for further evaluation as PRGs in the FS. It should be noted that:

- The referenced regional background dataset was used to determine a background level for the study area because PCBs were not detected in the study-area-specific background sediment dataset. This may be a consequence of the fact that the study-area-specific background sediment dataset is limited (11 samples only . In contrast, results for 95 samples were available in the regional background dataset.
- The recommended PRG is less than the calculated risk-based PRGs representing the 1E-04 cancer risk level (presented on Table A-1). Thus, while the recommended PRG exceeds the calculated risk-based PRG for the 1E-05 cancer risk level (the MDE risk management benchmark), the recommended PRG is within the USEPA's target cancer risk range for making remedial decisions (i.e., 1E-04 to 1E-06).

### A.3.2 Recommended Preliminary Remediation Goal for PAHs

The PRG recommended for carcinogenic PAHs is 700  $\mu$ g/kg. This concentration is the maximum detected background concentration and the 95% upper prediction limit (UPL) reported for the study-area-specific background sediment dataset. The recommended PRG also represents the 1E-05 cancer risk level for a lifelong recreational user hypothetically exposed to the sediments within the study area. As detailed in Table A-1, calculated risk based concentrations for the recreational fisher consuming fish are less than the study-area-specific background level and are, thus, not suitable as PRGs for further evaluation in the FS. The recommended PRG is within the range of BaPEq concentrations reported in the regional background sediment dataset discussed in **Attachment A** and less than the 95% UPL calculated for that dataset. As reported in the scientific literature, there are a significant number of anthropogenic sources contributing to PAH concentrations typically detected in background soils and sediments; this recommended PRG is likely biased low (i.e., the *actual* study-area background concentrations are likely to be higher).

### A.3.3 Recommended Preliminary Remediation Goals for Arsenic

The PRG recommended for arsenic is 18.3 mg/kg. This concentration is the 95% UTL calculated for the study-area-specific background sediment dataset. Like UPLs, UTLs are also used as estimates of background as they are upper threshold statistics, representing the upper tail of the background distribution. A 95% UTL is a confidence limit on the 95<sup>th</sup> percentile of the data rather than a confidence limit on the mean (UCL). This study-area-specific background level is the recommended PRG for further evaluation in the FS because, as summarized on Table A-1, calculated risk-based PRGs for the recreational fisher consuming fish and the recreational user contacting sediment (representing the 1E-06 cancer risk level) are less than this background level and, thus, are not suitable as PRGs. The study-area-specific background level (18 mg/kg) is within the range of regional background values presented in Attachment A and less than the 95% UCL and UPL concentrations calculated based on the regional background values (Attachment A). This level is also comparable to or less than the calculated risk-based PRGs representing the 1E-04 cancer risk level (presented on Table A-1).

Table A-1.

# Support Information for Preliminary Remediation Goals for Risk-Driver Chemicals in Lockheed Middle River Complex Sediment

## Table A-1 Support Information for Preliminary Remediation Goals for Risk-Driver Chemicals in Lockheed Middle River Complex Sediment

|                                   |                                                                  |                                                                  |                                                                                                                  |                                                                                   |                                                                                                            |                              |                                                                                                         |                                                                                               |                                                                                                                                    | reshold Concentra                                       |                                       |                                       |                                                           |                                | I                                          |
|-----------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------------------------|--------------------------------|--------------------------------------------|
|                                   |                                                                  | Background Conce                                                 | entrations in Sediment                                                                                           |                                                                                   | Site Sediment Data                                                                                         |                              | RAO                                                                                                     | 1. Recreational Fisher (                                                                      | (Consumption of Fish)                                                                                                              |                                                         | RAO 2                                 | 2. Direct Human C                     | ontact with Sedi                                          | ments                          |                                            |
| Chemicals of<br>Concern           | Combined NOAA/EPA<br>Data - Upper<br>Chesapeake Bay -<br>Maximum | Combined NOAA/EPA<br>Data - Upper<br>Chesapeake Bay -<br>95% UPL | Site-Specific<br>Maximum Across<br>0-6"<br>6-18"<br>18-30"<br>30-52"<br>Intervals                                | Site-Specific 95%<br>UTL Across<br>0-6"<br>6-18"<br>18-30"<br>30-52"<br>Intervals | Sediment Depth Intervals:<br>0-6"<br>6-18"<br>18-30"<br>30-52"<br>(95 % UCL Unless<br>Specified Otherwise) | Spatial Scale of<br>Exposure | Adult 10 <sup>-4</sup><br>Cancer Risk                                                                   | Adult 10 <sup>-5</sup><br>Cancer Risk                                                         | Adult 10 <sup>-6</sup><br>Cancer Risk                                                                                              | Non-Cancer<br>HQ = 1                                    | Adult 10 <sup>-4</sup><br>Cancer Risk | Adult 10 <sup>-5</sup><br>Cancer Risk | Adult 10 <sup>-6</sup><br>Cancer Risk                     | Child Non-<br>Cancer<br>HQ = 1 | RAO 3. Benthic<br>Organisms <sup>(1)</sup> |
|                                   | 498 (positive only and<br>1/2 U)                                 | <b>195</b> (positive only and                                    | Not Detected                                                                                                     | NA                                                                                | Aroclor 1260 (most<br>prevalent):<br>5000/1500/220/20                                                      | Site-wide                    | 230-640<br>(Varies based on TOC)                                                                        | 23-64 ( <bkgd)<br>(Varies based on TOC)</bkgd)<br>                                            | 2.3-6.4 ( <bkgd)<br>(Varies based on TOC)</bkgd)<br>                                                                               | 39-110 ( <bkgd)<br>(Varies based on<br/>TOC)</bkgd)<br> | 100,000                               | 10000                                 | 1000                                                      | 5600                           | NA                                         |
| (BSAF-based)                      | 1/2 0)                                                           | 1/2 U)                                                           |                                                                                                                  |                                                                                   | Maximum Aroclor 1260<br>concentration:<br>54,000/14000/1300/ 120                                           | Point                        | NA                                                                                                      | NA                                                                                            | NA                                                                                                                                 | NA                                                      | NA                                    | NA                                    | NA                                                        | NA                             | 676 <sup>(1)</sup>                         |
| Arsenic                           |                                                                  |                                                                  | 13.5                                                                                                             |                                                                                   | 10/7.6/6.8/6.6                                                                                             | Site-wide                    | 650                                                                                                     | 65                                                                                            | 6.5 ( <bkgd)< td=""><td>1200</td><td>180</td><td>18</td><td>1.8 (<bkgd)< td=""><td>108</td><td>Not COC</td></bkgd)<></td></bkgd)<> | 1200                                                    | 180                                   | 18                                    | 1.8 ( <bkgd)< td=""><td>108</td><td>Not COC</td></bkgd)<> | 108                            | Not COC                                    |
| mg/kg dw)                         | 32.6                                                             | 30.5                                                             | (UPL = 15 Based on all<br>available samples.)                                                                    | 18.3                                                                              | Maximum Concentration:<br>37.2/12.6/12.3/35.9                                                              | Point                        | NA                                                                                                      | NA                                                                                            | NA                                                                                                                                 | NA                                                      | NA                                    | NA                                    | NA                                                        | NA                             | Not COC                                    |
| BAP equivalents<br>(μg TEQ/kg dw) | 1282 (positive only and<br>1/2 U)                                |                                                                  | Maximum Surface Data:<br>700/2,000<br>(Positive only/use 1/2 U).<br>UPL for all surface<br>(using 1/2 U) = 4000. | 1410 (positive<br>only)/6230 (1/2 U)                                              | 1700/1800/3000/180<br>(Calculated using 1/2 U)                                                             | Site-wide                    | Not COC in fish tissue.<br>Calculated value based on<br>transfer factor approximates<br>bkgd: 400-1100. | Not COC in fish tissue.<br>Calculated value based on<br>transfer factor is less than<br>bkgd. | Not COC in fish tissue.<br>Calculated value based on<br>transfer factor is less than<br>bkgd.                                      | NA                                                      | 7000-16000                            | 700-1600<br>(approximates<br>bkgd)    | 70-160 ( <bkgd)< td=""><td>NA</td><td>NA</td></bkgd)<>    | NA                             | NA                                         |
| (µg reo/kg uw)                    | 1/2 0)                                                           | (1/2 U)                                                          | UPL for all available<br>samples<br>(using 1/2 U) = 3000.                                                        | Uniy/0230 (1/2 U)                                                                 | Maximum Concentration<br>6500/12100/38700/810<br>(Calculated using 1/2 U)                                  | Point                        | NA                                                                                                      | NA                                                                                            | NA                                                                                                                                 | NA                                                      | NA                                    | NA                                    | NA                                                        | NA                             | NA                                         |
| Lead                              | 217                                                              | 153                                                              | 151                                                                                                              | 190                                                                               | Arithmetic Mean<br>Concentration:<br>407/131/89.4/18.9                                                     | Site-wide                    | Not COC                                                                                                 | Not COC                                                                                       | Not COC                                                                                                                            | Not COC                                                 | Not COC                               | Not COC                               | Not COC                                                   | Not COC                        | NA                                         |
| (mg/kg dw)                        |                                                                  |                                                                  |                                                                                                                  |                                                                                   | Maximum Concentration:<br>31500/1370/316/163                                                               | Point                        | NA                                                                                                      | NA                                                                                            | NA                                                                                                                                 | NA                                                      | NA                                    | NA                                    | NA                                                        | NA                             | 128 <sup>(1)</sup>                         |
| Cadmium                           | 5.1                                                              | 1.9                                                              | 0.95                                                                                                             | 1.4                                                                               | 23.8/52.4/53/10                                                                                            | Site-wide                    | Not COC                                                                                                 | Not COC                                                                                       | Not COC                                                                                                                            | Not COC                                                 | Not COC                               | Not COC                               | Not COC                                                   | Not COC                        | NA                                         |
| (mg/kg dw)                        | 5.1                                                              | 1.9                                                              | 0.95                                                                                                             | 1.4                                                                               | Maximum Concentration:<br>296/306/296/33.6                                                                 | Point                        | NA                                                                                                      | NA                                                                                            | NA                                                                                                                                 | NA                                                      | NA                                    | NA                                    | NA                                                        | NA                             | <b>9.96</b> <sup>(1)</sup>                 |
| Copper                            | 246                                                              | 118                                                              | 110                                                                                                              | 110                                                                               | 112/93.6/67.3/22.1                                                                                         | Site-wide                    | Not COC                                                                                                 | Not COC                                                                                       | Not COC                                                                                                                            | Not COC                                                 | Not COC                               | Not COC                               | Not COC                                                   | Not COC                        | NA                                         |
| (mg/kg dw)                        | 240                                                              | 110                                                              | 110                                                                                                              |                                                                                   | Maximum Concentration:<br>183/178/147/84.1                                                                 | Point                        | NA                                                                                                      | NA                                                                                            | NA                                                                                                                                 | NA                                                      | NA                                    | NA                                    | NA                                                        | NA                             | <b>298</b> <sup>(1)</sup>                  |
| Mercury                           | 0.73                                                             | 0.39                                                             | 0.71                                                                                                             | 1.7                                                                               | 0.43/0.82/1.5/0.23                                                                                         | Site-wide                    | Not COC                                                                                                 | Not COC                                                                                       | Not COC                                                                                                                            | Not COC                                                 | Not COC                               | Not COC                               | Not COC                                                   | Not COC                        | NA                                         |
| (mg/kg dw)                        | 0.70                                                             | 0.00                                                             | 0.71                                                                                                             |                                                                                   | Maximum Concentration:<br>3.5/3.5/6.1/1.5                                                                  | Point                        | NA                                                                                                      | NA                                                                                            | NA                                                                                                                                 | NA                                                      | NA                                    | NA                                    | NA                                                        | NA                             | <b>1.06</b> <sup>(1)</sup>                 |
| Zinc                              | 844                                                              | 552                                                              | 327                                                                                                              | 401                                                                               | 352/411/508/144                                                                                            | Site-wide                    | Not COC                                                                                                 | Not COC                                                                                       | Not COC                                                                                                                            | Not COC                                                 | Not COC                               | Not COC                               | Not COC                                                   | Not COC                        | NA                                         |
| (mg/kg dw)                        |                                                                  |                                                                  | 021                                                                                                              |                                                                                   | Maximum Concentration:<br>636/1300/2980/4370                                                               | Point                        | NA                                                                                                      | NA                                                                                            | NA                                                                                                                                 | NA                                                      | NA                                    | NA                                    | NA                                                        | NA                             | <b>459</b> <sup>(1)</sup>                  |

Notes:

1 - Consensus based Probable Effects Concentration for freshwater systems (MacDonald *et al.*, 2000); "2x" the benchmark is provided in some cases. Please see text for explanation.

BAP = benzo(a)pyrene bkgd = background BSAF = biota-sediment accumulation factor

COC = chemical of concern

dw = dry weight

HQ = hazard quotient mg/kg = milligram per kilogram

NA = not applicable

NOAA = National Oceanic and Atmospheric Administration

EPA = United States Environmental Protection Agency

PCB = polychlorinated biphenyl RAO = remedial action objective TOC = total organic carbon TEQ = toxicity equivalency U = non-detected

UCL = upper confidence limit µg/kg = microgram per kilogram UPL = upper prediction limit UTL = upper tolerance limit

### Table A-2

# Summary of Preliminary Remediation Goals for Risk Driver Chemicals of Concern in Lockheed MRC Sediment

| Risk Driver<br>Chemical of<br>Concern | Spatial<br>Scale of<br>Exposure | RAO 1:<br>Recreational User:<br>Consumption of Fish | RAO 2:<br>Direct Human<br>Contact with<br>Sediments | RAO 3:<br>Benthic<br>Organisms    |
|---------------------------------------|---------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------|
| Total PCBs                            | Sitewide                        | background (195) <sup>1/</sup>                      | 1000                                                | n/a                               |
| (µg/kg dw)                            | Point                           | n/a                                                 | n/a                                                 | 676                               |
| BAP<br>equivalents<br>(μg TEQ/kg      | Sitewide                        | background<br>(700/2,000) <sup>2/</sup>             | background<br>(700/2,000)                           | n/a                               |
| dw)                                   | Point                           | n/a                                                 | n/a                                                 | n/a                               |
| Arsenic                               | Sitewide                        | background (18.3) <sup>3/</sup>                     | background (18.3)                                   | n/a                               |
| (mg/kg dw)                            | Point                           | n/a                                                 | n/a                                                 | n/a                               |
| Lead                                  | Sitewide                        | n/a                                                 | n/a                                                 | n/a                               |
| (mg/kg dw)                            | Point                           | n/a                                                 | n/a                                                 | background<br>(190) <sup>3/</sup> |
| Cadmium                               | Sitewide                        | n/a                                                 | n/a                                                 | n/a                               |
| (mg/kg dw)                            | Point                           | n/a                                                 | n/a                                                 | 9.96                              |
| Copper                                | Sitewide                        | n/a                                                 | n/a                                                 | n/a                               |
| (mg/kg dw)                            | Point                           | n/a                                                 | n/a                                                 | 298                               |
| Mercury                               | Sitewide                        | n/a                                                 | n/a                                                 | n/a                               |
| (mg/kg dw)                            | Point                           | n/a                                                 | n/a                                                 | 1.06                              |
| Zinc<br>(mg/kg dw)                    | Sitewide                        | n/a                                                 | n/a                                                 | n/a                               |
| (mg/kg dw)                            | Point                           | n/a                                                 | n/a                                                 | 459                               |

Notes:

<sup>1/</sup> Recommended background concentration is UPL calculated based on combined NOAA/EPA dataset. Significant variation observed in dataset. PCBs were not detected in MRC background dataset.

<sup>2/</sup> Recommended background concentration is maximum detected concentration reported for MRC studyarea-specific background sediment dataset. Significant variation observed in dataset.

<sup>3/</sup> Recommended background concentration is UTL calculated for MRC study-area-specific background sediment dataset. Reasonable agreement with combined EPA/NOAA datasets.

### ATTACHMENT A

Evaluation of Regional Background Concentrations for Select Chemicals in Chesapeake Bay Sediments Lockheed Martin Middle River Complex MIDDLE RIVER, MARYLAND

#### Attachment A

### Evaluation of Regional Background Concentrations for Select Chemicals in Chesapeake Bay Sediments Lockheed Martin Middle River Complex Middle River, Maryland

The Lockheed Martin Middle River Complex (MRC) is an industrial facility within the Chesapeake Industrial Park located in Middle River, Maryland. The site is located in Baltimore County, approximatel y 10 miles northeast of Baltimore City. The are a surrounding the property primarily consists of commercial and residential establishments as well as an o perating state-run airport. The facility is located approximately 3.2 miles upstream of Chesapeake Bay. Lockheed Martin MRC lies at the junction of two tidal surface water bodies (Cow Pen Creek and Dark Head Cove) that feed into Dark Head Creek, a tributary to Middle River, which is a tributary to Ch esapeake Bay. Several environmental investigations have evaluated chemical concentrations in sediments from wate rways adjacent to MRC t o evaluate impacts due to historical operations at the facility which has been operational since the early 1930's. This document presents an evaluation of chemical concentrations reported for sediment from the broader Chesapeake Bay as a point of comparison to the chemical concentrations detected in sediment from primary objective of this analysis was to establish regional waterways adjacent to MRC. The 'background' levels of certain constituents (primarily the polychlorinated biphenyl compounds [PCBs]) for comparison to proposed environmental risk-based preliminary cleanup goals to ensure that any environmental restoration activities are consistent with regional background. As noted in the text of Appendix A, the regional background level presented herein for the PCBs is the recomm ended PRG evaluated in the Feasibility Study. Background levels presented in the attached table for other chemi cals provide further perspective on the PRG s selected for other chemi cals of con cern but are not recommended as PRGs for further evaluation in the FS.

The following databases were assessed to obtain data on sediment concentrations of polycyclic aromatic hydrocarbons (PAHs), pol ychlorinated biphenyls (PCBs), and select metal s in water b odies from the Chesapeake Bay:

- National Oceanic and Atmospheric Administration (NOAA) Natio nal Centers for Coastal Ocean Science (NCCOS) National Status and Trends (NS&T) Data Portal, Version 1.0 (NCCOS, 2012).
- United States Environmental Protection Agency (USEPA) Environmental Monitoring an d Assessment Program (EMAP) National Coastal Database (USEPA, 2012).

The NOAA NCCOS NS& T Data Portal was queri ed for PAHs, PCBs, and metals co ncentrations (the primary contaminants of concern in sediment at the MRC) in sediment from the Coastal Ecological Area

of the Chesapeake Bay (Figure 1). The USEPA EMAP National Co astal Database was queried for the same chemical analyses in Maryland and Virginia (Figure 2). The results of the que ries were limited to samples in upper Chesapeake Bay between Route 50 and Gunpowder Basin (latitude 38.97 to 39.34). The Baltimore area has a long industrial history associated with heavy manufacturing since the later part of the 19<sup>th</sup> century. The area in close proximity of the Patapsco River and surrounding water sheds have been impacted by these activities as well as gen eral activities associated with all densel y populated areas. The region al data from Chesa peake Bay used for comparison to MRC data was selected to appropriately cover the Baltimore region but not to disproportionately represent very heavily industrialized areas which would bias the results. The regional data reflect the intensive use and developed nature of a significant portion of the upper r Chesapeake Bay. The presence of the PCBs and chemicals in the sediment samples collected by the USEPA and NOAA is an anticipated given the regional history. Several fish ingestion advisories have been issued for the region (and specific subareas of the region) because of chemi cal concentrations (e.g. PCBs) det ected in fish tissue sa mples. The widespread detection of PCBs in b oth fish tissue and sediment samples collected throughout the Chesapeake Bay area are evidence of the ubiquitous presence of PCB in the regional environment.

The data u sed in this ev aluation of sediment concentrations in the Che sapeake Bay is from seve ral investigations (Attachment 1). The following presents the investigations accessed by the NOAA NCCOS NS&T Data Portal:

- NS&T Bioeffects Assessment Program, Chesapeake Bay Summary Database (1998-2001)
- NS&T Bioeffects Assessment Program, Delaware Bay Summary Database (1997)
- NS&T Benthic Surveillance Project (1984-1992)
- NS&T Mussel Watch Program (1986-2009)

The following presents the investigations accessed by the USEPA EMAP National Coastal Database:

- National Coastal Assessment Northeast Region 2000-2006
- National Coastal Assessment –Southeast US 2000-2004
- EMAP Estuaries Province Level Carolinian Province 1994-1997
- Mid-Atlantic Integrated Assessment (MAIA) Estuaries Summary 1997 and 1998 Stations
- EMAP Estuaries Program Level Virginian Province 1990-1993

The cited investigations were conducted, in part, to evaluate the distribution of contaminants, characterize general conditions, or determine trends; therefore, all the data are considered appropriate for use in this evaluation of sediment concentrations in Chesapeake Bay.

The data set was analyzed using simple descriptive statistics. In addition, 95% upper confidence limits (UCLs) and upper prediction limits (UPLs) were calculated using USEPA's ProUCL Version 4.1.00 (USEPA, 2010). ProUCL outputs are presented in Attachment 2. The results are presented in Table 1.

The UPL calculated for PCBs and presented on Table 1 is based on the com bined NOAA and USEPA databases for the Upp er Chesapeake region. The UPL was selected to re present the PCB backgro und value, as UPLs are often used for site (point-by-point) to background data comparisons. The regional data indicates that PCBs are common, widely distributed contaminants as shown in Fig ure 3, which displays PCB concentrations in the Upper Chesapeake data set evaluated. The calculated UPL for PCBs based on regional background data is gre ater than risk-based preliminary remediation goals (PRGs) calculated for PCBs to b e protective of fish con sumption exposures. (Please see Appendix A Tables 1 and 2, also presented and discussed in Section 3 of the Feasibility Study). Thus, the UPL for PCBs (195 ug/kg) is recommended as the PRG for the MRC sediments in order to ensure that any environmental restoration activities are consistent with regional background levels. Data obtained from NOAA and USEPA databases provide a large regional dataset of PCB concentrations throughout Chesapeake Bay. As noted above, widespread detection of PCBs in sediments throughout the region reflect the highly developed and utilized nature of the region.

The simple descriptive statistics, UCLs, and UPLs presented in Table 1 for PAHs and a select set of metals provide useful background information for the Upper Chesapeake region. However, the statistics provided are not the basis of PRGs for sediments in the MRC study area. The reade r is referred to Appendix A and Section 3 of the FS for furthe r discussions of the development of other PRGs for sediments within the MRC study area.

### References

NCCOS (National Centers for Coastal Ocean Science), 2012. NS&T Data Portal, Version 1. 2. Updated January 3, 2012. Accessed July 18, 2012. <u>http://egisws02.nos.noaa.gov/nsandt/index.html</u>

USEPA (United States Environmental Protection Agency), 2012. EMAP National Coastal Database. Accessed July 18, 2012. <u>http://www.epa.gov/emap/nca/html/data/index.html</u>

USEPA, 2010. ProUCL Versi on 4.1.00 User Guide. Office of Research and Development, Washington, D.C. EPA/600/R-07/038. May.

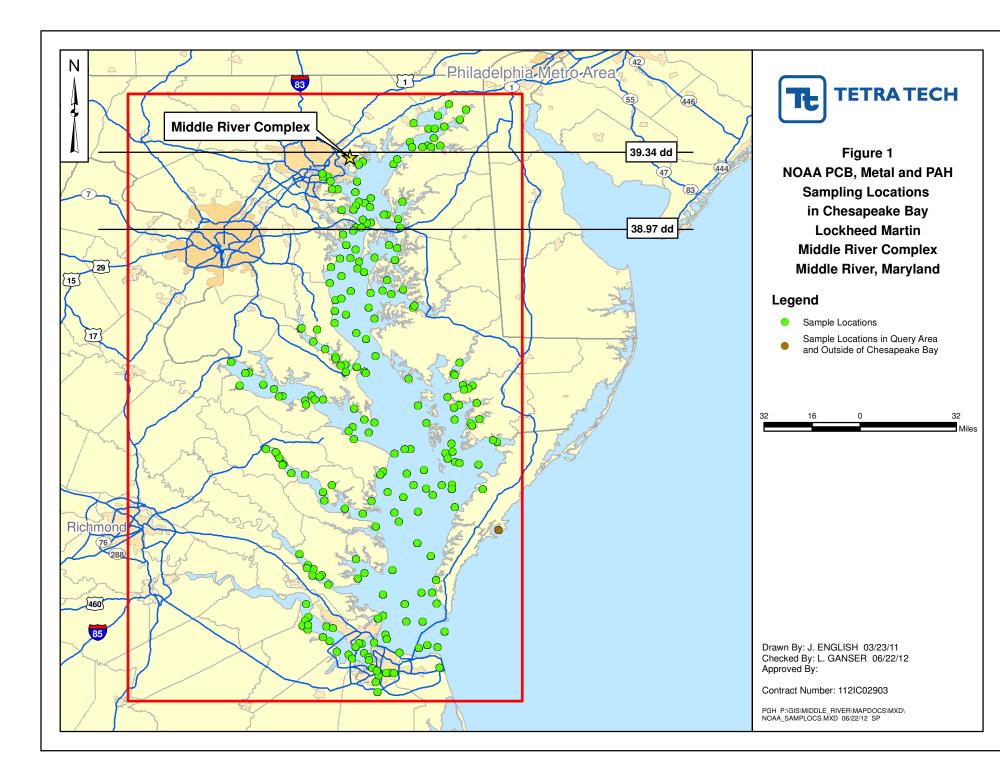
#### TABLE 1

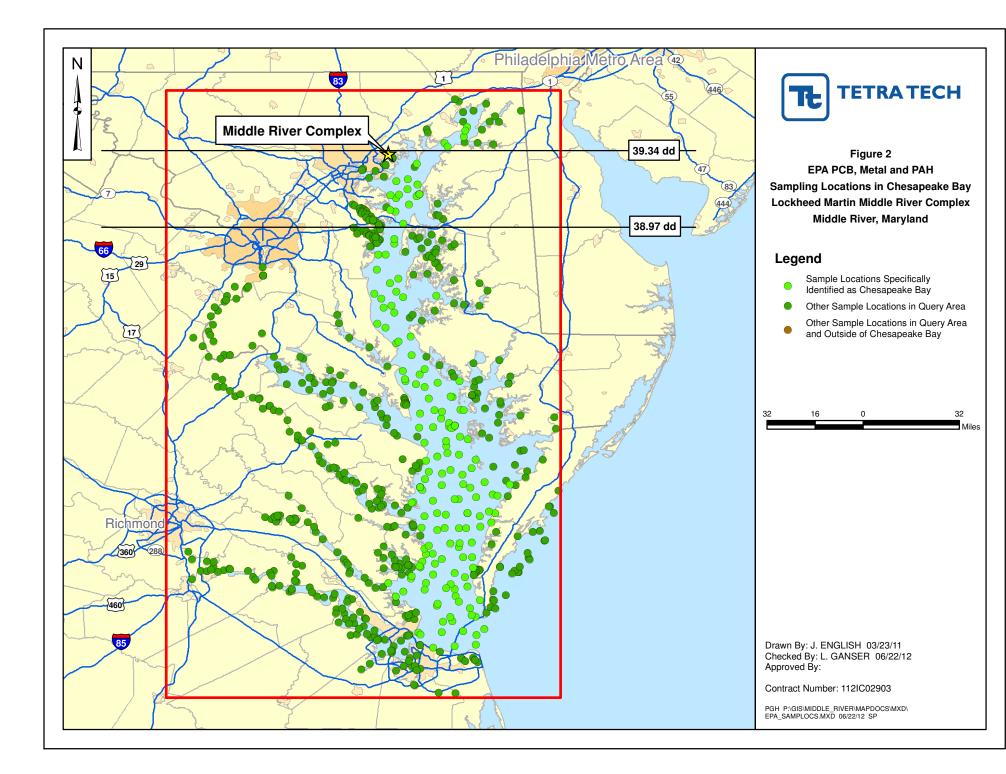
#### REGIONAL CHEMICAL CONCENTRATIONS IN SEDIMENT FROM THE CHESAPEAKE BAY LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND

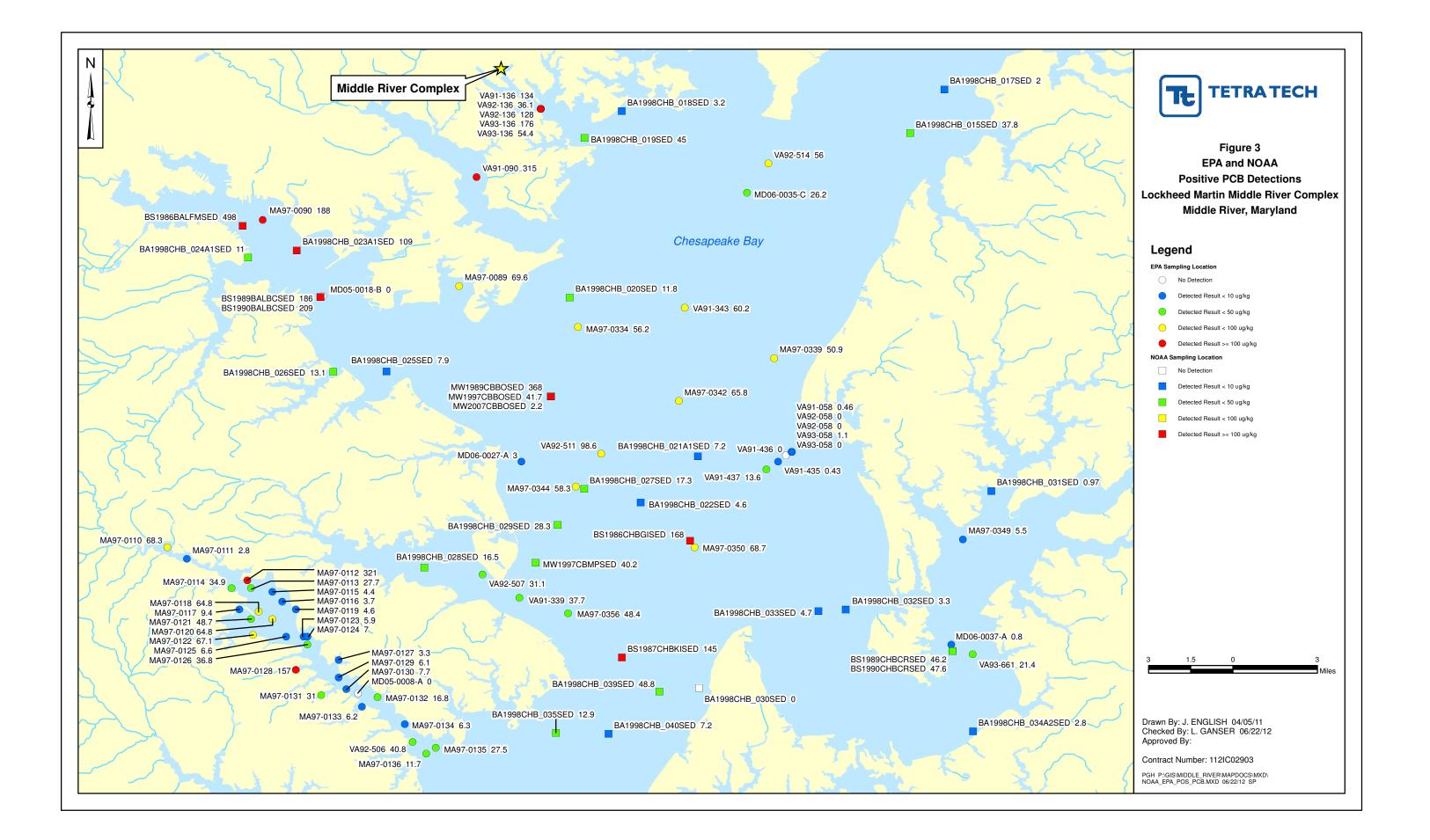
| Upper Chesapeake Bay <sup>(1)</sup>                           |                           |                            |                            |                     |                     |                                  |                           |                                |                        |                    |  |  |  |  |
|---------------------------------------------------------------|---------------------------|----------------------------|----------------------------|---------------------|---------------------|----------------------------------|---------------------------|--------------------------------|------------------------|--------------------|--|--|--|--|
| Chemical                                                      | Frequency<br>of Detection | Mininum<br>Non<br>Detected | Maximum<br>Non<br>Detected | Mininum<br>Detected | Maximum<br>Detected | Sample of<br>Maximum<br>Detected | Mean of<br>All<br>Samples | Mean of<br>Positive<br>Detects | 95% UCL <sup>(2)</sup> | UPL <sup>(2)</sup> |  |  |  |  |
| Metals (mg/kg)                                                |                           |                            |                            |                     |                     |                                  |                           |                                |                        |                    |  |  |  |  |
| Arsenic 97/97 1.3 32.6 MA97-0134-19970811 15.5 15.5 19.6 30.5 |                           |                            |                            |                     |                     |                                  |                           |                                |                        |                    |  |  |  |  |
| Cadmium                                                       | 91/97                     | 0                          | 0.097                      | 0.019               | 5.1                 | VA91-090-19910905                | 0.66                      | 0.70                           | 0.80                   | 1.9                |  |  |  |  |
| Chromium                                                      | 97/97                     | -                          | -                          | 3.6                 | 516                 | BS1986BALFMSED                   | 100                       | 100                            | 135                    | 219                |  |  |  |  |
| Copper                                                        | 96/97                     | 2.2                        | 2.2                        | 2.5                 | 246                 | BS1986BALFMSED                   | 46.9                      | 47.3                           | 65.7                   | 118                |  |  |  |  |
| Lead                                                          | 95/97                     | 1.8                        | 4.9                        | 3.4                 | 217                 | VA91-090-19910905                | 53.3                      | 54.4                           | 71.7                   | 153                |  |  |  |  |
| Mercury                                                       | 87/97                     | 0.004                      | 0.016                      | 0.0072              | 0.73                | BS1986BALFMSED                   | 0.16                      | 0.18                           | 0.19                   | 0.39               |  |  |  |  |
| Zinc                                                          | 97/97                     | -                          | -                          | 12.6                | 844                 | MA97-0089-19970826               | 244                       | 244                            | 319                    | 552                |  |  |  |  |
| Polychlorinated Biphenyls (ug/kg)                             |                           |                            |                            |                     |                     |                                  |                           |                                |                        |                    |  |  |  |  |
| TOTAL PCB-HALFND <sup>(3)</sup>                               | 88/95                     | 0                          | 4.5                        | 0.97                | 498                 | BS1986BALFMSED                   | 55.1                      | 59.4                           | 109                    | 195                |  |  |  |  |
| TOTAL PCB-POS <sup>(3)</sup>                                  | 88/95                     | 0                          | 0                          | 0.43                | 498                 | BS1986BALFMSED                   | 53.5                      | 57.7                           | 108                    | 195                |  |  |  |  |
| Polycyclic Aromatic Hydrocarbons (ug/kg)                      |                           |                            |                            |                     |                     |                                  |                           |                                |                        |                    |  |  |  |  |
| BAP EQUIVALENT-HALFND                                         | 90/95                     | 9.6                        | 10                         | 0.17                | 1282                | BS1990BALBCSED                   | 230                       | 243                            | 359                    | 847                |  |  |  |  |
| BAP EQUIVALENT-POS                                            | 90/95                     | 9.6                        | 10                         | 0.17                | 1282                | BS1990BALBCSED                   | 230                       | 242                            | 359                    | 858                |  |  |  |  |

1 - Includes locations sampled between Route 50 and Gunpowder Basin (latitudes 38.97 to 39.34).

2 - Calculated using USEPA's ProUCL Version 4.1.00 (USEPA, 2010). Detection limits were not available for some nondetected results. When a detection limit was not available, zero was used as the default value. The inclusion of zero values as default values for detection limits may result in an underestimation of the 95% UCL and UPL in some cases.


3 - Includes only the 18 NOAA congeners, multipled by 2 to estimate total PCBs.


Sources:


NCCOS (National Centers for Coastal Ocean Science). National Status and Trends (NS&T) Data Portal, Version 1.0. Updated February 14, 2011. Accessed March 22, 2011. http://egisws02.nos.noaa.gov/nsandt/index.html

USEPA (United States Environmental Protection Agency). Environmental Monitoring and Assessment Program (EMAP) National Coastal Database. Accessed March 22, 2011. http://www.epa.gov/emap/nca/html/data/index.html

UCL - Upper Confidence Limit UPL - Upper Prediction Limit







ATTACHMENT 1

ANALYTICAL DATA

### ANALYTICAL DATA

## NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL CENTERS FOR COASTAL OCEAN SCIENCE NATIONAL STATUS AND TRENDS DATA PORTAL

### DATA FROM QUERY OF NOAA NCCOS NS & T DATA PORTAL LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 1 OF 6

| Sample ID                            | BA1998CH   | B 015SED      | BA1998CH   | B 017SED      | BA1998CH     | IB 018SED     | BA1998CH     | B 019SED     | BA1998CH     | IB 020SED     | BA1998CHE  | 3_021A1SED    |
|--------------------------------------|------------|---------------|------------|---------------|--------------|---------------|--------------|--------------|--------------|---------------|------------|---------------|
| Station                              | CHB        | 3 015         | CHE        | 3 017         | CHB          | 018           | CHB          | 019          | CHB          | 020           |            | 021A1         |
| Sample Date                          |            | 30901         |            | 30901         |              | 0828          | 1998         |              | 1998         |               |            | 30903         |
| Latitude                             |            | 9256          |            | 1505          | 39.3         | 0379          |              | 9014         |              | 0816          |            | 2658          |
| Longitude                            | -76.2      | 22005         | -76.2      | 20253         | -76.3        | 6843          | -76.3        | 8759         | -76.3        | 9514          | -76.3      | 32934         |
| Data Set                             | Chesapeake | Bay 1998-2001 | Chesapeake | Bay 1998-2001 | Chesapeake E | Bay 1998-2001 | Chesapeake E | av 1998-2001 | Chesapeake E | Bay 1998-2001 | Chesapeake | Bay 1998-2001 |
| METALS (MG/KG)                       |            |               |            |               |              |               |              |              |              |               |            |               |
| Arsenic                              | 10.6       |               | 11.6       |               | 1.7          |               | 15.4         |              | 18.6         |               | 14.3       |               |
| Cadmium                              | 0.54       |               | 0.35       |               | 0.048        |               | 0.93         |              | 1.0          |               | 0.56       |               |
| Chromium                             | 106        |               | 19.8       |               | 5.4          |               | 102          |              | 115          |               | 95.1       |               |
| Copper                               | 45.7       |               | 7.0        |               | 3.7          |               | 61.0         |              | 60.3         |               | 45.1       |               |
| Lead                                 | 35.2       |               | 26.4       |               | 5.0          |               | 93.5         |              | 91.6         |               | 56.5       |               |
| Mercury                              | 0.53       |               | 0.08       |               | 0.011        |               | 0.26         |              | 0.28         |               | 0.16       |               |
| Zinc                                 | 336        |               | 57.2       |               | 12.6         |               | 337          |              | 517          |               | 304        |               |
| PAHs (UG/KG)                         |            |               |            |               |              |               |              |              | •            |               |            |               |
| BAP EQUIVALENT-HALFND <sup>(1)</sup> | 94.8       |               | 71.0       |               | 3.6          |               | 69.6         |              | 39.6         |               | 30.0       |               |
| BAP EQUIVALENT-POS <sup>(2)</sup>    | 94.8       |               | 71.0       |               | 3.6          |               | 69.6         |              | 39.6         |               | 30.0       |               |
| Benz[a]anthracene                    | 64.0       |               | 53.3       |               | 2.1          |               | 46.9         |              | 22.9         |               | 20.3       |               |
| Benzo[a]pyrene                       | 62.7       |               | 49.7       |               | 2.1          |               | 42.6         |              | 27.0         |               | 21.3       |               |
| Benzo[b]fluoranthene                 | 102        |               | 63.6       |               | 4.3          |               | 81.4         |              | 35.1         |               | 27.8       |               |
| Benzo[k]fluoranthene                 | 24.3       |               | 23.2       |               | 1.4          |               | 27.0         |              | 12.6         |               | 12.2       |               |
| Benzofluoranthene                    |            |               |            |               |              |               |              |              |              |               |            |               |
| Chrysene                             | 74.3       |               | 52.1       |               | 3.2          |               | 65.5         |              | 26.8         |               | 25.5       |               |
| Dibenzo[a,h]anthracene               | 10.5       |               | 5.6        |               | 0.62         |               | 9.8          |              | 4.7          |               | 2.3        |               |
| Indeno[1,2,3-c,d]pyrene              | 48.1       |               | 37.0       |               | 2.6          |               | 40.3         |              | 19.4         |               | 14.2       |               |
| PCBs (UG/KG)                         |            |               |            |               |              |               |              |              |              |               |            |               |
| PCB101 90                            | 1.5        |               | 0.076      |               | 0.12         |               | 1.1          |              | 0.31         |               | 0.15       |               |
| PCB105                               | 0.54       |               | 0.017      |               | 0            | U             | 0.88         |              | 0.16         |               | 0.055      |               |
| PCB118                               | 0.79       |               | 0.059      |               | 0.083        |               | 1.4          |              | 0.28         |               | 0.14       |               |
| PCB128                               | 0.29       |               | 0          | U             | 0            | U             | 0            | U            | 0            | U             | 0          | U             |
| PCB138 160                           | 1.5        | U             | 0          | U             | 0.18         |               | 2.5          |              | 0.53         |               | 0.34       |               |
| PCB153 132 168                       | 1.7        |               | 0.12       |               | 0.14         |               | 2.0          |              | 0.58         |               | 0.28       |               |
| PCB170 190                           | 0.65       |               | 0          | U             | 0.16         |               | 3.6          |              | 1.0          |               | 0          | U             |
| PCB18                                | 0          | U             | 0          | U             | 0            | U             | 0            | U            | 0            | U             | 0          | U             |
| PCB180                               | 1.1        |               | 0.11       |               | 0.078        |               | 1.2          |              | 0.28         |               | 0.22       |               |
| PCB187                               | 0.58       |               | 0          | U             | 0.047        |               | 0.77         |              | 0.15         |               | 0.18       |               |
| PCB195_208                           | 1.0        |               | 0.057      |               | 0.047        |               | 0.71         |              | 0.23         |               | 0.18       |               |
| PCB206                               | 2.0        | 1             | 0.14       | 1             | 0.094        |               | 1.3          |              | 0.45         |               | 0.36       | 1             |
| PCB209                               | 4.4        | 1             | 0.18       | 1             | 0.19         |               | 2.8          |              | 0.95         |               | 0.78       | 1             |
| PCB28                                | 0.76       | 1             | 0.25       | 1             | 0.14         |               | 1.1          |              | 0.056        |               | 0.15       | 1             |
| PCB44                                | 0.86       |               | 0          | U             | 0.094        |               | 0.68         |              | 0.24         |               | 0.42       |               |
| PCB52                                | 1.7        | 1             | 0          | U             | 0.23         |               | 1.6          |              | 0.49         |               | 0          | U             |
| PCB66                                | 0.7        |               | 0.008      |               | 0            | U             | 0.78         |              | 0.2          |               | 0.33       |               |
| PCB8_5                               | 0.41       | 1             | 0          | U             | 0            | U             | 0.19         |              | 0            | U             | 0          | U             |
| TOTAL PCB-HALFND <sup>(1, 3)</sup>   | 39.4       |               | 2.0        |               | 3.2          |               | 45.0         |              | 11.8         |               | 7.2        |               |
| TOTAL PCB-POS <sup>(2, 3)</sup>      | 37.8       |               | 2.0        |               | 3.2          |               | 45.0         |              | 11.8         |               | 7.2        |               |

Notes:

Values for BAP equivalents and total PCBs determined prior to rounding. 1 - Average of all analytical results including one-half of the detection limit for non-detects. 2 - Average of detected concentrations only. 3 - Sum of 18 NOAA congeners, multipled by 2 to estimate total PCBs.

### DATA FROM QUERY OF NOAA NCCOS NS & T DATA PORTAL LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 2 OF 6

| Sample ID                            | BA1998CH   | B 022SED      | BA1998CHE   | 3 023A1SED    | BA1998CHE  | 024A1SED      | BA1998CH     | B 025SED     | BA1998CH     | B 026SED     | BA1998CH   | B 027SED                                     |
|--------------------------------------|------------|---------------|-------------|---------------|------------|---------------|--------------|--------------|--------------|--------------|------------|----------------------------------------------|
| Station                              | CHE        | 3 022         | CHB         | 023A1         | CHB        |               | CHB          | 025          | CHB          | 026          | CHB        | 3 027                                        |
| Sample Date                          |            | 30831         |             | 30828         |            | 0827          | 1998         |              | 1998         |              |            | 30903                                        |
| Latitude                             |            | 0291          |             | 3239          |            | 2866          |              | 7014         | 39.1         |              |            | 0983                                         |
| Longitude                            |            | 35871         |             | 53546         |            | 5605          |              | 1894         | -76.5        |              |            | 38775                                        |
| Data Set                             |            | Bay 1998-2001 | Chesapeake  |               | Chesapeake |               | Chesapeake E |              | Chesapeake B |              |            | Bay 1998-2001                                |
| METALS (MG/KG)                       | Onesapeake | Day 1000 2001 | onesapeaker | Day 1000 2001 | Onesupeake | Juy 1000 2001 | onesupeate   | ay 1000 2001 | onesapeake E | ay 1000 2001 | Onesupeake | Juy 1000 2001                                |
| Arsenic                              | 19.5       | 1             | 31.1        |               | 7.2        |               | 4.1          |              | 19.4         |              | 18.2       | ,                                            |
| Cadmium                              | 0.5        |               | 2.0         |               | 0.1        |               | 0.069        |              | 0.33         |              | 0.48       |                                              |
| Chromium                             | 102        |               | 352         |               | 77.7       |               | 14.1         |              | 12.0         |              | 58.4       |                                              |
| Copper                               | 47.0       |               | 165         |               | 27.4       |               | 3.9          |              | 2.5          |              | 26.2       |                                              |
| Lead                                 | 67.1       |               | 149         |               | 20.5       |               | 10.7         |              | 78.0         |              | 75.4       |                                              |
| Mercury                              | 0.21       |               | 0.44        |               | 0.054      |               | 0.043        |              | 0.18         |              | 0.18       |                                              |
|                                      | ¢.=.       |               |             |               |            |               |              |              |              |              |            |                                              |
| Zinc                                 | 366        |               | 547         |               | 75.5       |               | 17.8         |              | 12.7         |              | 241        |                                              |
| PAHs (UG/KG)                         |            | r             | r           |               |            |               |              |              |              |              |            | ,,                                           |
| BAP EQUIVALENT-HALFND <sup>(1)</sup> | 43.4       |               | 440         |               | 15.2       |               | 111          |              | 57.3         |              | 214        |                                              |
| BAP EQUIVALENT-POS <sup>(2)</sup>    | 43.4       |               | 440         |               | 15.2       |               | 111          |              | 57.3         |              | 214        |                                              |
| Benz[a]anthracene                    | 25.9       |               | 187         |               | 7.5        |               | 78.8         |              | 46.5         |              | 149        |                                              |
| Benzo[a]pyrene                       | 33.1       |               | 309         |               | 9.0        |               | 78.6         |              | 35.2         |              | 183        |                                              |
| Benzo[b]fluoranthene                 | 32.7       |               | 403         |               | 16.4       |               | 87.5         |              | 69.3         |              | 60.8       |                                              |
| Benzo[k]fluoranthene                 | 13.1       |               | 103         |               | 5.4        |               | 34.7         |              | 23.7         |              | 96.0       |                                              |
| Benzofluoranthene                    |            |               |             |               |            |               |              |              |              |              |            |                                              |
| Chrysene                             | 31.0       |               | 204         |               | 9.3        |               | 67.9         |              | 52.2         |              | 155        |                                              |
| Dibenzo[a,h]anthracene               | 2.8        |               | 47.4        |               | 2.6        |               | 10.1         |              | 6.8          |              | 7.3        |                                              |
| Indeno[1,2,3-c,d]pyrene              | 14.9       |               | 227         |               | 11.7       |               | 50.7         |              | 33.7         |              | 13.9       |                                              |
| PCBs (UG/KG)                         |            |               |             |               |            |               |              |              |              |              |            |                                              |
| PCB101_90                            | 0.16       |               | 3.4         |               | 0.31       |               | 0.34         |              | 0.91         |              | 0.51       |                                              |
| PCB105                               | 0          | U             | 1.8         |               | 0.036      |               | 0.091        |              | 0.19         |              | 0.21       |                                              |
| PCB118                               | 0.082      |               | 3.2         |               | 0.31       |               | 0.26         |              | 0.41         |              | 0.37       |                                              |
| PCB128                               | 0          | U             | 1.1         |               | 0.069      |               | 0            | U            | 0.2          |              | 0          | U                                            |
| PCB138 160                           | 0.29       |               | 6.3         |               | 0.7        |               | 0.57         |              | 0            | U            | 0.9        |                                              |
| PCB153 132 168                       | 0.2        |               | 4.8         |               | 0.69       |               | 0.38         |              | 0.74         |              | 0.65       |                                              |
| PCB170 190                           | 0          | U             | 9.2         |               | 0.23       |               | 0            | U            | 0            | U            | 0          | U                                            |
| PCB18                                | 0          | U             | 0.13        |               | 0          | U             | 0            | U            | 0            | U            | 0          | U                                            |
| PCB180                               | 0.092      |               | 4.5         |               | 0.68       |               | 0.25         |              | 0.43         |              | 0.27       |                                              |
| PCB187                               | 0.12       |               | 2.6         |               | 0.41       |               | 0.17         |              | 0.35         |              | 0.33       |                                              |
| PCB195 208                           | 0.17       |               | 1.5         |               | 0.088      |               | 0.089        |              | 0.17         |              | 0.33       |                                              |
| PCB206                               | 0.42       |               | 2.6         |               | 0.13       |               | 0.17         |              | 0.3          |              | 0.6        |                                              |
| PCB209                               | 0.43       |               | 2.9         |               | 0.31       |               | 0.4          |              | 0.7          |              | 1.5        |                                              |
| PCB28                                | 0.11       |               | 2.7         |               | 0.62       |               | 0.32         |              | 0.53         |              | 0.44       |                                              |
| PCB44                                | 0          | U             | 1.9         | l             | 0.2        |               | 0.2          |              | 0.45         |              | 0.45       | <u>├</u> ────┤                               |
| PCB52                                | 0          | Ŭ             | 3.2         | 1             | 0.58       |               | 0.15         |              | 0.41         |              | 1.0        | <u>├</u> ────┤                               |
| PCB66                                | 0.22       | Ť             | 2.7         | 1             | 0.095      |               | 0.56         |              | 0.74         |              | 0.45       | 1                                            |
| PCB8 5                               | 0.22       | U             | 0.094       |               | 0.033      |               | 0.026        |              | 0.047        |              | 0.63       | <u>├</u> ───┤                                |
| TOTAL PCB-HALFND <sup>(1, 3)</sup>   | 4.6        | - Ŭ           | 109         |               | 11.0       |               | 7.9          |              | 13.1         |              | 17.3       |                                              |
| TOTAL PCB-POS <sup>(2, 3)</sup>      | 4.6        |               | 109         |               | 11.0       |               | 7.9          |              | 13.1         |              | 17.3       | <u>                                     </u> |
| IUTAL FUD-FUS                        | 4.0        |               | 109         |               | 11.0       |               | 7.9          |              | 13.1         |              | 17.3       | 1                                            |

Notes:

Values for BAP equivalents and total PCBs determined prior to rounding. 1 - Average of all analytical results including one-half of the detection limit for non-detects. 2 - Average of detected concentrations only. 3 - Sum of 18 NOAA congeners, multipled by 2 to estimate total PCBs.

### DATA FROM QUERY OF NOAA NCCOS NS & T DATA PORTAL LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 3 OF 6

| Sample ID                            | BA1998CH     | B 028SED      | BA1998CH   | IB_029SED     | BA1998CH   | IB 030SED     | BA1998CH   | B_031SED      | BA1998CH     | B 032SED     | BA1998CH                                      | B_033SED      |
|--------------------------------------|--------------|---------------|------------|---------------|------------|---------------|------------|---------------|--------------|--------------|-----------------------------------------------|---------------|
| Station                              |              | 028           |            | 029           |            | 030           |            | 031           | СНВ          |              |                                               | _033          |
| Sample Date                          |              | 30831         |            | 80903         |            | 0908          |            | 0902          | 1998         |              |                                               | 30903         |
| Latitude                             |              | 6954          |            | 9134          |            | 0766          |            | 0879          | 39.04        |              |                                               | 4712          |
| Longitude                            |              | 16992         |            | 0134          |            | 2869          |            | 7836          | -76.2        |              |                                               | 26725         |
| Data Set                             | -            | Bay 1998-2001 | -          | Bay 1998-2001 |            | Bay 1998-2001 | Chesapeake |               | Chesapeake B |              | -                                             | Bay 1998-2001 |
| METALS (MG/KG)                       | Onesapeake L | Day 1330-2001 | Onesapeake | Day 1330-2001 | Опезареаке | Jay 1330-2001 | Onesapeake | bay 1330-2001 | Onesapeake L | ay 1550-2001 | Опезареаке                                    | Day 1330-2001 |
| Arsenic                              | 19.1         |               | 25.5       |               | 1.7        |               | 2.3        |               | 3.6          |              | 14.9                                          |               |
| Cadmium                              | 0.88         |               | 0.57       |               | 0.022      |               | 0.036      |               | 0.18         |              | 0.5                                           |               |
| Chromium                             | 155          |               | 119        |               | 9.6        |               | 22.1       |               | 67.3         |              | 89.8                                          |               |
| Copper                               | 86.3         |               | 49.4       |               | 2.6        |               | 9.5        |               | 27.2         |              | 41.8                                          |               |
| Lead                                 | 109          |               | 69.6       |               | 4.3        |               | 5.3        |               | 9.5          |              | 52.2                                          |               |
| Mercury                              | 0.32         |               | 0.2        |               | 0.015      |               | 0.075      |               | 0.025        |              | 0.14                                          |               |
| Zinc                                 | 596          |               | 426        |               | 18.4       |               | 36.1       |               | 173          |              | 271                                           |               |
| PAHs (UG/KG)                         | 550          |               | 420        |               | 10.4       |               | 30.1       |               | 175          |              | 211                                           | II            |
| BAP EQUIVALENT-HALFND <sup>(1)</sup> | 29.3         |               | 61.1       |               | 0.17       |               | 5.6        |               | 17.8         |              | 13.2                                          |               |
| BAP EQUIVALENT-POS <sup>(2)</sup>    | 29.3         |               | 61.1       |               | 0.17       |               | 5.6        |               | 17.8         |              | 13.2                                          |               |
| Benz[a]anthracene                    | 19.4         |               | 59.6       |               | 0.24       |               | 3.4        |               | 15.8         |              | 9.4                                           |               |
| Benzo[a]pyrene                       | 19.5         |               | 38.2       |               | 0.11       |               | 4.0        |               | 14.5         |              | 9.2                                           |               |
| Benzo[b]fluoranthene                 | 31.9         |               | 69.9       |               | 0.28       |               | 5.0        |               | 6.3          |              | 13.9                                          |               |
| Benzo[k]fluoranthene                 | 8.3          |               | 22.2       |               | 0.1        |               | 1.3        |               | 12.1         |              | 3.6                                           |               |
| Benzofluoranthene                    | 0.0          |               |            |               | 0.1        |               | 1.0        |               |              |              | 0.0                                           |               |
| Chrysene                             | 20.8         |               | 65.2       |               | 0.35       |               | 4.6        |               | 18.7         |              | 12.3                                          |               |
| Dibenzo[a,h]anthracene               | 3.1          |               | 6.2        |               | 0          | U             | 0.45       |               | 0.75         |              | 1.0                                           |               |
| Indeno[1,2,3-c,d]pyrene              | 15.4         |               | 35.7       |               | 0.1        | -             | 3.0        |               | 2.1          |              | 6.2                                           |               |
| PCBs (UG/KG)                         |              | 1             |            | 1             |            |               | 0.0        |               |              |              | , <u>, , , , , , , , , , , , , , , , , , </u> |               |
| PCB101 90                            | 0.16         |               | 1.5        |               | 0          | U             | 0.096      |               | 0.13         |              | 0.13                                          | 1             |
| PCB105                               | 0.12         |               | 0.45       |               | 0          | U             | 0.006      |               | 0.028        |              | 0.036                                         |               |
| PCB118                               | 0.32         |               | 1.3        |               | 0          | U             | 0.036      |               | 0.061        |              | 0.07                                          |               |
| PCB128                               | 0.11         |               | 0.16       |               | 0          | U             | 0          | U             | 0            | U            | 0                                             | U             |
| PCB138 160                           | 1.3          |               | 3.0        |               | 0          | U             | 0          | U             | 0.17         |              | 0.22                                          |               |
| PCB153 132 168                       | 0.39         |               | 2.0        |               | 0          | U             | 0.028      |               | 0.15         |              | 0.23                                          |               |
| PCB170_190                           | 2.6          |               | 0          | U             | 0          | U             | 0          | U             | 0            | U            | 0                                             | U             |
| PCB18                                | 0            | U             | 0          | U             | 0          | U             | 0          | U             | 0            | U            | 0                                             | U             |
| PCB180                               | 0.16         |               | 0.42       |               | 0          | U             | 0.036      |               | 0.1          |              | 0.065                                         |               |
| PCB187                               | 0            | U             | 0.3        |               | 0          | U             | 0.036      |               | 0.098        |              | 0.11                                          |               |
| PCB195_208                           | 0.17         |               | 0.37       |               | 0          | U             | 0          | U             | 0.088        |              | 0.076                                         |               |
| PCB206                               | 0.36         |               | 0.54       |               | 0          | U             | 0.043      |               | 0.12         |              | 0.15                                          |               |
| PCB209                               | 0.87         |               | 1.7        |               | 0          | U             | 0.054      |               | 0.3          |              | 0.35                                          |               |
| PCB28                                | 0            | U             | 0.45       |               | 0          | U             | 0.12       |               | 0.22         |              | 0.38                                          |               |
| PCB44                                | 0.64         |               | 0.48       |               | 0          | U             | 0.035      |               | 0.21         |              | 0.29                                          |               |
| PCB52                                | 0.66         |               | 1.5        |               | 0          | U             | 0          | U             | 0            | U            | 0                                             | U             |
| PCB66                                | 0.37         |               | 0          | U             | 0          | U             | 0          | U             | 0            | U            | 0.26                                          |               |
| PCB8_5                               | 0            | U             | 0          | U             | 0          | U             | 0          | U             | 0            | U            | 0                                             | U             |
| TOTAL PCB-HALFND <sup>(1, 3)</sup>   | 16.5         |               | 28.3       |               | 0          | U             | 0.97       |               | 3.3          |              | 4.7                                           |               |
| TOTAL PCB-POS <sup>(2, 3)</sup>      | 16.5         |               | 28.3       |               | 0          | U             | 0.97       |               | 3.3          |              | 4.7                                           |               |

Notes:

Values for BAP equivalents and total PCBs determined prior to rounding. 1 - Average of all analytical results including one-half of the detection limit for non-detects. 2 - Average of detected concentrations only. 3 - Sum of 18 NOAA congeners, multipled by 2 to estimate total PCBs.

### DATA FROM QUERY OF NOAA NCCOS NS & T DATA PORTAL LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 4 OF 6

| Sample ID                            | BA1998CHE    | _034A2SED    | BA1998CH     | B_035SED      | BA1998CH   | IB_039SED     | BA1998CH     | IB_040SED     | BS1985CH   | IBGISED    | BS1986B    | ALFMSED     |
|--------------------------------------|--------------|--------------|--------------|---------------|------------|---------------|--------------|---------------|------------|------------|------------|-------------|
| Station                              | CHB_         | 034A2        | CHB          | _035          | CHE        | _039          | CHB          | _040          | CHE        | BGI        | BAI        | .FM         |
| Sample Date                          | 1998         | 0902         | 1998         | 0909          | 1998       | 0903          | 1998         | 80909         | 198        | 35         | 19         | 86          |
| Latitude                             | 38.9         | 8533         | 38.9         | 8457          | 39.0       | 0572          | 38.9         | 8408          | 39.08      | 333        | 39.        | 245         |
| Longitude                            | -76.1        | 8786         | -76.4        | 0227          | -76.3      | 84901         | -76.3        | 37519         | -76.33     | 3333       | -76.5      | 6333        |
| Data Set                             | Chesapeake E | ay 1998-2001 | Chesapeake E | 3ay 1998-2001 | Chesapeake | 3ay 1998-2001 | Chesapeake E | Bay 1998-2001 | Benthic Su | rveillance | Benthic Su | irveillance |
| METALS (MG/KG)                       |              |              |              |               |            |               |              | .,            |            |            |            |             |
| Arsenic                              | 1.7          |              | 17.8         |               | 13.1       |               | 16.9         |               | 13.6       |            | 30.4       |             |
| Cadmium                              | 0.019        |              | 0.9          |               | 0.53       |               | 0.39         |               | 0.69       |            | 3.1        |             |
| Chromium                             | 179          |              | 111          |               | 92.2       |               | 96.8         |               | 125        |            | 516        |             |
| Copper                               | 75.3         |              | 47.3         |               | 38.1       |               | 25.9         |               | 43.7       |            | 246        |             |
| Lead                                 | 4.4          |              | 55.1         |               | 70.0       |               | 33.0         |               | 51.1       |            | 172        |             |
| Mercury                              | 0.08         |              | 0.15         |               | 0.13       |               | 0.1          |               | 0.21       |            | 0.73       |             |
| Zinc                                 | 271          |              | 301          |               | 273        |               | 184          |               | 241        |            | 634        |             |
| PAHs (UG/KG)                         | •            |              | •            | •             | •          | •             | •            |               |            |            | •          |             |
| BAP EQUIVALENT-HALFND <sup>(1)</sup> | 0.7          |              | 71.5         |               | 246        |               | 10.1         |               |            |            | 1020       |             |
| BAP EQUIVALENT-POS <sup>(2)</sup>    | 0.7          |              | 71.5         |               | 246        |               | 10.1         |               |            |            | 1020       |             |
| Benz[a]anthracene                    | 0.51         |              | 45.2         |               | 162        |               | 7.7          |               | 171        |            | 555        |             |
| Benzo[a]pyrene                       | 0.46         |              | 50.0         |               | 181        |               | 6.6          |               | 160        |            | 654        |             |
| Benzo[b]fluoranthene                 | 0.79         |              | 61.9         |               | 204        |               | 11.5         |               |            |            | 705        |             |
| Benzo[k]fluoranthene                 | 0.19         |              | 23.5         |               | 34.2       |               | 3.0          |               |            |            | 569        |             |
| Benzofluoranthene                    |              |              |              |               |            |               |              |               |            |            |            |             |
| Chrysene                             | 0.83         |              | 41.8         |               | 155        |               | 7.9          |               | 196        |            | 1080       |             |
| Dibenzo[a,h]anthracene               | 0.08         |              | 7.1          |               | 19.6       |               | 1.1          |               | 21.5       |            | 175        |             |
| Indeno[1,2,3-c,d]pyrene              | 0.31         |              | 34.2         |               | 90.5       |               | 5.1          |               |            |            | 529        |             |
| PCBs (UG/KG)                         |              |              |              |               |            |               |              |               |            |            |            |             |
| PCB101_90                            | 0.27         |              | 0.27         |               | 3.6        |               | 0.098        |               |            |            | 21.8       |             |
| PCB105                               | 0            | U            | 0.23         |               | 1.1        |               | 0.023        |               |            |            | 0          | U           |
| PCB118                               | 0            | U            | 0.52         |               | 2.6        |               | 0.19         |               |            |            | 14.9       |             |
| PCB128                               | 0            | U            | 0            | U             | 0.97       |               | 0.059        |               |            |            | 5.1        |             |
| PCB138_160                           | 0            | U            | 1.4          |               | 4.1        |               | 0.79         |               |            |            | 27.3       |             |
| PCB153_132_168                       | 0            | U            | 0.56         |               | 4.2        |               | 0.23         |               |            |            | 40.7       |             |
| PCB170_190                           | 0            | U            | 0.13         |               | 0.58       |               | 0.69         |               |            |            | 15.4       |             |
| PCB18                                | 0.26         |              | 0            | U             | 0          | U             | 0            | U             |            |            | 5.4        |             |
| PCB180                               | 0            | U            | 0.25         |               | 1.7        |               | 0.082        |               |            |            | 27.8       |             |
| PCB187                               | 0            | U            | 0.077        |               | 0.88       |               | 0.073        |               |            |            | 15.4       |             |
| PCB195_208                           | 0            | U            | 0.22         |               | 0.18       |               | 0.12         |               |            |            | 4.7        |             |
| PCB206                               | 0.005        |              | 0.41         |               | 0.19       |               | 0.22         |               |            |            | 5.9        |             |
| PCB209                               | 0.014        |              | 1.1          |               | 0.14       |               | 0.56         |               |            |            | 7.0        |             |
| PCB28                                | 0.61         |              | 0.27         |               | 0.42       |               | 0            | U             |            |            | 14.4       |             |
| PCB44                                | 0            | U            | 0.44         |               | 0.98       |               | 0.32         |               |            |            | 9.3        |             |
| PCB52                                | 0.24         |              | 0.49         |               | 2.3        |               | 0.024        |               |            |            | 14.5       |             |
| PCB66                                | 0            | U            | 0.1          |               | 0          | U             | 0.14         |               |            |            | 10.5       |             |
| PCB8_5                               | 0            | U            | 0            | U             | 0.45       |               | 0            | U             |            |            | 8.6        |             |
| TOTAL PCB-HALFND <sup>(1, 3)</sup>   | 2.8          |              | 12.9         |               | 48.8       |               | 7.2          |               |            |            | 498        |             |
| TOTAL PCB-POS <sup>(2, 3)</sup>      | 2.8          |              | 12.9         |               | 48.8       |               | 7.2          |               | -          |            | 498        |             |

Notes:

Values for BAP equivalents and total PCBs determined prior to rounding. 1 - Average of all analytical results including one-half of the detection limit for non-detects. 2 - Average of detected concentrations only. 3 - Sum of 18 NOAA congeners, multipled by 2 to estimate total PCBs.

### DATA FROM QUERY OF NOAA NCCOS NS & T DATA PORTAL LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 5 OF 6

| Sample ID                            | BS1986CHBGISED |      | BS1987C  | HBKISED     | BS1989B    | ALBCSED | BS1989C     | HBCRSED | BS1990BA   | LBCSED     | BS1990CI   | HBCRSED |
|--------------------------------------|----------------|------|----------|-------------|------------|---------|-------------|---------|------------|------------|------------|---------|
| Station                              | CH             | 3GI  | CH       | IBKI        | BAI        | BC      | CH          | BCR     | BAL        | BC         | CHE        | BCR     |
| Sample Date                          | 19             | 86   | 19       | 87          | 19         | 89      | 19          | 89      | 199        | 90         | 19         | 90      |
| Latitude                             | 39.08          | 3333 | 39.0     | 2333        | 39.2       | 0833    | 39.0        | 2667    | 39.20      | 833        | 39.0       | 2667    |
| Longitude                            | -76.3          |      |          | 36833       | -76.5      |         | -76.1       |         | -76.52     |            | -76.1      |         |
| Data Set                             | Benthic Su     |      |          | urveillance | Benthic Su |         | Benthic St  |         | Benthic Su |            | Benthic St |         |
| METALS (MG/KG)                       | Domano da      |      | Bonano o |             | Bolitano B |         | Bolitano da |         | Domino Od  | , volianoo | Dominio or |         |
| Arsenic                              | 14.0           |      | 13.6     |             | 30.2       |         | 12.7        |         |            |            |            |         |
| Cadmium                              | 0.67           |      | 0.77     |             | 0.68       |         | 0.46        |         |            |            |            |         |
| Chromium                             | 105            |      | 83.9     |             | 197        |         | 81.4        |         |            |            |            |         |
| Copper                               | 51.4           |      | 46.1     |             | 74.9       |         | 32.1        |         |            |            |            |         |
| Lead                                 | 64.5           |      | 61.6     |             | 124        |         | 53.4        |         |            |            |            |         |
| Mercury                              | 0.33           |      | 0.19     |             | 0.33       |         | 0.13        |         |            |            |            |         |
| Zinc                                 | 299            |      | 316      |             | 451        |         | 202         |         |            |            |            |         |
| PAHs (UG/KG)                         | 299            |      | 310      |             | 451        |         | 202         |         | 1          |            | I          |         |
|                                      | 0.5.4          |      |          | 1           | 1000       |         |             |         | 1000       |            |            |         |
| BAP EQUIVALENT-HALFND <sup>(1)</sup> | 254            |      | 411      |             | 1220       |         | 97.5        |         | 1280       |            | 92.8       |         |
| BAP EQUIVALENT-POS <sup>(2)</sup>    | 254            |      | 411      |             | 1220       |         | 97.5        |         | 1280       |            | 92.8       |         |
| Benz[a]anthracene                    | 153            |      | 305      |             | 766        |         | 72.8        |         | 670        |            | 71.7       |         |
| Benzo[a]pyrene                       | 168            |      | 260      |             | 804        |         | 55.8        |         | 880        |            | 57.7       |         |
| Benzo[b]fluoranthene                 | 200            |      |          |             | 892        |         | 91.2        |         | 980        |            | 93.3       |         |
| Benzo[k]fluoranthene                 | 184            |      |          |             | 746        |         | 69.8        |         | 870        |            | 78.7       |         |
| Benzofluoranthene                    |                |      | 533      |             |            |         |             |         |            |            |            |         |
| Chrysene                             | 232            |      | 353      |             | 796        |         | 98.6        |         | 743        |            | 102        |         |
| Dibenzo[a,h]anthracene               | 35.5           |      | 46.5     |             | 176        |         | 17.2        |         | 153        |            | 11.3       |         |
| Indeno[1,2,3-c,d]pyrene              | 135            |      | 201      |             | 688        |         | 73.4        |         | 743        |            | 64.0       |         |
| PCBs (UG/KG)                         |                |      |          |             |            |         |             |         |            |            |            |         |
| PCB101_90                            | 5.3            |      | 4.0      |             | 11.6       |         | 0.75        |         | 8.3        |            | 1.7        |         |
| PCB105                               | 0              | U    | 1.2      |             | 1.5        |         | 0.1         |         | 2.3        |            | 0.53       |         |
| PCB118                               | 4.1            |      | 5.5      |             | 3.2        |         | 0.86        |         | 7.3        |            | 1.6        |         |
| PCB128                               | 2.0            |      | 0.23     |             | 8.2        |         | 0.5         |         | 7.3        |            | 0.53       |         |
| PCB138 160                           | 10.0           |      | 6.0      |             | 5.6        |         | 0.98        |         | 8.7        |            | 2.0        |         |
| PCB153 132 168                       | 11.8           |      | 5.0      |             | 6.0        |         | 1.1         |         | 10.7       |            | 2.3        |         |
| PCB170 190                           | 0              | U    | 1.8      |             | 4.6        |         | 2.2         |         | 10.3       |            | 2.0        |         |
| PCB18                                | 4.8            | -    | 5.0      |             | 3.0        |         | 0.2         |         | 2.7        |            | 0.27       |         |
| PCB180                               | 6.5            |      | 2.3      |             | 4.2        |         | 0.88        |         | 6.3        |            | 0.53       |         |
| PCB187                               | 3.6            |      | 2.0      |             | 3.2        |         | 0.26        |         | 4.0        |            | 0.77       |         |
| PCB195 208                           | 2.1            |      | 4.0      |             | 3.6        |         | 1.8         |         | 1.0        |            | 0.63       |         |
| PCB206                               | 4.0            |      | 5.3      |             | 6.3        |         | 2.3         |         | 4.7        |            | 0.83       |         |
| PCB209                               | 4.8            |      | 14.3     |             | 10.0       |         | 4.0         |         | 7.7        |            | 3.3        |         |
| PCB28                                | 4.8            |      | 0        | U           | 3.0        |         | 1.5         |         | 5.0        |            | 1.2        |         |
| PCB44                                | 3.1            |      | 7.5      |             | 4.6        |         | 3.4         |         | 5.7        |            | 2.0        |         |
| PCB52                                | 6.0            |      | 8.8      |             | 6.8        |         | 0.36        |         | 7.7        |            | 1.3        |         |
| PCB52                                | 3.9            |      | 0        | U           | 7.4        |         | 2.0         |         | 5.0        |            | 2.3        |         |
| PCB8 5                               | 7.4            |      | U        | U           | 1.4        |         | 2.0         |         | 5.0        |            | 2.3        |         |
| TOTAL PCB-HALFND <sup>(1, 3)</sup>   |                |      | 4.45     |             | 100        |         | 10.0        |         | 000        |            | 17.0       |         |
|                                      | 168            |      | 145      |             | 186        |         | 46.2        |         | 209        |            | 47.6       |         |
| TOTAL PCB-POS <sup>(2, 3)</sup>      | 168            |      | 145      |             | 186        |         | 46.2        |         | 209        |            | 47.6       |         |

Notes:

Values for BAP equivalents and total PCBs determined prior to rounding. 1 - Average of all analytical results including one-half of the detection limit for non-detects. 2 - Average of detected concentrations only. 3 - Sum of 18 NOAA congeners, multipled by 2 to estimate total PCBs.

### DATA FROM QUERY OF NOAA NCCOS NS & T DATA PORTAL LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 6 OF 6

| Sample ID                            | MW1986CBMPSED | MW1987CBMPSED | MW1989C | BBOSED | MW19970 | CBBOSED | MW19970 | BMPSED | MW2007 | CBBOSED |
|--------------------------------------|---------------|---------------|---------|--------|---------|---------|---------|--------|--------|---------|
| Station                              | CBMP          | CBMP          | CBE     |        |         | BO      | CB      | MP     |        | BBO     |
| Sample Date                          | 1986          | 1987          | 19890   | 0110   | 1997    | /0106   | 1997    | 0106   | 2007   | 70122   |
| Latitude                             | 39.072        | 39.072        | 39.1573 | 33333  | 39.157  | 733333  | 39.     | 072    | 39.15  | 733333  |
| Longitude                            | -76.41266667  | -76.41266667  | -76.404 | 83333  | -76.40  | 483333  | -76.412 | 266667 | -76.40 | 483333  |
| Data Set                             | Mussel Watch  | Mussel Watch  | Mussel  | Watch  | Musse   | l Watch | Mussel  | Watch  | Musse  | I Watch |
| METALS (MG/KG)                       |               |               | •       |        |         |         |         |        | •      |         |
| Arsenic                              | 23.0          | 22.3          | 21.3    |        | 23.4    |         | 18.4    |        | 1.3    |         |
| Cadmium                              | 0.45          | 0.71          | 0.44    |        | 0.42    |         | 0.45    |        | 0      | U       |
| Chromium                             | 119           | 143           | 107     |        | 99.0    |         | 104     |        | 15.6   |         |
| Copper                               | 51.3          | 53.3          | 55.3    |        | 36.5    |         | 39.8    |        | 3.4    |         |
| Lead                                 | 67.7          | 76.7          | 83.3    |        | 57.9    |         | 63.7    |        | 7.0    |         |
| Mercury                              | 0.21          | 0.23          | 0.23    |        | 0.19    |         | 0.2     |        | 0.014  |         |
| Zinc                                 | 333           | 437           | 433     |        | 365     |         | 449     |        | 26.5   |         |
| PAHs (UG/KG)                         | 000           | 101           | -100    |        | 000     | L       |         | 1      | 20.0   | 1       |
| BAP EQUIVALENT-HALFND <sup>(1)</sup> |               |               | 272     |        | 1210    | 1       | 887     |        | 661    |         |
| BAP EQUIVALENT-POS <sup>(2)</sup>    |               | 1 1           | 272     |        | 1210    | 1       | 887     |        | 661    | 1       |
| Benz[a]anthracene                    |               |               | 212     |        | 721     |         | 422     |        | 562    |         |
| Benzo[a]pyrene                       |               | 1 1           | 190     |        | 826     |         | 648     |        | 467    |         |
| Benzo[b]fluoranthene                 |               | 1 1           | 207     |        | 661     |         | 710     |        | 446    |         |
| Benzo[k]fluoranthene                 |               |               | 153     |        | 523     |         | 127     |        | 206    |         |
| Benzofluoranthene                    |               |               |         |        |         |         |         |        |        |         |
| Chrysene                             |               | 1             | 257     |        | 931     |         | 403     |        | 445    |         |
| Dibenzo[a,h]anthracene               |               |               | 25.0    |        | 182     |         | 89.2    |        | 70.1   |         |
| Indeno[1,2,3-c,d]pyrene              |               |               | 128     |        | 558     |         | 349     |        | 209    |         |
| PCBs (UG/KG)                         |               |               |         |        |         |         |         |        | •      | •       |
| PCB101 90                            |               |               | 8.4     |        | 1.1     |         | 1.3     |        | 0.16   |         |
| PCB105                               |               |               | 0       | U      | 0.48    |         | 0.45    |        | 0.05   |         |
| PCB118                               |               |               | 9.9     |        | 1.9     |         | 2.0     |        | 0.11   |         |
| PCB128                               |               |               | 6.5     |        | 0.41    |         | 0.25    |        | 0      | U       |
| PCB138 160                           |               |               | 11.8    |        | 1.3     |         | 1.5     |        | 0.18   |         |
| PCB153 132 168                       |               |               | 16.7    |        | 2.0     |         | 2.2     |        | 0.16   |         |
| PCB170_190                           |               |               | 3.8     |        | 0       | U       | 0       | U      | 0      | U       |
| PCB18                                |               |               | 4.8     |        | 0       | U       | 0       | U      | 0.03   |         |
| PCB180                               |               |               | 8.3     |        | 1.2     | 1       | 1.1     |        | 0      | U       |
| PCB187                               |               | 1             | 6.4     |        | 0.76    | 1       | 0.75    |        | 0.06   |         |
| PCB195_208                           |               |               | 8.6     |        | 1.0     | 1       | 1.1     |        | 0      | U       |
| PCB206                               |               |               | 18.0    |        | 0       | U       | 0       | U      | 0      | U       |
| PCB209                               |               |               | 35.7    |        | 3.4     |         | 4.0     |        | 0      | U       |
| PCB28                                |               |               | 7.1     |        | 1.4     | 1       | 1.2     |        | 0      | U       |
| PCB44                                |               |               | 4.3     |        | 0.89    |         | 0.99    |        | 0      | U       |
| PCB52                                |               |               | 7.3     |        | 1.5     |         | 0.74    |        | 0.15   |         |
| PCB66                                |               |               | 13.7    |        | 1.8     |         | 0.86    |        | 0.2    |         |
| PCB8_5                               |               |               | 12.7    |        | 1.6     |         | 1.8     |        | 0      | U       |
| TOTAL PCB-HALFND <sup>(1, 3)</sup>   |               |               | 368     |        | 41.7    |         | 40.2    |        | 2.2    |         |
| TOTAL PCB-POS <sup>(2, 3)</sup>      |               |               | 368     |        | 41.7    |         | 40.2    |        | 2.2    |         |

Notes:

Values for BAP equivalents and total PCBs determined prior to rounding. 1 - Average of all analytical results including one-half of the detection limit for non-detects. 2 - Average of detected concentrations only. 3 - Sum of 18 NOAA congeners, multipled by 2 to estimate total PCBs.

### ANALYTICAL DATA

### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM NATIONAL COASTAL DATABASE

### DATA FROM QUERY OF USEPA EMAP NATIONAL COASTAL DATABASE LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 1 OF 11

| Sample ID                            | MA97-008      | 9-19970826       | MA97-009     | 0-19970826       | MA97-0110     | -19970804        | MA97-011      | -19970805       | MA97-0112     | 2-19970805      | MA97-0113 | 3-19970806       |
|--------------------------------------|---------------|------------------|--------------|------------------|---------------|------------------|---------------|-----------------|---------------|-----------------|-----------|------------------|
| Station                              | MA97          | -0089            | MA97         | -0090            | MA97          | -0110            | MA97          | -0111           | MA97          | -0112           | MA97      | -0113            |
| Sample Date                          | 1997          | 0826             | 1997         | 0826             | 1997          | 0804             | 1997          | 0805            | 1997          | 0805            | 1997      | 0806             |
| Latitude                             | 39.           | 214              | 39.          | 248              | 39            | .08              | 39.           | 074             | 39.           | 063             | 39.       | 059              |
| Longitude                            | -76           | .452             | -76          | .553             | -76           | 602              | -76           | 592             | -76.          | 561             | -76       | .559             |
|                                      | EMAP Mid-Atla | antic Integrated |              | antic Integrated | EMAP Mid-Atla | untic Intograted | EMAP Mid-Atla | ntic Intograted | EMAP Mid-Atla | ntic Intograted |           | antic Integrated |
|                                      |               | SEPA Office of   | Assessment/U |                  | Assessment/U  |                  | Assessment/U  |                 |               | SEPA Office of  |           | SEPA Office of   |
| Data Set                             |               | Development      |              | Development      | Research and  |                  |               | Development     | Research and  |                 |           | Development      |
| METALS (MG/KG)                       |               |                  |              |                  |               |                  |               |                 |               |                 |           |                  |
| Arsenic                              | 10.3          |                  | 25.6         |                  | 19.1          |                  | 5.4           |                 | 9.6           |                 | 27.7      |                  |
| Cadmium                              | 0.93          |                  | 1.4          |                  | 2.1           |                  | 0.079         |                 | 0.5           |                 | 2.3       |                  |
| Chromium                             | 125           |                  | 244          |                  | 98.7          |                  | 22.4          |                 | 41.6          |                 | 130       |                  |
| Copper                               | 48.5          |                  | 131          |                  | 107           |                  | 5.3           |                 | 31.1          |                 | 126       |                  |
| Lead                                 | 180           |                  | 108          |                  | 81.4          |                  | 7.6           |                 | 26.4          |                 | 88.5      |                  |
| Mercury                              | 0.058         |                  | 0.32         |                  | 0.19          |                  | 0.01          | U               | 0.21          |                 | 0.26      |                  |
| Zinc                                 | 844           |                  | 444          |                  | 354           |                  | 26.8          |                 | 89.9          |                 | 397       |                  |
| PAHs (UG/KG)                         |               |                  |              |                  |               |                  |               |                 |               |                 |           |                  |
| BAP EQUIVALENT-HALFND <sup>(1)</sup> | 413           |                  | 626          |                  | 438           |                  | 4.3           |                 | 437           |                 | 185       |                  |
| BAP EQUIVALENT-POS <sup>(2)</sup>    | 413           |                  | 626          |                  | 438           |                  | 4.3           |                 | 437           |                 | 185       |                  |
| Benzo(a)anthracene                   | 172           |                  | 305          |                  | 180           |                  | 2.3           |                 | 289           |                 | 109       |                  |
| Benzo(a)pyrene                       | 280           |                  | 435          |                  | 299           |                  | 2.8           |                 | 285           |                 | 117       |                  |
| Benzo(b)fluoranthene                 | 347           |                  | 527          |                  | 473           |                  | 5.2           |                 | 467           |                 | 248       |                  |
| Benzo(b+k)fluoranthene               | 437           |                  | 711          |                  | 651           |                  | 6.9           |                 | 620           |                 | 311       |                  |
| Benzo(k)fluoranthene                 | 89.9          |                  | 184          |                  | 178           |                  | 1.7           |                 | 154           |                 | 63.0      |                  |
| Chrysene                             | 190           |                  | 355          |                  | 267           |                  | 3.5           |                 | 434           |                 | 132       |                  |
| Dibenz(a,h)anthracene                | 58.0          |                  | 74.3         |                  | 43.6          |                  | 0.5           |                 | 51.7          |                 | 19.8      |                  |
| Indeno(1,2,3-c,d)pyrene              | 225           |                  | 317          |                  | 281           |                  | 2.4           |                 | 227           |                 | 116       |                  |
| PCBs (UG/KG)                         |               |                  |              |                  |               |                  |               |                 |               |                 |           |                  |
| PCB101                               | 4.2           |                  | 10.3         |                  | 1.4           |                  | 0.1           |                 | 0.44          |                 | 1.9       |                  |
| PCB105                               | 1.3           |                  | 2.4          |                  | 0.24          |                  | 0.01          |                 | 0.17          | U               | 0.36      | U                |
| PCB118                               | 3.0           |                  | 5.0          |                  | 1.1           |                  | 0.03          |                 | 0.17          | U               | 1.8       |                  |
| PCB128                               | 0.61          |                  | 5.2          |                  | 0.28          |                  | 0.01          |                 | 0.079         | U               | 7.3       |                  |
| PCB138                               | 3.9           |                  | 8.3          |                  | 1.8           |                  | 0.04          |                 | 0.62          |                 | 0.91      |                  |
| PCB153                               | 3.9           |                  | 9.8          |                  | 2.8           |                  | 0.05          |                 | 0.17          | U               | 0.36      | U                |
| PCB170                               | 2.0           |                  | 5.9          |                  | 18.0          |                  | 0.87          |                 | 1.8           | U               | 3.7       | U                |
| PCB18                                | 0.18          |                  | 0.92         |                  | 1.7           |                  | 0.084         | U               | 127           |                 | 0.62      |                  |
| PCB180                               | 1.9           |                  | 6.6          |                  | 1.3           |                  | 0.03          |                 | 1.1           |                 | 0.082     | U                |
| PCB187                               | 1.3           |                  | 4.6          |                  | 0.88          |                  | 0.03          |                 | 2.7           |                 | 0.63      | U                |
| PCB195                               | 0.57          |                  | 2.1          |                  | 0.5           |                  | 0.049         | U               | 0.092         | U               | 0.19      | U                |
| PCB206                               | 1.8           |                  | 4.6          |                  | 0.52          |                  | 0.02          |                 | 0.15          | U               | 0.3       | U                |
| PCB209                               | 2.1           |                  | 7.9          |                  | 1.2           |                  | 0.03          |                 | 0.19          |                 | 0.3       | U                |
| PCB28                                | 0.23          | U                | 0.47         | U                | 0.36          |                  | 0.19          | U               | 2.5           |                 | 0.74      | U                |
| PCB44                                | 1.2           |                  | 5.3          |                  | 0.58          |                  | 0.03          |                 | 25.2          |                 | 0.57      | U                |
| PCB52                                | 3.4           |                  | 8.0          |                  | 1.1           |                  | 0.16          |                 | 0.58          |                 | 0.64      |                  |
| PCB66                                | 2.0           |                  | 4.7          |                  | 0.35          |                  | 0.12          | U               | 0.22          | U               | 0.46      | U                |
| PCB8                                 | 1.5           |                  | 2.4          |                  | 1.0           | U                | 0.31          | U               | 0.58          | U               | 0.65      |                  |
| TOTAL PCB-HALFND <sup>(1, 3)</sup>   | 69.8          |                  | 188          |                  | 69.3          |                  | 3.6           |                 | 324           |                 | 35.4      |                  |
| TOTAL PCB-POS <sup>(2, 3)</sup>      | 69.6          |                  | 188          |                  | 68.3          |                  | 2.8           |                 | 321           |                 | 27.7      |                  |

Notes:

Values for BAP equivalents and total PCBs determined prior to rounding. 1 - Average of all analytical results including one-half of the detection limit for non-detects. 2 - Average of detected concentrations only. 3 - Sum of 18 NOAA congeners, multipled by 2 to estimate total PCBs.

Acronyms/Abbreviations: BAP - Benzo(a)pyrene PAH - Polycyclic aromatic hydrocarbon PCB - Polychlorinated biphenyl

U - Nondetect

# DATA FROM QUERY OF USEPA EMAP NATIONAL COASTAL DATABASE LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 2 OF 11

| Sample ID                                                                | MA97-0114    | 4-19970807       | MA97-011      | 5-19970806  | MA97-011     | 6-19970806       | MA97-0117    | 7-19970808       | MA97-0118    | 3-19970807       | MA97-011     | 9-19970809       |
|--------------------------------------------------------------------------|--------------|------------------|---------------|-------------|--------------|------------------|--------------|------------------|--------------|------------------|--------------|------------------|
| Station                                                                  | MA97         | 7-0114           | MA97          | -0115       | MA97         | -0116            | MA97         | -0117            | MA97         | -0118            | MA97         | 7-0119           |
| Sample Date                                                              | 1997         | 0807             | 1997          | 0806        | 1997         | 0806             | 1997         | 0808             | 1997         | 0807             | 1997         | 70809            |
| Latitude                                                                 | 39.          | .059             | 39.           | 057         | 39.          | 052              | 39.          | 048              | 39.          | 047              | 39.          | .048             |
| Longitude                                                                |              | .569             | -76           | 548         |              | .543             | -76          | .565             |              | .555             |              | .536             |
| 5                                                                        |              |                  |               |             |              |                  |              |                  |              |                  |              |                  |
|                                                                          |              | antic Integrated | EMAP Mid-Atla |             |              | antic Integrated |              | antic Integrated |              | antic Integrated |              | antic Integrated |
|                                                                          |              | SEPA Office of   | Assessment/U  |             |              | SEPA Office of   |              | SEPA Office of   | Assessment/U |                  |              | SEPA Office of   |
| Data Set<br>METALS (MG/KG)                                               | Research and | d Development    | Research and  | Development | Research and | Development      | Research and | Development      | Research and | Development      | Research and | d Development    |
| Arsenic                                                                  | 28.9         | 1                | 3.2           |             | 29.3         | 1                | 15.5         | 1                | 26.9         | 1                | 26.6         |                  |
| Cadmium                                                                  | 1.8          |                  | 0.053         |             | 29.3         |                  | 13.5         |                  | 1.9          |                  | 0.34         |                  |
|                                                                          | 1.8          |                  |               |             | 2.0          |                  | 68.3         |                  | 1.9          |                  |              |                  |
| Chromium                                                                 | 126          |                  | 15.3<br>4.1   |             | 112          |                  | 69.8         |                  | 153          |                  | 153<br>23.2  |                  |
| Copper                                                                   | 92.4         |                  | 4.1           |             | 82.9         |                  | 42.8         |                  | 78.9         |                  | 23.2         |                  |
| Lead<br>Mercurv                                                          | 92.4         |                  | 4.3           | U           | 0.3          |                  | 42.8         |                  | 0.24         |                  | 0.06         | <u> </u>         |
| Zinc                                                                     | 314          |                  | 21.7          | U           | 393          |                  | 161          |                  | 390          |                  | 91.3         | ╂────┤           |
| PAHs (UG/KG)                                                             | 314          | 1                | 21.7          |             | 393          | 1                | 101          | l                | 290          | l                | 91.5         |                  |
| BAP EQUIVALENT-HALFND <sup>(1)</sup>                                     | 202          |                  | 1.3           |             | 68.4         |                  | 407          |                  | 427          |                  | 83.3         |                  |
| BAP EQUIVALENT-HALFND <sup>11</sup><br>BAP EQUIVALENT-POS <sup>(2)</sup> | -            |                  |               |             |              |                  | -            |                  |              |                  |              |                  |
|                                                                          | 202          |                  | 1.3           |             | 68.4<br>49.8 |                  | 407<br>257   |                  | 427<br>288   |                  | 83.3<br>56.4 |                  |
| Benzo(a)anthracene                                                       | 118          |                  |               |             |              |                  | -            |                  |              |                  |              |                  |
| Benzo(a)pyrene                                                           | 136<br>247   |                  | 0.8           |             | 42.7<br>88.6 |                  | 265          |                  | 267          |                  | 52.7<br>107  |                  |
| Benzo(b)fluoranthene                                                     |              |                  | 1.6<br>2.3    |             |              |                  | 455          |                  | 588          |                  |              |                  |
| Benzo(b+k)fluoranthene<br>Benzo(k)fluoranthene                           | 337<br>89.3  |                  | 2.3           |             | 117<br>28.0  |                  | 615<br>160   |                  | 741<br>153   |                  | 142<br>35.8  |                  |
|                                                                          | 193          |                  | 1.4           |             | 28.0<br>59.4 |                  | 374          |                  | 318          |                  | 72.3         |                  |
| Chrysene<br>Dibenz(a,h)anthracene                                        | 193          |                  | 0.2           |             | 7.7          |                  | 47.4         |                  | 46.6         |                  | 9.3          |                  |
| Indeno(1,2,3-c,d)pyrene                                                  | 115          |                  | 0.2           |             | 37.8         |                  | 214          |                  | 238          |                  | 45.0         |                  |
| PCBs (UG/KG)                                                             | 115          |                  | 0.7           |             | 37.0         |                  | 214          |                  | 230          |                  | 45.0         |                  |
| PCB101                                                                   | 0.97         |                  | 0.1           |             | 0.13         | U                | 0.29         |                  | 0.24         | U                | 0.054        | U                |
| PCB105                                                                   | 0.03         |                  | 0.093         | U           | 0.42         | U                | 0.23         | U                | 0.77         | U                | 0.18         | U                |
| PCB118                                                                   | 0.34         |                  | 0.093         | Ű           | 0.42         | Ŭ                | 0.08         | 0                | 2.8          | Ŭ                | 0.47         | Ű                |
| PCB128                                                                   | 0.1          |                  | 0.043         | Ŭ           | 0.55         | 0                | 0.66         |                  | 14.3         |                  | 0.73         |                  |
| PCB138                                                                   | 1.4          |                  | 0.02          | -           | 0.46         | U                | 0.27         |                  | 0.83         | U                | 0.19         | U                |
| PCB153                                                                   | 0.26         |                  | 0.093         | U           | 0.42         | Ŭ                | 0.06         |                  | 0.77         | Ŭ                | 0.18         | Ŭ                |
| PCB170                                                                   | 4.6          |                  | 0.98          | U           | 0.23         | -                | 2.5          | U                | 0.96         | -                | 1.9          | Ŭ                |
| PCB18                                                                    | 6.9          |                  | 0.07          |             | 0.04         |                  | 0.62         | -                | 0.53         |                  | 0.3          |                  |
| PCB180                                                                   | 0.16         |                  | 0.03          |             | 0.098        | U                | 0.29         |                  | 0.18         | U                | 0.041        | U                |
| PCB187                                                                   | 0.2          |                  | 1.2           |             | 0.75         | U                | 0.93         |                  | 1.8          |                  | 0.31         | U                |
| PCB195                                                                   | 0.21         | U                | 0.05          | U           | 0.23         | U                | 0.13         | U                | 1.1          |                  | 0.21         |                  |
| PCB206                                                                   | 0.16         |                  | 0.078         | U           | 0.3          |                  | 0.88         |                  | 0.65         | U                | 0.15         | U                |
| PCB209                                                                   | 0.36         |                  | 0.3           |             | 0.36         | U                | 0.28         |                  | 0.65         | U                | 0.15         | U                |
| PCB28                                                                    | 0.83         | U                | 0.19          | U           | 0.88         | U                | 0.11         |                  | 8.1          |                  | 0.37         | U                |
| PCB44                                                                    | 0.67         |                  | 0.15          | U           | 0.69         | U                | 0.39         | U                | 1.2          | U                | 0.29         | U                |
| PCB52                                                                    | 0.81         |                  | 0.13          | U           | 0.71         |                  | 0.25         |                  | 2.8          |                  | 0.07         |                  |
| PCB66                                                                    | 0.56         |                  | 0.46          |             | 0.56         | U                | 0.31         | U                | 1.0          | U                | 0.23         | U                |
| PCB8                                                                     | 1.4          | U                | 0.31          | U           | 1.4          | U                | 0.81         | U                | 2.6          | U                | 0.52         |                  |
| TOTAL PCB-HALFND <sup>(1, 3)</sup>                                       | 37.3         |                  | 6.6           |             | 10.5         |                  | 13.8         |                  | 73.8         |                  | 8.6          |                  |
| TOTAL PCB-POS <sup>(2, 3)</sup>                                          | 34.9         |                  | 4.4           |             | 3.7          |                  | 9.4          |                  | 64.8         |                  | 4.6          |                  |

Notes:

Values for BAP equivalents and total PCBs determined prior to rounding. 1 - Average of all analytical results including one-half of the detection limit for non-detects. 2 - Average of detected concentrations only. 3 - Sum of 18 NOAA congeners, multipled by 2 to estimate total PCBs.

Acronyms/Abbreviations: BAP - Benzo(a)pyrene PAH - Polycyclic aromatic hydrocarbon PCB - Polychlorinated biphenyl

# DATA FROM QUERY OF USEPA EMAP NATIONAL COASTAL DATABASE LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 3 OF 11

| Sample ID                            | MA97-0120     | 0-19970809      | MA97-012 <sup>2</sup> | 1-19970808       | MA97-0122     | 2-19970808  | MA97-0123     | 8-19970814  | MA97-0124    | 1-19970815       | MA97-012     | 5-19970809       |
|--------------------------------------|---------------|-----------------|-----------------------|------------------|---------------|-------------|---------------|-------------|--------------|------------------|--------------|------------------|
| Station                              |               | 7-0120          | MA97                  |                  |               | -0122       |               | -0123       | MA97         |                  |              | -0125            |
| Sample Date                          | 1997          | 70809           | 1997                  | 0808             | 1997          | 0808        | 1997          | 0814        | 1997         | 0815             | 1997         | 0809             |
| Latitude                             | 39.           | .043            | 39.                   | 043              | 39.           | 035         | 39.           | 034         | 39.          | 034              | 39.          | 034              |
| Longitude                            | -76,          | .548            | -76                   | .559             | -76           | 558         | -76.          | 532         | -76          | .53              | -76          | .541             |
|                                      | EMAP Mid-Atla |                 |                       | antic Integrated | EMAP Mid-Atla |             | EMAP Mid-Atla |             |              | antic Integrated |              | antic Integrated |
|                                      |               | ISEPA Office of |                       | SEPA Office of   | Assessment/U  |             | Assessment/U  |             |              | SEPA Office of   |              | SEPA Office of   |
| Data Set                             | Research and  | d Development   | Research and          | I Development    | Research and  | Development | Research and  | Development | Research and | Development      | Research and | Development      |
| METALS (MG/KG)                       |               | •               |                       |                  |               |             |               |             |              |                  |              |                  |
| Arsenic                              | 26.0          |                 | 27.9                  |                  | 4.0           |             | 4.2           |             | 3.6          |                  | 28.5         |                  |
| Cadmium                              | 1.5           |                 | 2.1                   |                  | 0.088         |             | 0.1           |             | 0.09         |                  | 1.4          |                  |
| Chromium                             | 179           |                 | 138                   |                  | 18.1          |             | 43.1          |             | 33.0         |                  | 192          |                  |
| Copper                               | 95.3          |                 | 119                   |                  | 2.5           |             | 4.7           |             | 5.2          |                  | 77.7         |                  |
| Lead                                 | 74.2          |                 | 83.4                  |                  | 5.5           |             | 11.7          |             | 9.5          |                  | 70.3         |                  |
| Mercury                              | 0.26          |                 | 0.29                  |                  | 0.01          | U           | 0.01          | U           | 0.01         | U                | 0.25         |                  |
| Zinc                                 | 382           |                 | 323                   |                  | 52.3          |             | 49.4          |             | 36.5         |                  | 364          |                  |
| PAHs (UG/KG)                         |               | 1               |                       | 1                | 1             |             |               |             |              |                  |              |                  |
| BAP EQUIVALENT-HALFND <sup>(1)</sup> | 334           |                 | 204                   |                  | 1.7           |             | 4.6           |             | 9.2          |                  | 42.1         |                  |
| BAP EQUIVALENT-POS <sup>(2)</sup>    | 334           |                 | 204                   |                  | 1.7           |             | 4.6           |             | 9.2          |                  | 42.1         |                  |
| Benzo(a)anthracene                   | 214           |                 | 133                   |                  | 0.7           |             | 3.8           |             | 7.2          |                  | 26.1         |                  |
| Benzo(a)pyrene                       | 212           |                 | 125                   |                  | 0.8           |             | 3.1           |             | 6.1          |                  | 28.3         |                  |
| Benzo(b)fluoranthene                 | 406           |                 | 288                   |                  | 1.4           |             | 7.2           |             | 13.8         |                  | 48.4         |                  |
| Benzo(b+k)fluoranthene               | 517           |                 | 363                   |                  | 2.0           |             | 9.6           |             | 17.7         |                  | 63.1         |                  |
| Benzo(k)fluoranthene                 | 111           |                 | 75.1                  |                  | 0.6           |             | 2.4           |             | 3.8          |                  | 14.7         |                  |
| Chrysene                             | 239           |                 | 174                   |                  | 0.9           |             | 4.6           |             | 9.6          |                  | 29.9         |                  |
| Dibenz(a,h)anthracene                | 39.4          |                 | 23.7                  |                  | 0.6           |             | 0.1           |             | 0.5          |                  | 4.3          |                  |
| Indeno(1,2,3-c,d)pyrene              | 196           |                 | 120                   |                  | 1.0           |             | 2.6           |             | 4.1          |                  | 19.1         |                  |
| PCBs (UG/KG)                         |               |                 | -                     |                  |               |             | -             |             |              | -                | -            |                  |
| PCB101                               | 0.14          | U               | 0.12                  | U                | 0.91          |             | 0.82          |             | 0.95         |                  | 0.095        | U                |
| PCB105                               | 0.46          | U               | 0.38                  | U                | 0.1           | U           | 0.095         | U           | 0.1          | U                | 0.31         | U                |
| PCB118                               | 0.46          | U               | 0.2                   |                  | 0.71          |             | 0.095         | U           | 0.1          | U                | 0.17         |                  |
| PCB128                               | 0.21          | U               | 6.3                   |                  | 0.33          |             | 0.044         | U           | 0.046        | U                | 0.68         |                  |
| PCB138                               | 0.49          | U               | 0.32                  |                  | 0.11          | U           | 0.27          |             | 0.27         |                  | 0.22         |                  |
| PCB153                               | 0.46          | U               | 0.16                  |                  | 0.13          |             | 0.095         | U           | 0.1          | U                | 0.31         | U                |
| PCB170                               | 1.1           |                 | 0.67                  |                  | 0.16          |             | 0.28          |             | 0.5          |                  | 0.2          |                  |
| PCB18                                | 0.42          | U               | 0.87                  |                  | 6.7           |             | 0.088         | U           | 0.092        | U                | 0.82         |                  |
| PCB180                               | 1.6           | <u> </u>        | 0.087                 | U                | 0.13          |             | 0.022         | U           | 0.023        | U                | 0.071        | UU               |
| PCB187<br>PCB195                     | 13.2          |                 | 0.67                  | U                | 1.2<br>0.056  | U           | 0.17          | UU          | 0.18         | U U              | 0.55         | U                |
| PCB195<br>PCB206                     | 1.7<br>0.39   | U               | 1.4<br>0.32           | U                |               | U U         | 0.051         | U           | 0.054        | U                | 0.17         | U                |
| PCB206<br>PCB209                     | 0.39          | U               | 0.32                  | U<br>U           | 0.088         | U           | 0.15          |             | 0.19         |                  | 0.26         | U<br>U           |
| PCB209<br>PCB28                      | -             |                 |                       | U                | 0.22          | U           |               |             | 0.03         |                  | 0.26         | U                |
| PCB28<br>PCB44                       | 8.3<br>17.2   |                 | 5.8<br>4.5            |                  | 19.5          | U           | 0.06          | U           | 0.11         | U                | 0.5          | U                |
| PCB44<br>PCB52                       | 0.63          | U               | 4.5                   |                  | 19.5<br>0.14  | U           | 0.15          | U           | 0.16         | U                | 0.5          | U                |
| PCB52<br>PCB66                       | 0.63          | U               | 0.49                  | U                | 0.14          | U U         | 0.98          |             | 0.06         |                  | 0.43         | U                |
| PCB66<br>PCB8                        | 2.9           | U               | 2.2                   | U                | 2.5           | U           | 0.11          |             | 0.06         |                  | 1.1          | U                |
| TOTAL PCB-HALFND <sup>(1, 3)</sup>   |               |                 |                       |                  |               |             | -             |             |              |                  |              | U                |
|                                      | 101           |                 | 51.1                  |                  | 67.9          |             | 6.7           |             | 7.8          |                  | 11.0         |                  |
| TOTAL PCB-POS <sup>(2, 3)</sup>      | 96.9          |                 | 48.7                  |                  | 67.1          |             | 5.9           |             | 7.0          |                  | 6.6          |                  |

Notes:

Values for BAP equivalents and total PCBs determined prior to rounding. 1 - Average of all analytical results including one-half of the detection limit for non-detects. 2 - Average of detected concentrations only. 3 - Sum of 18 NOAA congeners, multipled by 2 to estimate total PCBs.

Acronyms/Abbreviations: BAP - Benzo(a)pyrene PAH - Polycyclic aromatic hydrocarbon PCB - Polychlorinated biphenyl

# DATA FROM QUERY OF USEPA EMAP NATIONAL COASTAL DATABASE LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 4 OF 11

| Sample ID                            | MA97-012     | 6-19970814       | MA97-012     | 7-19970815       | MA97-012     | 8-19970810       | MA97-0129     | 9-19970812  | MA97-0130    | 0-19970812       | MA97-013     | 1-19970815       |
|--------------------------------------|--------------|------------------|--------------|------------------|--------------|------------------|---------------|-------------|--------------|------------------|--------------|------------------|
| Station                              |              | 7-0126           |              | 7-0127           |              | -0128            | MA97          |             |              | -0130            |              | 7-0131           |
| Sample Date                          |              | 70814            |              | 0815             |              | 0810             |               | 0812        |              | 0812             |              | 70815            |
| Latitude                             |              | .03              |              | .022             |              | 017              |               | 013         |              | 007              |              | .004             |
| Longitude                            |              | 5.53             |              | .514             |              | .536             | -76.          |             | -76          |                  |              | .523             |
| Longhado                             |              |                  |              |                  |              |                  |               |             |              |                  |              | .020             |
|                                      |              | antic Integrated |              | antic Integrated |              | antic Integrated | EMAP Mid-Atla |             |              | antic Integrated |              | antic Integrated |
|                                      |              | SEPA Office of   |              | SEPA Office of   |              | SEPA Office of   | Assessment/U  |             |              | SEPA Office of   |              | SEPA Office of   |
| Data Set                             | Research and | d Development    | Research and | Development      | Research and | I Development    | Research and  | Development | Research and | I Development    | Research and | d Development    |
| METALS (MG/KG)                       |              |                  |              |                  |              |                  |               |             |              |                  |              | -                |
| Arsenic                              | 24.6         |                  | 4.2          |                  | 22.7         |                  | 29.1          |             | 5.8          |                  | 23.6         |                  |
| Cadmium                              | 0.65         |                  | 0.098        |                  | 1.2          |                  | 0.36          |             | 0.068        |                  | 1.6          |                  |
| Chromium                             | 177          |                  | 41.4         |                  | 195          |                  | 170           |             | 36.5         |                  | 165          |                  |
| Copper                               | 56.0         |                  | 7.5          |                  | 99.5         |                  | 42.6          |             | 5.9          |                  | 39.7         |                  |
| Lead                                 | 48.0         |                  | 10.9         |                  | 57.8         |                  | 46.3          |             | 8.4          |                  | 33.3         |                  |
| Mercury                              | 0.2          |                  | 0.03         |                  | 0.23         |                  | 0.18          |             | 0.28         |                  | 0.15         |                  |
| Zinc                                 | 291          |                  | 37.5         |                  | 346          |                  | 255           |             | 51.7         |                  | 199          |                  |
| PAHs (UG/KG)                         | 1            |                  | -            | 1                | -            | -                | 1             | 1           | -            | -                |              |                  |
| BAP EQUIVALENT-HALFND <sup>(1)</sup> | 132          |                  | 33.2         |                  | 211          |                  | 179           |             | 10.2         |                  | 91.9         |                  |
| BAP EQUIVALENT-POS <sup>(2)</sup>    | 132          |                  | 33.2         |                  | 211          |                  | 179           |             | 10.2         |                  | 91.9         |                  |
| Benzo(a)anthracene                   | 84.3         |                  | 19.2         |                  | 125          |                  | 126           |             | 5.8          |                  | 66.2         |                  |
| Benzo(a)pyrene                       | 86.7         |                  | 22.3         |                  | 140          |                  | 111           |             | 6.5          |                  | 60.7         |                  |
| Benzo(b)fluoranthene                 | 142          |                  | 36.1         |                  | 252          |                  | 207           |             | 11.2         |                  | 102          |                  |
| Benzo(b+k)fluoranthene               | 184          |                  | 47.8         |                  | 338          |                  | 252           |             | 14.2         |                  | 132          |                  |
| Benzo(k)fluoranthene                 | 42.6         |                  | 11.7         |                  | 86.2         |                  | 45.1          |             | 3.0          |                  | 30.5         |                  |
| Chrysene                             | 105          |                  | 38.9         |                  | 151          |                  | 119           |             | 6.8          |                  | 65.8         |                  |
| Dibenz(a,h)anthracene                | 15.8         |                  | 3.4          |                  | 20.8         |                  | 23.3          |             | 1.4          |                  | 9.4          |                  |
| Indeno(1,2,3-c,d)pyrene              | 65.8         |                  | 17.8         |                  | 118          |                  | 109           |             | 6.0          |                  | 46.2         |                  |
| PCBs (UG/KG)                         |              |                  |              |                  |              |                  |               |             |              |                  |              |                  |
| PCB101                               | 1.4          |                  | 0.1          |                  | 4.1          |                  | 0.55          |             | 0.11         |                  | 1.3          |                  |
| PCB105                               | 0.39         |                  | 0.04         |                  | 0.41         | U                | 0.18          | U           | 0.1          | U                | 0.32         |                  |
| PCB118                               | 1.1          |                  | 0.12         |                  | 0.41         | U                | 0.18          | U           | 0.1          | U                | 0.51         |                  |
| PCB128                               | 0.098        | U                | 0.047        | U                | 6.5          |                  | 0.28          |             | 0.39         |                  | 0.5          |                  |
| PCB138                               | 1.3          |                  | 0.15         |                  | 0.44         | U                | 0.07          |             | 0.09         |                  | 1.1          |                  |
| PCB153                               | 1.9          |                  | 0.21         |                  | 0.41         | U                | 0.18          | U           | 0.1          | U                | 1.3          |                  |
| PCB170                               | 2.5          |                  | 0.31         |                  | 2.2          |                  | 1.9           | U           | 1.1          | U                | 0.8          |                  |
| PCB18                                | 0.2          | U                | 0.093        | U                | 0.13         |                  | 2.2           |             | 0.87         |                  | 0.14         |                  |
| PCB180                               | 0.66         |                  | 0.06         |                  | 0.094        | U                | 0.042         | U           | 0.023        | U                | 0.7          |                  |
| PCB187                               | 0.51         |                  | 0.04         |                  | 0.72         | U                | 0.32          | U           | 0.18         | U                | 0.16         |                  |
| PCB195                               | 0.49         |                  | 0.055        | U                | 2.9          |                  | 0.097         | U           | 0.04         |                  | 0.7          |                  |
| PCB206                               | 0.81         |                  | 0.06         |                  | 0.35         | U                | 0.15          | U           | 0.084        | U                | 0.8          |                  |
| PCB209                               | 2.2          |                  | 0.09         |                  | 1.6          |                  | 0.15          | U           | 0.084        | U                | 1.4          |                  |
| PCB28                                | 0.88         |                  | 0.03         |                  | 0.85         | U                | 0.38          | U           | 0.21         | U                | 1.0          |                  |
| PCB44                                | 0.56         |                  | 0.02         |                  | 59.2         |                  | 0.29          | U           | 2.3          |                  | 0.39         |                  |
| PCB52                                | 1.1          |                  | 0.13         |                  | 1.9          |                  | 0.25          | U           | 0.04         |                  | 1.5          |                  |
| PCB66                                | 1.5          |                  | 0.1          |                  | 0.53         | U                | 0.24          | U           | 0.13         | U                | 0.78         |                  |
| PCB8                                 | 1.3          |                  | 0.2          |                  | 1.4          | U                | 0.61          | U           | 0.34         | U                | 2.1          |                  |
| TOTAL PCB-HALFND <sup>(1, 3)</sup>   | 37.1         |                  | 3.5          |                  | 163          |                  | 11.1          |             | 10.1         |                  | 31.0         |                  |
| TOTAL PCB-POS <sup>(2, 3)</sup>      | 36.8         |                  | 3.3          |                  | 157          |                  | 6.1           |             | 7.7          |                  | 31.0         |                  |

Notes:

Values for BAP equivalents and total PCBs determined prior to rounding. 1 - Average of all analytical results including one-half of the detection limit for non-detects. 2 - Average of detected concentrations only. 3 - Sum of 18 NOAA congeners, multipled by 2 to estimate total PCBs.

Acronyms/Abbreviations: BAP - Benzo(a)pyrene PAH - Polycyclic aromatic hydrocarbon PCB - Polychlorinated biphenyl

# DATA FROM QUERY OF USEPA EMAP NATIONAL COASTAL DATABASE LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 5 OF 11

| Sample ID                            | MA97-0132    | 2-19970811       | MA97-013     | 3-19970812       | MA97-0134     | 4-19970811     | MA97-013      | 5-19970813  | MA97-0136     | 6-19970808     | MA97-0334    | 4-19970903       |
|--------------------------------------|--------------|------------------|--------------|------------------|---------------|----------------|---------------|-------------|---------------|----------------|--------------|------------------|
| Station                              | MA97         | 7-0132           | MA97         | 7-0133           | MA97          | -0134          | MA97          | -0135       | MA97          | -0136          | MA97         | -0334            |
| Sample Date                          | 1997         | 70811            | 1997         | /0812            | 1997          | 0811           | 1997          | 0813        | 1997          | 0808           | 1997         | 0903             |
| Latitude                             | 39.          | .003             | 38.          | 998              | 38.           | 989            | 38.           | 977         | 38.           | 974            | 39.          | 193              |
| Longitude                            | -76          | .494             | -76          | .502             | -76           | 5.48           | -76           | 464         | -76.          | 469            | -76          | .391             |
|                                      |              | antic Integrated |              | antic Integrated | EMAP Mid-Atla |                | EMAP Mid-Atla |             | EMAP Mid-Atla |                |              | antic Integrated |
|                                      |              | ISEPA Office of  |              | SEPA Office of   | Assessment/U  | SEPA Office of | Assessment/U  |             | Assessment/U  | SEPA Office of | Assessment/C | hesapeake Bay    |
| Data Set                             | Research and | d Development    | Research and | Development      | Research and  | I Development  | Research and  | Development | Research and  | Development    | Prog         | gram             |
| METALS (MG/KG)                       |              | •                |              |                  |               |                |               |             |               |                |              |                  |
| Arsenic                              | 29.2         |                  | 6.0          |                  | 32.6          |                | 27.2          |             | 29.7          |                | 31.0         |                  |
| Cadmium                              | 0.41         |                  | 0.1          |                  | 0.34          |                | 0.26          |             | 0.21          |                | 0.74         |                  |
| Chromium                             | 200          |                  | 56.3         |                  | 201           |                | 128           |             | 216           |                | 96.4         |                  |
| Copper                               | 60.5         |                  | 5.4          |                  | 56.3          |                | 41.9          |             | 20.3          |                | 44.1         |                  |
| Lead                                 | 74.6         |                  | 11.2         |                  | 69.1          |                | 46.2          |             | 27.5          |                | 83.0         |                  |
| Mercury                              | 0.29         |                  | 0.03         |                  | 0.26          |                | 0.17          |             | 0.08          |                | 0.23         |                  |
| Zinc                                 | 356          |                  | 50.0         |                  | 340           |                | 276           |             | 220           |                | 428          |                  |
| PAHs (UG/KG)                         | -            |                  | -            |                  | -             | -              |               |             | -             | 1              | 1            |                  |
| BAP EQUIVALENT-HALFND <sup>(1)</sup> | 138          |                  | 23.9         |                  | 231           |                | 853           |             | 121           |                | 175          |                  |
| BAP EQUIVALENT-POS <sup>(2)</sup>    | 138          |                  | 23.9         |                  | 231           |                | 853           |             | 121           |                | 175          |                  |
| Benzo(a)anthracene                   | 65.7         |                  | 17.2         |                  | 180           |                | 584           |             | 91.5          |                | 114          |                  |
| Benzo(a)pyrene                       | 87.3         |                  | 14.9         |                  | 154           |                | 583           |             | 81.2          |                | 118          |                  |
| Benzo(b)fluoranthene                 | 161          |                  | 31.4         |                  | 237           |                | 747           |             | 98.4          |                | 162          |                  |
| Benzo(b+k)fluoranthene               | 206          |                  | 40.7         |                  | 312           |                | 951           |             | 135           |                | 205          |                  |
| Benzo(k)fluoranthene                 | 45.7         |                  | 9.2          |                  | 75.3          |                | 204           |             | 36.5          |                | 42.5         |                  |
| Chrysene                             | 96.3         |                  | 23.9         |                  | 347           |                | 499           |             | 75.9          |                | 123          |                  |
| Dibenz(a,h)anthracene                | 19.5         |                  | 2.8          |                  | 24.6          |                | 95.1          |             | 15.1          |                | 19.8         |                  |
| Indeno(1,2,3-c,d)pyrene              | 76.6         |                  | 12.3         |                  | 92.8          |                | 388           |             | 56.6          |                | 88.5         |                  |
| PCBs (UG/KG)                         |              |                  |              |                  |               |                |               |             |               |                |              |                  |
| PCB101                               | 0.22         |                  | 0.9          |                  | 0.4           |                | 0.5           |             | 0.2           |                | 1.3          |                  |
| PCB105                               | 0.19         | U                | 0.088        | U                | 0.24          | U              | 0.15          |             | 0.12          | U              | 0.45         |                  |
| PCB118                               | 0.19         | U                | 0.088        | U                | 0.24          | U              | 0.49          |             | 0.38          |                | 1.2          |                  |
| PCB128                               | 0.81         |                  | 0.041        | U                | 0.62          |                | 0.083         | U           | 0.59          |                | 0.2          |                  |
| PCB138                               | 0.27         |                  | 0.095        | U                | 0.26          | U              | 0.61          |             | 0.07          |                | 1.7          |                  |
| PCB153                               | 0.19         | U                | 0.31         |                  | 0.48          |                | 0.85          |             | 0.12          | U              | 1.7          |                  |
| PCB170                               | 2.2          |                  | 0.93         | U                | 2.5           | U              | 1.4           |             | 1.3           | U              | 1.1          |                  |
| PCB18                                | 0.89         |                  | 0.081        | U                | 0.49          |                | 4.4           |             | 1.5           |                | 0.41         |                  |
| PCB180                               | 0.044        | U                | 0.17         |                  | 0.055         | U              | 0.44          |             | 0.028         | U              | 1.2          |                  |
| PCB187                               | 0.34         | U                | 0.43         |                  | 0.11          |                | 0.29          |             | 0.21          | U              | 0.69         |                  |
| PCB195                               | 0.1          | U                | 0.047        | U                | 0.25          |                | 0.31          |             | 0.42          |                | 1.1          |                  |
| PCB206                               | 0.16         | U                | 0.074        | U                | 0.2           | U              | 0.2           |             | 0.1           | U              | 2.8          |                  |
| PCB209                               | 2.5          |                  | 0.074        | U                | 0.2           | U              | 1.0           |             | 0.1           | U              | 5.3          |                  |
| PCB28                                | 0.4          | U                | 0.29         |                  | 0.49          | U              | 0.14          |             | 0.25          | U              | 0.88         |                  |
| PCB44                                | 0.31         | U                | 0.14         | U                | 0.69          |                | 0.3           |             | 2.6           |                | 1.4          |                  |
| PCB52                                | 0.27         | U                | 0.12         | U                | 0.11          |                | 0.36          |             | 0.08          |                | 3.3          |                  |
| PCB66                                | 0.92         |                  | 0.55         |                  | 0.31          | U              | 1.2           |             | 0.16          | U              | 1.4          |                  |
| PCB8                                 | 0.53         |                  | 0.45         |                  | 0.81          | U              | 1.1           |             | 0.41          | U              | 1.8          |                  |
| TOTAL PCB-HALFND <sup>(1, 3)</sup>   | 19.0         |                  | 8.0          |                  | 11.6          |                | 27.5          |             | 14.4          |                | 56.2         |                  |
| TOTAL PCB-POS <sup>(2, 3)</sup>      | 16.8         |                  | 6.2          |                  | 6.3           |                | 27.5          |             | 11.7          |                | 56.2         |                  |

Notes:

Values for BAP equivalents and total PCBs determined prior to rounding. 1 - Average of all analytical results including one-half of the detection limit for non-detects. 2 - Average of detected concentrations only. 3 - Sum of 18 NOAA congeners, multipled by 2 to estimate total PCBs.

Acronyms/Abbreviations: BAP - Benzo(a)pyrene PAH - Polycyclic aromatic hydrocarbon PCB - Polychlorinated biphenyl

# DATA FROM QUERY OF USEPA EMAP NATIONAL COASTAL DATABASE LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 6 OF 11

| Sample ID                            | MA97-0339                             | -19970903 | MA97-0342     | -19970903 | MA97-0344     | 1-19970903    | MA97-0349     | 9-19970919    | MA97-0350  | 0-19970903       | MA97-035      | 6-19970903    |
|--------------------------------------|---------------------------------------|-----------|---------------|-----------|---------------|---------------|---------------|---------------|------------|------------------|---------------|---------------|
| Station                              | MA97-                                 |           | MA97          |           | MA97          |               | MA97          |               |            | -0350            |               | 7-0356        |
| Sample Date                          | 1997                                  |           |               | 0903      |               | 0903          |               | 0919          |            | 0903             |               | 70903         |
| Latitude                             | 39.1                                  |           |               | 155       | 39.           |               |               | 084           |            | .08              |               | 046           |
| Longitude                            | -76                                   |           | -76           |           |               | 392           |               | .193          |            | .331             |               | .396          |
| Longhado                             | 10                                    | .20       |               | 000       |               |               |               |               |            |                  |               |               |
|                                      | EMAP Mid-Atla                         |           | EMAP Mid-Atla |           | EMAP Mid-Atla |               | EMAP Mid-Atla |               |            | antic Integrated | EMAP Mid-Atla |               |
|                                      | Assessment/Ch                         |           | Assessment/Cl |           |               | nesapeake Bay |               | hesapeake Bay |            | hesapeake Bay    |               | hesapeake Bay |
| Data Set                             | Prog                                  | Iram      | Prog          | jram      | Prog          | gram          | Prog          | gram          | Prog       | gram             | Pro           | gram          |
| METALS (MG/KG)                       |                                       |           |               |           |               |               |               | -             |            | -                |               |               |
| Arsenic                              | 14.7                                  |           | 15.5          |           | 15.3          |               | 11.1          |               | 13.6       |                  | 16.1          |               |
| Cadmium                              | 0.56                                  |           | 0.56          |           | 0.32          |               | 0.28          |               | 0.55       |                  | 0.74          |               |
| Chromium                             | 77.1                                  |           | 82.4          |           | 83.0          |               | 62.3          |               | 89.6       |                  | 101           |               |
| Copper                               | 39.2                                  |           | 41.7          |           | 28.0          |               | 19.1          |               | 43.2       |                  | 45.1          |               |
| Lead                                 | 39.5                                  |           | 46.6          |           | 32.1          |               | 29.9          |               | 47.5       |                  | 49.9          |               |
| Mercury                              | 0.16                                  |           | 0.19          |           | 0.23          |               | 0.097         |               | 0.17       |                  | 0.18          |               |
| Zinc                                 | 238                                   |           | 265           |           | 180           |               | 143           |               | 259        |                  | 275           |               |
| PAHs (UG/KG)                         | · · · · · · · · · · · · · · · · · · · |           | -             | -         | -             |               | -             |               | 1          |                  | -             |               |
| BAP EQUIVALENT-HALFND <sup>(1)</sup> | 145                                   |           | 174           |           | 103           |               | 25.0          |               | 167        |                  | 208           |               |
| BAP EQUIVALENT-POS <sup>(2)</sup>    | 145                                   |           | 174           |           | 103           |               | 25.0          |               | 167        |                  | 208           |               |
| Benzo(a)anthracene                   | 96.5                                  |           | 110           |           | 71.5          |               | 14.2          |               | 111        |                  | 141           |               |
| Benzo(a)pyrene                       | 99.2                                  |           | 120           |           | 70.4          |               | 16.6          |               | 116        |                  | 147           |               |
| Benzo(b)fluoranthene                 | 150                                   |           | 168           |           | 93.1          |               | 25.7          |               | 173        |                  | 196           |               |
| Benzo(b+k)fluoranthene               | 190                                   |           | 217           |           | 118           |               | 35.1          |               | 221        |                  | 252           |               |
| Benzo(k)fluoranthene                 | 39.8                                  |           | 48.6          |           | 25.0          |               | 9.4           |               | 47.4       |                  | 55.8          |               |
| Chrysene                             | 113                                   |           | 130           |           | 72.0          |               | 18.5          |               | 126        |                  | 156           |               |
| Dibenz(a,h)anthracene                | 13.5                                  |           | 17.3          |           | 10.5          |               | 2.6           |               | 14.6       |                  | 16.8          |               |
| Indeno(1,2,3-c,d)pyrene              | 70.4                                  |           | 83.9          |           | 49.8          |               | 17.2          |               | 74.1       |                  | 96.5          |               |
| PCBs (UG/KG)                         |                                       |           |               |           |               |               |               |               |            |                  |               |               |
| PCB101                               | 0.98                                  |           | 1.5           |           | 1.3           |               | 0.04          |               | 1.2        |                  | 0.94          |               |
| PCB105                               | 0.4                                   |           | 0.53          |           | 0.56          |               | 0.14          | U             | 0.47       |                  | 0.39          |               |
| PCB118                               | 0.77                                  |           | 1.1           |           | 0.94          |               | 0.16          |               | 1.1        |                  | 1.0           |               |
| PCB128                               | 0.3                                   |           | 0.4           |           | 0.4           |               | 0.18          |               | 0.5        |                  | 0.2           |               |
| PCB138                               | 1.6                                   |           | 2.0           |           | 4.4           |               | 0.15          | U             | 1.9        |                  | 1.5           |               |
| PCB153                               | 1.6                                   |           | 2.1           |           | 4.6           |               | 0.18          |               | 1.9        |                  | 1.5           |               |
| PCB170                               | 0.9                                   |           | 1.2           |           | 1.7           | U             | 0.64          |               | 1.0        |                  | 0.7           |               |
| PCB18                                | 0.28                                  |           | 0.89          |           | 1.4           |               | 0.13          | U             | 1.9        |                  | 2.3           |               |
| PCB180                               | 1.4                                   |           | 1.6           |           | 3.5           |               | 0.15          |               | 1.6        |                  | 0.9           |               |
| PCB187                               | 0.53                                  |           | 0.9           |           | 1.1           |               | 0.05          |               | 0.85       |                  | 0.58          |               |
| PCB195                               | 1.2                                   |           | 1.5           |           | 0.7           |               | 0.04          |               | 1.5        |                  | 1.0           |               |
| PCB206                               | 3.1                                   |           | 3.9           |           | 1.2           |               | 0.11          |               | 3.5        |                  | 2.0           |               |
| PCB209                               | 5.4                                   |           | 6.8           |           | 2.2           |               | 0.37          |               | 6.5        |                  | 4.1           |               |
| PCB28<br>PCB44                       | 0.62                                  |           | 1.2<br>1.4    |           | 1.6<br>0.79   |               | 0.41          |               | 2.8        |                  | 1.6           |               |
|                                      | 1.7                                   |           |               |           |               |               |               |               | 1.6        |                  | -             | <u> </u>      |
| PCB52                                | 2.4                                   |           | 3.2           |           | 2.1           |               | 0.36          |               | 2.4        |                  | 1.8           |               |
| PCB66<br>PCB8                        | 1.0<br>1.3                            |           | 1.6<br>1.2    |           | 1.2           |               | 0.18          | UU            | 1.4<br>2.3 |                  | 1.4<br>1.4    |               |
|                                      | -                                     |           |               |           | -             |               | 0.47          | U             | -          |                  |               | <u> </u>      |
| TOTAL PCB-HALFND <sup>(1, 3)</sup>   | 50.9                                  |           | 65.8          |           | 60.0          |               | 6.6           |               | 68.7       |                  | 48.4          |               |
| TOTAL PCB-POS <sup>(2, 3)</sup>      | 50.9                                  |           | 65.8          |           | 58.3          |               | 5.5           |               | 68.7       |                  | 48.4          |               |

Notes:

Values for BAP equivalents and total PCBs determined prior to rounding. 1 - Average of all analytical results including one-half of the detection limit for non-detects. 2 - Average of detected concentrations only. 3 - Sum of 18 NOAA congeners, multipled by 2 to estimate total PCBs.

Acronyms/Abbreviations: BAP - Benzo(a)pyrene PAH - Polycyclic aromatic hydrocarbon PCB - Polychlorinated biphenyl

# DATA FROM QUERY OF USEPA EMAP NATIONAL COASTAL DATABASE LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 7 OF 11

| Sample ID                            |       | 1-19970919       |              | -A-20050908    |      | B-20050831     |                | -A-20060908 | MD06-0035-     |      |       | -A-20060912                           |
|--------------------------------------|-------|------------------|--------------|----------------|------|----------------|----------------|-------------|----------------|------|-------|---------------------------------------|
| Station                              |       | 7-0361           |              | 0008-A         |      | 0018-B         |                | 0027-A      | MD06-0         |      |       | 0037-A                                |
| Sample Date                          |       | 70919            |              | 60908          |      | 60831          |                | 0908        |                | 0908 |       | 50912                                 |
| Latitude                             |       | .009             |              | 005            |      | 209            |                | 124         | 39.3           |      |       | .03                                   |
| Longitude                            | -76   | .167             | -76          | .504           | -76  | .522           | -76            | 5.42        | -76.           | 304  | -76   | .199                                  |
|                                      |       | antic Integrated |              | al Assessment- |      | al Assessment- | National Coast |             | National Coast |      |       | al Assessment-                        |
|                                      |       | hesapeake Bay    | Northeast/Ch |                |      | esapeake Bay   | Northeast/Che  |             | Northeast/Che  |      |       | esapeake Bay                          |
| Data Set                             | Proç  | gram             | Pro          | gram           | Proç | gram           | Prog           | gram        | Prog           | jram | Pro   | gram                                  |
| METALS (MG/KG)                       |       | r                |              |                |      |                |                |             |                |      |       | · · · · · · · · · · · · · · · · · · · |
| Arsenic                              | 3.2   |                  | 22.4         |                | 20.2 |                | 5.6            |             | 14.1           |      | 2.7   |                                       |
| Cadmium                              | 0.14  |                  | 0.64         |                | 1.1  |                | 0.17           |             | 0.51           |      | 0.044 |                                       |
| Chromium                             | 23.7  |                  | 121          |                | 166  |                | 30.1           |             | 80.8           |      | 11.8  |                                       |
| Copper                               | 5.6   |                  | 27.4         |                | 64.3 |                | 14.7           |             | 37.9           |      | 4.3   |                                       |
| Lead                                 | 11.3  | l                | 64.5         |                | 88.5 |                | 18.3           |             | 45.0           |      | 7.8   | <u> </u>                              |
| Mercury                              | 0.016 | U                | 0.087        |                | 0.14 |                | 0.04           |             | 0.17           |      | 0.01  | U                                     |
| Zinc                                 | 167   |                  | 200          |                | 307  |                | 83.7           |             | 254            |      | 45.9  |                                       |
| PAHs (UG/KG)                         |       | 1                |              |                |      |                |                |             |                |      |       | ,                                     |
| BAP EQUIVALENT-HALFND <sup>(1)</sup> |       |                  | 13.3         |                | 25.2 |                | 292            |             | 288            |      | 3.6   |                                       |
| BAP EQUIVALENT-POS <sup>(2)</sup>    |       |                  | 2.7          |                | 19.6 |                | 292            |             | 288            |      | 3.1   |                                       |
| Benzo(a)anthracene                   |       |                  | 11.0         |                | 12.0 |                | 151            |             | 161            |      | 2.6   |                                       |
| Benzo(a)pyrene                       |       |                  | 10.0         | U              | 16.0 |                | 214            |             | 196            |      | 2.2   |                                       |
| Benzo(b)fluoranthene                 |       |                  | 16.0         |                | 24.0 |                | 122            |             | 201            |      | 3.3   |                                       |
| Benzo(b+k)fluoranthene               |       |                  |              |                |      |                |                |             |                |      |       |                                       |
| Benzo(k)fluoranthene                 |       |                  | 10.0         | U              | 10.0 | U              | 145            |             | 173            |      | 2.7   |                                       |
| Chrysene                             |       |                  | 12.0         |                | 14.0 |                | 123            |             | 198            |      | 2.9   |                                       |
| Dibenz(a,h)anthracene                |       |                  | 10.0         | U              | 10.0 | U              | 32.2           |             | 36.4           |      | 1.0   | U                                     |
| Indeno(1,2,3-c,d)pyrene              |       |                  | 10.0         | U              | 10.0 | U              | 174            |             | 171            |      | 2.9   |                                       |
| PCBs (UG/KG)                         |       |                  |              |                |      |                |                |             | -              |      |       |                                       |
| PCB101                               |       |                  | 0.05         | U              | 0.05 | U              | 1.0            | U           | 1.0            | U    | 1.0   | U                                     |
| PCB105                               |       |                  | 0.05         | U              | 0.05 | U              | 1.0            | U           | 1.0            | U    | 1.0   | U                                     |
| PCB118                               |       |                  | 0.05         | U              | 0.05 | U              | 1.0            | U           | 1.0            | U    | 1.0   | U                                     |
| PCB128                               |       |                  | 0.05         | U              | 0.05 | U              | 1.0            | U           | 1.0            | U    | 1.0   | U                                     |
| PCB138                               |       |                  | 0.05         | U              | 0.05 | U              | 1.0            | U           | 1.0            | U    | 0.4   |                                       |
| PCB153                               |       |                  | 0.05         | U              | 0.05 | U              | 0.3            |             | 1.9            |      | 1.0   | U                                     |
| PCB170                               |       |                  | 0.05         | U              | 0.05 | U              | 1.0            | U           | 1.0            | U    | 1.0   | U                                     |
| PCB18                                |       |                  | 0.05         | U              | 0.05 | U              | 1.0            | U           | 1.0            | U    | 1.0   | U                                     |
| PCB180                               |       |                  | 0.05         | U              | 0.05 | U              | 1.0            | U           | 1.2            |      | 1.0   | U                                     |
| PCB187                               |       |                  | 0.05         | U              | 0.05 | U              | 1.0            | U           | 0.9            |      | 1.0   | U                                     |
| PCB195                               |       |                  | 0.05         | U              | 0.05 | U              | 1.0            | U           | 1.0            | U    | 1.0   | U                                     |
| PCB206                               |       |                  | 0.05         | U              | 0.05 | U              | 0.4            |             | 3.8            |      | 1.0   | U                                     |
| PCB209                               |       |                  | 0.05         | U              | 0.05 | U              | 0.8            |             | 5.3            |      | 1.0   | U                                     |
| PCB28                                |       |                  | 0.05         | U              | 0.05 | U              | 1.0            | U           | 1.0            | U    | 1.0   | U                                     |
| PCB44                                |       |                  | 0.05         | U              | 0.05 | U              | 1.0            | U           | 1.0            | U    | 1.0   | U                                     |
| PCB52                                |       |                  | 0.05         | U              | 0.05 | U              | 1.0            | U           | 1.0            | U    | 1.0   | U                                     |
| PCB66                                |       |                  | 0.05         | U              | 0.05 | U              | 1.0            | U           | 1.0            | U    | 1.0   | U                                     |
| PCB8                                 |       |                  | 0.05         | U              | 0.05 | U              | 1.0            | U           | 1.0            | U    | 1.0   | U                                     |
| TOTAL PCB-HALFND <sup>(1, 3)</sup>   |       |                  | 0.9          | U              | 0.9  | U              | 18.0           |             | 39.2           |      | 17.8  |                                       |
| TOTAL PCB-POS <sup>(2, 3)</sup>      |       |                  | 0            | U              | 0    | U              | 3.0            |             | 26.2           |      | 0.8   |                                       |

Notes:

Values for BAP equivalents and total PCBs determined prior to rounding. 1 - Average of all analytical results including one-half of the detection limit for non-detects. 2 - Average of detected concentrations only. 3 - Sum of 18 NOAA congeners, multipled by 2 to estimate total PCBs.

Acronyms/Abbreviations: BAP - Benzo(a)pyrene PAH - Polycyclic aromatic hydrocarbon PCB - Polychlorinated biphenyl

# DATA FROM QUERY OF USEPA EMAP NATIONAL COASTAL DATABASE LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 8 OF 11

| Sample ID                            | VA91-058         | -19910717    | VA91-090    | -19910905     | VA91-136    | 19910801     | VA91-339         | -19910728    | VA91-343         | -19910905    | VA91-435    | -19910718     |
|--------------------------------------|------------------|--------------|-------------|---------------|-------------|--------------|------------------|--------------|------------------|--------------|-------------|---------------|
| Station                              | VA9 <sup>2</sup> | 1-058        | VA9         | 1-090         | VA91        | -136         | VA9 <sup>4</sup> | 1-339        | VA9 <sup>4</sup> | 1-343        | VA9         | 1-435         |
| Sample Date                          | 1991             | 0717         | 1991        | 0905          | 1991        | 0801         | 1991             | 0728         | 1991             | 0905         | 1991        | 10718         |
| Latitude                             | 39.              | 129          | 39          | .27           | 39.         | 305          | 39.              | 054          | 39.              | 203          | 39.         | .124          |
| Longitude                            | -76              | .281         | -76         | .443          | -76         | .41          | -76              | 421          | -76              | .336         | -76         | .288          |
|                                      |                  |              |             |               |             |              |                  |              |                  |              |             |               |
| Data Set                             | EMAP Virgin      | ian Province | EMAP Virgir | nian Province | EMAP Virgin | ian Province | EMAP Virgin      | ian Province | EMAP Virgin      | ian Province | EMAP Virgir | nian Province |
| METALS (MG/KG)                       |                  |              |             |               |             |              |                  |              |                  |              |             |               |
| Arsenic                              | 2.0              |              | 9.4         |               | 16.1        |              | 15.3             |              | 23.3             |              | 1.7         |               |
| Cadmium                              | 0.031            | U            | 5.1         |               | 1.4         |              | 0.31             |              | 0.33             |              | 0.032       | U             |
| Chromium                             | 70.3             |              | 307         |               | 107         |              | 74.8             |              | 77.3             |              | 6.1         |               |
| Copper                               | 22.2             |              | 180         |               | 85.9        |              | 27.9             |              | 44.1             |              | 3.2         |               |
| Lead                                 | 39.1             |              | 217         |               | 118         |              | 38.5             |              | 71.6             |              | 3.4         | ļ             |
| Mercury                              | 0.014            |              | 0.03        |               | 0.19        |              | 0.076            |              | 0.035            |              | 0.05        |               |
| Zinc                                 | 152              |              | 672         |               | 336         |              | 243              |              | 275              |              | 16.1        |               |
| PAHs (UG/KG)                         |                  |              | I           | 1             |             |              | 1                |              |                  | I            | 1           | i             |
| BAP EQUIVALENT-HALFND <sup>(1)</sup> | 9.8              | U            | 468         |               | 419         |              | 335              |              | 230              |              | 10.9        |               |
| BAP EQUIVALENT-POS <sup>(2)</sup>    | 9.8              | U            | 468         |               | 419         |              | 335              |              | 230              |              | 0.43        |               |
| Benzo(a)anthracene                   | 9.8              | U            | 260         |               | 224         |              | 243              |              | 147              |              | 10.0        | U             |
| Benzo(a)pyrene                       | 9.8              | U            | 287         |               | 261         |              | 197              |              | 148              |              | 10.0        | U             |
| Benzo(b)fluoranthene                 |                  |              |             |               |             |              |                  |              |                  |              |             |               |
| Benzo(b+k)fluoranthene               | 9.8              | U            | 702         |               | 646         |              | 416              |              | 316              |              | 3.7         |               |
| Benzo(k)fluoranthene                 |                  |              |             |               |             |              |                  |              |                  |              |             |               |
| Chrysene                             | 9.8              | U            | 344         |               | 287         |              | 300              |              | 175              |              | 10.0        | U             |
| Dibenz(a,h)anthracene                | 9.8              | U            | 46.6        |               | 48.6        |              | 52.4             |              | 23.7             |              | 10.0        | U             |
| Indeno(1,2,3-c,d)pyrene              | 9.8              | U            | 378         |               | 224         |              | 198              |              | 121              |              | 0.64        |               |
| PCBs (UG/KG)                         |                  |              |             |               |             |              |                  |              |                  |              |             |               |
| PCB101                               | 0.25             | U            | 16.1        |               | 5.3         |              | 1.3              |              | 1.9              |              | 0.25        | U             |
| PCB105                               | 0.25             | U            | 10.9        |               | 3.9         |              | 0.98             |              | 1.2              |              | 0.25        | U             |
| PCB118                               | 0.25             | U            | 16.4        |               | 4.4         |              | 1.6              |              | 1.8              |              | 0.25        | U             |
| PCB128                               | 0.25             | U            | 3.5         |               | 1.6         |              | 0.31             |              | 0.45             |              | 0.25        | U             |
| PCB138                               | 0.25             | U            | 18.8        |               | 8.3         |              | 1.5              |              | 2.5              |              | 0.25        | U             |
| PCB153                               | 0.25             | U            | 16.7        |               | 7.6         |              | 1.3              |              | 2.1              |              | 0.25        | U             |
| PCB170                               | 0.25             | U            | 5.1         |               | 3.3         |              | 0.37             |              | 0.77             |              | 0.25        | U             |
| PCB18                                | 0.25             | U            | 0.84        |               | 0.29        |              | 0.29             |              | 0.25             | U            | 0.25        | U             |
| PCB180                               | 0.25             | U            | 11.3        |               | 6.5         |              | 0.74             |              | 1.7              |              | 0.25        | U             |
| PCB187                               | 0.25             | U            | 7.0         |               | 3.3         |              | 0.59             |              | 0.86             |              | 0.25        | U             |
| PCB195                               | 0.25             | U            | 2.5         |               | 1.9         |              | 0.25             | U            | 1.9              |              | 0.25        | U             |
| PCB206                               | 0.25             | U            | 3.7         |               | 2.7         |              | 1.5              |              | 3.6              |              | 0.25        | U             |
| PCB209                               | 0.25             | U            | 6.1         |               | 4.8         |              | 3.0              |              | 6.1              |              | 0.25        | U             |
| PCB28                                | 0.25             | U            | 9.1         |               | 3.3         |              | 1.7              |              | 1.4              |              | 0.25        | U             |
| PCB44                                | 0.25             | U            | 3.0         |               | 0.56        |              | 0.25             | U            | 0.56             |              | 0.25        | U             |
| PCB52                                | 0.25             | U            | 6.0         |               | 2.9         |              | 0.62             |              | 0.92             |              | 0.25        | U             |
| PCB66                                | 0.25             | U            | 19.2        |               | 5.9         |              | 2.1              |              | 2.0              |              | 0.25        | U             |
| PCB8                                 | 0.23             |              | 1.1         |               | 0.57        |              | 0.92             |              | 0.35             |              | 0.21        | L             |
| TOTAL PCB-HALFND <sup>(1, 3)</sup>   | 4.7              |              | 315         |               | 134         |              | 38.2             |              | 60.4             |              | 4.7         |               |
| TOTAL PCB-POS <sup>(2, 3)</sup>      | 0.46             |              | 315         |               | 134         |              | 37.7             |              | 60.2             |              | 0.43        |               |

Notes:

Values for BAP equivalents and total PCBs determined prior to rounding. 1 - Average of all analytical results including one-half of the detection limit for non-detects. 2 - Average of detected concentrations only. 3 - Sum of 18 NOAA congeners, multipled by 2 to estimate total PCBs.

Acronyms/Abbreviations: BAP - Benzo(a)pyrene PAH - Polycyclic aromatic hydrocarbon PCB - Polychlorinated biphenyl

# DATA FROM QUERY OF USEPA EMAP NATIONAL COASTAL DATABASE LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 9 OF 11

| Sample ID                            |             | -19910717    |             | -19910718    |             | -19920803    |             | -19920830     |             | -19920804     |             | -19920829    |
|--------------------------------------|-------------|--------------|-------------|--------------|-------------|--------------|-------------|---------------|-------------|---------------|-------------|--------------|
| Station                              |             | 1-436        |             | 1-437        | VA92        |              |             | 2-058         |             | 2-136         |             | 2-136        |
| Sample Date                          |             | 0717         |             | 0718         |             | 0803         |             | 20830         |             | 20804         |             | 20829        |
| Latitude                             |             | 127          |             | .12          |             | 129          |             | .129          |             | .305          |             | 305          |
| Longitude                            | -76         | .284         | -76         | .294         | -76.        | .281         | -76         | .281          | -76         | 6.41          | -76         | 5.41         |
|                                      |             |              |             |              |             |              |             |               |             |               |             |              |
| Data Set                             | EMAP Virgin | ian Province | EMAP Virgin | ian Province | EMAP Virgin | ian Province | EMAP Virgin | nian Province | EMAP Virgin | nian Province | EMAP Virgin | ian Province |
| METALS (MG/KG)                       |             |              |             |              |             |              |             |               |             |               |             |              |
| Arsenic                              | 1.8         |              | 6.6         |              | 2.9         |              | 6.8         |               | 5.8         |               | 19.5        |              |
| Cadmium                              | 0.037       |              | 0.41        |              | 0.032       | U            | 0.11        |               | 0.45        |               | 0.79        |              |
| Chromium                             | 7.3         |              | 31.8        |              | 9.3         |              | 33.2        |               | 30.1        |               | 108         |              |
| Copper                               | 3.3         |              | 19.0        |              | 4.4         |              | 15.9        |               | 23.7        |               | 91.1        |              |
| Lead                                 | 5.9         |              | 23.3        |              | 1.8         | U            | 18.7        |               | 31.8        |               | 130         |              |
| Mercury                              | 0.015       |              | 0.097       |              | 0.0072      |              | 0.004       | U             | 0.051       |               | 0.21        |              |
| Zinc                                 | 18.5        |              | 160         |              | 21.1        |              | 51.4        |               | 67.1        |               | 305         |              |
| PAHs (UG/KG)                         |             |              |             |              |             |              |             |               |             |               |             |              |
| BAP EQUIVALENT-HALFND <sup>(1)</sup> | 7.7         |              | 485         |              | 10.0        | U            | 10.0        | U             | 185         |               | 393         |              |
| BAP EQUIVALENT-POS <sup>(2)</sup>    | 1.2         |              | 485         |              | 10.0        | U            | 10.0        | U             | 185         |               | 393         |              |
| Benzo(a)anthracene                   | 10.0        | U            | 320         |              | 10.0        | U            | 10.0        | U             | 96.4        |               | 253         |              |
| Benzo(a)pyrene                       | 1.2         |              | 354         |              | 10.0        | U            | 10.0        | U             | 130         |               | 244         |              |
| Benzo(b)fluoranthene                 |             |              |             |              |             |              |             |               |             |               |             |              |
| Benzo(b+k)fluoranthene               | 10.0        | U            | 574         |              | 10.0        | U            | 10.0        | U             | 239         |               | 753         |              |
| Benzo(k)fluoranthene                 |             |              |             |              |             |              |             |               |             |               |             |              |
| Chrysene                             | 10.0        | U            | 307         |              | 10.0        | U            | 10.0        | U             | 130         |               | 326         |              |
| Dibenz(a,h)anthracene                | 10.0        | U            | 15.5        |              | 10.0        | U            | 10.0        | U             | 14.4        |               | 29.1        |              |
| Indeno(1,2,3-c,d)pyrene              | 10.0        | U            | 259         |              | 10.0        | U            | 10.0        | U             | 71.6        |               | 189         |              |
| PCBs (UG/KG)                         |             |              |             |              |             |              |             |               |             |               |             |              |
| PCB101                               | 0.25        | U            | 0.43        |              | 0.25        | U            | 0.25        | U             | 1.2         |               | 5.6         |              |
| PCB105                               | 0.25        | U            | 0.3         |              | 0.25        | U            | 0.25        | U             | 0.91        |               | 0.25        | U            |
| PCB118                               | 0.25        | U            | 0.39        |              | 0.25        | U            | 0.25        | U             | 0.92        |               | 4.6         |              |
| PCB128                               | 0.25        | U            | 0.25        | U            | 0.25        | U            | 0.25        | U             | 0.4         |               | 1.2         |              |
| PCB138                               | 0.25        | U            | 0.49        |              | 0.25        | U            | 0.25        | U             | 2.0         |               | 9.1         |              |
| PCB153                               | 0.25        | U            | 0.5         |              | 0.25        | U            | 0.25        | U             | 3.0         |               | 8.2         |              |
| PCB170                               | 0.25        | U            | 0.25        | U            | 0.25        | U            | 0.25        | U             | 0.87        |               | 2.9         |              |
| PCB18                                | 0.25        | U            | 0.28        |              | 0.25        | U            | 0.25        | U             | 0.25        |               | 0.65        |              |
| PCB180                               | 0.25        | U            | 0.3         |              | 0.25        | U            | 0.25        | U             | 1.9         |               | 6.3         |              |
| PCB187                               | 0.25        | U            | 0.25        |              | 0.25        | U            | 0.25        | U             | 1.1         |               | 3.3         |              |
| PCB195                               | 0.25        | U            | 0.25        | U            | 0.25        | U            | 0.25        | U             | 0.41        |               | 1.5         |              |
| PCB206                               | 0.25        | U            | 0.78        |              | 0.25        | U            | 0.25        | U             | 0.53        |               | 2.0         |              |
| PCB209                               | 0.25        | U            | 1.6         |              | 0.25        | U            | 0.25        | U             | 1.0         |               | 3.3         |              |
| PCB28                                | 0.25        | U            | 0.54        |              | 0.25        | U            | 0.25        | U             | 0.71        |               | 2.8         |              |
| PCB44                                | 0.25        | U            | 0.25        | U            | 0.25        | U            | 0.25        | U             | 0.31        |               | 1.7         |              |
| PCB52                                | 0.25        | U            | 0.25        | U            | 0.25        | U            | 0.25        | U             | 0.66        |               | 3.5         |              |
| PCB66                                | 0.25        | U            | 0.51        |              | 0.25        | U            | 0.25        | U             | 1.3         |               | 6.3         |              |
| PCB8                                 | 0.25        | U            | 0.47        |              | 0.25        | U            | 0.25        | U             | 0.44        |               | 0.92        |              |
| TOTAL PCB-HALFND <sup>(1, 3)</sup>   | 4.5         | U            | 14.9        |              | 4.5         | U            | 4.5         | U             | 36.1        |               | 128         |              |
| TOTAL PCB-POS <sup>(2, 3)</sup>      | 0           | U            | 13.6        |              | 0           | U            | 0           | U             | 36.1        |               | 128         |              |

Notes:

Values for BAP equivalents and total PCBs determined prior to rounding. 1 - Average of all analytical results including one-half of the detection limit for non-detects. 2 - Average of detected concentrations only. 3 - Sum of 18 NOAA congeners, multipled by 2 to estimate total PCBs.

Acronyms/Abbreviations: BAP - Benzo(a)pyrene PAH - Polycyclic aromatic hydrocarbon PCB - Polychlorinated biphenyl

# DATA FROM QUERY OF USEPA EMAP NATIONAL COASTAL DATABASE LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 10 OF 11

| Sample ID                            |             | -19920806     |             | -19920802    | VA92-511-   |              |             | -19920804    |             | -19930804    |             | 8-19930902    |
|--------------------------------------|-------------|---------------|-------------|--------------|-------------|--------------|-------------|--------------|-------------|--------------|-------------|---------------|
| Station                              |             | 2-506         |             | 2-507        | VA92        |              |             | 2-514        |             | 3-058        |             | 3-058         |
| Sample Date                          |             | 20806         |             | 0802         | 1992        |              |             | 0804         |             | 0804         |             | 30902         |
| Latitude                             |             | .98           |             | 066          | 39.1        |              |             | 277          |             | 129          |             | .129          |
| Longitude                            | -76         | .476          | -76         | .44          | -76.        | 379          | -76.        | .293         | -76         | .281         | -76         | .281          |
|                                      |             |               |             |              |             |              |             |              |             |              |             |               |
| Data Set                             | EMAP Virgin | nian Province | EMAP Virgin | ian Province | EMAP Virgir | nian Province |
| METALS (MG/KG)                       |             |               |             |              |             |              |             | -            |             |              |             | <u> </u>      |
| Arsenic                              | 30.8        |               | 15.6        |              | 17.7        |              | 20.9        |              | 13.1        |              | 1.8         |               |
| Cadmium                              | 0.35        |               | 0.28        |              | 0.62        |              | 0.47        |              | 0.46        |              | 0.72        |               |
| Chromium                             | 138         |               | 70.5        |              | 99.6        |              | 74.3        |              | 8.6         |              | 3.6         |               |
| Copper                               | 45.3        |               | 28.5        |              | 56.4        |              | 39.3        |              | 4.0         |              | 2.2         | U             |
| Lead                                 | 70.2        |               | 39.5        |              | 66.7        |              | 28.9        |              | 4.9         | U            | 8.5         |               |
| Mercury                              | 0.21        |               | 0.055       |              | 0.19        |              | 0.071       |              | 0.0093      | U            | 0.0055      | U             |
| Zinc                                 | 259         |               | 230         |              | 402         |              | 240         |              | 28.3        |              | 21.0        |               |
| PAHs (UG/KG)                         |             | 1             | 1           | 1            |             |              | -           |              |             | -            | -           |               |
| BAP EQUIVALENT-HALFND <sup>(1)</sup> | 859         |               | 280         |              | 755         |              | 192         |              | 9.6         | U            | 9.9         | U             |
| BAP EQUIVALENT-POS <sup>(2)</sup>    | 859         |               | 280         |              | 755         |              | 192         |              | 9.6         | U            | 9.9         | U             |
| Benzo(a)anthracene                   | 551         |               | 136         |              | 450         |              | 125         |              | 9.6         | U            | 9.9         | U             |
| Benzo(a)pyrene                       | 526         |               | 198         |              | 535         |              | 115         |              | 9.6         | U            | 9.9         | U             |
| Benzo(b)fluoranthene                 |             |               |             |              |             |              |             |              |             |              |             |               |
| Benzo(b+k)fluoranthene               | 1020        |               | 341         |              | 760         |              | 281         |              | 9.6         | U            | 9.9         | U             |
| Benzo(k)fluoranthene                 |             |               |             |              |             |              |             |              |             |              |             |               |
| Chrysene                             | 612         |               | 187         |              | 561         |              | 209         |              | 9.6         | U            | 9.9         | U             |
| Dibenz(a,h)anthracene                | 137         |               | 21.9        |              | 57.9        |              | 24.1        |              | 9.6         | U            | 9.9         | U             |
| Indeno(1,2,3-c,d)pyrene              | 382         |               | 125         |              | 409         |              | 124         |              | 9.6         | U            | 9.9         | U             |
| PCBs (UG/KG)                         |             |               |             |              |             |              |             |              |             |              |             |               |
| PCB101                               | 1.4         |               | 1.1         |              | 3.0         |              | 1.4         |              | 0.24        | U            | 0.25        | U             |
| PCB105                               | 0.67        |               | 0.76        |              | 1.8         |              | 1.2         |              | 0.24        | U            | 0.25        | U             |
| PCB118                               | 1.4         |               | 1.2         |              | 2.8         |              | 1.5         |              | 0.24        | U            | 0.25        | U             |
| PCB128                               | 0.26        |               | 0.21        |              | 0.58        |              | 0.27        |              | 0.24        | U            | 0.25        | U             |
| PCB138                               | 2.0         |               | 1.3         |              | 3.6         |              | 2.1         |              | 0.24        | U            | 0.25        | U             |
| PCB153                               | 2.1         |               | 1.3         |              | 3.9         |              | 2.1         |              | 0.24        | U            | 0.25        | U             |
| PCB170                               | 0.6         |               | 0.27        |              | 1.0         |              | 0.74        |              | 0.24        | U            | 0.25        | U             |
| PCB18                                | 0.25        | U             | 0.3         |              | 0.64        |              | 0.32        |              | 0.24        | U            | 0.25        | U             |
| PCB180                               | 1.3         |               | 0.65        |              | 2.2         |              | 1.6         |              | 0.24        | U            | 0.25        | U             |
| PCB187                               | 1.0         |               | 0.54        |              | 1.7         |              | 0.89        |              | 0.24        | U            | 0.25        | U             |
| PCB195                               | 1.0         |               | 0.67        |              | 2.8         |              | 1.8         |              | 0.24        | U            | 0.25        | U             |
| PCB206                               | 1.6         |               | 1.0         |              | 5.0         |              | 3.2         |              | 0.24        | U            | 0.25        | U             |
| PCB209                               | 3.3         |               | 2.1         |              | 9.1         |              | 5.5         |              | 0.24        | U            | 0.25        | U             |
| PCB28                                | 0.71        |               | 1.0         |              | 2.9         |              | 1.5         |              | 0.25        |              | 0.25        | U             |
| PCB44                                | 0.41        |               | 0.45        |              | 1.3         |              | 0.84        |              | 0.24        | U            | 0.25        | U             |
| PCB52                                | 0.71        |               | 0.62        |              | 2.0         |              | 0.93        |              | 0.24        | U            | 0.25        | U             |
| PCB66                                | 1.6         |               | 1.4         |              | 3.8         |              | 1.8         |              | 0.3         |              | 0.25        | U             |
| PCB8                                 | 0.3         |               | 0.72        |              | 1.2         |              | 0.48        |              | 0.24        | U            | 0.25        | U             |
| TOTAL PCB-HALFND <sup>(1, 3)</sup>   | 41.1        |               | 31.1        |              | 98.6        |              | 56.0        |              | 4.9         |              | 4.5         | U             |
| TOTAL PCB-POS <sup>(2, 3)</sup>      | 40.8        |               | 31.1        |              | 98.6        |              | 56.0        |              | 1.1         |              | 0           | U             |

Notes:

Values for BAP equivalents and total PCBs determined prior to rounding. 1 - Average of all analytical results including one-half of the detection limit for non-detects. 2 - Average of detected concentrations only. 3 - Sum of 18 NOAA congeners, multipled by 2 to estimate total PCBs.

Acronyms/Abbreviations: BAP - Benzo(a)pyrene PAH - Polycyclic aromatic hydrocarbon PCB - Polychlorinated biphenyl

#### DATA FROM QUERY OF USEPA EMAP NATIONAL COASTAL DATABASE LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 11 OF 11

| Sample ID                            | VA93-136    | -19930803    | VA93-136    | -19930830    | VA93-661-    | 19930805    |
|--------------------------------------|-------------|--------------|-------------|--------------|--------------|-------------|
| Station                              |             | 3-136        |             | 3-136        | VA93-        |             |
| Sample Date                          | 1993        | 0803         | 1993        | 0830         | 19930        | 805         |
| Latitude                             | 39.         | 305          | 39.         | 305          | 39.0         | 25          |
| Longitude                            | -76         | 5.41         | -76         | .41          | -76.1        | 88          |
|                                      |             |              |             |              |              |             |
|                                      |             |              |             |              |              |             |
| Data Set                             | EMAP Virgin | ian Province | EMAP Virgin | ian Province | EMAP Virgini | an Province |
| METALS (MG/KG)                       | 10.0        |              |             |              |              |             |
| Arsenic                              | 12.9        |              | 11.9        |              | 14.0         |             |
| Cadmium                              | 0.097       | U            | 0.86        |              | 0.097        | U           |
| Chromium                             | 101         |              | 60.6        |              | 72.7         |             |
| Copper                               | 83.8        |              | 52.9        |              | 31.4         |             |
| Lead                                 | 92.4        |              | 61.1        |              | 29.0         |             |
| Mercury                              | 0.71        |              | 0.15        |              | 0.28         |             |
| Zinc                                 | 292         |              | 181         |              | 177          |             |
| PAHs (UG/KG)                         |             | I            |             |              |              |             |
| BAP EQUIVALENT-HALFND <sup>(1)</sup> | 273         |              | 206         |              | 164          |             |
| BAP EQUIVALENT-POS <sup>(2)</sup>    | 273         |              | 206         |              | 164          |             |
| Benzo(a)anthracene                   | 307         |              | 152         |              | 143          |             |
| Benzo(a)pyrene                       | 154         |              | 127         |              | 99.8         |             |
| Benzo(b)fluoranthene                 |             |              |             |              |              |             |
| Benzo(b+k)fluoranthene               | 405         |              | 347         |              | 248          |             |
| Benzo(k)fluoranthene                 |             |              |             |              |              |             |
| Chrysene                             | 293         |              | 175         |              | 146          |             |
| Dibenz(a,h)anthracene                | 30.1        |              | 18.4        |              | 13.7         |             |
| Indeno(1,2,3-c,d)pyrene              | 179         |              | 110         |              | 114          |             |
| PCBs (UG/KG)                         |             |              |             |              |              |             |
| PCB101                               | 5.2         |              | 2.0         |              | 0.38         |             |
| PCB105                               | 2.9         |              | 0.75        |              | 0.24         | U           |
| PCB118                               | 5.3         |              | 1.7         |              | 0.25         | U           |
| PCB128                               | 2.1         |              | 0.47        |              | 0.24         | U           |
| PCB138                               | 14.1        |              | 3.4         |              | 0.76         |             |
| PCB153                               | 12.5        |              | 3.6         |              | 0.62         |             |
| PCB170                               | 9.0         |              | 1.4         |              | 0.48         |             |
| PCB18                                | 0.27        |              | 0.25        | U            | 0.24         | U           |
| PCB180                               | 8.9         |              | 3.1         |              | 0.25         | U           |
| PCB187                               | 6.3         |              | 1.6         |              | 0.35         |             |
| PCB195                               | 1.5         |              | 0.25        | U            | 0.56         |             |
| PCB206                               | 6.9         |              | 0.69        |              | 2.1          |             |
| PCB209                               | 3.0         |              | 1.1         |              | 3.0          |             |
| PCB28                                | 3.8         |              | 3.3         |              | 1.3          |             |
| PCB44                                | 0.72        |              | 0.34        |              | 0.24         | U           |
| PCB52                                | 2.2         |              | 1.3         |              | 0.24         | U           |
| PCB66                                | 2.9         |              | 1.4         |              | 1.1          |             |
| PCB8                                 | 0.33        |              | 1.1         |              | 0.24         | U           |
| TOTAL PCB-HALFND <sup>(1, 3)</sup>   | 176         |              | 54.9        |              | 23.3         |             |
| TOTAL PCB-POS <sup>(2, 3)</sup>      | 176         |              | 54.4        |              | 21.4         |             |

Notes:

Acronyms/Abbreviations: BAP - Benzo(a)pyrene PAH - Polycyclic aromatic hydrocarbon PCB - Polychlorinated biphenyl U - Nondetect

Values for BAP equivalents and total PCBs determined prior to rounding. 1 - Average of all analytical results including one-half of the detection limit for non-detects. 2 - Average of detected concentrations only. 3 - Sum of 18 NOAA congeners, multipled by 2 to estimate total PCBs.

ATTACHMENT 2 PROUCL OUTPUTS PROUCL OUTPUTS

95 PERCENT UPPER CONFIDENCE LIMITS

|        | A        | В           | С              | D                 | E           | F             | G             | Н             | 1            | J               | К              |          |   |
|--------|----------|-------------|----------------|-------------------|-------------|---------------|---------------|---------------|--------------|-----------------|----------------|----------|---|
| 1      |          | Б           | U              | General UCL S     |             |               |               |               |              | 5               | N              | <u> </u> |   |
| 2      |          | User Sele   | cted Options   |                   |             |               |               |               |              |                 |                |          |   |
| 3      |          |             | From File      | H:\Lockheed\ba    | ackground   | l sediment co | oncentrations | s\proUCL\Co   | mbined Uppe  | er Chesapeal    | e.xls.wst      |          |   |
| 4      |          | Fu          | Ill Precision  | OFF               |             |               |               |               |              |                 |                |          |   |
| 4<br>5 |          | Confidence  | Coefficient    | 95%               |             |               |               |               |              |                 |                |          |   |
|        | Number o | f Bootstrap | Operations     | 2000              |             |               |               |               |              |                 |                |          |   |
| 6      |          |             |                |                   |             |               |               |               |              |                 |                |          |   |
| 7      |          |             |                |                   |             |               |               |               |              |                 |                |          |   |
| 8      | Arsenic  |             |                |                   |             |               |               |               |              |                 |                |          |   |
| 9      |          |             |                |                   |             |               |               |               |              |                 |                |          |   |
| 10     |          |             |                |                   |             | General       | Statistics    |               |              |                 |                |          |   |
| 11     |          |             | Num            | ber of Valid Obs  | ervations   |               | 010100        |               | Numbe        | r of Distinct C | hearvations    | 88       |   |
| 12     |          |             |                | lumber of Missin  |             | -             |               |               | Numbe        |                 |                | 00       |   |
| 13     |          |             | r              |                   | ig values   | 2             |               |               |              |                 |                |          |   |
| 14     |          |             | Devis          | tatistics         |             |               |               |               | aa teenafar  | med Statistic   |                |          |   |
| 15     |          |             | Raw 5          |                   |             | 1 07          |               | l             | _og-transfor | med Statistic   |                | 0.000    |   |
| 16     |          |             |                |                   | Minimum     |               |               |               |              |                 | of Log Data    |          |   |
| 17     |          |             |                | r                 | Maximum     |               |               |               |              |                 | of Log Data    |          |   |
| 18     |          |             |                |                   | Mean        |               |               |               |              |                 | n of log Data  |          |   |
| 19     |          |             |                | Geome             | tric Mean   |               |               |               |              | SE              | of log Data    | 0.885    |   |
| 20     |          |             |                |                   | Median      |               |               |               |              |                 |                |          |   |
| 21     |          |             |                |                   |             | 9.288         |               |               |              |                 |                |          |   |
| 22     |          |             |                | Std. Error        | r of Mean   | 0.943         |               |               |              |                 |                |          |   |
| 23     |          |             |                | Coefficient of    | Variation   | 0.599         |               |               |              |                 |                |          |   |
| 24     |          |             |                | S                 | Skewness    | 0.071         |               |               |              |                 |                |          |   |
| 25     |          |             |                |                   |             | I             |               |               |              |                 |                |          |   |
| 26     |          |             |                |                   |             | Relevant U    | CL Statistics |               |              |                 |                |          | - |
| 27     |          |             | Normal Dist    | tribution Test    |             |               |               | L             | ognormal Di  | stribution Te   | st             |          |   |
| 28     |          |             |                | Lilliefors Tes    | t Statistic | 0.0942        |               |               |              | Lilliefors      | Fest Statistic | 0.188    |   |
| 29     |          |             |                | Lilliefors Criti  | cal Value   | 0.09          |               |               |              | Lilliefors C    | Critical Value | 0.09     |   |
| 30     |          | Data no     | ot Normal at { | 5% Significance   | Level       | I             |               | Data not L    | .ognormal a  | t 5% Significa  | ance Level     |          |   |
| 31     |          |             |                |                   |             |               |               |               |              |                 |                |          |   |
| 32     |          | A           | ssuming Nor    | mal Distribution  |             |               |               | Ass           | uming Logn   | ormal Distrib   | ution          |          |   |
| 33     |          |             |                | 95% Studer        | nt's-t UCL  | 17.08         |               |               |              |                 | 95% H-UCL      | 20.91    |   |
| 34     |          | 95%         | 6 UCLs (Adju   | sted for Skewne   | ess)        | 1             |               |               | 95%          | Chebyshev (     | MVUE) UCL      | 24.91    |   |
| 35     |          |             | 95% Adjuste    | ed-CLT UCL (Ch    | en-1995)    | 17.07         |               |               | 97.5%        | Chebyshev (     | MVUE) UCL      | 28.28    |   |
| 36     |          |             | 95% Modifi     | ed-t UCL (Johns   | on-1978)    | 17.08         |               |               | 99%          | Chebyshev (     | MVUE) UCL      | 34.89    |   |
| 37     |          |             |                |                   |             | <u> </u>      |               |               |              |                 |                | 1        |   |
| 37     |          |             | Gamma Dis      | tribution Test    |             |               |               |               | Data Di      | stribution      |                |          |   |
| 39     |          |             |                | k star (bias c    | corrected)  | 1.842         | [             | Data do not f | ollow a Disc | ernable Distr   | ibution (0.0   | 5)       |   |
| 40     |          |             |                |                   | heta Star   |               |               |               |              |                 |                |          |   |
| 40     |          |             |                |                   | E of Mean   |               |               |               |              |                 |                |          |   |
|        |          |             | Μ              | LE of Standard    |             |               |               |               |              |                 |                |          |   |
| 42     |          |             |                |                   | nu star     |               |               |               |              |                 |                |          |   |
| 43     |          |             | Approxima      | te Chi Square Va  |             |               |               |               | Nonparame    | tric Statistics |                |          |   |
| 44     |          |             |                | sted Level of Sig | • •         |               |               |               | paranto      |                 | % CLT UCL      | 17 07    |   |
| 45     | L        |             | Auju           | stor Level of Sig | meance      | 0.0770        |               |               |              | 90              |                | 17.07    |   |

|    | A        | В            | С             | D              | E                                | F             | G              | Н           |           |        | J                     | К                                    | L     |
|----|----------|--------------|---------------|----------------|----------------------------------|---------------|----------------|-------------|-----------|--------|-----------------------|--------------------------------------|-------|
| 46 |          |              |               | djusted Chi So |                                  | 314           |                |             |           |        | -                     | Jackknife UCL                        | 17.08 |
| 47 |          |              |               |                |                                  |               |                |             | ę         | 95%    | Standard I            | Bootstrap UCL                        | 17.06 |
| 48 |          |              | Ander         | son-Darling T  | Fest Statistic                   | 2.639         |                |             |           |        | 95% B                 | ootstrap-t UCL                       | 17.04 |
| 49 |          |              | Anderson-     | Darling 5% C   | Critical Value                   | 0.766         |                |             |           | 9      | 5% Hall's I           | Bootstrap UCL                        | 17.16 |
| 50 |          |              | Kolmogor      | rov-Smirnov T  | Fest Statistic                   | 0.141         |                |             | 9         | 5% F   | Percentile I          | Bootstrap UCL                        | 17.1  |
| 51 |          | K            | ໂolmogorov-ຮ  | Smirnov 5% C   | Critical Value                   | 0.0922        |                |             |           | ç      | 5% BCA                | Bootstrap UCL                        | 17.09 |
| 52 | Da       | ata not Gami | ma Distribute | ed at 5% Sigr  | nificance Le                     | vel           |                |             | 95%       | % Ch   | ebyshev(N             | lean, Sd) UCL                        | 19.62 |
| 53 |          |              |               |                |                                  |               |                |             | 97.5%     | % Ch   | ebyshev(N             | lean, Sd) UCL                        | 21.4  |
| 54 |          | As           | suming Gam    | nma Distributi | ion                              |               |                |             | 99%       | % Ch   | ebyshev(N             | lean, Sd) UCL                        | 24.9  |
| 55 | 95       | 5% Approxim  | ate Gamma     | UCL (Use wh    | nen n >= 40)                     | 17.63         |                |             |           |        |                       |                                      |       |
| 56 |          | 95% Adju     | isted Gamma   | a UCL (Use w   | vhen n < 40)                     | 17.66         |                |             |           |        |                       |                                      |       |
| 57 |          |              |               |                |                                  |               |                |             |           |        |                       |                                      |       |
| 58 |          |              | Potential L   | JCL to Use     |                                  |               |                |             | Use 95%   | 6 Che  | ebyshev (N            | lean, Sd) UCL                        | 19.62 |
| 59 |          |              |               |                |                                  |               |                |             |           |        |                       |                                      |       |
| 60 |          |              | -             | -              |                                  | -             |                | -           |           |        |                       | opriate 95% U                        |       |
| 61 |          | These recor  |               |                | - T                              |               |                |             |           | -      |                       | and laci (2002                       | )     |
| 62 |          |              | and Singh     | and Singh (2   | 2003). For                       | additional in | sight, the use | er may want | to consi  | ult a  | statisticiar          | ۱.                                   |       |
| 63 |          |              |               |                |                                  |               |                |             |           |        |                       |                                      |       |
| 64 |          |              |               |                |                                  |               |                |             |           |        |                       |                                      |       |
| 65 | Chromium |              |               |                |                                  |               |                |             |           |        |                       |                                      |       |
| 66 |          |              |               |                |                                  |               |                |             |           |        |                       |                                      |       |
| 67 |          |              |               |                |                                  |               | Statistics     |             |           |        |                       |                                      |       |
| 68 |          |              |               | ber of Valid C |                                  |               |                |             | Nu        | mber   | of Distinc            | t Observations                       | 91    |
| 69 |          |              | N             | lumber of Mis  | ssing Values                     | 2             |                |             |           |        |                       |                                      |       |
| 70 |          |              |               |                |                                  |               | 1              |             | -         |        |                       |                                      |       |
| 71 |          |              | Raw St        | tatistics      |                                  | 1             |                |             | Log-trans | sforn  | ned Statis            |                                      |       |
| 72 |          |              |               |                | Minimum                          |               |                |             |           |        |                       | im of Log Data                       |       |
| 73 |          |              |               |                | Maximum                          |               |                |             |           |        |                       | im of Log Data                       |       |
| 74 |          |              |               |                |                                  | 100.5         |                |             |           |        |                       | ean of log Data                      |       |
| 75 |          |              |               | Geor           | metric Mean                      |               |                |             |           |        |                       | SD of log Data                       | 0.998 |
| 76 |          |              |               |                | Median                           |               |                |             |           |        |                       |                                      |       |
| 77 |          |              |               | 0.4 5          |                                  | 78.9          |                |             |           |        |                       |                                      |       |
| 78 |          |              |               |                | rror of Mean                     |               |                |             |           |        |                       |                                      |       |
| 79 |          |              |               | Coefficient    | of Variation                     |               |                |             |           |        |                       |                                      |       |
| 80 |          |              |               |                | Skewness                         | 2.039         |                |             |           |        |                       |                                      |       |
| 81 |          |              |               |                |                                  | Delevent II   |                |             |           |        |                       |                                      |       |
| 82 |          |              | Normal Diat   | wikution Toot  |                                  | Relevant U    | CL Statistics  |             |           |        | tribution "           | Teat                                 |       |
| 83 |          |              | Normal Dist   | ribution Test  |                                  | 0 100         |                | L           | .ognorma  | ai Dis | stribution            |                                      | 0 177 |
| 84 |          |              |               |                | Fest Statistic<br>Critical Value |               |                |             |           |        |                       | s Test Statistic<br>s Critical Value |       |
| 85 |          | Data nat     | Normal at F   | 5% Significan  |                                  | 0.09          |                | Data not l  | ognorm    |        |                       | icance Level                         | 0.03  |
| 86 |          |              |               | vo Significan  |                                  |               |                |             | -ognorm   | aı al  | 5% Signi              |                                      |       |
| 87 |          |              | suming Nor    | mal Distributi | ion                              |               |                | ٨٥٥         | umina L   | 0000   | rmal Distr            | ibution                              |       |
| 88 |          | As           |               |                | dent's-t UCL                     | 113.8         |                | A35         |           | JUIO   |                       | 95% H-UCL                            | 144.2 |
| 89 |          | 05%          |               |                |                                  | 115.0         |                |             |           | )E0/ / | <sup>2</sup> hobychov | 95% H-UCL<br>v (MVUE) UCL            |       |
| 90 | 1        | 90%          | UCLS (Adju    | sted for Skew  | wiless)                          |               |                |             | 9         | JO % ( |                       |                                      | 1/4   |

|     | A B C D E                                          | F         | G                | Н           | I             | J K                        | L     |
|-----|----------------------------------------------------|-----------|------------------|-------------|---------------|----------------------------|-------|
| 91  | 95% Adjusted-CLT UCL (Chen-1995)                   | 115.4     |                  |             | 97.5%         | Chebyshev (MVUE) UCL       | 200   |
| 92  | 95% Modified-t UCL (Johnson-1978)                  | 114.1     |                  |             | 99%           | Chebyshev (MVUE) UCL       | 251.2 |
| 93  |                                                    |           |                  |             |               |                            |       |
| 94  | Gamma Distribution Test                            |           |                  |             | Data Dis      | stribution                 |       |
| 95  | k star (bias corrected)                            | 1.471     | Da               | ta do not f | ollow a Disc  | ernable Distribution (0.08 | j)    |
| 96  | Theta Star                                         | 68.32     |                  |             |               |                            |       |
| 97  | MLE of Mean                                        | 100.5     |                  |             |               |                            |       |
| 98  | MLE of Standard Deviation                          | 82.85     |                  |             |               |                            |       |
| 99  | nu star                                            | 285.3     |                  |             |               |                            |       |
| 100 | Approximate Chi Square Value (.05)                 | 247.2     |                  |             | Nonparame     | tric Statistics            |       |
| 101 | Adjusted Level of Significance                     | 0.0475    |                  |             |               | 95% CLT UCL                | 113.7 |
| 102 | Adjusted Chi Square Value                          | 246.7     |                  |             |               | 95% Jackknife UCL          | 113.8 |
| 103 |                                                    |           |                  |             | 95%           | Standard Bootstrap UCL     | 113.6 |
| 104 | Anderson-Darling Test Statistic                    | 1.375     |                  |             |               | 95% Bootstrap-t UCL        | 116.4 |
| 105 | Anderson-Darling 5% Critical Value                 | 0.77      |                  |             | 9             | 5% Hall's Bootstrap UCL    | 116.4 |
| 106 | Kolmogorov-Smirnov Test Statistic                  | 0.119     |                  |             | 95% I         | Percentile Bootstrap UCL   | 114.4 |
| 107 | Kolmogorov-Smirnov 5% Critical Value               | 0.0926    |                  |             | !             | 95% BCA Bootstrap UCL      | 115.6 |
| 107 | Data not Gamma Distributed at 5% Significance Lev  | /el       |                  |             | 95% Ch        | ebyshev(Mean, Sd) UCL      | 135.4 |
| 109 |                                                    |           |                  |             | 97.5% Ch      | ebyshev(Mean, Sd) UCL      | 150.5 |
| 110 | Assuming Gamma Distribution                        |           |                  |             | 99% Ch        | ebyshev(Mean, Sd) UCL      | 180.2 |
| 111 | 95% Approximate Gamma UCL (Use when n >= 40)       | 116       |                  |             |               |                            |       |
| 112 | 95% Adjusted Gamma UCL (Use when n < 40)           | 116.2     |                  |             |               |                            |       |
| 113 |                                                    |           |                  |             |               |                            |       |
| 114 | Potential UCL to Use                               |           |                  | ι           | Jse 95% Ch    | ebyshev (Mean, Sd) UCL     | 135.4 |
| 115 |                                                    |           |                  |             |               |                            |       |
| 116 | Note: Suggestions regarding the selection of a 95% | UCL are p | provided to help | the user to | select the r  | nost appropriate 95% U(    | CL.   |
| 117 | These recommendations are based upon the res       |           |                  |             |               |                            |       |
| 118 | and Singh and Singh (2003). For a                  |           |                  |             | -             |                            |       |
| 119 |                                                    |           | -                | -           |               |                            |       |
| 120 |                                                    |           |                  |             |               |                            |       |
|     | Zinc                                               |           |                  |             |               |                            |       |
| 121 |                                                    |           |                  |             |               |                            |       |
| 122 |                                                    | Genera    | al Statistics    |             |               |                            |       |
| 123 | Number of Valid Observations                       |           |                  |             | Numbe         | r of Distinct Observations | 93    |
| 124 | Number of Missing Values                           |           |                  |             |               |                            | -     |
| 125 |                                                    |           |                  |             |               |                            |       |
| 126 | Raw Statistics                                     |           |                  | 1           | .og-transform | med Statistics             |       |
| 127 | Minimum                                            | 12.6      |                  | -           |               | Minimum of Log Data        | 2.534 |
| 128 | Maximum                                            |           |                  |             |               | Maximum of Log Data        |       |
| 129 | Maannan                                            |           |                  |             |               | Mean of log Data           |       |
| 130 | Geometric Mean                                     |           |                  |             |               | SD of log Data             |       |
| 131 | Median                                             |           |                  |             |               |                            |       |
| 132 |                                                    | 168.3     |                  |             |               |                            |       |
| 133 | SD<br>Std. Error of Mean                           |           |                  |             |               |                            |       |
| 134 | Std. Error of Mean<br>Coefficient of Variation     |           |                  |             |               |                            |       |
| 135 |                                                    | 0.000     |                  |             |               |                            |       |

|     | A | В           | С              | D             | E              | F              | G                                           | н              | 1         |        | Ι,        |         | К             | Т     |      |
|-----|---|-------------|----------------|---------------|----------------|----------------|---------------------------------------------|----------------|-----------|--------|-----------|---------|---------------|-------|------|
| 136 |   |             |                |               | Skewness       |                | ~                                           |                |           |        |           |         |               |       |      |
| 137 |   |             |                |               |                | 1              | 1                                           |                |           |        |           |         |               |       |      |
| 138 |   |             |                |               |                | Relevant U     | CL Statistics                               | 5              |           |        |           |         |               |       |      |
| 139 |   |             | Normal Dist    | tribution Tes | t              |                |                                             |                | Lognorm   | nal Di | stributic | on Te   | st            |       |      |
| 140 |   |             |                | Lilliefors    | Test Statistic | 0.097          |                                             |                |           |        | Lillie    | fors 7  | Fest Statist  | tic 0 | .201 |
| 141 |   |             |                | Lilliefors (  | Critical Value | 0.09           |                                             |                |           |        | Lillie    | fors C  | Critical Valu | Je 0  | .09  |
| 142 |   | Data no     | ot Normal at 5 | 5% Significa  | nce Level      |                | Data not Lognormal at 5% Significance Level |                |           |        |           |         |               |       |      |
| 143 |   |             |                |               |                |                |                                             |                |           |        |           |         |               |       |      |
| 144 |   | A           | ssuming Nor    | mal Distribut | ion            |                | Assuming Lognormal Distribution             |                |           |        |           |         |               |       |      |
| 145 |   |             |                | 95% Stu       | dent's-t UCL   | 272.8          |                                             |                |           |        |           |         | 95% H-UC      | CL 3  | 76.1 |
| 146 |   | 95%         | 6 UCLs (Adju   | sted for Ske  | wness)         |                | 95% Chebyshev (MVUE) UCL 456.6              |                |           |        |           |         |               |       | 56.6 |
| 147 |   |             | 95% Adjuste    | d-CLT UCL     | (Chen-1995)    | 273.7          |                                             |                | 97        | 7.5% ( | Chebys    | hev (   | MVUE) UC      | CL 5  | 28.9 |
| 148 |   |             | 95% Modifie    | ed-t UCL (Jo  | hnson-1978)    | 273            |                                             |                |           | 99% (  | Chebys    | hev (   | MVUE) UC      | CL 6  | 71   |
| 149 |   |             |                |               |                |                |                                             |                |           |        |           |         |               | 1     |      |
| 150 |   |             | Gamma Dis      | tribution Tes | t              |                |                                             |                | Da        | ta Dis | tributio  | n       |               |       |      |
| 151 |   |             |                | k star (bia   | as corrected)  | 1.383          |                                             | Data do not    | follow a  | Disc   | ernable   | Distr   | ibution (0.   | 05)   |      |
| 152 |   |             |                |               | Theta Star     | 176.7          |                                             |                |           |        |           |         |               |       |      |
| 153 |   |             |                | Ν             | ILE of Mean    | 244.4          |                                             |                |           |        |           |         |               |       |      |
| 154 |   |             | М              | LE of Standa  | ard Deviation  | 207.8          |                                             |                |           |        |           |         |               |       |      |
| 155 |   |             |                |               | nu star        | 268.4          |                                             |                |           |        |           |         |               |       |      |
| 156 |   |             | Approximat     | te Chi Squar  | e Value (.05)  | 231.4          |                                             |                | Nonpa     | rame   | ric Stat  | tistics | 1             |       |      |
| 157 |   |             | Adjus          | sted Level of | Significance   | 0.0475         |                                             |                |           |        |           | 95      | % CLT UC      | CL 2  | 72.5 |
| 158 |   |             | A              | djusted Chi S | quare Value    | 230.9          |                                             |                |           |        | 95        | 5% Ja   | ckknife UC    | CL 2  | 72.8 |
| 159 |   |             |                |               |                |                |                                             |                |           | 95%    | Standa    | rd Bo   | otstrap UC    | CL 2  | 73.3 |
| 160 |   |             | Ander          | rson-Darling  | Test Statistic | 3.272          |                                             |                |           |        | 95%       | 6 Boo   | tstrap-t UC   | CL 2  | 74.4 |
| 161 |   |             | Anderson-      | Darling 5% (  | Critical Value | 0.772          |                                             |                |           | 9      | 5% Hal    | l's Bo  | otstrap UC    | CL 2  | 75.5 |
| 162 |   |             | Kolmogoi       | rov-Smirnov   | Test Statistic | 0.166          |                                             |                | ę         | 95% F  | Percenti  | ile Bo  | otstrap UC    | CL 2  | 72.3 |
| 163 |   | ł           | Kolmogorov-S   | Smirnov 5% (  | Critical Value | 0.0927         |                                             |                |           | 9      | 95% BC    | CA Bo   | otstrap UC    | CL 2  | 75   |
| 164 | D | ata not Gam | ma Distribut   | ed at 5% Sig  | nificance Le   | vel            |                                             |                | 95        | % Ch   | ebyshe    | v(Mea   | an, Sd) UC    | CL 3  | 18.9 |
| 165 |   |             |                |               |                |                |                                             |                | 97.5      | % Ch   | ebyshe    | v(Mea   | an, Sd) UC    | CL 3  | 51.1 |
| 166 |   | As          | ssuming Gam    | nma Distribu  | tion           |                |                                             |                | 99        | % Ch   | ebyshe    | v(Mea   | an, Sd) UC    | CL 4  | 14.4 |
| 167 | 9 | 5% Approxim | nate Gamma     | UCL (Use w    | hen n >= 40)   | 283.4          |                                             |                |           |        |           |         |               |       |      |
| 168 |   | 95% Adji    | usted Gamma    | a UCL (Use v  | when n < 40)   | 284.1          |                                             |                |           |        |           |         |               |       |      |
| 169 |   |             |                |               |                |                |                                             |                |           |        |           |         |               |       |      |
| 170 |   |             | Potential U    | JCL to Use    |                |                |                                             |                | Use 95%   | % Che  | byshev    | v (Mea  | an, Sd) UC    | CL 3  | 18.9 |
| 171 |   |             |                |               |                |                |                                             |                |           |        |           |         |               |       |      |
| 172 | N | ote: Sugges | tions regardi  | ng the selec  | tion of a 95%  | 6 UCL are p    | rovided to he                               | olp the user t | o select  | the r  | nost ap   | propr   | riate 95%     | UCL   |      |
| 173 |   | These reco  | mmendation     | s are based   | upon the res   | sults of the s | imulation stu                               | idies summa    | arized in | Sing   | n, Singl  | h, and  | d laci (200   | 2)    |      |
| 174 |   |             | and Singh      | and Singh (   | 2003). For     | additional in  | sight, the us                               | er may wan     | t to cons | sult a | statistic | cian.   |               |       |      |
| 175 |   |             |                |               |                |                |                                             |                |           |        |           |         |               |       |      |
| / 5 |   |             |                |               |                |                |                                             |                |           |        |           |         |               |       |      |

| <b></b> | A B C                                | D E                         | F             | G H                     | I J K                                 | I           |
|---------|--------------------------------------|-----------------------------|---------------|-------------------------|---------------------------------------|-------------|
| 1       |                                      | General UCL Statistics      |               |                         |                                       | -           |
| 2       | User Selected Options                |                             |               |                         |                                       |             |
|         | From File                            | H:\Lockheed\background      | d sediment co | ncentrations\proUCL\Cor | nbined Upper Chesapeake.xls.wst       |             |
| 3       | Full Precision                       | OFF                         |               | •                       |                                       |             |
| 4       | Confidence Coefficient               | 95%                         |               |                         |                                       |             |
| 5       |                                      | 2000                        |               |                         |                                       |             |
| 6       |                                      | 2000                        |               |                         |                                       |             |
| 7       |                                      |                             |               |                         |                                       |             |
| 8       | Cadmium                              |                             |               |                         |                                       |             |
| 9       |                                      |                             |               |                         |                                       |             |
| 10      |                                      |                             | <u> </u>      | o                       |                                       |             |
| 11      |                                      |                             | General       | Statistics              |                                       |             |
| 12      |                                      | Number of Valid Data        |               |                         | Number of Detected Data               | 91          |
| 13      |                                      | of Distinct Detected Data   |               |                         | Number of Non-Detect Data             | 6           |
| 14      | N                                    | lumber of Missing Values    | 2             |                         | Percent Non-Detects                   | 6.19%       |
| 15      |                                      |                             |               |                         |                                       |             |
| 16      | Raw S                                | tatistics                   |               | L                       | og-transformed Statistics             |             |
| 17      |                                      | Minimum Detected            | 0.019         | Log Sta                 | atistics Not Avaliable                |             |
| 18      |                                      | Maximum Detected            | 5.06          |                         |                                       |             |
| 19      |                                      | Mean of Detected            | 0.7           |                         |                                       |             |
| 20      |                                      | Mean of Detected            | 0.7           |                         |                                       |             |
| 21      |                                      | Mean of Detected            | 0.7           |                         |                                       |             |
| 22      |                                      | Maximum Non-Detect          | 0.097         |                         |                                       |             |
| 23      | Note: Data have multiple DLs - Use o | f KM Method is recomme      | nded          |                         | Number treated as Non-Detect          | 18          |
| 23      | For all methods (except KM, DL/2, an | d ROS Methods),             |               |                         | Number treated as Detected            | 79          |
| 24      | Observations < Largest ND are treate | ed as NDs                   |               |                         | Single DL Non-Detect Percentage       | 18.56%      |
| 26      |                                      |                             |               |                         |                                       |             |
| 27      |                                      |                             | UCL SI        | atistics                |                                       |             |
| 27      | Normal Distribution Test             | with Detected Values On     | ly            | Lognormal Dist          | tribution Test with Detected Values O | nly         |
| 29      |                                      | Lilliefors Test Statistic   | 0.203         |                         | Not Available                         |             |
| 30      | 5                                    | % Lilliefors Critical Value | 0.0929        |                         |                                       |             |
|         | Data not Normal at 5                 | % Significance Level        |               |                         |                                       |             |
| 31      |                                      |                             |               |                         |                                       |             |
| 32      | Assuming Non                         | mal Distribution            |               | Assi                    | uming Lognormal Distribution          |             |
| 33      |                                      | DL/2 Substitution Method    |               | ,                       | DL/2 Substitution Method              | N/A         |
| 34      |                                      | Mean                        |               |                         |                                       | 11/7        |
| 35      |                                      | SD                          |               |                         |                                       |             |
| 36      |                                      | 95% DL/2 (t) UCL            | 0.73          |                         |                                       |             |
| 37      |                                      | 55% DL/2 (l) UCL            | 0.764         |                         |                                       |             |
| 38      | NA 1 1 1 1 1 1                       | d Estimate (MIE) Martin 1   |               |                         |                                       | <b>N1/A</b> |
| 39      | iviaximum Likelihoo                  | d Estimate(MLE) Method      |               |                         | Log ROS Method                        | N/A         |
| 40      |                                      | Mean                        |               |                         |                                       |             |
| 41      |                                      | SD                          |               |                         |                                       |             |
| 42      |                                      | 95% MLE (t) UCL             | 0.712         |                         |                                       |             |
| 43      |                                      | 95% MLE (Tiku) UCL          | 0.711         |                         |                                       |             |
| 44      |                                      |                             |               |                         |                                       |             |
| 45      | Gamma Distribution Test              | with Detected Values On     | ly            | Data Distrib            | ution Test with Detected Values Only  |             |

|    | A          | В             | С              | D              | E              | F           | G           | Н              |                | J               | K              | L      |
|----|------------|---------------|----------------|----------------|----------------|-------------|-------------|----------------|----------------|-----------------|----------------|--------|
| 46 |            | Ga            | amma Statisti  | cs Not Availa  | ble            |             | Da          | ata appear Ga  | amma Distrib   | uted at 5% S    | ignificance Le | vel    |
| 47 |            |               |                |                |                |             |             |                |                |                 |                |        |
| 48 |            |               |                |                |                |             |             |                |                |                 |                |        |
| 49 |            |               | Potential U    | CLs to Use     |                |             |             |                | Nonparame      | tric Statistics | ;              |        |
| 50 |            |               |                | 95% KM         | I (BCA) UCL    | 0.795       |             |                | Ka             | aplan-Meier (   | KM) Method     |        |
| 51 |            |               |                |                |                |             |             |                |                |                 | Mean           | 0.658  |
| 52 |            |               |                |                |                |             |             |                |                |                 | SD             | 0.746  |
| 53 |            |               |                |                |                |             |             |                |                |                 | SE of Mean     | 0.0762 |
| 54 |            |               |                |                |                |             |             |                |                | 95%             | 6 KM (t) UCL   | 0.785  |
| 55 |            |               |                |                |                |             |             |                |                | 95%             | KM (z) UCL     | 0.783  |
| 56 |            |               |                |                |                |             |             |                |                | 95% KM (jac     | ckknife) UCL   | 0.785  |
| 57 |            |               |                |                |                |             |             |                | 9              | 5% KM (boot     | tstrap t) UCL  | 0.817  |
| 58 |            |               |                |                |                |             |             |                |                | 95% KN          | I (BCA) UCL    | 0.795  |
| 59 |            |               |                |                |                |             |             |                | 95% KM (F      | Percentile Boo  | otstrap) UCL   | 0.784  |
| 60 |            |               |                |                |                |             |             |                | 95             | 5% KM (Chet     | oyshev) UCL    | 0.99   |
| 61 |            |               |                |                |                |             |             |                | 97.5           | 5% KM (Chet     | oyshev) UCL    | 1.134  |
| 62 |            |               |                |                |                |             |             |                | 99             | % KM (Chet      | oyshev) UCL    | 1.416  |
| 63 | Note: DL/2 | is not a reco | ommended m     | ethod.         |                |             |             |                |                |                 |                |        |
| 64 |            |               |                |                |                |             |             |                |                |                 |                |        |
| 65 | N          | ote: Sugges   | tions regardir | ng the select  | ion of a 95%   | UCL are pro | ovided to h | elp the user t | o select the i | nost approp     | riate 95% UC   | L.     |
|    |            |               | -              | -              |                | -           |             | •              |                |                 | nd Lee (2006)  |        |
| 66 |            |               |                |                |                |             |             | consult a sta  |                | · ·             |                |        |
| 67 |            |               |                |                |                |             |             |                |                |                 |                |        |
| 68 |            |               |                |                |                |             |             |                |                |                 |                |        |
| 69 | Copper     |               |                |                |                |             |             |                |                |                 |                |        |
| 70 |            |               |                |                |                |             |             |                |                |                 |                |        |
| 71 |            |               |                |                |                | General     | Statistics  |                |                |                 |                |        |
| 72 |            |               |                | Number o       | of Valid Data  | 97          |             |                |                | Number of De    | etected Data   | 96     |
| 73 |            |               | Number         | of Distinct De | etected Data   | 91          |             |                | Nu             | mber of Non-    | -Detect Data   | 1      |
| 74 |            |               |                |                | ssing Values   |             |             |                |                |                 | Non-Detects    | 1.03%  |
| 75 |            |               |                |                | ionig Falace   | _           |             |                |                |                 |                |        |
| 76 |            |               | Raw S          | tatistics      |                |             |             |                | Log-transfor   | ned Statistic   | <u></u>        |        |
| 77 |            |               |                |                | um Detected    | 2.48        |             |                |                |                 | um Detected    | 0.908  |
| 78 |            |               |                |                | um Detected    | -           |             |                |                |                 | um Detected    | 5.507  |
| 79 |            |               |                |                | of Detected    | 47.35       |             |                |                |                 | of Detected    | 3.372  |
| 80 |            |               |                |                | of Detected    | 47.55       |             |                |                |                 | of Detected    | 1.145  |
| 81 |            |               |                |                | Non-Detect     | 42.30       |             |                |                |                 | Non-Detect     | 0.788  |
| 82 |            |               |                |                |                |             |             |                |                |                 |                |        |
| 83 |            |               |                | Maximum        | Non-Detect     | 2.2         |             |                |                | waximum         | Non-Detect     | 0.788  |
| 84 |            |               |                |                |                |             |             |                |                |                 |                |        |
| 85 |            |               |                |                |                |             |             |                |                |                 |                |        |
| 86 |            |               |                |                |                | UCL S       |             |                |                |                 |                |        |
| 87 | 1          | Normal Distri | ibution Test v |                |                | -           | L           | ognormal Dis   | tribution Tes  |                 | ted Values Or  | •      |
| 88 |            |               |                |                | Test Statistic |             |             |                |                |                 | Test Statistic | 0.164  |
| 89 |            |               |                |                | Critical Value | 0.0904      |             |                |                |                 | Critical Value | 0.0904 |
| 90 |            | Data no       | t Normal at 5  | % Significan   | ice Level      |             |             | Data not       | Lognormal a    | t 5% Significa  | ance Level     |        |

|     | A B C D E                                         | F              | G H I J K                                                                                                | L     |
|-----|---------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------|-------|
| 91  | Assuming Normal Distribution                      |                | Assuming Lognormal Distribution                                                                          |       |
| 92  | DL/2 Substitution Method                          |                | DL/2 Substitution Method                                                                                 |       |
| 93  | Mean                                              | 46.87          | Mean                                                                                                     | 3.338 |
| 94  | SD                                                | 42.6           | SD                                                                                                       | 1.187 |
| 95  | 95% DL/2 (t) UCL                                  | 54.05          | 95% H-Stat (DL/2) UCL                                                                                    | 76.58 |
| 96  |                                                   | 01.00          |                                                                                                          | 70.00 |
| 97  | Maximum Likelihood Estimate(MLE) Method           |                | Log ROS Method                                                                                           |       |
| 98  | Mean                                              | 46.65          | Mean in Log Scale                                                                                        | 3.34  |
| 99  | SD                                                | 42.71          | SD in Log Scale                                                                                          | 1.18  |
| 100 | 95% MLE (t) UCL                                   | 53.86          | Mean in Original Scale                                                                                   | 46.87 |
| 101 | 95% MLE (1) UCL                                   | 53.46          | SD in Original Scale                                                                                     | 42.6  |
| 102 |                                                   | 55.40          | 95% t UCL                                                                                                | 54.06 |
| 103 |                                                   |                | 95% Percentile Bootstrap UCL                                                                             | 54.2  |
| 104 |                                                   |                | 95% BCA Bootstrap UCL                                                                                    | 54.95 |
| 105 |                                                   |                | 95% H UCL                                                                                                | 75.93 |
| 106 |                                                   |                | 95% H UCL                                                                                                | /5.93 |
| 107 | Gamma Distribution Test with Detected Values Onl  |                | Data Distribution Test with Datasted Values Only                                                         |       |
| 108 |                                                   | •              | Data Distribution Test with Detected Values Only<br>Data do not follow a Discernable Distribution (0.05) |       |
| 109 | k star (bias corrected)                           | 1.138          | Data do not follow a Discernable Distribution (0.05)                                                     |       |
| 110 | Theta Star                                        | 41.61          |                                                                                                          |       |
| 111 | nu star                                           | 218.5          |                                                                                                          |       |
| 112 |                                                   | 1 100          |                                                                                                          |       |
| 113 | A-D Test Statistic                                | 1.466          | Nonparametric Statistics                                                                                 |       |
| 114 | 5% A-D Critical Value                             | 0.779          | Kaplan-Meier (KM) Method                                                                                 | 10.00 |
| 115 | K-S Test Statistic                                | 0.779          | Mean                                                                                                     | 46.88 |
| 116 | 5% K-S Critical Value                             | 0.0937         | SD                                                                                                       | 42.36 |
| 117 | Data not Gamma Distributed at 5% Significance Lev | <b>'el</b>     | SE of Mean                                                                                               | 4.324 |
| 118 |                                                   |                | 95% KM (t) UCL                                                                                           | 54.07 |
| 119 | Assuming Gamma Distribution                       |                | 95% KM (z) UCL                                                                                           | 54    |
| 120 | Gamma ROS Statistics using Extrapolated Data      |                | 95% KM (jackknife) UCL                                                                                   | 54.06 |
| 121 | Minimum                                           | 0.000001       | 95% KM (bootstrap t) UCL                                                                                 | 54.98 |
| 122 | Maximum                                           | 246.3          | 95% KM (BCA) UCL                                                                                         | 54.84 |
| 123 | Mean                                              | 46.86          | 95% KM (Percentile Bootstrap) UCL                                                                        | 54.12 |
| 124 | Median                                            | 41.7           | 95% KM (Chebyshev) UCL                                                                                   | 65.73 |
| 125 | SD                                                | 42.61          | 97.5% KM (Chebyshev) UCL                                                                                 | 73.89 |
| 126 | k star                                            | 0.875          | 99% KM (Chebyshev) UCL                                                                                   | 89.91 |
| 127 | Theta star                                        | 53.53          |                                                                                                          |       |
| 128 | Nu star                                           | 169.8          | Potential UCLs to Use                                                                                    |       |
| 129 | AppChi2                                           | 140.7          | 95% KM (Chebyshev) UCL                                                                                   | 65.73 |
| 130 | 95% Gamma Approximate UCL (Use when n >= 40)      | 56.56          |                                                                                                          |       |
| 131 | 95% Adjusted Gamma UCL (Use when n < 40)          | 56.72          |                                                                                                          |       |
|     | lote: DL/2 is not a recommended method.           | I              |                                                                                                          |       |
| 133 |                                                   |                |                                                                                                          |       |
| 134 |                                                   |                | vided to help the user to select the most appropriate 95% UCL.                                           | •     |
| 135 | These recommendations are based upon the resul    | ts of the simu | ulation studies summarized in Singh, Maichle, and Lee (2006).                                            |       |

|     | А            | В             | С             | D E                                       | F                 | G H I J K                                            | L                 |
|-----|--------------|---------------|---------------|-------------------------------------------|-------------------|------------------------------------------------------|-------------------|
| 136 |              |               |               | For additional insigh                     | it, the user m    | ay want to consult a statistician.                   |                   |
| 137 |              |               |               |                                           |                   |                                                      |                   |
| 138 |              |               |               |                                           |                   |                                                      |                   |
| 139 | Lead         |               |               |                                           |                   |                                                      |                   |
| 140 |              |               |               |                                           |                   |                                                      |                   |
| 141 |              |               |               |                                           | General S         | itatistics                                           |                   |
| 142 |              |               |               | Number of Valid Data                      | 97                | Number of Detected Data                              | 95                |
| 143 |              |               | Number        | of Distinct Detected Data                 | 91                | Number of Non-Detect Data                            | 2                 |
| 144 |              |               | Ν             | lumber of Missing Values                  | 2                 | Percent Non-Detects                                  | 2.06%             |
| 145 |              |               |               |                                           |                   |                                                      |                   |
| 146 |              |               | Raw S         | tatistics                                 |                   | Log-transformed Statistics                           |                   |
| 147 |              |               |               | Minimum Detected                          | 3.35              | Minimum Detected                                     | 1.209             |
| 147 |              |               |               | Maximum Detected                          | 217               | Maximum Detected                                     | 5.38              |
|     |              |               |               | Mean of Detected                          | 54.36             | Mean of Detected                                     | 3.619             |
| 149 |              |               |               | SD of Detected                            | 41.32             | SD of Detected                                       | 1                 |
| 150 |              |               |               | Minimum Non-Detect                        | 1.8               | Minimum Non-Detect                                   | 0.588             |
| 151 |              |               |               | Maximum Non-Detect                        | 4.9               | Maximum Non-Detect                                   | 1.589             |
| 152 |              |               |               |                                           |                   |                                                      |                   |
| 153 | Note: Data h | ave multiple  | DIs-Use c     | f KM Method is recommer                   | nded              | Number treated as Non-Detect                         | 6                 |
| 154 |              |               |               | d ROS Methods),                           | laca              | Number treated as Detected                           | 91                |
| 155 | Observations |               |               |                                           |                   | Single DL Non-Detect Percentage                      | 6.19%             |
| 156 | Observations | s < Largest i |               |                                           |                   |                                                      | 0.1370            |
| 157 |              |               |               |                                           | UCL Sta           | ntintino                                             |                   |
| 158 | N            | ormal Diatri  | ibution Toot  | with Detected Values Onl                  |                   | Lognormal Distribution Test with Detected Values Onl |                   |
| 159 |              |               |               | Lilliefors Test Statistic                 | <b>y</b><br>0.108 | Lilliefors Test Statistic                            | <b>y</b><br>0.143 |
| 160 |              |               |               | 5% Lilliefors Critical Value              | 0.0909            | 5% Lilliefors Critical Value                         | 0.143             |
| 161 |              | Dete ne       |               |                                           | 0.0909            |                                                      | 0.0909            |
| 162 |              | Data no       | t Normal at : | 5% Significance Level                     |                   | Data not Lognormal at 5% Significance Level          |                   |
| 163 |              |               |               | mal Distribution                          |                   |                                                      |                   |
| 164 |              | As            | -             | mal Distribution DL/2 Substitution Method |                   | Assuming Lognormal Distribution                      |                   |
| 165 |              |               |               |                                           | F2 00             | DL/2 Substitution Method                             | 2 5 5 2           |
| 166 |              |               |               | Mean                                      | 53.28             | Mean                                                 | 3.552             |
| 167 |              |               |               | SD                                        | 41.57             | SD                                                   | 1.094             |
| 168 |              |               |               | 95% DL/2 (t) UCL                          | 60.29             | 95% H-Stat (DL/2) UCL                                | 82.47             |
| 169 |              |               |               |                                           |                   |                                                      |                   |
| 170 |              | Maxim         | um Likelihoo  | d Estimate(MLE) Method                    |                   | Log ROS Method                                       |                   |
| 171 |              |               |               | Mean                                      | 52.01             | Mean in Log Scale                                    | 3.571             |
| 172 |              |               |               | SD                                        | 43.4              | SD in Log Scale                                      | 1.044             |
| 173 |              |               |               | 95% MLE (t) UCL                           | 59.33             | Mean in Original Scale                               | 53.32             |
| 174 |              |               |               | 95% MLE (Tiku) UCL                        | 59.14             | SD in Original Scale                                 | 41.52             |
| 175 |              |               |               |                                           |                   | 95% t UCL                                            | 60.33             |
| 176 |              |               |               |                                           |                   | 95% Percentile Bootstrap UCL                         | 60.88             |
| 177 |              |               |               |                                           |                   | 95% BCA Bootstrap UCL                                | 60.74             |
| 178 |              |               |               |                                           |                   | 95% H UCL                                            | 78.29             |
| 179 |              |               |               |                                           |                   | '                                                    |                   |
| 180 | G            | amma Distr    | ibution Test  | with Detected Values On                   | ly                | Data Distribution Test with Detected Values Only     |                   |

|     | A          | В                |        | С           | D               | E                | F              | G                          | Н                | 1           |         | J          |         | К              | L       |
|-----|------------|------------------|--------|-------------|-----------------|------------------|----------------|----------------------------|------------------|-------------|---------|------------|---------|----------------|---------|
| 181 |            |                  |        |             | k star (b       | bias corrected)  | 1.431          | Data Fo                    | ollow Appr.      | Gamma Di    | istribu | ition at 5 | i% Sig  | <b>nifican</b> | e Level |
| 182 |            |                  |        |             |                 | Theta Star       | 37.99          |                            |                  |             |         |            |         |                |         |
| 183 |            |                  |        |             |                 | nu star          | 271.9          |                            |                  |             |         |            |         |                |         |
| 184 |            |                  |        |             |                 |                  |                |                            |                  |             |         |            |         |                |         |
| 185 |            |                  |        |             | A-D             | ) Test Statistic | 1.333          |                            |                  | Nonparar    | netric  | Statistic  | s       |                |         |
| 186 |            |                  |        |             | 5% A-D          | Critical Value   | 0.771          |                            |                  |             | Kapla   | an-Meier   | (KM)    | Method         |         |
| 187 |            |                  |        |             | K-8             | S Test Statistic | 0.771          |                            |                  |             |         |            |         | Mean           | 53.32   |
| 188 |            |                  |        |             | 5% K-S          | Critical Value   | 0.0936         |                            |                  |             |         |            |         | SD             | 41.31   |
| 189 | Data       | follow Ap        | pr. Ga | mma Dist    | tribution at 5  | % Significanc    | e Level        |                            |                  |             |         |            | SE      | of Mean        | 4.217   |
| 190 |            |                  |        |             |                 |                  |                | 95% KM (t) UCI             |                  |             |         |            |         |                | 60.32   |
| 191 |            |                  | Assu   | iming Gar   | mma Distrib     | ution            |                |                            |                  |             |         | 95%        | % KM    | (z) UCL        | 60.25   |
| 192 |            | Gam              | ma ROS | S Statistic | s using Extr    | apolated Data    |                | 95% KM (jackknife) UCL     |                  |             |         |            |         |                | 60.31   |
|     |            |                  |        |             | -               | Minimum          | 0.000001       |                            |                  |             |         | KM (bo     |         | -              | 60.77   |
| 193 |            |                  |        |             |                 | Maximum          | 217            |                            |                  |             |         |            |         | A) UCL         | 60.77   |
| 194 |            |                  |        |             |                 | Mean             | 53.24          |                            |                  | 95% KM      | (Perc   |            | •       |                | 60.37   |
| 195 |            |                  |        |             |                 | Median           | 48             |                            |                  |             | •       | KM (Che    |         | • •            | 71.7    |
| 196 |            |                  |        |             |                 | SD               | 41.62          |                            |                  |             |         | KM (Che    | •       | ,              | 79.65   |
| 197 |            |                  |        |             |                 | k star           | 0.807          |                            |                  |             |         | KM (Che    |         | ,              | 95.27   |
| 198 |            |                  |        |             |                 | Theta star       | 65.96          |                            |                  |             | 3370    |            | byshe   | 5V) UCL        | 55.27   |
| 199 |            |                  |        |             |                 |                  |                |                            |                  | Detentio    |         | <u> </u>   |         |                |         |
| 200 |            |                  |        |             |                 | Nu star          | 156.6          |                            |                  | Potentia    |         |            |         |                | 74 7    |
| 201 |            | 050/ 0           |        |             |                 | AppChi2          | 128.7          |                            |                  |             | 95%     | KM (Che    | ebyshe  | ev) UCL        | 71.7    |
| 202 |            |                  |        | •           | •               | when n >= 40)    | 64.8           |                            |                  |             |         |            |         |                |         |
| 203 |            |                  | -      |             | •               | when n < 40)     | 64.99          |                            |                  |             |         |            |         |                |         |
| 204 | Note: DL/2 | 2 is not a       | recom  | mended n    | nethod.         |                  |                |                            |                  | T           |         |            | 1       |                |         |
| 205 |            |                  |        |             |                 |                  |                |                            |                  |             |         |            |         |                |         |
| 206 |            |                  |        |             |                 | ction of a 95%   | _              |                            | -                |             |         |            |         |                |         |
| 207 |            | These re         | ecomme | endations   |                 | upon the resu    |                |                            |                  |             | gh, M   | aichle, a  | and Le  | e (2006        | i).     |
| 208 |            |                  |        |             | For ac          | ditional insigh  | it, the user m | nay want to c              | consult a sta    | atistician. |         |            |         |                |         |
| 209 |            |                  |        |             |                 |                  |                |                            |                  |             |         |            |         |                |         |
| 210 |            |                  |        |             |                 |                  |                |                            |                  |             |         |            |         |                |         |
| 211 | Mercury    |                  |        |             |                 |                  |                |                            |                  |             |         |            |         |                |         |
| 212 |            |                  |        |             |                 |                  |                |                            |                  |             |         |            |         |                |         |
| 213 |            |                  |        |             |                 |                  | General        | Statistics                 |                  |             |         |            |         |                |         |
| 214 |            |                  |        |             | Numbe           | r of Valid Data  | 97             |                            |                  |             | Nur     | nber of D  | Detect  | ed Data        | 87      |
| 215 |            |                  |        | Number      | r of Distinct I | Detected Data    | 71             |                            |                  | 1           | Numb    | er of No   | n-Dete  | ect Data       | 10      |
| 216 |            |                  |        | 1           | Number of M     | lissing Values   | 2              | 2 Percent Non-Detec        |                  |             |         |            | Detects | 10.31%         |         |
| 217 |            |                  |        |             |                 |                  |                |                            |                  |             |         |            |         | <u> </u>       |         |
|     |            |                  |        | Raw S       | Statistics      |                  |                | Log-transformed Statistics |                  |             |         |            |         |                |         |
| 218 |            |                  |        |             | Minir           | num Detected     | 0.00715        |                            | Minimum Detected |             |         |            |         | -4.941         |         |
| 219 |            |                  |        |             |                 | num Detected     | 0.732          |                            |                  |             |         |            |         | -0.312         |         |
| 220 |            |                  |        |             |                 | an of Detected   | 0.18           |                            |                  |             |         |            |         | -2.054         |         |
| 221 |            |                  |        |             |                 | D of Detected    | 0.133          |                            |                  |             |         |            |         | etected        | 0.961   |
| 222 |            |                  |        |             |                 | m Non-Detect     | 0.133          |                            |                  |             |         | Minimu     |         |                | -5.521  |
| 223 |            |                  |        |             |                 |                  | 0.004          |                            |                  |             |         | Maximu     |         |                | -4.135  |
| 224 |            | Maximum Non-Dete |        |             |                 |                  |                |                            |                  |             |         |            |         | -Delect        | -4.135  |
| 225 |            |                  |        |             |                 |                  |                |                            |                  |             |         |            |         |                |         |

|     | A B C D E                                                   | F        | G H I J K                                             | L      |
|-----|-------------------------------------------------------------|----------|-------------------------------------------------------|--------|
| 226 | Note: Data have multiple DLs - Use of KM Method is recommen | ded      | Number treated as Non-Detect                          | 16     |
| 227 | For all methods (except KM, DL/2, and ROS Methods),         |          | Number treated as Detected                            | 81     |
| 228 | Observations < Largest ND are treated as NDs                |          | Single DL Non-Detect Percentage                       | 16.49% |
| 229 |                                                             |          |                                                       |        |
| 230 |                                                             | UCL St   | atistics                                              |        |
| 231 | Normal Distribution Test with Detected Values Only          | /        | Lognormal Distribution Test with Detected Values Only | y      |
| 232 | Lilliefors Test Statistic                                   | 0.101    | Lilliefors Test Statistic                             | 0.186  |
| 233 | 5% Lilliefors Critical Value                                | 0.095    | 5% Lilliefors Critical Value                          | 0.095  |
| 234 | Data not Normal at 5% Significance Level                    |          | Data not Lognormal at 5% Significance Level           |        |
| 235 |                                                             |          |                                                       |        |
| 236 | Assuming Normal Distribution                                |          | Assuming Lognormal Distribution                       |        |
| 237 | DL/2 Substitution Method                                    |          | DL/2 Substitution Method                              |        |
| 238 | Mean                                                        | 0.162    | Mean                                                  | -2.4   |
| 239 | SD                                                          | 0.137    | SD                                                    | 1.376  |
| 240 | 95% DL/2 (t) UCL                                            | 0.185    | 95% H-Stat (DL/2) UCL                                 | 0.339  |
| 241 |                                                             |          |                                                       |        |
| 242 | Maximum Likelihood Estimate(MLE) Method                     |          | Log ROS Method                                        |        |
| 243 | Mean                                                        | 0.149    | Mean in Log Scale                                     | -2.258 |
| 244 | SD                                                          | 0.156    | SD in Log Scale                                       | 1.095  |
| 245 | 95% MLE (t) UCL                                             | 0.175    | Mean in Original Scale                                | 0.163  |
| 246 | 95% MLE (Tiku) UCL                                          | 0.175    | SD in Original Scale                                  | 0.135  |
| 247 |                                                             |          | 95% t UCL                                             | 0.186  |
| 248 |                                                             |          | 95% Percentile Bootstrap UCL                          | 0.185  |
| 249 |                                                             |          | 95% BCA Bootstrap UCL                                 | 0.191  |
| 250 |                                                             |          | 95% H UCL                                             | 0.248  |
| 251 |                                                             |          |                                                       |        |
| 252 | Gamma Distribution Test with Detected Values Onl            | у        | Data Distribution Test with Detected Values Only      |        |
| 253 | k star (bias corrected)                                     | 1.574    | Data do not follow a Discernable Distribution (0.05)  |        |
| 254 | Theta Star                                                  | 0.114    |                                                       |        |
| 255 | nu star                                                     | 273.9    |                                                       |        |
| 256 |                                                             |          |                                                       |        |
| 257 | A-D Test Statistic                                          | 1.681    | Nonparametric Statistics                              |        |
| 258 | 5% A-D Critical Value                                       | 0.77     | Kaplan-Meier (KM) Method                              |        |
| 259 | K-S Test Statistic                                          | 0.77     | Mean                                                  | 0.162  |
| 260 | 5% K-S Critical Value                                       | 0.0975   | SD                                                    | 0.136  |
| 261 | Data not Gamma Distributed at 5% Significance Lev           | el       | SE of Mean                                            | 0.0139 |
| 262 |                                                             |          | 95% KM (t) UCL                                        | 0.185  |
| 263 | Assuming Gamma Distribution                                 |          | 95% KM (z) UCL                                        | 0.185  |
| 264 | Gamma ROS Statistics using Extrapolated Data                |          | 95% KM (jackknife) UCL                                | 0.185  |
| 265 | Minimum                                                     | 0.000001 | 95% KM (bootstrap t) UCL                              | 0.186  |
| 266 | Maximum                                                     | 0.732    | 95% KM (BCA) UCL                                      | 0.187  |
| 267 | Mean                                                        | 0.161    | 95% KM (Percentile Bootstrap) UCL                     | 0.185  |
| 268 | Median                                                      | 0.166    | 95% KM (Chebyshev) UCL                                | 0.223  |
| 269 | SD                                                          | 0.137    | 97.5% KM (Chebyshev) UCL                              | 0.249  |
|     | k star                                                      |          | 99% KM (Chebyshev) UCL                                |        |

|     | A           | В               | С             | D             | E                 | F               | G           | н                 | 1            |           | J        | К              | 1      |  |
|-----|-------------|-----------------|---------------|---------------|-------------------|-----------------|-------------|-------------------|--------------|-----------|----------|----------------|--------|--|
| 271 |             |                 | Ŭ             | D             | Theta star        | 0.366           | u           |                   |              |           | 0        | I. I.          | Ŀ      |  |
| 272 |             |                 |               |               | Nu star           | 85.56           |             |                   | Potenti      | al UCLs   | to Use   |                |        |  |
| 273 |             |                 |               |               | AppChi2           | 65.24           |             |                   |              |           | 95% KN   | / (BCA) UCL    | 0.187  |  |
| 273 |             | 95% Gamma       | Approximate   | UCL (Use w    | /hen n >= 40)     | 0.212           |             |                   |              |           |          |                |        |  |
|     |             |                 |               | •             | ,<br>when n < 40) | 0.212           |             |                   |              |           |          |                |        |  |
| 275 | Note: DL/2  | 2 is not a reco |               |               | ,                 |                 |             |                   |              |           |          |                |        |  |
| 276 |             |                 |               |               |                   |                 |             |                   |              |           |          |                |        |  |
| 277 |             | Note: Sugges    | tions recardi | na the selec  | tion of a 95%     | UCL are pro     | vided to he | on the user       | to select t  | he most   | approp   | riate 95% UCI  |        |  |
| 278 |             |                 |               |               |                   | -               |             |                   |              |           |          | nd Lee (2006). |        |  |
| 279 |             |                 |               |               | ditional insight  |                 |             |                   |              |           | ,        |                |        |  |
| 280 |             |                 |               |               |                   |                 |             |                   |              |           |          |                |        |  |
| 281 |             |                 |               |               |                   |                 |             |                   |              |           |          |                |        |  |
| 282 |             | B-HALFND        |               |               |                   |                 |             |                   |              |           |          |                |        |  |
| 283 | TOTALTO     |                 |               |               |                   |                 |             |                   |              |           |          |                |        |  |
| 284 |             |                 |               |               |                   | General         | Statistics  |                   |              |           |          |                |        |  |
| 85  |             |                 |               | Number        | of Valid Data     | General 3<br>95 | ວເລແວແປອ    |                   |              | Numb      |          | etected Data   | 88     |  |
| 86  |             |                 | Number        |               | Detected Data     | 83              |             |                   |              |           |          | -Detect Data   | 00     |  |
| 87  |             |                 |               |               |                   |                 |             |                   |              |           |          |                | 7.37%  |  |
| 88  |             |                 | ſ             | Number of M   | issing Values     | 4               |             | Percent Non-Detec |              |           |          |                |        |  |
| 289 |             |                 |               |               |                   |                 |             |                   |              |           |          |                |        |  |
| 290 |             |                 | Raw S         | Statistics    |                   |                 |             |                   | Log-trans    |           |          | cs             |        |  |
| 91  |             |                 |               |               | num Detected      | 0.97            |             | Log S             | tatistics No | ot Avalia | ble      |                |        |  |
| 92  |             |                 |               |               | num Detected      | 498             |             |                   |              |           |          |                |        |  |
| 93  |             |                 |               |               | n of Detected     | 59.37           |             |                   |              |           |          |                |        |  |
| 94  |             |                 |               | Mea           | n of Detected     | 59.37           |             |                   |              |           |          |                |        |  |
| 295 |             |                 |               | Mea           | n of Detected     | 59.37           |             |                   |              |           |          |                |        |  |
| 96  |             |                 |               |               | m Non-Detect      | 4.5             |             |                   |              |           |          |                |        |  |
| 97  | Note: Data  | have multiple   | e DLs - Use o | of KM Metho   | d is recommen     | ided            |             |                   | Ni           | umber tre | eated as | s Non-Detect   | 15     |  |
| 98  | For all met | hods (except    | KM, DL/2, ar  | nd ROS Met    | hods),            |                 |             |                   |              | Number    | treated  | as Detected    | 80     |  |
| 299 | Observatio  | ons < Largest   | ND are treat  | ed as NDs     |                   |                 |             |                   | Single       | e DL Nor  | n-Detec  | t Percentage   | 15.79% |  |
| 300 |             |                 |               |               |                   | 1               |             |                   |              |           |          |                |        |  |
| 301 |             |                 |               |               |                   | UCL St          | atistics    |                   |              |           |          |                |        |  |
| 302 |             | Normal Distr    | ribution Test | with Detecte  | ed Values Only    | y               | Lo          | ognormal Di       | stribution   | Test with | Detec    | ted Values On  | ly     |  |
| 03  |             |                 |               | Lilliefors    | Test Statistic    | 0.259           |             |                   |              |           |          | Not Available  |        |  |
| 304 |             |                 | ;             | 5% Lilliefors | Critical Value    | 0.0944          |             |                   |              |           |          |                |        |  |
| 05  |             | Data no         | ot Normal at  | 5% Significa  | nce Level         |                 |             |                   |              |           |          |                |        |  |
| 306 |             |                 |               |               |                   |                 |             |                   |              |           |          |                |        |  |
| 307 |             | А               | ssuming Nor   | mal Distribu  | ition             |                 |             | As                | suming Lo    | gnormal   | Distrib  | oution         |        |  |
| 08  |             |                 |               | DL/2 Substi   | tution Method     |                 |             |                   |              | DL/2      | Substit  | ution Method   | N/A    |  |
| 09  |             |                 |               |               | Mean              | 55.1            |             |                   |              |           |          |                |        |  |
|     |             |                 |               |               | SD                | 84.45           |             |                   |              |           |          |                |        |  |
| 810 |             |                 |               | 95%           | DL/2 (t) UCL      | 69.5            |             |                   |              |           |          |                |        |  |
| 311 |             |                 |               |               | ()                |                 |             |                   |              |           |          |                |        |  |
| 312 |             | Maxin           | num Likelihoo | od Estimate(  | MLE) Method       |                 |             |                   |              |           | Loa      | ROS Method     | N/A    |  |
| 313 |             |                 |               | (             | Mean              | 45.65           |             |                   |              |           | 9        |                |        |  |
| 314 |             |                 |               |               | SD                | 94.49           |             |                   |              |           |          |                |        |  |
| 315 |             |                 |               |               | 00                | 57.75           |             |                   |              |           |          |                |        |  |

|                                                                                                                                                                     | А          | В          | С            | D                                                                                           | I                                                                                       | E                                                                                                         | F                                                                                 | G           | Н                      |           |          |                        | J                                    |                       | К                           |                                                              |                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------|------------------------|-----------|----------|------------------------|--------------------------------------|-----------------------|-----------------------------|--------------------------------------------------------------|------------------|
| 316                                                                                                                                                                 |            | 2          |              |                                                                                             | 5% ML                                                                                   | E (t) UCL                                                                                                 | 61.76                                                                             | 3           | 1 ''                   | 1         |          | 1                      | •                                    |                       | 1                           |                                                              | -                |
| 317                                                                                                                                                                 |            |            |              | 95%                                                                                         | MLE (T                                                                                  | iku) UCL                                                                                                  | 61.19                                                                             |             |                        |           |          |                        |                                      |                       |                             |                                                              |                  |
| 318                                                                                                                                                                 |            |            |              |                                                                                             |                                                                                         |                                                                                                           |                                                                                   |             |                        |           |          |                        |                                      |                       |                             |                                                              |                  |
| 319                                                                                                                                                                 | Ga         | mma Distr  | ibution Test | with Dete                                                                                   | ected V                                                                                 | alues Only                                                                                                | /                                                                                 |             | Data Dis               | tributior | n Test v | with D                 | etecte                               | ed Va                 | lues (                      | Only                                                         |                  |
| 320                                                                                                                                                                 |            | Ga         | amma Statis  | tics Not Av                                                                                 | vailable                                                                                |                                                                                                           |                                                                                   |             | Data ap                | pear Lo   | gnorma   | l at 5%                | % Sigr                               | nifica                | nce Le                      | vel                                                          |                  |
| 321                                                                                                                                                                 |            |            |              |                                                                                             |                                                                                         |                                                                                                           |                                                                                   |             |                        |           |          |                        |                                      |                       |                             |                                                              |                  |
| 322                                                                                                                                                                 |            |            |              |                                                                                             |                                                                                         |                                                                                                           |                                                                                   |             |                        |           |          |                        |                                      |                       |                             |                                                              |                  |
| 323                                                                                                                                                                 |            |            | Potential    | UCLs to U                                                                                   | Jse                                                                                     |                                                                                                           |                                                                                   |             |                        | Non       | param    | etric S                | statisti                             | cs                    |                             |                                                              |                  |
| 324                                                                                                                                                                 |            |            | 97.          | 5% KM (C                                                                                    | Chebysł                                                                                 | nev) UCL                                                                                                  | 109.2                                                                             |             |                        |           | ۴        | Kaplan                 | -Meie                                | r (KN                 | 1) Met                      | hod                                                          |                  |
| 325                                                                                                                                                                 |            |            |              |                                                                                             |                                                                                         |                                                                                                           |                                                                                   |             |                        |           |          |                        |                                      |                       | M                           | ean                                                          | 55.12            |
| 326                                                                                                                                                                 |            |            |              |                                                                                             |                                                                                         |                                                                                                           |                                                                                   | S           |                        |           |          |                        |                                      |                       | SD                          | 84                                                           |                  |
| 327                                                                                                                                                                 |            |            |              |                                                                                             |                                                                                         |                                                                                                           |                                                                                   | SE of Mear  |                        |           |          |                        |                                      |                       | ean                         | 8.667                                                        |                  |
| 328                                                                                                                                                                 |            |            |              |                                                                                             |                                                                                         |                                                                                                           |                                                                                   |             |                        |           |          |                        | 95                                   | 5% K                  | M (t) L                     | JCL                                                          | 69.52            |
| 329                                                                                                                                                                 |            |            |              |                                                                                             |                                                                                         |                                                                                                           |                                                                                   |             |                        |           |          |                        |                                      |                       | M (z) L                     |                                                              | 69.38            |
|                                                                                                                                                                     |            |            |              |                                                                                             |                                                                                         |                                                                                                           |                                                                                   |             |                        |           |          | 95%                    |                                      |                       | nife) L                     |                                                              | 69.47            |
| 330                                                                                                                                                                 |            |            |              |                                                                                             |                                                                                         |                                                                                                           |                                                                                   |             | 95% KM (bootstrap t) U |           |          |                        |                                      |                       |                             |                                                              | 74.74            |
| 331                                                                                                                                                                 |            |            |              |                                                                                             |                                                                                         |                                                                                                           |                                                                                   |             |                        |           |          |                        | •                                    |                       | BCA) L                      |                                                              | 70               |
| 332                                                                                                                                                                 |            |            |              |                                                                                             |                                                                                         |                                                                                                           |                                                                                   |             |                        | 95        | % KM (   |                        |                                      | ``                    | ,                           |                                                              | 70.18            |
| 333                                                                                                                                                                 |            |            |              |                                                                                             |                                                                                         |                                                                                                           |                                                                                   |             |                        |           | `        |                        |                                      |                       | hev) L                      |                                                              | 92.9             |
| 334                                                                                                                                                                 |            |            |              |                                                                                             |                                                                                         |                                                                                                           |                                                                                   |             |                        |           |          |                        |                                      | -                     | ,<br>hev) L                 |                                                              | 109.2            |
| 335                                                                                                                                                                 |            |            |              |                                                                                             |                                                                                         |                                                                                                           |                                                                                   |             |                        |           |          |                        | •                                    | -                     | hev) L                      |                                                              | 141.4            |
| 336                                                                                                                                                                 | e: DL/2 is | not a reco | mmended r    | nethod.                                                                                     |                                                                                         |                                                                                                           |                                                                                   |             |                        |           |          |                        | (                                    | ,-                    | , -                         |                                                              |                  |
| 337                                                                                                                                                                 |            |            |              |                                                                                             |                                                                                         |                                                                                                           |                                                                                   |             |                        |           |          |                        |                                      |                       |                             |                                                              |                  |
| 338                                                                                                                                                                 | Note       | e: Suaaest | tions recard | ina the se                                                                                  | election                                                                                | of a 95%                                                                                                  | UCL are pro                                                                       | vided to h  | elp the use            | er to sel | ect the  | most                   | appro                                | opriat                | e 95%                       |                                                              |                  |
| 339                                                                                                                                                                 |            |            | mendations   |                                                                                             |                                                                                         |                                                                                                           | -                                                                                 |             |                        |           |          |                        |                                      |                       |                             |                                                              |                  |
| 340<br>341                                                                                                                                                          |            |            |              |                                                                                             | sa upon                                                                                 | the result                                                                                                | s of the simu                                                                     | liation stu | idies summ             | arized i  | II SIIU  | n. Mai                 |                                      | anu i                 |                             |                                                              |                  |
| 34 1                                                                                                                                                                |            |            | mendationa   |                                                                                             |                                                                                         |                                                                                                           |                                                                                   |             |                        |           | -        | n, mai                 | cilie, i                             | anu i                 | 200 (2                      |                                                              |                  |
|                                                                                                                                                                     |            |            |              |                                                                                             |                                                                                         |                                                                                                           | s of the simu<br>, the user ma                                                    |             |                        |           | -        | n, Mai                 |                                      |                       | 200 (2                      |                                                              |                  |
| 342                                                                                                                                                                 |            |            |              |                                                                                             |                                                                                         |                                                                                                           |                                                                                   |             |                        |           | -        | n, Mai                 |                                      |                       |                             |                                                              |                  |
| 342<br>343                                                                                                                                                          | TAL PCB-I  |            |              |                                                                                             |                                                                                         |                                                                                                           |                                                                                   |             |                        |           | -        | n, Mai                 |                                      |                       |                             |                                                              |                  |
| 342<br>343<br><sub>344</sub> TOT                                                                                                                                    | TAL PCB-I  |            |              |                                                                                             |                                                                                         |                                                                                                           |                                                                                   |             |                        |           | -        | n, Mai                 |                                      |                       |                             |                                                              |                  |
| 342<br>343<br><sub>344</sub> TOT<br>345                                                                                                                             | TAL PCB-I  |            |              |                                                                                             |                                                                                         |                                                                                                           | , the user ma                                                                     | ay want to  |                        |           | -        | n, mai                 |                                      |                       |                             |                                                              |                  |
| 342<br>343<br>344 <b>TOT</b><br>345<br>346                                                                                                                          | TAL PCB-I  |            |              | For                                                                                         | additio                                                                                 | nal insight                                                                                               | , the user ma                                                                     | ay want to  |                        |           | -        |                        |                                      |                       |                             |                                                              | 88               |
| 342       343       344       TOT       345       346       347                                                                                                     | TAL PCB-I  |            |              | For                                                                                         | ber of V                                                                                | nal insight                                                                                               | General S                                                                         | ay want to  |                        |           | ian.     | Numt                   | per of                               | Dete                  | cted D                      | Data                                                         | 88               |
| 342       343       344       TOT       345       346       347       348                                                                                           | TAL PCB-I  |            | Number       | For<br>Numb                                                                                 | ber of V                                                                                | alid Data                                                                                                 | General S<br>95<br>84                                                             | ay want to  |                        |           | ian.     | Number                 | per of                               | Dete                  | cted D<br>etect D           | Data Data                                                    | 7                |
| 342       343       344       TOT       345       346       347       348       349                                                                                 | TAL PCB-I  |            | Number       | For                                                                                         | ber of V                                                                                | alid Data                                                                                                 | General S                                                                         | ay want to  |                        |           | ian.     | Number                 | per of                               | Dete                  | cted D                      | Data Data                                                    | 88<br>7<br>7.37% |
| 342       343       344       TOT       345       346       347       348       349       350                                                                       | TAL PCB-I  |            | Number       | For<br>Numb<br>r of Distinc                                                                 | ber of V                                                                                | alid Data                                                                                                 | General S<br>95<br>84                                                             | ay want to  |                        | statistic | ian.     | Numt<br>umber<br>F     | per of<br>of Nc                      | Dete<br>on-De         | cted D<br>etect D           | Data Data                                                    | 7                |
| 342       343       344       TOT       345       346       347       348       349       350       351                                                             | TAL PCB-I  |            | Number       | For<br>Numt<br>r of Distino<br>Number of                                                    | ber of V<br>ct Detec                                                                    | alid Data<br>ted Data<br>g Values                                                                         | General S<br>95<br>84<br>4                                                        | ay want to  | o consult a            | statistic | transfo  | Number<br>umber<br>F   | per of<br>of No<br>Percer<br>Statis  | Dete<br>on-De         | cted D<br>etect D           | Data Data                                                    | 7                |
| 342       343       344       TOT       345       346       347       348       349       350       351       352                                                   | TAL PCB-I  |            | Number       | For<br>Numb<br>r of Distinc<br>Number of<br>Statistics<br>Min                               | ber of V<br>ct Detec<br>f Missin                                                        | alid Data<br>tted Data<br>g Values                                                                        | General S<br>95<br>84<br>4<br>0.43                                                | ay want to  | o consult a            | statistic | transfo  | Number<br>umber<br>F   | per of<br>of No<br>Percer<br>Statis  | Dete<br>on-De         | cted D<br>etect D           | Data Data                                                    | 7                |
| 342       343       344       TOT       345       346       347       348       349       350       351       352       353                                         | TAL PCB-I  |            | Number       | For<br>Numb<br>r of Distinc<br>Number or<br>Statistics<br>Min<br>Ma                         | ber of V<br>ct Detect<br>f Missin                                                       | alid Data<br>ted Data<br>g Values<br>Detected<br>Detected                                                 | General S<br>95<br>84<br>4<br>0.43<br>498                                         | ay want to  | o consult a            | statistic | transfo  | Number<br>umber<br>F   | per of<br>of No<br>Percer<br>Statis  | Dete<br>on-De         | cted D<br>etect D           | Data Data                                                    | 7                |
| 342       343       344       TOT       345       346       347       348       349       350       351       352       353       354                               | TAL PCB-I  |            | Number       | For<br>Numb<br>r of Disting<br>Number of<br>Statistics<br>Min<br>Ma                         | ber of V<br>ct Detect<br>f Missin<br>inimum<br>iximum<br>lean of                        | alid Data<br>ted Data<br>g Values<br>Detected<br>Detected                                                 | General S<br>95<br>84<br>4<br>0.43<br>498<br>57.7                                 | ay want to  | o consult a            | statistic | transfo  | Number<br>umber<br>F   | per of<br>of No<br>Percer<br>Statis  | Dete<br>on-De         | cted D<br>etect D           | Data Data                                                    | 7                |
| 342       343       344       345       346       347       348       349       350       351       352       353       354       355                               | TAL PCB-I  |            | Number       | For<br>Numb<br>r of Distinc<br>Number or<br>Statistics<br>Min<br>Ma<br>Ma                   | ber of V<br>ct Detec<br>f Missin<br>inimum<br>iximum<br>Iean of<br>Iean of              | alid Data<br>ted Data<br>g Values<br>Detected<br>Detected<br>Detected<br>Detected                         | General S<br>95<br>84<br>4<br>0.43<br>498<br>57.7<br>57.7                         | ay want to  | o consult a            | statistic | transfo  | Number<br>umber<br>F   | per of<br>of No<br>Percer<br>Statis  | Dete<br>on-De         | cted D<br>etect D           | Data Data                                                    | 7                |
| 342       343       344       TOT       345       346       347       348       349       350       351       352       353       354       355       356           | TAL PCB-I  |            | Number       | For<br>Numt<br>r of Distinc<br>Number or<br>Statistics<br>Min<br>Ma<br>Ma<br>Ma<br>M        | ber of V<br>ct Detect<br>of Missin<br>inimum<br>iximum<br>lean of<br>lean of<br>lean of | alid Data<br>ted Data<br>g Values<br>Detected<br>Detected<br>Detected<br>Detected<br>Detected             | General S<br>95<br>84<br>4<br>0.43<br>498<br>57.7<br>57.7<br>57.7                 | ay want to  | o consult a            | statistic | transfo  | Number<br>umber<br>F   | per of<br>of No<br>Percer<br>Statis  | Dete<br>on-De         | cted D<br>etect D           | Data Data                                                    | 7                |
| 342       343       344       TOT       345       346       347       348       349       350       351       352       353       354                               |            |            | Number       | For<br>Numt<br>r of Distinc<br>Number or<br>Statistics<br>Min<br>Ma<br>Ma<br>Ma<br>M        | ber of V<br>ct Detect<br>of Missin<br>inimum<br>iximum<br>lean of<br>lean of<br>lean of | alid Data<br>ted Data<br>g Values<br>Detected<br>Detected<br>Detected<br>Detected                         | General S<br>95<br>84<br>4<br>0.43<br>498<br>57.7<br>57.7                         | ay want to  | o consult a            | statistic | transfo  | Number<br>umber<br>F   | per of<br>of No<br>Percer<br>Statis  | Dete<br>on-De         | cted D<br>etect D           | Data Data                                                    | 7                |
| 342       343       344       TOT       345       346       347       348       349       350       351       352       353       354       355       356       357 |            |            | Number       | For<br>Numt<br>r of Distinc<br>Number or<br>Statistics<br>Min<br>Ma<br>Ma<br>Ma<br>M        | ber of V<br>ct Detect<br>of Missin<br>inimum<br>iximum<br>lean of<br>lean of<br>lean of | alid Data<br>ted Data<br>g Values<br>Detected<br>Detected<br>Detected<br>Detected<br>Detected             | General S<br>95<br>84<br>4<br>0.43<br>498<br>57.7<br>57.7<br>57.7<br>0            | ay want to  | o consult a            | statistic | transfo  | Number<br>umber<br>F   | per of<br>of No<br>Percer<br>Statis  | Dete<br>on-De         | cted D<br>etect D           | Data Data                                                    | 7                |
| 342       343       344       TOT       345       346       347       348       349       350       351       352       353       354       355       356           |            | POS        | Number       | For<br>Numb<br>r of Disting<br>Number of<br>Statistics<br>Min<br>Ma<br>M<br>M<br>M<br>Maxin | ber of V<br>ct Detect<br>of Missin<br>inimum<br>iximum<br>lean of<br>lean of<br>mum No  | alid Data<br>ted Data<br>g Values<br>Detected<br>Detected<br>Detected<br>Detected<br>Detected<br>n-Detect | General S<br>95<br>84<br>4<br>0.43<br>498<br>57.7<br>57.7<br>57.7<br>0<br>UCL Sta | ay want to  | o consult a            | statistic | transfo  | Number<br>Frmed Avalia | per of<br>of Nc<br>Percer<br>Statist | Dete<br>on-De<br>tics | cted D<br>etect D<br>n-Dete | Data<br>Data<br>Data<br>Data<br>Data<br>Data<br>Data<br>Data | 7 7.37%          |

|     | A B C D E  |               |              |                 |                 | F              | G                        | Н                        |             |       | J            |        | K             | L     |  |
|-----|------------|---------------|--------------|-----------------|-----------------|----------------|--------------------------|--------------------------|-------------|-------|--------------|--------|---------------|-------|--|
| 361 |            |               |              |                 |                 | 0.264          |                          |                          |             |       |              | N      | ot Available  |       |  |
| 362 |            |               |              | 5% Lilliefors C |                 | 0.0944         |                          |                          |             |       |              |        |               |       |  |
| 363 |            | Data no       | t Normal at  | 5% Significar   | nce Level       |                |                          |                          |             |       |              |        |               |       |  |
| 364 |            |               |              |                 |                 |                |                          |                          |             |       |              |        |               |       |  |
| 365 |            | As            | ssuming Nor  | mal Distribut   | ion             |                |                          | Ass                      | suming Lo   | ogno  | rmal Di      | stribu | ition         |       |  |
| 366 |            |               |              | DL/2 Substitu   | ution Method    |                |                          |                          |             | 0     | DL/2 Su      | bstitu | tion Method   | N/A   |  |
| 367 |            |               |              |                 | Mean            | 53.45          |                          |                          |             |       |              |        |               |       |  |
| 368 |            |               |              |                 | SD              | 84.89          |                          |                          |             |       |              |        |               |       |  |
| 369 |            |               |              | 95% I           | DL/2 (t) UCL    | 67.92          |                          |                          |             |       |              |        |               |       |  |
| 370 |            |               |              |                 |                 |                |                          |                          |             |       |              |        |               |       |  |
| 371 |            | Maxim         | um Likelihoo | od Estimate(N   | ILE) Method     |                |                          |                          |             |       | l            | _og F  | OS Method     | N/A   |  |
| 372 |            |               |              |                 | Mean            | 49.34          |                          |                          |             |       |              |        |               |       |  |
| 373 |            |               |              |                 | SD              | 89.08          |                          |                          |             |       |              |        |               |       |  |
| 374 |            |               |              |                 | MLE (t) UCL     | 64.52          |                          |                          |             |       |              |        |               |       |  |
| 375 |            |               |              | 95% MLE         | E (Tiku) UCL    | 63.46          |                          |                          |             |       |              |        |               |       |  |
| 376 |            |               |              |                 |                 |                |                          |                          |             |       |              |        |               |       |  |
| 377 | C          |               |              | with Detecte    |                 | ly             |                          |                          |             |       |              |        | Values Only   |       |  |
| 378 |            | Ga            | amma Statist | ics Not Availa  | ble             |                |                          | Data do not              | follow a D  | Disce | ernable      | Distri | bution (0.05) |       |  |
| 379 |            |               |              |                 |                 |                |                          |                          |             |       |              |        |               |       |  |
| 380 |            |               |              |                 |                 |                |                          |                          |             |       |              |        |               |       |  |
| 381 |            |               |              | JCLs to Use     |                 |                |                          | Nonparametric Statistics |             |       |              |        |               |       |  |
| 382 |            |               | 97.5         | 5% KM (Chet     | oyshev) UCL     | 107.9          |                          |                          |             | Ka    | plan-Me      | eier ( | KM) Method    |       |  |
| 383 |            |               |              |                 |                 |                |                          |                          |             |       |              |        | Mean          | 53.48 |  |
| 384 |            |               |              |                 |                 |                |                          |                          |             |       |              |        | SD            | 84.42 |  |
| 385 |            |               |              |                 |                 |                |                          |                          |             |       |              |        | SE of Mean    | 8.711 |  |
| 386 |            |               |              |                 |                 |                |                          |                          |             |       |              |        | KM (t) UCL    | 67.95 |  |
| 387 |            |               |              |                 |                 |                |                          |                          |             |       |              |        | KM (z) UCL    | 67.81 |  |
| 388 |            |               |              |                 |                 |                |                          |                          |             |       |              | -      | kknife) UCL   | 67.95 |  |
| 389 |            |               |              |                 |                 |                |                          |                          |             | 95    |              |        | strap t) UCL  | 72.91 |  |
| 390 |            |               |              |                 |                 |                |                          |                          |             |       |              |        | (BCA) UCL     | 70.63 |  |
| 391 |            |               |              |                 |                 |                |                          |                          | 95% KN      |       |              |        | otstrap) UCL  | 68.53 |  |
| 392 |            |               |              |                 |                 |                |                          |                          |             |       |              |        | yshev) UCL    | 91.45 |  |
| 393 |            |               |              |                 |                 |                |                          |                          | ę           |       |              |        | yshev) UCL    | 107.9 |  |
| 394 |            |               |              |                 |                 |                |                          |                          |             | 99    | % KM (       | Cheb   | yshev) UCL    | 140.2 |  |
| 395 | Note: DL/2 | is not a reco | mmended m    | lethod.         |                 |                |                          |                          |             |       |              |        |               |       |  |
| 396 |            |               |              |                 |                 |                |                          |                          |             | _     |              |        |               |       |  |
| 397 |            |               |              | ng the select   |                 |                |                          |                          |             |       |              |        |               |       |  |
| 398 |            | hese recom    | imendations  | Its of the sim  |                 |                |                          |                          | Maichl      | e, an | d Lee (2006) | ).     |               |       |  |
| 399 |            |               |              | For add         | litional insigh | nt, the user n | hay want to              | consult a sta            | atistician. |       |              |        |               |       |  |
| 400 |            |               |              |                 |                 |                |                          |                          |             |       |              |        |               |       |  |
| 401 | DAD 5011   | /AL ENT       |              |                 |                 |                |                          |                          |             |       |              |        |               |       |  |
| 402 | RAD EOOI/  | ALENT-HAI     | LFND         |                 |                 |                |                          |                          |             |       |              |        |               |       |  |
| 403 | 403        |               |              |                 |                 |                | <b>0</b> , ,, ,,         |                          |             |       |              |        |               |       |  |
| 404 |            |               |              |                 | Statistics      |                |                          |                          |             |       |              | 90     |               |       |  |
| 405 |            |               |              | Number of       | of Valid Data   | 95             | 95 Number of Detected Da |                          |             |       |              |        |               |       |  |

|     | A            | В           | С               | D               | E              | F       | G                     | Н                                                        |           |         | J       |        | T           | K        |       | L       |
|-----|--------------|-------------|-----------------|-----------------|----------------|---------|-----------------------|----------------------------------------------------------|-----------|---------|---------|--------|-------------|----------|-------|---------|
| 406 |              |             | Number          | of Distinct De  | etected Data   | 88      |                       |                                                          |           | Nun     | nber o  | f Nor  | n-Det       | tect Da  | ata   | 5       |
| 407 |              |             | Ν               | lumber of Mis   | ssing Values   | 4       |                       |                                                          |           |         | Pe      | rcent  | t Non       | -Deteo   | cts   | 5.26%   |
| 408 |              |             |                 |                 |                |         |                       |                                                          |           |         |         |        |             |          |       |         |
| 409 |              |             | Raw S           | tatistics       |                |         |                       |                                                          | Log-trar  | nsform  | ed St   | atisti | cs          |          |       |         |
| 410 |              |             |                 | Minim           | um Detected    | 0.17    |                       |                                                          |           |         | Ν       | Ainim  | าum l       | Detect   | ed    | -1.772  |
| 411 |              |             |                 | Maxim           | um Detected    | 1282    |                       |                                                          |           |         | N       | laxim  | าum l       | Detect   | ed    | 7.156   |
| 412 |              |             |                 | Mean            | of Detected    | 242.7   |                       | Mean of Detected                                         |           |         |         |        |             | ed       | 4.509 |         |
| 413 |              |             |                 |                 | of Detected    |         | SD of Detected        |                                                          |           |         |         |        |             | 1.823    |       |         |
| 414 |              |             |                 |                 | Non-Detect     |         | 9.6 Minimum Non-Dete  |                                                          |           |         |         |        |             |          | 2.262 |         |
| 415 |              |             |                 | Maximum         | Non-Detect     | 10      | 10 Maximum Non-Detect |                                                          |           |         |         |        |             |          | ect   | 2.303   |
| 416 |              |             |                 |                 |                |         |                       |                                                          |           |         |         |        |             |          |       |         |
| 417 |              |             | e DLs - Use o   |                 |                | nded    |                       |                                                          | 1         |         |         |        |             | n-Dete   |       | 16      |
| 418 |              |             | KM, DL/2, an    |                 | ods),          |         |                       |                                                          |           | -       |         |        |             | Detect   |       | 79      |
| 419 | Observations | < Largest   | ND are treate   | ed as NDs       |                |         |                       |                                                          | Sing      | gle DL  | Non-E   | Deteo  | ct Pe       | rcenta   | ge    | 16.84%  |
| 420 |              |             |                 |                 |                |         |                       |                                                          |           |         |         |        |             |          |       |         |
| 421 |              |             |                 |                 |                | UCL Sta |                       |                                                          |           |         |         |        |             |          |       |         |
| 422 | No           | ormal Distr | ribution Test v |                 |                | -       | Lo                    | ognormal Dis                                             | tributior | n Test  |         |        |             |          |       |         |
| 423 |              |             |                 |                 | Test Statistic |         |                       |                                                          |           |         |         |        |             | t Statis |       | 0.138   |
| 424 |              |             |                 | 5% Lilliefors ( |                | 0.0934  |                       |                                                          |           |         |         |        |             | cal Val  |       | 0.0934  |
| 425 |              | Data no     | ot Normal at 5  | 5% Significar   | nce Level      |         |                       | Data not I                                               | _ognorn   | nal at  | 5% Si   | gnific | canc        | e Leve   | el    |         |
| 426 |              |             |                 |                 |                |         |                       |                                                          |           |         |         |        |             |          |       |         |
| 427 |              | A           | ssuming Nor     |                 |                |         |                       | Assuming Lognormal Distribution DL/2 Substitution Method |           |         |         |        |             |          |       |         |
| 428 |              |             |                 | DL/2 Substitu   |                |         |                       |                                                          |           | D       | L/2 Si  | ubstit | tutior      |          |       |         |
| 429 |              |             |                 |                 | Mean           |         |                       |                                                          |           |         |         |        |             | Me       |       | 4.355   |
| 430 |              |             |                 |                 | SD             |         |                       |                                                          |           |         |         |        |             |          | SD    | 1.891   |
| 431 |              |             |                 | 95%             | DL/2 (t) UCL   | 279.4   |                       |                                                          |           | 1       | 95% I   | H-Sta  | at (D       | L/2) U(  | CL    | 879.8   |
| 432 |              |             |                 | 1               |                |         |                       |                                                          |           |         |         |        | <b>D</b> 00 |          |       |         |
| 433 |              | Maxin       | num Likelihoo   | d Estimate(N    | -              |         |                       |                                                          |           |         |         | -      |             | 6 Meth   |       | 4 9 6 9 |
| 434 |              |             |                 |                 | Mean           |         |                       |                                                          |           |         | r       |        |             | og Sca   |       | 4.362   |
| 435 |              |             |                 | 050/            | SD             |         |                       |                                                          |           |         | Maa     |        |             | og Sca   |       | 1.881   |
| 436 |              |             |                 |                 | MLE (t) UCL    |         |                       |                                                          |           |         |         |        | -           | nal Sca  |       | 230.2   |
| 437 |              |             |                 | 95% ML          | E (Tiku) UCL   | 251.7   |                       |                                                          |           |         | 51      | Jin C  | -           | nal Sca  |       | 288.6   |
| 438 |              |             |                 |                 |                |         |                       |                                                          |           |         |         |        |             | 5% t U(  |       | 279.4   |
| 439 |              |             |                 |                 |                |         |                       |                                                          | Ś         |         |         |        |             | trap U(  |       | 278.3   |
| 440 |              |             |                 |                 |                |         |                       |                                                          |           | 9       | 5% B(   | ЈА В   |             | trap U(  |       | 288.5   |
| 441 |              |             |                 |                 |                |         |                       |                                                          |           |         |         |        | 957         | % H U(   | JL    | 865.4   |
| 442 |              | Dist.       |                 |                 | 1)/-10         | h.      |                       | Data Distrib                                             |           |         | - D - 1 |        | 11/-1       |          |       |         |
| 443 | Gê           | amma Disti  | ribution Test   |                 |                | -       | Det                   |                                                          |           |         |         |        |             |          |       |         |
| 444 |              |             |                 | k star (bla     | as corrected)  |         | Dat                   | a appear Ga                                              | mma D     | ISTRIDU | ted at  | 5% :   | Signi       | ncanc    |       | 'ei     |
| 445 |              |             |                 |                 | Theta Star     |         |                       |                                                          |           |         |         |        |             |          |       |         |
| 446 |              |             |                 |                 | nu star        | 110     |                       |                                                          |           |         |         |        |             |          |       |         |
| 447 |              |             |                 |                 |                | 0.01    |                       |                                                          | Nerr      |         | da 01   | 41-41  |             |          |       |         |
| 448 |              |             |                 |                 | Test Statistic |         |                       |                                                          | Nonpa     |         |         |        |             |          |       |         |
| 449 |              |             |                 |                 |                |         |                       |                                                          |           | Ка      | plan-N  | leler  | (KM)        | ) Meth   |       | 000 1   |
| 450 |              |             |                 | K-S             | Test Statistic | 0.806   |                       |                                                          |           |         |         |        |             | Me       | an    | 230.1   |

|                                                                                                                                                                                                         | А                                             | В                                          | С                                                                     | D                                                                                                                                                                      | E                                                                                                                                                                              | F                                                                                            | G             | Н            |            |                                              | J                                                                                                            |                                                                                                 | К                                                                                                                   |                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------|--------------|------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 451                                                                                                                                                                                                     |                                               |                                            | Ū                                                                     | _                                                                                                                                                                      | Critical Value                                                                                                                                                                 | 0.0988                                                                                       | 9             |              |            |                                              | 0                                                                                                            |                                                                                                 | SD                                                                                                                  | 287.2                                                                      |
| 452                                                                                                                                                                                                     | Data                                          | appear Ga                                  | amma Distrib                                                          | outed at 5%                                                                                                                                                            | Significance L                                                                                                                                                                 | evel.                                                                                        |               |              |            |                                              |                                                                                                              | SE                                                                                              | of Mean                                                                                                             | 29.63                                                                      |
| 453                                                                                                                                                                                                     |                                               |                                            |                                                                       |                                                                                                                                                                        |                                                                                                                                                                                |                                                                                              | 95% KM (t) UC |              |            |                                              |                                                                                                              |                                                                                                 |                                                                                                                     | 279.3                                                                      |
| 454                                                                                                                                                                                                     |                                               | A                                          | ssuming Gar                                                           | nma Distribu                                                                                                                                                           | ution                                                                                                                                                                          |                                                                                              |               |              |            |                                              | 95                                                                                                           | % KM                                                                                            | (z) UCL                                                                                                             | 278.9                                                                      |
| 455                                                                                                                                                                                                     |                                               | Gamma F                                    | ROS Statistic                                                         | s using Extra                                                                                                                                                          | apolated Data                                                                                                                                                                  |                                                                                              |               |              |            | ç                                            | 95% KM (j                                                                                                    | jackkn                                                                                          | ife) UCL                                                                                                            | 279.3                                                                      |
| 456                                                                                                                                                                                                     |                                               |                                            |                                                                       |                                                                                                                                                                        | Minimum                                                                                                                                                                        | 0.000001                                                                                     |               |              |            | 95                                           | % KM (bc                                                                                                     | otstra                                                                                          | o t) UCL                                                                                                            | 286.8                                                                      |
| 457                                                                                                                                                                                                     |                                               |                                            |                                                                       |                                                                                                                                                                        | Maximum                                                                                                                                                                        | 1282                                                                                         |               |              |            |                                              | 95% ŀ                                                                                                        | KM (BC                                                                                          | CA) UCL                                                                                                             | 279.2                                                                      |
| 458                                                                                                                                                                                                     |                                               |                                            |                                                                       |                                                                                                                                                                        | Mean                                                                                                                                                                           | 229.9                                                                                        |               |              | 95% ł      | KM (Pe                                       | ercentile E                                                                                                  | ootstra                                                                                         | ap) UCL                                                                                                             | 276.9                                                                      |
| 459                                                                                                                                                                                                     |                                               |                                            |                                                                       |                                                                                                                                                                        | Median                                                                                                                                                                         | 138                                                                                          |               |              |            | 959                                          | % KM (Ch                                                                                                     | ebysh                                                                                           | ev) UCL                                                                                                             | 359.3                                                                      |
| 460                                                                                                                                                                                                     |                                               |                                            |                                                                       |                                                                                                                                                                        | SD                                                                                                                                                                             | 288.9                                                                                        |               |              |            | 97.59                                        | % KM (Ch                                                                                                     | ebysh                                                                                           | ev) UCL                                                                                                             | 415.2                                                                      |
| 461                                                                                                                                                                                                     |                                               |                                            |                                                                       |                                                                                                                                                                        | k star                                                                                                                                                                         | 0.35                                                                                         |               |              |            | 999                                          | % KM (Ch                                                                                                     | ebysh                                                                                           | ev) UCL                                                                                                             | 524.9                                                                      |
| 462                                                                                                                                                                                                     |                                               |                                            |                                                                       |                                                                                                                                                                        | Theta star                                                                                                                                                                     | 656.5                                                                                        |               |              |            |                                              |                                                                                                              |                                                                                                 |                                                                                                                     |                                                                            |
| 463                                                                                                                                                                                                     |                                               |                                            |                                                                       |                                                                                                                                                                        | Nu star                                                                                                                                                                        | 66.55                                                                                        |               |              | Poten      |                                              | CLs to Us                                                                                                    |                                                                                                 |                                                                                                                     |                                                                            |
| 464                                                                                                                                                                                                     |                                               |                                            |                                                                       |                                                                                                                                                                        | AppChi2                                                                                                                                                                        | 48.77                                                                                        |               |              |            | 959                                          | % KM (Ch                                                                                                     | ebysh                                                                                           | ev) UCL                                                                                                             | 359.3                                                                      |
| 465                                                                                                                                                                                                     | 95                                            |                                            |                                                                       |                                                                                                                                                                        | when n >= 40)                                                                                                                                                                  | 313.7                                                                                        |               |              |            |                                              |                                                                                                              |                                                                                                 |                                                                                                                     |                                                                            |
| 466                                                                                                                                                                                                     |                                               | ,                                          |                                                                       |                                                                                                                                                                        | when n < 40)                                                                                                                                                                   | 315.2                                                                                        |               |              |            |                                              |                                                                                                              |                                                                                                 |                                                                                                                     |                                                                            |
| 467                                                                                                                                                                                                     | Note: DL/2 i                                  | s not a reco                               | ommended n                                                            | nethod.                                                                                                                                                                |                                                                                                                                                                                |                                                                                              |               | 1            | - 1        |                                              |                                                                                                              |                                                                                                 |                                                                                                                     |                                                                            |
| 468                                                                                                                                                                                                     |                                               |                                            |                                                                       |                                                                                                                                                                        |                                                                                                                                                                                |                                                                                              |               |              |            |                                              |                                                                                                              |                                                                                                 |                                                                                                                     |                                                                            |
| 469                                                                                                                                                                                                     |                                               |                                            | -                                                                     | -                                                                                                                                                                      | ction of a 95%                                                                                                                                                                 | -                                                                                            |               |              |            |                                              |                                                                                                              | -                                                                                               |                                                                                                                     |                                                                            |
| 470                                                                                                                                                                                                     | Т                                             | hese recon                                 | nmendations                                                           |                                                                                                                                                                        | upon the resu                                                                                                                                                                  |                                                                                              |               |              |            | -                                            | Maichle,                                                                                                     | and Le                                                                                          | e (2006                                                                                                             | ).                                                                         |
| 470                                                                                                                                                                                                     |                                               |                                            |                                                                       |                                                                                                                                                                        |                                                                                                                                                                                | t the user m                                                                                 | av want to    | concult o of | atistician | •                                            |                                                                                                              |                                                                                                 |                                                                                                                     |                                                                            |
|                                                                                                                                                                                                         |                                               |                                            |                                                                       | For ad                                                                                                                                                                 | ditional insigh                                                                                                                                                                | it, the user m                                                                               | ay want to    | consult a st | austician  |                                              |                                                                                                              |                                                                                                 |                                                                                                                     |                                                                            |
| 471<br>472                                                                                                                                                                                              |                                               |                                            |                                                                       | For ad                                                                                                                                                                 | iditional insign                                                                                                                                                               |                                                                                              |               |              |            | •                                            |                                                                                                              |                                                                                                 |                                                                                                                     |                                                                            |
| 471<br>472                                                                                                                                                                                              |                                               |                                            |                                                                       | For ad                                                                                                                                                                 | iditional insigh                                                                                                                                                               |                                                                                              |               |              |            | •                                            |                                                                                                              |                                                                                                 |                                                                                                                     |                                                                            |
| 471<br>472<br>473<br>474                                                                                                                                                                                | BAP EQUIV                                     | ALENT-PO                                   | os                                                                    | For ad                                                                                                                                                                 | iditional insigh                                                                                                                                                               |                                                                                              |               |              |            |                                              |                                                                                                              |                                                                                                 |                                                                                                                     |                                                                            |
| 471<br>472<br>473<br>474<br>475                                                                                                                                                                         | BAP EQUIV                                     | ALENT-PO                                   | )S                                                                    | For ad                                                                                                                                                                 | iditional insigh                                                                                                                                                               |                                                                                              |               |              |            | · ·                                          |                                                                                                              |                                                                                                 |                                                                                                                     |                                                                            |
| 471<br>472<br>473<br>474<br>475<br>476                                                                                                                                                                  | BAP EQUIV                                     | ALENT-PO                                   | DS                                                                    |                                                                                                                                                                        |                                                                                                                                                                                | General S                                                                                    |               |              |            |                                              | umber of                                                                                                     | Detect                                                                                          | ad Data                                                                                                             |                                                                            |
| 471<br>472<br>473<br>474<br>475<br>476                                                                                                                                                                  | BAP EQUIV                                     | ALENT-PO                                   |                                                                       | Number                                                                                                                                                                 | of Valid Data                                                                                                                                                                  | General S<br>95                                                                              |               |              |            | N                                            | umber of                                                                                                     |                                                                                                 |                                                                                                                     | 90                                                                         |
| 471<br>472<br>473<br>474<br>475<br>476<br>477                                                                                                                                                           | BAP EQUIV                                     | ALENT-PO                                   | Number                                                                | Number<br>r of Distinct E                                                                                                                                              | of Valid Data<br>Detected Data                                                                                                                                                 | <b>General S</b><br>95<br>89                                                                 |               |              |            | N                                            | nber of No                                                                                                   | on-Det                                                                                          | ect Data                                                                                                            | 5                                                                          |
| 471<br>472<br>473<br>474<br>475<br>475<br>476<br>477<br>478                                                                                                                                             | BAP EQUIV                                     | ALENT-PO                                   | Number                                                                | Number<br>r of Distinct E                                                                                                                                              | of Valid Data                                                                                                                                                                  | General S<br>95                                                                              |               |              |            | N                                            | nber of No                                                                                                   | on-Det                                                                                          |                                                                                                                     |                                                                            |
| 471<br>472<br>473<br>474<br>475<br>476<br>477<br>478<br>479<br>480                                                                                                                                      | BAP EQUIV                                     | ALENT-PO                                   | Number                                                                | Number<br>r of Distinct E<br>Number of M                                                                                                                               | of Valid Data<br>Detected Data                                                                                                                                                 | <b>General S</b><br>95<br>89                                                                 |               |              |            | N                                            | nber of No<br>Percer                                                                                         | on-Dete                                                                                         | ect Data                                                                                                            | 5                                                                          |
| 471<br>472<br>473<br>474<br>475<br>476<br>477<br>478<br>477<br>478<br>479<br>480<br>481                                                                                                                 | BAP EQUIV                                     | ALENT-PO                                   | Number                                                                | Number<br>r of Distinct E<br>Number of M<br>Statistics                                                                                                                 | of Valid Data<br>Detected Data<br>lissing Values                                                                                                                               | <b>General S</b><br>95<br>89<br>4                                                            |               |              |            | N                                            | ber of No<br>Percer<br>ed Statis                                                                             | on-Detent Non-<br>tics                                                                          | ect Data<br>Detects                                                                                                 | 5.26%                                                                      |
| 471<br>472<br>473<br>474<br>475<br>476<br>477<br>478<br>479<br>480<br>481<br>482                                                                                                                        | BAP EQUIV                                     | ALENT-PO                                   | Number                                                                | Number<br>r of Distinct E<br>Number of M<br>Statistics<br>Minin                                                                                                        | of Valid Data<br>Detected Data<br>lissing Values                                                                                                                               | <b>General S</b><br>95<br>89<br>4<br>0.17                                                    |               |              |            | N                                            | nber of No<br>Percer<br>ed Statis<br>Mini                                                                    | on-Detent Non-<br>tics<br>mum [                                                                 | ect Data<br>Detects<br>Detected                                                                                     | 5.26%                                                                      |
| 471<br>472<br>473<br>474<br>475<br>476<br>477<br>478<br>477<br>478<br>479<br>480<br>481<br>482<br>483                                                                                                   | BAP EQUIV                                     | ALENT-PO                                   | Number                                                                | Number<br>r of Distinct E<br>Number of M<br>Statistics<br>Minin<br>Maxin                                                                                               | of Valid Data<br>Detected Data<br>lissing Values<br>hum Detected                                                                                                               | <b>General S</b><br>95<br>89<br>4<br>0.17<br>1282                                            |               |              |            | N                                            | nber of No<br>Percer<br>ed Statis<br>Mini<br>Maxi                                                            | n-Deto<br>nt Non-<br>tics<br>mum E                                                              | ect Data<br>Detects<br>Detected                                                                                     | 5.26%<br>-1.772<br>7.156                                                   |
| 471<br>472<br>473<br>474<br>475<br>476<br>477<br>478<br>477<br>478<br>479<br>480<br>481<br>482<br>483<br>484                                                                                            | BAP EQUIV                                     | ALENT-PO                                   | Number                                                                | Number<br>r of Distinct D<br>Number of M<br>Statistics<br>Minim<br>Maxim<br>Mea                                                                                        | of Valid Data<br>Detected Data<br>lissing Values<br>num Detected<br>num Detected<br>n of Detected                                                                              | General S<br>95<br>89<br>4<br>0.17<br>1282<br>242.3                                          |               |              |            | N                                            | nber of No<br>Percer<br>ed Statis<br>Mini<br>Maxi<br>Me:                                                     | n-Deta<br>nt Non-<br>tics<br>mum [<br>mum [<br>an of [                                          | Detected                                                                                                            | 5.26%<br>5.26%<br>-1.772<br>7.156<br>4.43                                  |
| 471<br>472<br>473<br>474<br>475<br>476<br>477<br>478<br>477<br>478<br>480<br>481<br>482<br>483<br>484<br>485                                                                                            | BAP EQUIV                                     | ALENT-PO                                   | Number                                                                | Number<br>r of Distinct E<br>Number of M<br>Statistics<br>Minin<br>Maxin<br>Mea<br>Sl                                                                                  | of Valid Data<br>Detected Data<br>lissing Values<br>num Detected<br>num Detected<br>n of Detected<br>D of Detected                                                             | General S<br>95<br>89<br>4<br>0.17<br>1282<br>242.3<br>291.8                                 |               |              |            | N                                            | ed Statis<br>Mini<br>Maxi<br>S                                                                               | tics<br>mum E<br>mum E<br>an of E                                                               | ect Data<br>Detects<br>Detected<br>Detected<br>Detected                                                             | 5.26%<br>5.26%<br>-1.772<br>7.156<br>4.43<br>1.962                         |
| 471<br>472<br>473<br>474<br>475<br>476<br>477<br>478<br>477<br>478<br>479<br>480<br>481<br>482<br>483<br>484<br>485<br>486                                                                              | BAP EQUIV                                     | ALENT-PO                                   | Number                                                                | Number<br>r of Distinct E<br>Number of M<br>Statistics<br>Minim<br>Maxim<br>Mea<br>Sl<br>Minimur                                                                       | of Valid Data<br>Detected Data<br>lissing Values<br>num Detected<br>num Detected<br>n of Detected<br>D of Detected<br>m Non-Detect                                             | General S<br>95<br>89<br>4<br>0.17<br>1282<br>242.3<br>291.8<br>9.6                          |               |              |            | N                                            | ed Statis<br>Minii<br>Maxii<br>Maxii<br>Maxii                                                                | tics<br>mum E<br>mum E<br>an of E<br>D of E                                                     | Detected<br>Detected<br>Detected<br>Detected<br>Detected<br>Detected<br>Detected                                    | 5.26%<br>5.26%<br>-1.772<br>7.156<br>4.43<br>1.962<br>2.262                |
| 471<br>472<br>473<br>474<br>475<br>476<br>477<br>478<br>477<br>478<br>480<br>481<br>482<br>483<br>484<br>485<br>485<br>486<br>487                                                                       |                                               | ALENT-PO                                   | Number                                                                | Number<br>r of Distinct E<br>Number of M<br>Statistics<br>Minim<br>Maxim<br>Mea<br>Sl<br>Minimur                                                                       | of Valid Data<br>Detected Data<br>lissing Values<br>num Detected<br>num Detected<br>n of Detected<br>D of Detected                                                             | General S<br>95<br>89<br>4<br>0.17<br>1282<br>242.3<br>291.8                                 |               |              |            | N                                            | ed Statis<br>Minii<br>Maxii<br>Maxii<br>Maxii                                                                | tics<br>mum E<br>mum E<br>an of E<br>D of E                                                     | ect Data<br>Detects<br>Detected<br>Detected<br>Detected                                                             | 5.26%<br>5.26%<br>-1.772<br>7.156<br>4.43<br>1.962                         |
| 471<br>472<br>473<br>474<br>475<br>476<br>477<br>478<br>479<br>480<br>481<br>482<br>483<br>484<br>485<br>485<br>486<br>487<br>488                                                                       |                                               |                                            | Number                                                                | Number<br>r of Distinct E<br>Number of M<br>Statistics<br>Minim<br>Maxim<br>Mea<br>SI<br>Minimur<br>Maximur                                                            | of Valid Data<br>Detected Data<br>lissing Values<br>num Detected<br>num Detected<br>n of Detected<br>D of Detected<br>m Non-Detect<br>m Non-Detect                             | General S<br>95<br>89<br>4<br>0.17<br>1282<br>242.3<br>291.8<br>9.6<br>10                    |               |              | Log-tran   | Nun                                          | ed Statis<br>Mini<br>Maxi<br>Maxi<br>Maxi<br>Minimu<br>Maximu                                                | tics<br>mum E<br>mum E<br>mum E<br>an of E<br>SD of E<br>im Noi                                 | Detected<br>Detected<br>Detected<br>Detected<br>Detected<br>Detected<br>n-Detect<br>n-Detect                        | 5.26%<br>5.26%<br>-1.772<br>7.156<br>4.43<br>1.962<br>2.262<br>2.303       |
| 471<br>472<br>473<br>474<br>475<br>476<br>477<br>478<br>480<br>481<br>482<br>483<br>484<br>485<br>486<br>487<br>488<br>488                                                                              | Note: Data h                                  | ave multiple                               | Number                                                                | Number<br>r of Distinct E<br>Number of M<br>Statistics<br>Minim<br>Maxim<br>Mea<br>Si<br>Minimur<br>Maximur                                                            | of Valid Data<br>Detected Data<br>lissing Values<br>num Detected<br>num Detected<br>n of Detected<br>m Non-Detect<br>m Non-Detect<br>d is recommen                             | General S<br>95<br>89<br>4<br>0.17<br>1282<br>242.3<br>291.8<br>9.6<br>10                    |               |              | Log-tran   | Nun                                          | ed Statis<br>Minii<br>Maxii<br>Maxii<br>Maximu<br>Maximu<br>Maximu                                           | tics<br>mum E<br>mum E<br>an of E<br>SD of E<br>um Noi<br>um Noi<br>as Noi                      | Detected<br>Detected<br>Detected<br>Detected<br>Detected<br>Detected<br>n-Detect<br>n-Detect                        | 5.26%<br>5.26%<br>-1.772<br>7.156<br>4.43<br>1.962<br>2.262<br>2.303<br>18 |
| 471<br>472<br>473<br>474<br>475<br>476<br>477<br>478<br>479<br>480<br>481<br>482<br>483<br>484<br>483<br>484<br>485<br>485<br>486<br>487<br>488<br>488<br>489<br>490                                    | Note: Data h                                  | ave multiple                               | Number<br>Raw S                                                       | Number<br>r of Distinct E<br>Number of M<br>Statistics<br>Minim<br>Maxim<br>Mea<br>Si<br>Minimur<br>Maximur<br>of KM Metho<br>nd ROS Meth                              | of Valid Data<br>Detected Data<br>lissing Values<br>num Detected<br>num Detected<br>n of Detected<br>m Non-Detect<br>m Non-Detect<br>d is recommen                             | General S<br>95<br>89<br>4<br>0.17<br>1282<br>242.3<br>291.8<br>9.6<br>10                    |               |              | Log-trai   | Num<br>Num<br>Numbe<br>Numbe                 | ed Statis<br>Percer<br>Mini<br>Maxi<br>Maxi<br>Maximu<br>Maximu<br>er treated                                | tics<br>mum E<br>mum E<br>an of E<br>D of E<br>im Noi<br>im Noi<br>as Noi<br>ed as E            | ect Data<br>Detected<br>Detected<br>Detected<br>Detected<br>Detected<br>n-Detect<br>n-Detect                        | 5.26%<br>5.26%<br>-1.772<br>7.156<br>4.43<br>1.962<br>2.262<br>2.303<br>   |
| 471<br>472<br>473<br>474<br>475<br>476<br>477<br>478<br>479<br>480<br>481<br>482<br>483<br>484<br>485<br>485<br>486<br>485<br>486<br>487<br>488<br>489<br>490<br>491                                    | Note: Data h                                  | ave multiple                               | Number                                                                | Number<br>r of Distinct E<br>Number of M<br>Statistics<br>Minim<br>Maxim<br>Mea<br>Si<br>Minimur<br>Maximur<br>of KM Metho<br>nd ROS Meth                              | of Valid Data<br>Detected Data<br>lissing Values<br>num Detected<br>num Detected<br>n of Detected<br>m Non-Detect<br>m Non-Detect<br>d is recommen                             | General S<br>95<br>89<br>4<br>0.17<br>1282<br>242.3<br>291.8<br>9.6<br>10                    |               |              | Log-trai   | Num<br>Num<br>Numbe<br>Numbe                 | ed Statis<br>Minii<br>Maxii<br>Maxii<br>Maximu<br>Maximu<br>Maximu                                           | tics<br>mum E<br>mum E<br>an of E<br>D of E<br>im Noi<br>im Noi<br>as Noi<br>ed as E            | ect Data<br>Detected<br>Detected<br>Detected<br>Detected<br>Detected<br>n-Detect<br>n-Detect                        | 5.26%<br>5.26%<br>-1.772<br>7.156<br>4.43<br>1.962<br>2.262<br>2.303<br>18 |
| 471<br>472<br>473<br>474<br>475<br>476<br>477<br>478<br>477<br>478<br>480<br>481<br>482<br>483<br>484<br>485<br>488<br>485<br>486<br>487<br>488<br>489<br>490<br>491<br>492                             | Note: Data h                                  | ave multiple                               | Number<br>Raw S                                                       | Number<br>r of Distinct E<br>Number of M<br>Statistics<br>Minim<br>Maxim<br>Mea<br>Si<br>Minimur<br>Maximur<br>of KM Metho<br>nd ROS Meth                              | of Valid Data<br>Detected Data<br>lissing Values<br>num Detected<br>num Detected<br>n of Detected<br>m Non-Detect<br>m Non-Detect<br>d is recommen                             | General S<br>95<br>89<br>4<br>0.17<br>1282<br>242.3<br>291.8<br>9.6<br>10<br>10              | Statistics    |              | Log-trai   | Num<br>Num<br>Numbe<br>Numbe                 | ed Statis<br>Percer<br>Mini<br>Maxi<br>Maxi<br>Maximu<br>Maximu<br>er treated                                | tics<br>mum E<br>mum E<br>an of E<br>D of E<br>im Noi<br>im Noi<br>as Noi<br>ed as E            | ect Data<br>Detected<br>Detected<br>Detected<br>Detected<br>Detected<br>n-Detect<br>n-Detect                        | 5.26%<br>5.26%<br>-1.772<br>7.156<br>4.43<br>1.962<br>2.262<br>2.303<br>   |
| 471<br>472<br>473<br>474<br>475<br>476<br>477<br>478<br>479<br>480<br>481<br>482<br>483<br>484<br>482<br>483<br>484<br>485<br>485<br>486<br>487<br>488<br>487<br>488<br>489<br>490<br>491<br>492<br>493 | Note: Data h<br>For all metho<br>Observation: | ave multiple<br>ods (except<br>s < Largest | Number<br>I<br>Raw S<br>e DLs - Use o<br>KM, DL/2, an<br>ND are treat | Number<br>r of Distinct E<br>Number of M<br>Statistics<br>Minim<br>Maxim<br>Mea<br>SI<br>Minimur<br>Maximur<br>of KM Metho<br>nd ROS Meth<br>ed as NDs                 | of Valid Data<br>Detected Data<br>lissing Values<br>num Detected<br>num Detected<br>n of Detected<br>D of Detected<br>m Non-Detect<br>m Non-Detect<br>d is recomment<br>hods), | General S<br>95<br>89<br>4<br>4<br>0.17<br>1282<br>242.3<br>291.8<br>9.6<br>10<br>10<br>10   | Statistics    |              | Log-trai   | N<br>Nun<br>nsform<br>Numbe<br>Num<br>gle DL | ed Statis<br>Percer<br>Mini<br>Maxi<br>Maximu<br>Maximu<br>er treated<br>Non-Dete                            | tics<br>mum E<br>mum E<br>an of E<br>D of E<br>im Noi<br>as Noi<br>as Noi<br>ad as E<br>ect Per | ect Data<br>Detected<br>Detected<br>Detected<br>Detected<br>Detected<br>n-Detect<br>n-Detect<br>Detected<br>centage | 5<br>5.26%<br>                                                             |
| 471<br>472<br>473<br>474<br>475<br>476<br>477<br>478<br>479<br>480<br>487<br>488<br>482<br>483<br>484<br>485<br>486<br>485<br>486<br>487<br>488<br>489<br>490<br>491                                    | Note: Data h<br>For all metho<br>Observation: | ave multiple<br>ods (except<br>s < Largest | Number<br>I<br>Raw S<br>e DLs - Use o<br>KM, DL/2, an<br>ND are treat | Number<br>r of Distinct I<br>Number of M<br>Statistics<br>Minim<br>Maxim<br>Maximu<br>Maximur<br>Maximur<br>of KM Metho<br>nd ROS Mether<br>ed as NDs<br>with Detector | of Valid Data<br>Detected Data<br>lissing Values<br>num Detected<br>num Detected<br>n of Detected<br>m Non-Detect<br>m Non-Detect<br>d is recommen                             | General S<br>95<br>89<br>4<br>4<br>0.17<br>1282<br>242.3<br>291.8<br>9.6<br>10<br>10<br>nded | Statistics    | ognormal Di  | Log-trai   | N<br>Nun<br>nsform<br>Numbe<br>Num<br>gle DL | ed Statis<br>Percer<br>Minii<br>Maxii<br>Maxii<br>Maximu<br>Maximu<br>er treated<br>ber treated<br>with Dete | tics<br>mum E<br>mum E<br>an of E<br>D of E<br>um Noi<br>um Noi<br>as Noi<br>ed as E<br>ect Per | ect Data<br>Detected<br>Detected<br>Detected<br>Detected<br>Detected<br>n-Detect<br>n-Detect<br>Detected<br>centage | 5<br>5.26%<br>                                                             |

|     | A B C D E                                          | F                                           | G H I J K                                            | L      |  |  |  |  |  |
|-----|----------------------------------------------------|---------------------------------------------|------------------------------------------------------|--------|--|--|--|--|--|
| 496 | 5% Lilliefors Critical Value                       | 0.0934                                      | 5% Lilliefors Critical Value                         | 0.0934 |  |  |  |  |  |
| 497 | Data not Normal at 5% Significance Level           | Data not Lognormal at 5% Significance Level |                                                      |        |  |  |  |  |  |
| 498 |                                                    |                                             |                                                      |        |  |  |  |  |  |
| 499 | Assuming Normal Distribution                       |                                             | Assuming Lognormal Distribution                      |        |  |  |  |  |  |
| 500 | DL/2 Substitution Method                           |                                             | DL/2 Substitution Method                             |        |  |  |  |  |  |
| 501 | Mean                                               | 229.8                                       | Mean                                                 | 4.281  |  |  |  |  |  |
| 502 | SD                                                 | 288.9                                       | SD                                                   | 2.012  |  |  |  |  |  |
| 503 | 95% DL/2 (t) UCL                                   | 279.1                                       | 95% H-Stat (DL/2) UCL                                | 1112   |  |  |  |  |  |
| 504 |                                                    |                                             |                                                      |        |  |  |  |  |  |
| 505 | Maximum Likelihood Estimate(MLE) Method            |                                             | Log ROS Method                                       |        |  |  |  |  |  |
| 506 | Mean                                               | 191.1                                       | Mean in Log Scale                                    | 4.282  |  |  |  |  |  |
| 507 | SD                                                 | 334.9                                       | SD in Log Scale                                      | 2.011  |  |  |  |  |  |
| 508 | 95% MLE (t) UCL                                    | 248.1                                       | Mean in Original Scale                               | 229.8  |  |  |  |  |  |
|     | 95% MLE (Tiku) UCL                                 | 247.7                                       | SD in Original Scale                                 | 288.9  |  |  |  |  |  |
| 509 |                                                    |                                             | 95% t UCL                                            | 279.1  |  |  |  |  |  |
| 510 |                                                    |                                             | 95% Percentile Bootstrap UCL                         | 283.2  |  |  |  |  |  |
| 511 |                                                    |                                             | 95% BCA Bootstrap UCL                                | 284.1  |  |  |  |  |  |
| 512 |                                                    |                                             | 95% H UCL                                            | 1112   |  |  |  |  |  |
| 513 |                                                    |                                             |                                                      |        |  |  |  |  |  |
| 514 | Gamma Distribution Test with Detected Values Onl   | v                                           | Data Distribution Test with Detected Values Only     |        |  |  |  |  |  |
| 515 | k star (bias corrected)                            | 0.573                                       | Data appear Gamma Distributed at 5% Significance Lev |        |  |  |  |  |  |
| 516 | Theta Star                                         | 423                                         |                                                      |        |  |  |  |  |  |
| 517 | nu star                                            | 103.1                                       |                                                      |        |  |  |  |  |  |
| 518 |                                                    | 105.1                                       |                                                      |        |  |  |  |  |  |
| 519 | A-D Test Statistic                                 | 0.407                                       | Nonparametric Statistics                             |        |  |  |  |  |  |
| 520 | 5% A-D Critical Value                              | 0.407                                       | Kaplan-Meier (KM) Method                             |        |  |  |  |  |  |
| 521 | K-S Test Statistic                                 | 0.81                                        | Kapian-Meler (KW) Method<br>Mean                     | 229.7  |  |  |  |  |  |
| 522 | 5% K-S Critical Value                              | 0.01                                        | SD                                                   | 229.7  |  |  |  |  |  |
| 523 |                                                    |                                             |                                                      |        |  |  |  |  |  |
| 524 | Data appear Gamma Distributed at 5% Significance L | evei                                        | SE of Mean                                           | 29.66  |  |  |  |  |  |
| 525 |                                                    |                                             | 95% KM (t) UCL                                       | 279    |  |  |  |  |  |
| 526 | Assuming Gamma Distribution                        |                                             | 95% KM (z) UCL                                       | 278.5  |  |  |  |  |  |
| 527 | Gamma ROS Statistics using Extrapolated Data       |                                             | 95% KM (jackknife) UCL                               | 279    |  |  |  |  |  |
| 528 | Minimum                                            | 0.000001                                    | 95% KM (bootstrap t) UCL                             | 285.2  |  |  |  |  |  |
| 529 | Maximum                                            | 1282                                        | 95% KM (BCA) UCL                                     | 281.6  |  |  |  |  |  |
| 530 | Mean                                               | 229.6                                       | 95% KM (Percentile Bootstrap) UCL                    | 279.3  |  |  |  |  |  |
| 531 | Median                                             | 138                                         | 95% KM (Chebyshev) UCL                               | 359    |  |  |  |  |  |
| 532 | SD                                                 | 289.1                                       | 97.5% KM (Chebyshev) UCL                             | 414.9  |  |  |  |  |  |
| 533 | k star                                             | 0.339                                       | 99% KM (Chebyshev) UCL                               | 524.8  |  |  |  |  |  |
| 534 | Theta star                                         | 676.7                                       |                                                      |        |  |  |  |  |  |
| 535 | Nu star                                            | 64.46                                       | Potential UCLs to Use                                |        |  |  |  |  |  |
| 536 | AppChi2                                            | 46.99                                       | 95% KM (Chebyshev) UCL                               | 359    |  |  |  |  |  |
| 537 | 95% Gamma Approximate UCL (Use when n >= 40)       | 314.9                                       |                                                      |        |  |  |  |  |  |
| 538 | 95% Adjusted Gamma UCL (Use when n < 40)           | 316.5                                       |                                                      |        |  |  |  |  |  |
|     | ote: DL/2 is not a recommended method.             |                                             |                                                      |        |  |  |  |  |  |
| 540 |                                                    |                                             |                                                      |        |  |  |  |  |  |
| J40 |                                                    |                                             |                                                      |        |  |  |  |  |  |

|     | А | В                                                                                                                        | С             | D             | E               | F              | G             | Н             | I              | J            | K           | L  |  |  |
|-----|---|--------------------------------------------------------------------------------------------------------------------------|---------------|---------------|-----------------|----------------|---------------|---------------|----------------|--------------|-------------|----|--|--|
| 541 | N | ote: Suggest                                                                                                             | ions regardir | ng the select | ion of a 95%    | UCL are pro    | ovided to he  | p the user to | o select the r | nost appropr | iate 95% UC | L. |  |  |
| 542 | - | These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). |               |               |                 |                |               |               |                |              |             |    |  |  |
| 543 |   |                                                                                                                          |               | For add       | litional insigh | nt, the user m | nay want to o | consult a sta | tistician.     |              |             |    |  |  |
| 544 |   |                                                                                                                          |               |               |                 |                |               |               |                |              |             |    |  |  |

#### PROUCL OUTPUTS

UPPER PREDICTION LIMITS

|    | A B C                          | D E                       | F        | G             | Н                       | 1          | J                                     | K                 | T       | 1 |  |  |  |  |
|----|--------------------------------|---------------------------|----------|---------------|-------------------------|------------|---------------------------------------|-------------------|---------|---|--|--|--|--|
| 1  |                                | General Background Sta    |          |               |                         |            | , , , , , , , , , , , , , , , , , , , |                   |         |   |  |  |  |  |
| 2  | User Selected Options          |                           |          |               |                         |            |                                       |                   |         |   |  |  |  |  |
| 3  | From File                      | upper chesapeake.wst      |          |               |                         |            |                                       |                   |         |   |  |  |  |  |
| 4  | Full Precision                 | OFF                       |          |               |                         |            |                                       |                   |         |   |  |  |  |  |
| 5  | Confidence Coefficient         | 95%                       |          |               |                         |            |                                       |                   |         |   |  |  |  |  |
| 6  | Coverage                       | 90%                       |          |               |                         |            |                                       |                   |         |   |  |  |  |  |
| 7  | Different or Future K Values   | 1                         |          |               |                         |            |                                       |                   |         |   |  |  |  |  |
| 8  | Number of Bootstrap Operations | 2000                      |          |               |                         |            |                                       |                   |         |   |  |  |  |  |
| 9  |                                |                           |          |               |                         |            |                                       |                   |         |   |  |  |  |  |
| 10 |                                |                           |          |               |                         |            |                                       |                   |         |   |  |  |  |  |
| 11 | Arsenic                        |                           |          |               |                         |            |                                       |                   |         |   |  |  |  |  |
| 12 |                                |                           |          |               |                         |            |                                       |                   |         |   |  |  |  |  |
| 12 |                                |                           | Genera   | I Statistics  |                         |            |                                       |                   |         |   |  |  |  |  |
| 14 | Total                          | Number of Observations    | 97       |               |                         | Numbe      | er of Distinct C                      | Observatior       | is 88   |   |  |  |  |  |
| 14 |                                | Tolerance Factor          | 1.528    |               |                         | 1          | Number of Mis                         | sing Value        | es 2    |   |  |  |  |  |
| 16 |                                |                           |          |               |                         |            |                                       |                   |         |   |  |  |  |  |
| 10 | Raw St                         | tatistics                 |          |               | Lo                      | g-Transfo  | rmed Statistic                        | s                 |         |   |  |  |  |  |
| 17 |                                | Minimum                   | 1.27     |               |                         |            |                                       | Minimu            | n 0.23  | 9 |  |  |  |  |
| 19 |                                | Maximum                   | 32.6     |               |                         |            |                                       | Maximu            | n 3.48  | 4 |  |  |  |  |
| 20 |                                | Second Largest            | 31.1     |               |                         |            | Sec                                   | ond Large         | st 3.43 | 7 |  |  |  |  |
| 20 |                                | First Quartile            |          |               |                         |            |                                       | -<br>First Quarti |         |   |  |  |  |  |
| 22 |                                | Median                    | 15.3     |               |                         |            |                                       | Media             | n 2.72  | 8 |  |  |  |  |
| 23 |                                | Third Quartile            | 23       |               |                         |            | Т                                     | hird Quarti       | e 3.13  | 5 |  |  |  |  |
| 24 |                                | Mean                      | 15.51    |               |                         |            |                                       | Mea               | n 2.45  | 5 |  |  |  |  |
| 25 |                                | SD                        | 9.288    | SD 0.885      |                         |            |                                       |                   |         |   |  |  |  |  |
| 26 |                                | Coefficient of Variation  | 0.599    |               |                         |            |                                       |                   |         |   |  |  |  |  |
| 27 |                                | Skewness                  | 0.071    |               |                         |            |                                       |                   |         |   |  |  |  |  |
| 28 |                                |                           |          |               |                         |            |                                       |                   |         |   |  |  |  |  |
| 29 |                                |                           | Backgrou | nd Statistics |                         |            |                                       |                   |         |   |  |  |  |  |
| 30 | Normal Dist                    | ribution Test             |          |               | Log                     | gnormal D  | istribution Te                        | st                |         |   |  |  |  |  |
| 31 |                                | Lilliefors Test Statistic | 0.0942   |               |                         |            | Lilliefors                            | Fest Statist      | ic 0.18 | 8 |  |  |  |  |
| 32 |                                | Lilliefors Critical Value | 0.09     |               |                         |            | Lilliefors C                          | Critical Valu     | e 0.09  |   |  |  |  |  |
| 33 | Data not Normal at 5           | % Significance Level      |          |               | Data not Lo             | gnormal a  | t 5% Significa                        | ance Level        |         |   |  |  |  |  |
| 34 |                                |                           |          |               |                         |            |                                       |                   |         |   |  |  |  |  |
| 35 | Assuming Norr                  |                           |          |               | Assur                   |            | ormal Distrib                         |                   |         |   |  |  |  |  |
| 36 | 95% L                          | JTL with 90% Coverage     |          |               |                         | 95%        | UTL with 90                           | -                 |         |   |  |  |  |  |
| 37 |                                | 95% UPL (t)               |          |               | 95% UPL (t) 51.02       |            |                                       |                   |         |   |  |  |  |  |
| 38 |                                | 90% Percentile (z)        |          |               | 90% Percentile (z) 36.2 |            |                                       |                   |         |   |  |  |  |  |
| 39 |                                | 95% Percentile (z)        |          |               |                         |            |                                       | Percentile (2     |         |   |  |  |  |  |
| 40 |                                | 99% Percentile (z)        | 37.12    |               |                         |            | 99% F                                 | ercentile (2      | z) 91.2 | 3 |  |  |  |  |
| 41 |                                |                           |          |               |                         |            |                                       |                   |         |   |  |  |  |  |
| 42 | Gamma Dist                     | ribution Test             |          |               |                         |            | ibution Test                          |                   |         |   |  |  |  |  |
| 43 |                                | k star                    |          | Da            | ta do not fol           | low a Disc | ernable Distr                         | ibution (0.       | 05)     |   |  |  |  |  |
| 44 |                                | Theta Star                |          |               |                         |            |                                       |                   |         |   |  |  |  |  |
| 45 | I                              | MLE of Mean               | 15.51    |               |                         |            |                                       |                   |         |   |  |  |  |  |

|          | A B C D E                                           | F        | G              | Н            | I           | J            | K               |       | L     |
|----------|-----------------------------------------------------|----------|----------------|--------------|-------------|--------------|-----------------|-------|-------|
| 46       | MLE of Standard Deviation                           | 11.43    |                |              | •           |              |                 |       |       |
| 47       | nu star                                             | 357.4    |                |              |             |              |                 |       |       |
| 48       |                                                     |          |                |              |             |              |                 |       |       |
| 49       | A-D Test Statistic                                  | 2.639    |                |              | Nonparam    | etric Stati  | stics           |       |       |
| 50       | 5% A-D Critical Value                               | 0.766    |                |              |             |              | 90% Percer      | ntile | 28.98 |
| 51       | K-S Test Statistic                                  | 0.141    |                |              |             |              | 95% Percer      | ntile | 30.27 |
| 52       | 5% K-S Critical Value                               | 0.0922   |                |              |             |              | 99% Percer      | ntile | 31.16 |
| 53       | Data not Gamma Distributed at 5% Significance Level | vel      |                |              |             |              |                 |       |       |
| 54       |                                                     |          |                |              |             |              |                 |       |       |
| 55       | Assuming Gamma Distribution                         |          |                |              | 95%         | UTL with     | 90% Cover       | age   | 29.7  |
| 56       | 90% Percentile                                      | 30.77    | 95             | 5% Percentil | e Bootstrap | UTL with     | 90% Cover       | age   | 29.91 |
| 57       | 95% Percentile                                      | 37.78    |                | 95% BC/      | A Bootstrap | UTL with     | 90% Cover       | age   | 29.91 |
| 58       | 99% Percentile                                      | 53.41    |                |              |             |              | 95% l           | JPL   | 30.47 |
| 59       |                                                     |          |                |              |             | 95%          | Chebyshev l     | JPL   | 56.21 |
| 60       | 95% WH Approx. Gamma UPL                            | 38.08    |                | U            | pper Thresl | hold Limit   | Based upon      | QR    | 47.56 |
| 61       | 95% HW Approx. Gamma UPL                            | 40.12    |                |              |             |              |                 |       |       |
| 62       | 95% WH Approx. Gamma UTL with 90% Coverage          | 35.26    |                |              |             |              |                 |       |       |
| 63       | 95% HW Approx. Gamma UTL with 90% Coverage          | 36.84    |                |              |             |              |                 |       |       |
| 64       |                                                     |          |                |              |             |              |                 |       |       |
| 65       |                                                     |          |                |              |             |              |                 |       |       |
| 66       |                                                     |          |                |              |             |              |                 |       |       |
|          | Chromium                                            |          |                |              |             |              |                 |       |       |
| 68       |                                                     |          |                |              |             |              |                 |       |       |
| 69       |                                                     | Genera   | I Statistics   |              |             |              |                 |       |       |
| 70       | Total Number of Observations                        | 97       |                |              | Numb        | er of Distir | nct Observati   | ons   | 91    |
| 71       | Tolerance Factor                                    | 1.528    |                |              |             | Number o     | f Missing Val   | ues   | 2     |
| 72       |                                                     |          |                |              |             |              | -               |       |       |
| 73       | Raw Statistics                                      |          |                | L            | .og-Transfo | ormed Sta    | tistics         |       |       |
| 74       | Minimum                                             | 3.6      |                |              |             |              | Minim           | um    | 1.281 |
| 75       | Maximum                                             | 515.7    |                |              |             |              | Maxim           | um    | 6.245 |
|          | Second Largest                                      | 352      |                |              |             |              | Second Larg     | est   | 5.864 |
| 76<br>77 | First Quartile                                      |          |                |              |             |              | First Qua       |       |       |
| 77       | Median                                              | 95.1     |                |              |             |              |                 |       | 4.555 |
| 78<br>79 | Third Quartile                                      |          |                |              |             |              | Third Qua       |       |       |
| 79<br>80 | Mean                                                |          |                |              |             |              |                 |       | 4.244 |
| 81       |                                                     | 78.9     |                |              |             |              |                 |       | 0.998 |
| 82       | Coefficient of Variation                            | 0.785    |                |              |             |              |                 |       |       |
| 82<br>83 | Skewness                                            |          |                |              |             |              |                 |       |       |
| 83<br>84 |                                                     |          |                |              |             |              |                 |       |       |
| 84<br>85 |                                                     | Backgrou | Ind Statistics |              |             |              |                 |       |       |
| 85<br>86 | Normal Distribution Test                            |          |                | L            | ognormal [  | Distributio  | n Test          |       |       |
|          | Lilliefors Test Statistic                           | 0.122    |                |              |             |              | ors Test Stat   | stic  | 0.177 |
| 87       | Lilliefors Critical Value                           |          |                |              |             |              | ors Critical Va |       |       |
| 88<br>89 | Data not Normal at 5% Significance Level            |          |                | Data not I   | _ognormal : |              | nificance Lev   |       |       |
| 89       |                                                     |          | 1              |              |             |              |                 |       |       |
| 90       |                                                     |          |                |              |             |              |                 |       |       |

|              | A B C D E                                            | F     | G H I J K                                           | L     |
|--------------|------------------------------------------------------|-------|-----------------------------------------------------|-------|
| 91           | Assuming Normal Distribution                         |       | Assuming Lognormal Distribution                     |       |
| 92           | 95% UTL with 90% Coverage                            | 221   | 95% UTL with 90% Coverage                           | 320.1 |
| 93           | 95% UPL (t)                                          | 232.2 | 95% UPL (t)                                         | 368.6 |
| 94           | 90% Percentile (z)                                   | 201.6 | 90% Percentile (z)                                  | 250.3 |
| 95           | 95% Percentile (z)                                   | 230.3 | 95% Percentile (z)                                  | 359.7 |
| 96           | 99% Percentile (z)                                   | 284   | 99% Percentile (z)                                  | 710.1 |
| 97           |                                                      |       |                                                     |       |
| 98           | Gamma Distribution Test                              |       | Data Distribution Test                              |       |
| 99           | k star                                               | 1.471 | Data do not follow a Discernable Distribution (0.05 | j)    |
| 100          | Theta Star                                           | 68.32 |                                                     |       |
| 101          | MLE of Mean                                          | 100.5 |                                                     |       |
| 102          | MLE of Standard Deviation                            | 82.85 |                                                     |       |
|              | nu star                                              | 285.3 |                                                     |       |
| 103          |                                                      |       |                                                     |       |
| 104          | A-D Test Statistic                                   | 1.375 | Nonparametric Statistics                            |       |
| 105          | 5% A-D Critical Value                                |       | 90% Percentile                                      | 184.2 |
| 106          | K-S Test Statistic                                   |       | 95% Percentile                                      | -     |
| 107          | 5% K-S Critical Value                                |       | 99% Percentile                                      |       |
| 108          | Data not Gamma Distributed at 5% Significance Lev    |       |                                                     | 000.0 |
| 109          |                                                      |       |                                                     |       |
| 110          | Assuming Gamma Distribution                          |       | 95% UTL with 90% Coverage                           | 200   |
| 111          | 90% Percentile                                       | 210 / | 95% Percentile Bootstrap UTL with 90% Coverage      |       |
| 112          | 95% Percentile                                       |       | 95% BCA Bootstrap UTL with 90% Coverage             |       |
| 113          | 99% Percentile                                       |       | 95% DCA Boolstrap OTE with 90% Coverage             |       |
| 114          | 99% Percentile                                       | 363.5 | 95% Chebyshev UPL                                   |       |
| 115          |                                                      | 202.2 |                                                     |       |
| 116          | 95% WH Approx. Gamma UPL<br>95% HW Approx. Gamma UPL |       | Upper Threshold Limit Based upon IQR                | 257.0 |
| 117          |                                                      |       |                                                     |       |
| 118          | 95% WH Approx. Gamma UTL with 90% Coverage           |       |                                                     |       |
| 119          | 95% HW Approx. Gamma UTL with 90% Coverage           | 252.9 |                                                     |       |
| 120          |                                                      |       |                                                     |       |
| 121          |                                                      |       |                                                     |       |
| 122          | -                                                    |       |                                                     |       |
| 123 <b>Z</b> |                                                      |       |                                                     |       |
| 124          |                                                      |       |                                                     |       |
| 125          |                                                      |       | al Statistics                                       |       |
| 126          | Total Number of Observations                         |       | Number of Distinct Observations                     |       |
| 127          | Tolerance Factor                                     | 1.528 | Number of Missing Values                            | 2     |
| 128          |                                                      |       |                                                     |       |
| 129          | Raw Statistics                                       |       | Log-Transformed Statistics                          |       |
| 130          | Minimum                                              | 12.6  | Minimum                                             | 2.534 |
| 131          | Maximum                                              | 844   | Maximum                                             | 6.738 |
| 132          | Second Largest                                       | 672   | Second Largest                                      | 6.51  |
| 133          | First Quartile                                       | 83.7  | First Quartile                                      | 4.427 |
| 134          | Median                                               | 255   | Median                                              | 5.541 |
| 135          | Third Quartile                                       | 340   | Third Quartile                                      | 5.829 |

|     | A B C                  | D                   | E            | F        | G              | Н         |          | 1        |                        | J         |           | К          | L     |
|-----|------------------------|---------------------|--------------|----------|----------------|-----------|----------|----------|------------------------|-----------|-----------|------------|-------|
| 136 |                        |                     | Mean         | 244.4    |                | •         |          |          |                        | -         |           | Mean       | 5.107 |
| 137 |                        |                     | SD           | 168.3    |                |           |          |          |                        |           |           | SD         | 1.068 |
| 138 |                        | Coefficient o       | f Variation  | 0.688    |                |           |          |          |                        |           |           |            |       |
| 139 |                        |                     | Skewness     | 0.642    |                |           |          |          |                        |           |           |            |       |
| 140 |                        |                     |              | 1        | U.             |           |          |          |                        |           |           |            | 1     |
| 141 |                        |                     |              | Backgrou | Ind Statistics |           |          |          |                        |           |           |            |       |
| 142 | Normal D               | Distribution Test   |              |          |                |           | Logr     | normal   | Distril                | bution    | Test      |            |       |
| 143 |                        | Lilliefors Te       | st Statistic | 0.097    |                |           |          |          |                        | Lilliefo  | rs Test   | Statistic  | 0.201 |
| 144 |                        | Lilliefors Cri      | tical Value  | 0.09     |                |           |          |          | l                      | Lilliefor | s Critica | al Value   | 0.09  |
| 145 | Data not Normal a      | at 5% Significance  | e Level      |          |                | Data n    | ot Log   | normal   | at 5%                  | 6 Signi   | ficance   | Level      |       |
| 146 |                        |                     |              |          |                |           |          |          |                        |           |           |            |       |
| 147 | Assuming N             | Normal Distribution | n            |          |                | A         | Assumi   | ng Log   | norm                   | al Disti  | ribution  |            |       |
| 148 | 95                     | % UTL with 90%      | -            |          |                |           |          | 95%      | 6 UTL                  | . with    |           | overage    |       |
| 149 |                        |                     | 5% UPL (t)   |          |                |           |          |          |                        |           |           | UPL (t)    |       |
| 150 |                        |                     | rcentile (z) |          |                |           |          |          |                        |           |           | entile (z) |       |
| 151 |                        |                     | rcentile (z) |          |                |           |          |          |                        |           |           | entile (z) |       |
| 152 |                        | 99% Pei             | rcentile (z) | 635.9    |                |           |          |          |                        | 99%       | 6 Perce   | entile (z) | 1980  |
| 153 |                        |                     |              |          |                |           |          |          |                        |           |           |            |       |
| 154 | Gamma I                | Distribution Test   |              |          |                |           | _        | ata Dis  |                        |           |           |            |       |
| 155 |                        |                     | k star       | 1.383    |                | Data do n | ot follo | w a Dis  | scerna                 | able D    | istributi | ion (0.05  | 5)    |
| 156 |                        |                     | Theta Star   |          |                |           |          |          |                        |           |           |            |       |
| 157 |                        |                     | E of Mean    |          |                |           |          |          |                        |           |           |            |       |
| 158 |                        | MLE of Standard     |              |          |                |           |          |          |                        |           |           |            |       |
| 159 |                        |                     | nu star      | 268.4    |                |           |          |          |                        |           |           |            |       |
| 160 |                        |                     |              |          |                |           |          |          |                        |           |           |            |       |
| 161 |                        |                     | st Statistic |          |                |           | No       | nparam   | netric                 |           |           |            | I     |
| 162 |                        | 5% A-D Cri          |              | -        |                |           |          |          |                        |           |           | ercentile  | -     |
| 163 |                        |                     | st Statistic |          |                |           |          |          |                        |           |           | ercentile  |       |
| 164 |                        | 5% K-S Cri          |              |          |                |           |          |          |                        | 9         | 99% Pe    | ercentile  | 678.9 |
| 165 | Data not Gamma Distrit | buted at 5% Signil  | ficance Le   | vel      |                |           |          |          |                        |           |           |            |       |
| 166 |                        |                     |              |          |                |           |          | 0.50     | · · · <del>· ·</del> · |           |           |            |       |
| 167 | Assuming G             | amma Distributio    |              | 540 5    |                |           |          |          |                        |           |           | overage    |       |
| 168 |                        |                     | Percentile   |          | ç              | 95% Perce |          |          |                        |           |           | -          |       |
| 169 |                        |                     | Percentile   |          |                | 95% I     | BCA B    | ootstrap | OIL                    | with      |           | overage    |       |
| 170 |                        | 99%                 | Percentile   | 960.3    |                |           |          |          |                        |           |           | 5% UPL     |       |
| 171 |                        | 0/ \\\/\\\ \\       |              | CE0 E    |                |           | 11       |          |                        |           |           | nev UPL    |       |
| 172 |                        | % WH Approx. Ga     |              |          |                |           | Uppe     | er inres | noid l                 | Limit Ba  | ased up   | oon IQR    | 724.5 |
| 173 |                        | % HW Approx. Ga     |              |          |                |           |          |          |                        |           |           |            |       |
| 174 | 95% WH Approx. Gamm    |                     | -            |          |                |           |          |          |                        |           |           |            |       |
| 175 | 95% HW Approx. Gamm    | TAUTE WITH 90%      | Coverage     | 039.3    |                |           |          |          |                        |           |           |            |       |
| 176 |                        |                     |              |          |                |           |          |          |                        |           |           |            |       |
| 177 |                        |                     |              |          |                |           |          |          |                        |           |           |            |       |

|                | А              | В           | С             | D                | E                                     | F               | G            | н           | 1           |         |         | 1       | 1       | К        | 1        |          |
|----------------|----------------|-------------|---------------|------------------|---------------------------------------|-----------------|--------------|-------------|-------------|---------|---------|---------|---------|----------|----------|----------|
| 1              | ~              | U           |               |                  |                                       | tatistics for D |              |             | ts          |         |         | ,       | I       | 1        | <u> </u> | <u> </u> |
| 2              | ι              | Jser Sele   | cted Option   | IS               |                                       |                 |              |             |             |         |         |         |         |          |          |          |
| 3              |                |             | From File     | upper ches       | apeake.wst                            |                 |              |             |             |         |         |         |         |          |          |          |
| 4              |                | Fu          | III Precision | OFF              |                                       |                 |              |             |             |         |         |         |         |          |          |          |
| 5              | C              | onfidence   | Coefficient   | 95%              |                                       |                 |              |             |             |         |         |         |         |          |          | -        |
| 6              |                |             | Coverage      | 90%              |                                       |                 |              |             |             |         |         |         |         |          |          | -        |
| 7              | Differer       | nt or Futur | e K Values    | 1                |                                       |                 |              |             |             |         |         |         |         |          |          | -        |
| 8              | Number of E    | Bootstrap   | Operations    | 2000             |                                       |                 |              |             |             |         |         |         |         |          |          |          |
| 9              |                |             |               |                  |                                       |                 |              |             |             |         |         |         |         |          |          |          |
| 10             |                |             |               |                  |                                       |                 |              |             |             |         |         |         |         |          |          |          |
| 11             | Cadmium        |             |               |                  |                                       |                 |              |             |             |         |         |         |         |          |          |          |
| 12             |                |             |               |                  |                                       |                 |              |             |             |         |         |         |         |          |          |          |
| 13             |                |             |               |                  |                                       |                 | Statistics   |             |             |         |         |         |         |          |          |          |
| 14             |                |             |               |                  | of Valid Data                         |                 |              |             |             |         |         | -       |         | d Data   | -        |          |
| 15             |                |             | Numbe         | er of Distinct D |                                       |                 |              |             |             | Nun     |         |         |         | ct Data  |          |          |
| 16             |                |             |               |                  | erance Facto                          |                 |              |             |             |         | Pe      | rcent   | Non-E   | Detects  | 6.19%    | 6        |
| 17             |                |             |               | Number of M      | issing Values                         | s 2             |              |             |             |         |         |         |         |          |          |          |
| 18             |                |             |               |                  |                                       |                 | 1            |             |             |         |         |         |         |          |          |          |
| 19             |                |             | Raw           | Statistics       |                                       |                 |              |             | Log-trar    |         |         |         | s       |          | 1        |          |
| 20             |                |             |               |                  | num Detected                          |                 |              | Log St      | tatistics I | Not Av  | aliabl  | е       |         |          |          |          |
| 21             |                |             |               | -                | num Detected                          |                 |              |             |             |         |         |         |         |          |          |          |
| 22             |                |             |               |                  | n of Detected                         |                 |              |             |             |         |         |         |         |          |          |          |
| 23             |                |             |               |                  | n of Detected                         |                 |              |             |             |         |         |         |         |          |          |          |
| 24             |                |             |               |                  | n of Detecteo                         |                 |              |             |             |         |         |         |         |          |          |          |
| 25             |                |             |               | Waximur          | n Non-Detec                           | 1 0.097         |              |             |             |         |         |         |         |          |          |          |
| 26             |                | Data        | a with Multi  | ple Detection    | l imite                               |                 |              | Sir         | ngle Det    | tection | Limit   | Scon    | ario    |          |          |          |
| 27             | Note: Data hav |             | -             |                  |                                       | anded           |              |             | r treated   |         |         |         |         | ال مام   | 18       |          |
| 28             | For all method |             |               |                  |                                       |                 |              |             | ber treat   |         |         |         |         | -        |          |          |
| 29             | Observations < |             |               |                  | 1003),                                |                 |              |             |             |         |         |         |         | -        | 18.56    | %        |
| 30             |                | Largest     |               |                  |                                       |                 |              |             | OII         | gie DE  |         | Delee   |         | entage   | 10.00    | /0       |
| 31             |                |             |               |                  |                                       | Backgroun       | d Statistics |             |             |         |         |         |         |          |          |          |
| 32             | No             | rmal Distr  | ibution Tes   | t with Detecte   | ed Values Or                          | -               |              | gnormal Dis | stributior  | n Test  | with [  | Detect  | ted Va  | alues C  | Dnlv     |          |
| 33<br>34       |                |             |               |                  | Test Statistic                        | •               |              | <u> </u>    |             |         |         |         |         | vailable | -        |          |
| 34<br>35       |                |             |               | 5% Lilliefors    | Critical Value                        | e 0.0929        |              |             |             |         |         |         |         |          |          |          |
| 36             |                | Data appe   | ear Normal    | at 5% Signifi    | cance Level                           |                 |              |             |             |         |         |         |         |          |          |          |
| 30<br>37       |                |             |               |                  |                                       |                 |              |             |             |         |         |         |         |          |          |          |
| 38             |                | A           | ssuming No    | ormal Distribu   |                                       |                 | Ass          | suming L    | Lognoi      | rmal [  | Distrib | ution   |         |          |          |          |
| 39             |                |             |               | DL/2 Substit     | tution Method                         | ł               |              |             |             | D       | L/2 S   | ubstitu | ution N | Nethod   | N/A      |          |
| 40             |                |             |               |                  | Mear                                  | n 0.658         |              |             |             |         |         |         |         |          |          |          |
| 41             |                |             |               |                  | SD                                    | 0.75            |              |             |             |         |         |         |         |          |          |          |
|                |                |             |               | 95% UTL 90       | 0% Coverage                           | e 1.804         |              |             |             |         |         |         |         |          |          |          |
| 42             |                |             |               |                  | 95% UPL (t                            | ) 1.91          |              |             |             |         |         |         |         |          |          |          |
| 42<br>43       |                |             |               |                  | · · · · · · · · · · · · · · · · · · · |                 |              |             |             |         |         |         |         |          | 1        |          |
| 42<br>43<br>44 |                |             |               | 90%              | Percentile (z                         | ) 1.619         |              |             |             |         |         |         |         |          |          |          |

|          | A B C D E                                       | F      | G H I J K                                           | 1     |
|----------|-------------------------------------------------|--------|-----------------------------------------------------|-------|
| 46       | 99% Percentile (z)                              |        |                                                     |       |
| 47       |                                                 |        |                                                     |       |
| 48       | Maximum Likelihood Estimate(MLE) Method         |        | Log ROS Method                                      | N/A   |
| 49       | Mean                                            | 0.567  |                                                     |       |
| 50       | SD                                              | 0.86   |                                                     |       |
| 51       | 95% UTL 90% Coverage                            | 1.881  |                                                     |       |
| 52       | 90% Percentile (z)                              | 1.669  |                                                     |       |
| 53       | 95% Percentile (z)                              | 1.982  |                                                     |       |
| 54       | 99% Percentile (z)                              | 2.568  |                                                     |       |
| 55       |                                                 |        |                                                     |       |
| 56       | Gamma Distribution Test with Detected Values On | ly     | Data Distribution Test with Detected Values Only    |       |
| 57       | Gamma Statistics Not Available                  |        | Data appear Gamma Distributed at 5% Significance Le | vel   |
| 57       |                                                 |        |                                                     |       |
| 59       |                                                 |        |                                                     |       |
|          |                                                 |        | Nonparametric Statistics                            |       |
| 60<br>61 |                                                 |        | Kaplan-Meier (KM) Method                            |       |
| 61<br>62 |                                                 |        | Mean                                                | 0.658 |
|          |                                                 |        | SD                                                  | 0.746 |
| 63<br>64 |                                                 |        | SE of Mean                                          |       |
| 64<br>65 |                                                 |        | 95% KM UTL with 90% Coverage                        |       |
| 65       |                                                 |        | 95% KM Chebyshev UPL                                |       |
| 66       |                                                 |        | 95% KM UPL (t)                                      |       |
| 67       |                                                 |        | 90% Percentile (z)                                  |       |
| 68       |                                                 |        | 95% Percentile (z)                                  |       |
| 69       |                                                 |        | 99% Percentile (z)                                  |       |
| 70       |                                                 |        |                                                     | 2.000 |
| 71       | Note: DL/2 is not a recommended method.         |        |                                                     |       |
| 72       |                                                 |        |                                                     |       |
| 73       |                                                 |        |                                                     |       |
| 74       | Copper                                          |        |                                                     |       |
| /5       |                                                 |        |                                                     |       |
| 76       |                                                 | Genera | I Statistics                                        |       |
| 77       | Number of Valid Data                            |        | Number of Detected Data                             | 96    |
| 78       | Number of Distinct Detected Data                |        | Number of Non-Detect Data                           |       |
| 79       | Tolerance Factor                                |        | Percent Non-Detects                                 |       |
| 80       | Number of Missing Values                        |        |                                                     |       |
| 81       |                                                 | -      |                                                     |       |
| 82       | Raw Statistics                                  |        | Log-transformed Statistics                          |       |
| 83       | Minimum Detected                                | 2 48   | Minimum Detected                                    | 0 908 |
| 84       | Maximum Detected                                |        | Maximum Detected                                    |       |
| 85       | Maximum Detected Mean of Detected               |        | Mean of Detected                                    |       |
| 86       | SD of Detected                                  |        | SD of Detected                                      |       |
| 87       | Minimum Non-Detect                              |        | Minimum Non-Detect                                  |       |
| 88       | Maximum Non-Detect                              |        | Maximum Non-Detect                                  |       |
| 89       |                                                 | ۷.۷    |                                                     | 0.700 |
| 90       |                                                 |        |                                                     |       |

|    | A | В            |           | С         |          | D        |          | E             | F        | G         |     | Н         |         | I        |         | J                    |         | K        |       | L      |
|----|---|--------------|-----------|-----------|----------|----------|----------|---------------|----------|-----------|-----|-----------|---------|----------|---------|----------------------|---------|----------|-------|--------|
| 91 |   |              |           |           |          |          |          |               |          |           |     |           |         |          |         |                      |         |          |       |        |
| 92 |   |              |           |           |          |          |          |               | Backgrou | nd Statis |     |           |         |          |         |                      |         |          |       |        |
| 93 |   | Normal Dist  | tributio  | n Test v  |          |          |          |               | •        |           | Log | normal    | Distrib | ution    | Test w  |                      |         |          |       |        |
| 94 |   |              |           |           |          |          | Test S   |               |          |           |     |           |         |          |         |                      |         | est Sta  |       |        |
| 95 |   |              |           | -         |          |          |          |               | 0.0904   |           |     |           |         |          |         |                      |         |          |       | 0.0904 |
| 96 |   | Data n       | ot Norr   | mal at 5  | 5% Sig   | gnifica  | nce Le   | vel           |          |           |     | Data n    | ot Log  | norma    | al at 5 | % Sigr               | nifica  | nce Le   | vel   |        |
| 97 |   |              |           |           |          |          |          |               |          |           |     |           |         |          |         |                      |         |          |       |        |
| 98 |   | ,            | Assumi    | ing Nor   |          |          |          | • • • • • • • |          |           |     |           | ssum    | ing Lo   | -       |                      |         |          |       |        |
| 9  |   |              |           |           | DL/2 S   | Substit  | ution N  |               | 40.07    |           |     |           |         |          | DL      |                      |         | ion Me   |       | 0.000  |
| 00 |   |              |           |           |          |          |          | Mean          |          |           |     |           |         |          |         | N                    |         | (Log So  |       |        |
| 01 |   |              |           |           | 250/ 11  | <u></u>  |          |               | 42.6     |           |     |           |         |          | 0.50    | / I I <del>T</del> I |         | (Log So  |       |        |
| )2 |   |              |           | 9         | 35% U    |          | 0% Cov   | -             |          |           |     |           |         |          | 95%     | 6 UIL                |         | 6 Cove   | -     |        |
| )3 |   |              |           |           |          |          | 95% L    | .,            |          |           |     |           |         |          |         |                      |         | 05% UP   | • • • |        |
| )4 |   |              |           |           |          |          | Percen   | • • •         |          |           |     |           |         |          |         |                      |         | ercentil |       |        |
| )5 |   |              |           |           |          |          | Percen   | • • •         |          |           |     |           |         |          |         |                      |         | ercentil | • • • |        |
| 06 |   |              |           |           |          | 99%      | Percen   | tile (z)      | 146      |           |     |           |         |          |         | 99                   | 9% P    | ercentil | e (z) | 445.5  |
| 07 |   |              |           |           |          |          |          |               |          |           |     |           |         |          |         |                      |         |          |       |        |
| 08 |   | Махі         | mum L     | ikelihoo  | od Esti  | mate(I   | ,        |               | 10.05    |           |     |           |         |          |         |                      | Ũ       | OS Me    |       | 10.07  |
| 09 |   |              |           |           |          |          |          | Mean          |          |           |     |           |         |          |         |                      |         | iginal S |       |        |
| 10 |   |              |           |           | <u> </u> |          |          |               | 42.71    |           |     |           |         |          |         |                      |         | iginal S |       |        |
| 11 |   |              |           | 95% l     | UTL w    | rith 90  | 0% Cov   | /erage        | 111.9    |           |     |           |         |          |         |                      |         | 6 Cove   | -     |        |
| 12 |   |              |           |           |          |          |          |               |          |           |     |           |         |          |         |                      |         | 6 Cove   | -     |        |
| 13 |   |              |           |           |          |          |          |               |          |           |     | 95%       | Boots   | strap (S | %) UT   | L with               |         | 6 Cove   | -     |        |
| 14 |   |              |           |           |          |          | 95% L    | .,            |          |           |     |           |         |          |         |                      |         | 95% UP   | • • • |        |
| 15 |   |              |           |           |          |          | Percen   | .,            |          |           |     |           |         |          |         |                      |         | ercentil |       |        |
| 16 |   |              |           |           |          |          | Percen   | .,            |          |           |     |           |         |          |         |                      |         | ercentil | • •   |        |
| 17 |   |              |           |           |          | 99%      | Percen   | tile (z)      | 146      |           |     |           |         |          |         | 99                   | 9% P    | ercentil | e (z) | 439.4  |
| 18 |   |              |           |           |          |          |          |               |          |           |     |           |         |          |         |                      |         |          |       |        |
| 19 |   | Gamma Dis    | stributio | on Test   |          |          |          |               | -        |           |     | Data Dis  |         |          |         |                      |         |          |       |        |
| 20 |   |              |           |           | k s      | star (bi | as corr  | ,             |          |           | [   | Data do r | ot foll | ow a D   | Discerr | nable [              | Distril | oution ( | 0.05) |        |
| 21 |   |              |           |           |          |          |          | ta Star       |          |           |     |           |         |          |         |                      |         |          |       |        |
| 22 |   |              |           |           |          |          | r        | nu star       | 218.5    |           |     |           |         |          |         |                      |         |          |       |        |
| 23 |   |              |           |           |          |          |          |               |          |           |     |           |         |          |         |                      |         |          |       |        |
| 24 |   |              |           |           |          |          | Test S   |               |          |           |     |           | No      | onpara   |         |                      |         |          |       |        |
| 25 |   |              |           |           | 5%       |          | Critical |               |          |           |     |           |         |          | Kapl    | an-Me                | eer (F  | (M) Me   |       | 10.00  |
| 26 |   |              |           |           |          |          | Test St  |               |          |           |     |           |         |          |         |                      |         | N        |       | 46.88  |
| 27 |   |              |           |           |          |          |          |               | 0.0937   |           |     |           |         |          |         |                      |         |          |       | 42.36  |
| 28 | [ | Data not Gar | mma D     | Istribute | ed at §  | 5% Siç   | gnificar | nce Le        | vel      |           |     |           |         |          |         |                      |         | SE of N  |       |        |
| 29 |   |              |           |           |          |          |          |               |          |           |     |           | ç       | 95% KI   |         |                      |         | 6 Cove   | -     |        |
| 30 |   |              |           | ng Gar    |          |          |          |               | 1        |           |     |           |         |          | 959     |                      |         | yshev    |       |        |
| 31 |   | Gamma        | a ROS     | Statistic | cs with  | ו Extra  | •        |               |          |           |     |           |         |          |         |                      |         | KM UP    | • • • |        |
| 32 |   |              |           |           |          |          |          |               | 46.86    |           |     |           |         |          |         |                      |         | ercentil | • •   |        |
| 33 |   |              |           |           |          |          | Ν        | ledian        |          |           |     |           |         |          |         |                      |         | ercentil | • •   |        |
| 34 |   |              |           |           |          |          |          |               | 42.61    |           |     |           |         |          |         | 99                   | 9% P    | ercentil | e (z) | 145.4  |
|    | k |              |           |           |          |          |          | Is ator       | 0.875    | 1         |     |           |         |          |         |                      |         |          |       |        |

|            | A            | В             | С               | D               | E               | F        | G             | Н          |             | , I      | 1          | К                 |          |
|------------|--------------|---------------|-----------------|-----------------|-----------------|----------|---------------|------------|-------------|----------|------------|-------------------|----------|
| 136        |              |               | U               | U               | E<br>Theta star |          | G             |            | a ROS L     | imits w  | vith Extra | apolated Data     |          |
| 137        |              |               |                 |                 | Nu star         | 169.8    |               | 95% Wi     | ilson Hilfe | erty (W  | H) Appro   | ox. Gamma UP      | L 138.1  |
| 137        |              |               | 95% Pe          | rcentile of Ch  | isquare (2k)    | 5.499    |               | 95% Hav    | vkins Wix   | dey (H)  | N) Appro   | ox. Gamma UP      | L 150.7  |
|            |              |               |                 |                 | ,               |          | 9             |            |             |          |            | 90% Coverag       |          |
| 139        |              |               |                 | 909             | % Percentile    | 111.5    |               |            |             |          |            | 90% Coverag       |          |
| 140        |              |               |                 |                 | % Percentile    | -        |               |            |             |          |            | 3                 |          |
| 141        |              |               |                 |                 | % Percentile    |          |               |            |             |          |            |                   |          |
| 142        |              |               |                 |                 |                 | 200.0    |               |            |             |          |            |                   |          |
| 143        | Note: DI /2  | is not a reco | ommended m      | ethod           |                 |          |               |            |             |          |            |                   |          |
| 144        |              |               |                 |                 |                 |          |               |            |             |          |            |                   |          |
| 45         |              |               |                 |                 |                 |          |               |            |             |          |            |                   |          |
| 46         | Lead         |               |                 |                 |                 |          |               |            |             |          |            |                   |          |
| 47         |              |               |                 |                 |                 |          |               |            |             |          |            |                   |          |
| 48         |              |               |                 |                 |                 | Conorol  | Statistics    |            |             |          |            |                   |          |
| 49         |              |               |                 | Number          | f Valid Data    |          | Statistics    |            |             |          | lumbor     | of Detected Dat   | 05       |
| 50         |              |               | Nicconstruction | of Distinct De  |                 | -        |               |            |             |          |            | Non-Detect Dat    |          |
| 51         |              |               | Number          |                 |                 | -        |               |            |             | Nur      |            |                   | -        |
| 52         |              |               |                 |                 | ance Factor     |          |               |            |             |          | Perc       | ent Non-Detec     | ts 2.06% |
| 53         |              |               | N               | lumber of Mis   | sing Values     | 2        |               |            |             |          |            |                   |          |
| 54         |              |               |                 |                 |                 |          | T             |            |             |          |            |                   |          |
| 55         |              |               | Raw S           | tatistics       |                 |          |               |            | Log-tra     | Insform  | ned Stat   |                   |          |
| 56         |              |               |                 |                 | m Detected      |          |               |            |             |          |            | nimum Detecte     |          |
| 57         |              |               |                 |                 | m Detected      |          |               |            |             |          |            | ximum Detecte     |          |
| 58         |              |               |                 |                 | of Detected     |          |               |            |             |          | Ν          | lean of Detecte   |          |
| 59         |              |               |                 | SD              | of Detected     | 41.32    |               |            |             |          |            | SD of Detecte     | d 1      |
| 60         |              |               |                 | Minimum         | Non-Detect      | 1.8      |               |            |             |          | Minir      | num Non-Dete      | ct 0.588 |
| 61         |              |               |                 | Maximum         | Non-Detect      | 4.9      |               |            |             |          | Maxir      | num Non-Dete      | ct 1.589 |
| 62         |              |               |                 |                 |                 |          |               |            |             |          |            |                   |          |
| 63         |              | Data          | a with Multipl  | e Detection L   | imits           |          |               | S          | Single De   | etectior | n Limit S  | cenario           |          |
| 64         | Note: Data   | have multiple | e DLs - Use o   | f KM Method     | is recomme      | nded     |               | Numb       | er treate   | d as No  | on-Deteo   | ct with Single D  | L 6      |
| 65         | For all meth | nods (except  | KM, DL/2, an    | d ROS Metho     | ods),           |          |               | Nur        | nber trea   | ited as  | Detecte    | d with Single D   | L 91     |
| 66         | Observation  | ns < Largest  | ND are treate   | ed as NDs       |                 |          |               |            | Sin         | igle DL  | Non-De     | etect Percentag   | e 6.19%  |
| 67         |              |               |                 |                 |                 |          | 1             |            |             |          |            |                   | 1        |
| 68         |              |               |                 |                 |                 | Backgrou | nd Statistics | ;          |             |          |            |                   |          |
| 69         |              | Normal Distr  | ribution Test   | with Detected   | Values On       | ly       | L             | ognormal D | Distributio | n Test   | with De    | tected Values     | Only     |
| 70         |              |               |                 | Lilliefors T    | est Statistic   | 0.108    |               |            |             |          | Lillief    | ors Test Statist  | ic 0.143 |
| 71         |              |               | 5               | 5% Lilliefors C | ritical Value   | 0.0909   |               |            |             | 5        | % Lilliefo | ors Critical Valu | e 0.0909 |
| 72         |              | Data no       | ot Normal at 5  | 5% Significan   | ce Level        |          |               | Data no    | t Lognor    | mal at   | 5% Sigr    | nificance Level   |          |
| 73         |              |               |                 |                 |                 |          |               |            |             |          |            |                   |          |
| 74         |              | A             | ssuming Nor     | mal Distributi  | on              |          |               | A          | ssuming     | Logno    | rmal Dis   | tribution         |          |
| 75         |              |               |                 | DL/2 Substitu   | tion Method     |          |               |            |             | C        | DL/2 Sub   | stitution Metho   | d        |
| 76         |              |               |                 |                 | Mean            | 53.28    |               |            |             |          | Μ          | lean (Log Scale   | e) 3.552 |
| 170        |              |               |                 |                 |                 | 41.57    |               |            |             |          |            | SD (Log Scale     |          |
| 177        |              |               | 9               | 5% UTL 909      |                 |          |               |            |             | 95       | 5% UTL     | 90% Coverag       |          |
|            |              |               | -               |                 | 95% UPL (t)     |          |               |            |             |          |            | 95% UPL (         |          |
| 179<br>180 |              |               |                 |                 | ercentile (z)   |          |               |            |             |          | 90         | 0% Percentile (2  | ,        |
|            | 1            |               |                 | 00/01           |                 |          | 1             |            |             |          | 50         |                   | /        |

|     | A B C D E                                               | F       | G H I J K                                               | L     |
|-----|---------------------------------------------------------|---------|---------------------------------------------------------|-------|
| 181 | 95% Percentile (z)                                      |         | 95% Percentile (z)                                      | 210.9 |
| 182 | 99% Percentile (z)                                      | 150     | 99% Percentile (z)                                      | 444.5 |
| 183 |                                                         |         |                                                         |       |
| 184 | Maximum Likelihood Estimate(MLE) Method                 |         | Log ROS Method                                          |       |
| 185 | Mean                                                    | 52.01   | Mean in Original Scale                                  | 53.32 |
| 186 | SD                                                      | 43.4    | SD in Original Scale                                    | 41.52 |
| 187 | 95% UTL with 90% Coverage                               | 118.3   | 95% UTL with 90% Coverage                               | 175.2 |
| 188 |                                                         |         | 95% BCA UTL with 90% Coverage                           | 118   |
| 189 |                                                         |         | 95% Bootstrap (%) UTL with 90% Coverage                 | 120.3 |
| 190 | 95% UPL (t)                                             | 124.5   | 95% UPL (t)                                             | 203.1 |
| 191 | 90% Percentile (z)                                      | 107.6   | 90% Percentile (z)                                      | 135.5 |
| 192 | 95% Percentile (z)                                      | 123.4   | 95% Percentile (z)                                      | 197.9 |
| 193 | 99% Percentile (z)                                      | 153     | 99% Percentile (z)                                      | 403.1 |
| 194 |                                                         | 1       |                                                         |       |
| 195 | Gamma Distribution Test with Detected Values On         | ly      | Data Distribution Test with Detected Values Only        |       |
| 196 | k star (bias corrected)                                 | 1.431   | Data follow Appr. Gamma Distribution at 5% Significance | Level |
| 197 | Theta Star                                              | 37.99   |                                                         |       |
| 198 | nu star                                                 | 271.9   |                                                         |       |
| 199 |                                                         |         |                                                         |       |
| 200 | A-D Test Statistic                                      | 1.333   | Nonparametric Statistics                                |       |
| 201 | 5% A-D Critical Value                                   | 0.771   | Kaplan-Meier (KM) Method                                |       |
| 202 | K-S Test Statistic                                      | 0.0934  | Mean                                                    | 53.32 |
| 202 | 5% K-S Critical Value                                   | 0.0936  | SD                                                      | 41.31 |
| 200 | Data follow Appx. Gamma Distribution at 5% Significance | e Level | SE of Mean                                              | 4.217 |
| 205 |                                                         |         | 95% KM UTL with 90% Coverage                            | 116.4 |
| 206 | Assuming Gamma Distribution                             |         | 95% KM Chebyshev UPL                                    | 234.3 |
| 207 | Gamma ROS Statistics with Extrapolated Data             |         | 95% KM UPL (t)                                          | 122.3 |
| 208 | Mean                                                    | 53.24   | 90% Percentile (z)                                      | 106.3 |
| 209 | Median                                                  | 48      | 95% Percentile (z)                                      | 121.3 |
| 210 | SD                                                      | 41.62   | 99% Percentile (z)                                      | 149.4 |
| 211 | k star                                                  | 0.807   |                                                         |       |
| 212 | Theta star                                              | 65.96   | Gamma ROS Limits with Extrapolated Data                 |       |
| 213 | Nu star                                                 | 156.6   | 95% Wilson Hilferty (WH) Approx. Gamma UPL              | 152.9 |
| 214 | 95% Percentile of Chisquare (2k)                        | 5.22    | 95% Hawkins Wixley (HW) Approx. Gamma UPL               | 172   |
| 215 |                                                         |         | 95% WH Approx. Gamma UTL with 90% Coverage              | 139.4 |
| 216 | 90% Percentile                                          | 129.2   | 95% HW Approx. Gamma UTL with 90% Coverage              | 154.5 |
| 217 | 95% Percentile                                          | 172.2   |                                                         |       |
| 218 | 99% Percentile                                          | 273.6   |                                                         |       |
| 219 |                                                         |         |                                                         |       |
| 220 | Note: DL/2 is not a recommended method.                 |         |                                                         |       |
| 221 |                                                         |         |                                                         |       |
| 222 |                                                         |         |                                                         |       |
| 223 | Mercury                                                 |         |                                                         |       |
| 224 |                                                         |         |                                                         |       |
| 225 |                                                         | Genera  | Il Statistics                                           |       |
|     |                                                         |         |                                                         |       |

|                                                                                                                                                               | A B C D E                                                                                                                                                                                                                                                                                                                                                             | F                                                                                                      | G             | Н            | 1         | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | К                                                                                                                                                                                                                             | 1                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------|--------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 226                                                                                                                                                           | Number of Valid Data                                                                                                                                                                                                                                                                                                                                                  |                                                                                                        | ~             |              |           | Number of Detec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               | 87                                                                                                                                                                                         |
| 227                                                                                                                                                           | Number of Distinct Detected Data                                                                                                                                                                                                                                                                                                                                      | 71                                                                                                     |               |              | Ν         | lumber of Non-De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tect Data                                                                                                                                                                                                                     | 10                                                                                                                                                                                         |
| 228                                                                                                                                                           | Tolerance Factor                                                                                                                                                                                                                                                                                                                                                      | 1.528                                                                                                  |               |              |           | Percent Nor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n-Detects                                                                                                                                                                                                                     | 10.31%                                                                                                                                                                                     |
| 229                                                                                                                                                           | Number of Missing Values                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                      |               |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                            |
| 230                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                        |               |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                            |
| 231                                                                                                                                                           | Raw Statistics                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        |               | Lo           | g-transfo | ormed Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               |                                                                                                                                                                                            |
| 232                                                                                                                                                           | Minimum Detected                                                                                                                                                                                                                                                                                                                                                      | 0.00715                                                                                                |               |              |           | Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Detected                                                                                                                                                                                                                      | -4.941                                                                                                                                                                                     |
| 233                                                                                                                                                           | Maximum Detected                                                                                                                                                                                                                                                                                                                                                      | 0.732                                                                                                  |               |              |           | Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Detected                                                                                                                                                                                                                      | -0.312                                                                                                                                                                                     |
| 234                                                                                                                                                           | Mean of Detected                                                                                                                                                                                                                                                                                                                                                      | 0.18                                                                                                   |               |              |           | Mean of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Detected                                                                                                                                                                                                                      | -2.054                                                                                                                                                                                     |
| 235                                                                                                                                                           | SD of Detected                                                                                                                                                                                                                                                                                                                                                        | 0.133                                                                                                  |               |              |           | SD of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Detected                                                                                                                                                                                                                      | 0.961                                                                                                                                                                                      |
| 236                                                                                                                                                           | Minimum Non-Detect                                                                                                                                                                                                                                                                                                                                                    | 0.004                                                                                                  |               |              |           | Minimum No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | on-Detect                                                                                                                                                                                                                     | -5.521                                                                                                                                                                                     |
| 237                                                                                                                                                           | Maximum Non-Detect                                                                                                                                                                                                                                                                                                                                                    | 0.016                                                                                                  |               |              |           | Maximum No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | on-Detect                                                                                                                                                                                                                     | -4.135                                                                                                                                                                                     |
| 238                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                        |               |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                            |
| 239                                                                                                                                                           | Data with Multiple Detection Limits                                                                                                                                                                                                                                                                                                                                   |                                                                                                        |               | Singl        | e Detect  | ion Limit Scenario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | כ                                                                                                                                                                                                                             |                                                                                                                                                                                            |
| 240                                                                                                                                                           | Note: Data have multiple DLs - Use of KM Method is recommer                                                                                                                                                                                                                                                                                                           | nded                                                                                                   |               | Number tr    | eated as  | Non-Detect with S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Single DL                                                                                                                                                                                                                     | 16                                                                                                                                                                                         |
| 241                                                                                                                                                           | For all methods (except KM, DL/2, and ROS Methods),                                                                                                                                                                                                                                                                                                                   |                                                                                                        |               | Number       | r treated | as Detected with S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Single DL                                                                                                                                                                                                                     | 81                                                                                                                                                                                         |
| 242                                                                                                                                                           | Observations < Largest ND are treated as NDs                                                                                                                                                                                                                                                                                                                          |                                                                                                        |               |              | Single    | DL Non-Detect Pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ercentage                                                                                                                                                                                                                     | 16.49%                                                                                                                                                                                     |
| 243                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                        |               |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                            |
| 244                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                       | Backgroun                                                                                              | nd Statistics |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                            |
| 245                                                                                                                                                           | Normal Distribution Test with Detected Values Onl                                                                                                                                                                                                                                                                                                                     | у                                                                                                      | Logno         | ormal Distri | bution Te | est with Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Values O                                                                                                                                                                                                                      | nly                                                                                                                                                                                        |
| 246                                                                                                                                                           | Lilliefors Test Statistic                                                                                                                                                                                                                                                                                                                                             | 0.101                                                                                                  |               |              |           | Lilliefors Tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t Statistic                                                                                                                                                                                                                   | 0.186                                                                                                                                                                                      |
|                                                                                                                                                               | 5% Lilliefors Critical Value                                                                                                                                                                                                                                                                                                                                          | 0.095                                                                                                  |               |              |           | 5% Lilliefors Critic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cal Value                                                                                                                                                                                                                     | 0.095                                                                                                                                                                                      |
| 124/                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                        |               |              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                            |
| 247<br>248                                                                                                                                                    | Data not Normal at 5% Significance Level                                                                                                                                                                                                                                                                                                                              |                                                                                                        | [             | Data not Log | gnormal   | at 5% Significanc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e Level                                                                                                                                                                                                                       |                                                                                                                                                                                            |
| 248                                                                                                                                                           | Data not Normal at 5% Significance Level                                                                                                                                                                                                                                                                                                                              |                                                                                                        | C             | Data not Log | gnormal   | at 5% Significanc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e Level                                                                                                                                                                                                                       |                                                                                                                                                                                            |
| 248<br>249                                                                                                                                                    | Data not Normal at 5% Significance Level Assuming Normal Distribution                                                                                                                                                                                                                                                                                                 |                                                                                                        |               |              | -         | at 5% Significanc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                                                                                            |
| 248                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                        | [             |              | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on                                                                                                                                                                                                                            |                                                                                                                                                                                            |
| 248<br>249<br>250                                                                                                                                             | Assuming Normal Distribution                                                                                                                                                                                                                                                                                                                                          | 0.162                                                                                                  |               |              | -         | normal Distributio<br>DL/2 Substitution<br>Mean (Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on<br>n Method<br>og Scale)                                                                                                                                                                                                   |                                                                                                                                                                                            |
| 248<br>249<br>250<br>251                                                                                                                                      | Assuming Normal Distribution<br>DL/2 Substitution Method<br>Mean                                                                                                                                                                                                                                                                                                      | 0.162<br>0.137                                                                                         |               |              | -         | normal Distributio<br>DL/2 Substitution<br>Mean (Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | o <b>n</b><br>n Method                                                                                                                                                                                                        |                                                                                                                                                                                            |
| 248<br>249<br>250<br>251<br>252                                                                                                                               | Assuming Normal Distribution<br>DL/2 Substitution Method<br>Mean                                                                                                                                                                                                                                                                                                      | 0.137                                                                                                  |               |              | -         | normal Distributio<br>DL/2 Substitution<br>Mean (Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n Method<br>og Scale)<br>og Scale)                                                                                                                                                                                            | 1.376                                                                                                                                                                                      |
| 248<br>249<br>250<br>251<br>252<br>253                                                                                                                        | Assuming Normal Distribution<br>DL/2 Substitution Method<br>Mean<br>SD<br>95% UTL 90% Coverage<br>95% UPL (t)                                                                                                                                                                                                                                                         | 0.137<br>0.371<br>0.39                                                                                 |               |              | -         | normal Distribution<br>DL/2 Substitution<br>Mean (Lo<br>SD (Lo<br>95% UTL 90% (<br>95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Method<br>og Scale)<br>og Scale)<br>Coverage<br>% UPL (t)                                                                                                                                                                   | 1.376<br>0.742<br>0.902                                                                                                                                                                    |
| 248<br>249<br>250<br>251<br>252<br>253<br>254                                                                                                                 | Assuming Normal Distribution<br>DL/2 Substitution Method<br>Mean<br>SD<br>95% UTL 90% Coverage                                                                                                                                                                                                                                                                        | 0.137<br>0.371<br>0.39                                                                                 |               |              | -         | normal Distribution<br>DL/2 Substitution<br>Mean (Lo<br>SD (Lo<br>95% UTL 90% (<br>95%<br>90% Perc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Method<br>og Scale)<br>og Scale)<br>Coverage<br>% UPL (t)<br>centile (z)                                                                                                                                                    | 1.376         0.742         0.902         0.529                                                                                                                                            |
| 248<br>249<br>250<br>251<br>252<br>253<br>254<br>255                                                                                                          | Assuming Normal Distribution<br>DL/2 Substitution Method<br>Mean<br>SD<br>95% UTL 90% Coverage<br>95% UPL (t)<br>90% Percentile (z)<br>95% Percentile (z)                                                                                                                                                                                                             | 0.137<br>0.371<br>0.39<br>0.337<br>0.387                                                               |               |              | -         | normal Distribution<br>DL/2 Substitution<br>Mean (Lo<br>SD (Lo<br>95% UTL 90% C<br>95%<br>90% Perc<br>95% Perc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n Method<br>og Scale)<br>og Scale)<br>Coverage<br>% UPL (t)<br>centile (z)<br>centile (z)                                                                                                                                     | 1.376         0.742         0.902         0.529         0.872                                                                                                                              |
| 248<br>249<br>250<br>251<br>252<br>253<br>254<br>255<br>256                                                                                                   | Assuming Normal Distribution<br>DL/2 Substitution Method<br>Mean<br>SD<br>95% UTL 90% Coverage<br>95% UPL (t)<br>90% Percentile (z)                                                                                                                                                                                                                                   | 0.137<br>0.371<br>0.39<br>0.337<br>0.387                                                               |               |              | -         | normal Distribution<br>DL/2 Substitution<br>Mean (Lo<br>SD (Lo<br>95% UTL 90% C<br>95%<br>90% Perc<br>95% Perc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n Method<br>og Scale)<br>og Scale)<br>Coverage<br>% UPL (t)<br>centile (z)                                                                                                                                                    | 1.376         0.742         0.902         0.529         0.872                                                                                                                              |
| 248<br>249<br>250<br>251<br>252<br>253<br>254<br>255<br>256<br>257                                                                                            | Assuming Normal Distribution<br>DL/2 Substitution Method<br>Mean<br>SD<br>95% UTL 90% Coverage<br>95% UPL (t)<br>90% Percentile (z)<br>95% Percentile (z)                                                                                                                                                                                                             | 0.137<br>0.371<br>0.39<br>0.337<br>0.387                                                               |               |              | -         | normal Distribution<br>DL/2 Substitution<br>Mean (Lo<br>SD (Lo<br>95% UTL 90% (<br>95% Perc<br>95% Perc<br>99% Perc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n Method<br>og Scale)<br>og Scale)<br>Coverage<br>% UPL (t)<br>centile (z)<br>centile (z)                                                                                                                                     | 1.376         0.742         0.902         0.529         0.872                                                                                                                              |
| 248<br>249<br>250<br>251<br>252<br>253<br>255<br>255<br>255<br>256<br>257<br>258                                                                              | Assuming Normal Distribution<br>DL/2 Substitution Method<br>Mean<br>SD<br>95% UTL 90% Coverage<br>95% UPL (t)<br>90% Percentile (z)<br>95% Percentile (z)<br>99% Percentile (z)                                                                                                                                                                                       | 0.137<br>0.371<br>0.39<br>0.337<br>0.387<br>0.48                                                       |               |              | -         | normal Distribution<br>DL/2 Substitution<br>Mean (Lo<br>SD (Lo<br>95% UTL 90% C<br>95% Perc<br>95% Perc<br>95% Perc<br>99% Perc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n Method<br>og Scale)<br>og Scale)<br>Coverage<br>% UPL (t)<br>centile (z)<br>centile (z)<br>centile (z)<br>S Method                                                                                                          | 1.376<br>0.742<br>0.902<br>0.529<br>0.872<br>2.227                                                                                                                                         |
| 248<br>249<br>250<br>251<br>252<br>253<br>254<br>255<br>256<br>257<br>258<br>259                                                                              | Assuming Normal Distribution<br>DL/2 Substitution Method<br>Mean<br>SD<br>95% UTL 90% Coverage<br>95% UPL (t)<br>90% Percentile (z)<br>95% Percentile (z)<br>95% Percentile (z)<br>99% Percentile (z)<br>Maximum Likelihood Estimate(MLE) Method<br>Mean                                                                                                              | 0.137<br>0.371<br>0.39<br>0.337<br>0.387<br>0.48<br>0.149                                              |               |              | -         | normal Distributio<br>DL/2 Substitution<br>Mean (Lo<br>SD (Lo<br>95% UTL 90% C<br>95% Perc<br>95% Perc<br>95% Perc<br>99% Perc<br>99% Perc<br>Log ROS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n Method<br>og Scale)<br>og Scale)<br>Coverage<br>% UPL (t)<br>centile (z)<br>centile (z)<br>centile (z)<br>S Method<br>nal Scale                                                                                             | 1.376<br>0.742<br>0.902<br>0.529<br>0.872<br>2.227<br>0.163                                                                                                                                |
| 248<br>249<br>250<br>251<br>252<br>253<br>254<br>255<br>256<br>257<br>258<br>259<br>260                                                                       | Assuming Normal Distribution<br>DL/2 Substitution Method<br>Mean<br>SD<br>95% UTL 90% Coverage<br>95% UTL 90% Coverage<br>95% UPL (t)<br>90% Percentile (z)<br>95% Percentile (z)<br>99% Percentile (z)<br>99% Percentile (z)<br>Maximum Likelihood Estimate(MLE) Method<br>Mean                                                                                      | 0.137<br>0.371<br>0.39<br>0.337<br>0.387<br>0.48<br>0.149<br>0.156                                     |               |              | ning Log  | normal Distribution<br>DL/2 Substitution<br>Mean (Lo<br>SD (Lo<br>95% UTL 90% C<br>95% Perc<br>95% Perc<br>99% Perc<br>99% Perc<br>99% Perc<br>200 Ros<br>Log ROS<br>Mean in Origi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Method<br>og Scale)<br>og Scale)<br>Coverage<br>% UPL (t)<br>centile (z)<br>centile (z)<br>centile (z)<br>S Method<br>nal Scale<br>nal Scale                                                                                | 1.376<br>0.742<br>0.902<br>0.529<br>0.872<br>2.227<br>0.163<br>0.135                                                                                                                       |
| 248<br>249<br>250<br>251<br>252<br>253<br>254<br>255<br>255<br>256<br>257<br>258<br>259<br>260<br>261                                                         | Assuming Normal Distribution<br>DL/2 Substitution Method<br>Mean<br>SD<br>95% UTL 90% Coverage<br>95% UPL (t)<br>90% Percentile (z)<br>95% Percentile (z)<br>95% Percentile (z)<br>99% Percentile (z)<br>Maximum Likelihood Estimate(MLE) Method<br>Mean                                                                                                              | 0.137<br>0.371<br>0.39<br>0.337<br>0.387<br>0.48<br>0.149<br>0.156                                     |               | Assun        | 95%       | normal Distributio<br>DL/2 Substitution<br>Mean (Lo<br>SD (Lo<br>95% UTL 90% C<br>95% Perc<br>90% Perc<br>95% Perc<br>99% Perc<br>99% Perc<br>99% Perc<br>99% Perc<br>SD in Origi<br>SD in Origi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n Method<br>og Scale)<br>og Scale)<br>Coverage<br>% UPL (t)<br>centile (z)<br>centile (z)<br>centile (z)<br>S Method<br>nal Scale<br>nal Scale                                                                                | 1.376         0.742         0.902         0.529         0.872         2.227         0.163         0.135         0.557                                                                      |
| 248<br>249<br>250<br>251<br>252<br>253<br>254<br>255<br>255<br>255<br>255<br>255<br>255<br>259<br>260<br>261<br>262                                           | Assuming Normal Distribution<br>DL/2 Substitution Method<br>Mean<br>SD<br>95% UTL 90% Coverage<br>95% UTL 90% Coverage<br>95% UPL (t)<br>90% Percentile (z)<br>95% Percentile (z)<br>99% Percentile (z)<br>99% Percentile (z)<br>Maximum Likelihood Estimate(MLE) Method<br>Mean                                                                                      | 0.137<br>0.371<br>0.39<br>0.337<br>0.387<br>0.48<br>0.149<br>0.156                                     |               | Assun        | 95% BCA   | normal Distribution<br>DL/2 Substitution<br>Mean (Lo<br>SD (Lo<br>95% UTL 90% C<br>95% Perc<br>95% Perc<br>99% Perc<br>99% Perc<br>99% Perc<br>99% Perc<br>SD in Origi<br>SD in Origi<br>5 UTL with 90% C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n Method<br>og Scale)<br>og Scale)<br>Coverage<br>% UPL (t)<br>centile (z)<br>centile (z)<br>centile (z)<br>S Method<br>nal Scale<br>nal Scale<br>Coverage                                                                    | 1.376<br>0.742<br>0.902<br>0.529<br>0.872<br>2.227<br>0.163<br>0.163<br>0.135<br>0.557<br>0.322                                                                                            |
| 248<br>249<br>250<br>251<br>252<br>253<br>255<br>255<br>256<br>257<br>258<br>259<br>260<br>261<br>261<br>262<br>263                                           | Assuming Normal Distribution<br>DL/2 Substitution Method<br>Mean<br>SD<br>95% UTL 90% Coverage<br>95% UTL 90% Coverage<br>95% UTL (t)<br>90% Percentile (z)<br>95% Percentile (z)<br>99% Percentile (z)<br>99% Percentile (z)<br>Maximum Likelihood Estimate(MLE) Method<br>Mean<br>SD<br>95% UTL with 90% Coverage                                                   | 0.137<br>0.371<br>0.39<br>0.337<br>0.387<br>0.48<br>0.149<br>0.156<br>0.387                            |               | Assun        | 95% BCA   | normal Distribution<br>DL/2 Substitution<br>Mean (Lo<br>SD (Lo<br>95% UTL 90% C<br>95% Perc<br>95% Perc<br>99% Perc<br>99% Perc<br>99% Perc<br>99% Perc<br>99% Perc<br>99% Perc<br>99% Perc<br>90% PEC<br>90% PE | n Method<br>og Scale)<br>og Scale)<br>Coverage<br>% UPL (t)<br>centile (z)<br>centile (z)<br>centile (z)<br>S Method<br>nal Scale<br>nal Scale<br>Coverage<br>Coverage                                                        | 1.376<br>0.742<br>0.902<br>0.529<br>0.872<br>2.227<br>0.163<br>0.135<br>0.557<br>0.322<br>0.324                                                                                            |
| 248<br>249<br>250<br>251<br>252<br>253<br>254<br>255<br>256<br>257<br>258<br>259<br>260<br>261<br>261<br>262<br>263<br>264                                    | Assuming Normal Distribution<br>DL/2 Substitution Method<br>Mean<br>SD<br>95% UTL 90% Coverage<br>95% UPL (t)<br>90% Percentile (z)<br>95% Percentile (z)<br>99% Percentile (z)<br>99% Percentile (z)<br>99% Percentile (z)<br>SD<br>95% UTL with 90% Coverage                                                                                                        | 0.137<br>0.371<br>0.39<br>0.337<br>0.387<br>0.48<br>0.149<br>0.156<br>0.387<br>0.409                   |               | Assun        | 95% BCA   | normal Distribution<br>DL/2 Substitution<br>Mean (Lo<br>SD (Lo<br>95% UTL 90% C<br>95% Perc<br>95% Perc<br>95% Perc<br>99% Perc<br>99% Perc<br>99% Perc<br>99% Perc<br>99% Perc<br>99% Perc<br>90% Per                                           | n Method<br>og Scale)<br>og Scale)<br>Coverage<br>% UPL (t)<br>centile (z)<br>centile (z)<br>centile (z)<br>centile (z)<br>S Method<br>nal Scale<br>nal Scale<br>Coverage<br>Coverage<br>Coverage                             | 1.376         0.742         0.902         0.529         0.872         2.227         0.163         0.135         0.557         0.322         0.324         0.65                             |
| 248<br>249<br>250<br>251<br>252<br>253<br>254<br>255<br>256<br>257<br>258<br>259<br>260<br>261<br>262<br>263<br>264<br>265                                    | Assuming Normal Distribution<br>DL/2 Substitution Method<br>Mean<br>SD<br>95% UTL 90% Coverage<br>95% UTL 90% Coverage<br>95% VPL (t)<br>90% Percentile (z)<br>95% Percentile (z)<br>99% Percentile (z)<br>99% Percentile (z)<br>Maximum Likelihood Estimate(MLE) Method<br>Mean<br>SD<br>95% UTL with 90% Coverage                                                   | 0.137<br>0.371<br>0.39<br>0.337<br>0.387<br>0.48<br>0.149<br>0.156<br>0.387<br>0.409                   |               | Assun        | 95% BCA   | normal Distribution<br>DL/2 Substitution<br>Mean (Lo<br>SD (Lo<br>95% UTL 90% C<br>95% Perc<br>95% Perc<br>99% Perc<br>99% Perc<br>99% Perc<br>99% Perc<br>99% Perc<br>99% Perc<br>00% Perc<br>5 UTL with 90% C<br>0 UTL with 90% C<br>95%<br>90% Perc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Method<br>og Scale)<br>og Scale)<br>Coverage<br>% UPL (t)<br>centile (z)<br>centile (z)<br>centile (z)<br>centile (z)<br>S Method<br>nal Scale<br>nal Scale<br>Coverage<br>Coverage<br>Coverage<br>% UPL (t)<br>centile (z) | 1.376<br>0.742<br>0.902<br>0.529<br>0.872<br>2.227<br>0.163<br>0.135<br>0.557<br>0.322<br>0.324<br>0.65<br>0.425                                                                           |
| 248<br>249<br>250<br>251<br>252<br>253<br>254<br>255<br>256<br>257<br>258<br>259<br>260<br>261<br>262<br>263<br>264<br>265<br>264<br>265                      | Assuming Normal Distribution<br>DL/2 Substitution Method<br>Mean<br>SD<br>95% UTL 90% Coverage<br>95% UPL (1)<br>90% Percentile (2)<br>95% Percentile (2)<br>99% Percentile (2)<br>99% Percentile (2)<br>99% Percentile (2)<br>Maximum Likelihood Estimate(MLE) Method<br>Mean<br>SD<br>95% UTL with 90% Coverage<br>95% UPL (t)<br>95% UPL (t)<br>90% Percentile (2) | 0.137<br>0.371<br>0.39<br>0.337<br>0.387<br>0.48<br>0.149<br>0.156<br>0.387<br>0.409<br>0.348<br>0.405 |               | Assun        | 95% BCA   | normal Distribution<br>DL/2 Substitution<br>SD (La<br>95% UTL 90% C<br>95% UTL 90% C<br>95% Perc<br>99% Perc<br>99% Perc<br>99% Perc<br>SD in Origi<br>SD in Origi<br>5 UTL with 90% C<br>0 UTL with 90% C<br>95% Perc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Method<br>og Scale)<br>og Scale)<br>Coverage<br>% UPL (t)<br>centile (z)<br>centile (z)<br>centile (z)<br>S Method<br>nal Scale<br>nal Scale<br>Coverage<br>Coverage<br>% UPL (t)<br>centile (z)<br>centile (z)             | 1.376         0.742         0.902         0.529         0.872         2.227         0.163         0.135         0.557         0.322         0.324         0.65         0.425         0.633 |
| 248<br>249<br>250<br>251<br>252<br>253<br>254<br>255<br>256<br>257<br>258<br>259<br>260<br>261<br>261<br>262<br>263<br>264<br>265<br>264<br>265<br>266<br>265 | Assuming Normal Distribution<br>DL/2 Substitution Method<br>Mean<br>SD<br>95% UTL 90% Coverage<br>95% UPL (t)<br>90% Percentile (z)<br>95% Percentile (z)<br>99% Percentile (z)<br>99% Percentile (z)<br>Maximum Likelihood Estimate(MLE) Method<br>Mean<br>SD<br>95% UTL with 90% Coverage<br>95% UPL (t)<br>90% Percentile (z)                                      | 0.137<br>0.371<br>0.39<br>0.337<br>0.387<br>0.48<br>0.149<br>0.156<br>0.387<br>0.409<br>0.348<br>0.405 |               | Assun        | 95% BCA   | normal Distribution<br>DL/2 Substitution<br>SD (La<br>95% UTL 90% C<br>95% UTL 90% C<br>95% Perc<br>99% Perc<br>99% Perc<br>99% Perc<br>SD in Origi<br>SD in Origi<br>5 UTL with 90% C<br>0 UTL with 90% C<br>95% Perc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Method<br>og Scale)<br>og Scale)<br>Coverage<br>% UPL (t)<br>centile (z)<br>centile (z)<br>centile (z)<br>centile (z)<br>S Method<br>nal Scale<br>nal Scale<br>Coverage<br>Coverage<br>Coverage<br>% UPL (t)<br>centile (z) | 1.376         0.742         0.902         0.529         0.872         2.227         0.163         0.135         0.557         0.322         0.324         0.65         0.425         0.633 |

|                   | A B C D E                                           | F           | G H I J K                                            | L      |
|-------------------|-----------------------------------------------------|-------------|------------------------------------------------------|--------|
| 271               | Gamma Distribution Test with Detected Values On     | •           | Data Distribution Test with Detected Values Only     |        |
| 272               | k star (bias corrected)                             |             | Data do not follow a Discernable Distribution (0.05) |        |
| 273               | Theta Star                                          |             |                                                      |        |
| 274               | nu star                                             | 273.9       |                                                      |        |
| 275               |                                                     |             |                                                      |        |
| 276               | A-D Test Statistic                                  | 1.681       | Nonparametric Statistics                             |        |
| 277               | 5% A-D Critical Value                               | 0.77        | Kaplan-Meier (KM) Method                             |        |
| 278               | K-S Test Statistic                                  | 0.143       | Mean                                                 | 0.162  |
| 279               | 5% K-S Critical Value                               | 0.0975      | SD                                                   | 0.136  |
| 280               | Data not Gamma Distributed at 5% Significance Level | /el         | SE of Mean                                           | 0.0139 |
| 281               |                                                     |             | 95% KM UTL with 90% Coverage                         | 0.37   |
| 282               | Assuming Gamma Distribution                         |             | 95% KM Chebyshev UPL                                 | 0.757  |
| 283               | Gamma ROS Statistics with Extrapolated Data         |             | 95% KM UPL (t)                                       | 0.389  |
| 284               | Mean                                                | 0.161       | 90% Percentile (z)                                   |        |
|                   | Median                                              | 0.166       | 95% Percentile (z)                                   |        |
| 285               |                                                     | 0.137       | 99% Percentile (z)                                   |        |
| 286               | k star                                              |             |                                                      |        |
| 287               | Theta star                                          |             | Gamma ROS Limits with Extrapolated Data              |        |
| 288               | Nu star                                             |             | 95% Wilson Hilferty (WH) Approx. Gamma UPL           | 0 563  |
| 289               | 95% Percentile of Chisquare (2k)                    |             | 95% Hawkins Wixley (HW) Approx. Gamma UPL            |        |
| 290               | 95% Percentile of Chisquare (2K)                    | 3.342       |                                                      |        |
| 291               |                                                     | 0.440       | 95% WH Approx. Gamma UTL with 90% Coverage           |        |
| 292               | 90% Percentile                                      |             | 95% HW Approx. Gamma UTL with 90% Coverage           | 0.618  |
| 293               | 95% Percentile                                      |             |                                                      |        |
| 294               | 99% Percentile                                      | 1.147       |                                                      |        |
| 295               |                                                     |             |                                                      |        |
| 296 <sup>No</sup> | ote: DL/2 is not a recommended method.              |             |                                                      |        |
| 297               |                                                     |             |                                                      |        |
| 298               |                                                     |             |                                                      |        |
| 299 <b>TC</b>     | OTAL PCB-HALFND                                     |             |                                                      |        |
| 300               |                                                     |             |                                                      |        |
| 301               |                                                     | Genera      | al Statistics                                        |        |
| 302               | Number of Valid Data                                | 95          | Number of Detected Data                              | 88     |
| 303               | Number of Distinct Detected Data                    | 83          | Number of Non-Detect Data                            | 7      |
| 304               | Tolerance Factor                                    | 1.531       | Percent Non-Detects                                  | 7.37%  |
| 305               | Number of Missing Values                            | 4           |                                                      |        |
| 306               |                                                     |             |                                                      |        |
| 307               | Raw Statistics                                      |             | Log-transformed Statistics                           |        |
| 308               | Minimum Detected                                    | 0.97        | Log Statistics Not Avaliable                         |        |
| 308               | Maximum Detected                                    | 498         |                                                      |        |
|                   | Mean of Detected                                    |             |                                                      |        |
| 310               | Mean of Detected                                    |             |                                                      |        |
| 311               | Mean of Detected                                    |             |                                                      |        |
| 312               | Maximum Non-Detect                                  |             |                                                      |        |
| 313               |                                                     | ч. <b>У</b> |                                                      |        |
| 314               | Data with Multiple Datastian Limits                 |             | Single Detection Limit Cooncris                      |        |
| 315               | Data with Multiple Detection Limits                 |             | Single Detection Limit Scenario                      |        |

| <b></b> | A B C D E                                                    | F        | G H I J K                                        |           |
|---------|--------------------------------------------------------------|----------|--------------------------------------------------|-----------|
| 316     | Nata: Data have multiple DLa. Llas of I/M Mathed is recommen |          | Number treated as Non-Detect with Single         | DL 15     |
| 317     | For all methods (except KM, DL/2, and ROS Methods),          |          | Number treated as Detected with Single           | DL 80     |
| 318     | Observations < Largest ND are treated as NDs                 |          | Single DL Non-Detect Percenta                    | ge 15.79% |
| 319     |                                                              |          |                                                  | l         |
| 320     |                                                              | Backgrou | nd Statistics                                    |           |
| 321     | Normal Distribution Test with Detected Values Onl            | ly       | Lognormal Distribution Test with Detected Values | Only      |
| 322     | Lilliefors Test Statistic                                    | 0.259    | Not Availal                                      | ole       |
| 323     |                                                              | 0.0944   |                                                  |           |
| 323     | Dete enneer Normel et EV, Significence Level                 |          |                                                  |           |
| 325     |                                                              |          |                                                  |           |
| 326     | Accuming Normal Distribution                                 |          | Assuming Lognormal Distribution                  |           |
| 327     |                                                              |          | DL/2 Substitution Meth                           | od N/A    |
| 327     | N4                                                           | 55.1     |                                                  |           |
| 329     |                                                              | 84.45    |                                                  |           |
|         |                                                              | 184.4    |                                                  |           |
| 330     | 95% UPL (t)                                                  |          |                                                  |           |
| 331     |                                                              |          |                                                  |           |
| 332     |                                                              |          |                                                  |           |
| 333     |                                                              |          |                                                  |           |
| 334     |                                                              |          |                                                  |           |
| 335     | Massimum Likelika ad Estimate (MLE) Mathad                   |          | Log ROS Meth                                     | od N/A    |
| 336     | Maar                                                         | 45.65    |                                                  |           |
| 337     |                                                              | 94.49    |                                                  |           |
| 338     |                                                              |          |                                                  |           |
| 339     |                                                              |          |                                                  |           |
| 340     | 95% Percentile (z)                                           |          |                                                  |           |
| 341     | 00% Dereentile (7)                                           |          |                                                  |           |
| 342     |                                                              |          |                                                  |           |
| 343     | Commo Distribution Test with Detected Values On              | llv      | Data Distribution Test with Detected Values O    | nlv       |
| 344     | Commo Statistico Nat Available                               | ·,       | Data appear Lognormal at 5% Significance Lev     | •         |
| 345     |                                                              |          |                                                  |           |
| 346     |                                                              |          |                                                  |           |
| 347     |                                                              | 1        | Nonparametric Statistics                         |           |
| 348     |                                                              |          | Kaplan-Meier (KM) Meth                           | od        |
| 349     |                                                              |          |                                                  | an 55.12  |
| 350     |                                                              |          |                                                  | SD 84     |
| 351     |                                                              |          | SE of Me                                         |           |
| 352     |                                                              |          | 95% KM UTL with 90% Covera                       |           |
| 353     |                                                              |          | 95% KM Chebyshev U                               | -         |
| 354     |                                                              |          | 95% KM UPL                                       |           |
| 355     |                                                              |          | 90% Percentile                                   |           |
| 356     |                                                              |          | 95% Percentile                                   |           |
| 357     |                                                              |          | 99% Percentile                                   |           |
| 358     |                                                              | <u> </u> |                                                  |           |
| 359     | National DL /0 to match and a second address the d           |          |                                                  |           |
| 360     |                                                              |          |                                                  |           |

|            | A         | В           |          | С        | 1       | D         | I       | E         | F                  |        | G            |      | H       | Т        | 1       | Т    | J        |        | К        |        |      |          |
|------------|-----------|-------------|----------|----------|---------|-----------|---------|-----------|--------------------|--------|--------------|------|---------|----------|---------|------|----------|--------|----------|--------|------|----------|
| 361        |           | D           |          | 0        |         | D         |         | <u> </u>  | 1 1                |        | u            |      |         |          |         |      | 0        |        | IX.      |        |      | <u>.</u> |
| 362        |           |             |          |          |         |           |         |           |                    |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 363        | TOTAL PCE | B-POS       |          |          |         |           |         |           |                    |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 364        |           |             |          |          |         |           |         |           |                    |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 365        |           |             |          |          |         |           |         |           | Gene               | eral S | Statistics   |      |         |          |         |      |          |        |          |        |      |          |
| 366        |           |             |          |          | N       | umber     | of Val  | lid Data  | 95                 |        |              |      |         |          |         | Nur  | nber of  | Dete   | cted D   | ata 8  | 8    |          |
| 367        |           |             | N        | lumber   | of Dis  | stinct De | etecte  | ed Data   | 84                 |        |              |      |         |          | N       | umb  | er of No | on-De  | etect D  | ata 7  | ,    |          |
| 368        |           |             |          |          |         | Tole      | rance   | Factor    | <sup>·</sup> 1.531 |        |              |      |         |          |         |      | Percer   | nt No  | n-Dete   | ects 7 | .37% |          |
| 369        |           |             |          | Ν        | lumbe   | er of Mi  | ssing   | Values    | <b>4</b>           |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 370        |           |             |          |          |         |           |         |           |                    |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 371        |           |             |          | Raw S    | tatisti | cs        |         |           |                    |        |              |      |         | Log-tr   | ansfo   | rme  | d Statis | tics   |          |        |      |          |
| 372        |           |             |          |          |         | Minim     | um De   | etectec   | 0.43               |        |              |      | Log St  | tatistic | s Not / | Aval | iable    |        |          |        |      |          |
| 372        |           |             |          |          |         | Maxim     | um De   | etectec   | 498                |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 373        |           |             |          |          | 57.7    |           |         |           |                    |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 375        |           |             |          |          |         | Mean      | of De   | etectec   | 57.7               |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 375        |           |             |          |          |         | Mean      | of De   | etectec   | 57.7               |        |              |      |         |          |         |      |          |        |          |        |      |          |
|            |           |             |          |          | Ma      | aximum    | Non     | -Detec    | t 0                |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 377<br>378 |           |             |          |          |         |           |         |           |                    |        |              |      |         |          |         |      |          |        |          |        |      |          |
|            |           |             |          |          |         |           |         |           |                    |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 379<br>380 |           |             |          |          |         |           |         |           | Backgr             | ound   | d Statistics | 3    |         |          |         |      |          |        |          |        |      |          |
|            | Ν         | lormal Dist | tributio | n Test v | with D  | etecte    | d Valı  | ues Or    | -                  |        |              |      | nal Dis | stributi | on Te   | st w | ith Dete | ected  | Value    | s On   | ly   |          |
| 381<br>382 |           |             |          |          |         |           |         |           | 0.264              |        |              | •    |         |          |         |      |          |        | Availa   |        |      |          |
| 383        |           |             |          | 5        | 5% Lill | liefors ( | Critica | al Value  | 0.0944             |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 384        |           | Data app    | pear No  | ormal a  | t 5% \$ | Signific  | ance    | Level     |                    |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 385        |           |             |          |          |         | -         |         |           |                    |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 386        |           |             | Assumi   | ing Nor  | mal D   | istribut  | ion     |           |                    |        |              |      | Ass     | suming   | j Logn  | norm | al Distr | ibutio | on       |        |      |          |
| 387        |           |             |          | -        |         | Substitu  |         | Method    | 1                  |        |              |      |         |          |         |      | 2 Subst  |        |          | hod N  | I/A  |          |
| 388        |           |             |          |          |         |           |         | Mear      | 53.45              |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 389        |           |             |          |          |         |           |         | SD        | 84.89              |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 390        |           |             |          | 9        | 95% U   | TL 90     | % Co    | verage    | 183.4              |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 391        |           |             |          |          |         |           | 95%     | UPL (t)   | 195.2              |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 392        |           |             |          |          |         | 90% F     | Perce   | ntile (z) | 162.2              |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 393        |           |             |          |          |         | 95% F     | Perce   | ntile (z) | 193.1              |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 394        |           |             |          |          |         | 99% F     | Perce   | ntile (z) | 250.9              |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 395        |           |             |          |          |         |           |         |           |                    |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 396        |           | Maxi        | mum Li   | ikelihoo | od Esti | imate(N   | ILE) I  | Method    | 1                  |        |              |      |         |          |         |      | Log      | g RO   | S Met    | hod N  | I/A  |          |
| 397        |           |             |          |          |         |           |         | Mear      | 49.34              |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 398        |           |             |          |          |         |           |         | SD        | 89.08              |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 399        |           |             |          | 9        | 95% U   | TL 90     | % Co    | verage    | 185.7              |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 400        |           |             |          |          |         | 90% F     | Perce   | ntile (z) | 163.5              |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 401        |           |             |          |          |         | 95% F     | Perce   | ntile (z) | 195.9              |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 402        |           |             |          |          |         | 99% F     | Perce   | ntile (z) | 256.6              |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 403        |           |             |          |          |         |           |         |           | 1                  |        |              |      |         |          |         |      |          |        |          |        |      |          |
| 404        | G         | amma Dis    | tributio | n Test   | with [  | Detecte   | d Val   | lues Oi   | nly                |        |              | Data | Distrit | oution   | Test v  | with | Detecte  | ed Va  | alues (  | Only   |      |          |
| 405        |           | C           | Gamma    | Statisti | ics No  | ot Availa | able    |           |                    |        |              | Data | do not  | follow   | a Dis   | cern | able Dis | stribu | ition (0 | .05)   |      |          |
| 400        |           |             |          |          |         |           |         |           |                    |        |              |      |         |          |         |      |          |        |          |        |      |          |

|     | A             | В            | С              | D               | E              | F        | G             | Н            |             | J                | К              |          |
|-----|---------------|--------------|----------------|-----------------|----------------|----------|---------------|--------------|-------------|------------------|----------------|----------|
| 406 |               |              |                |                 |                |          |               |              |             |                  |                | <u> </u> |
| 407 |               |              |                |                 |                |          |               |              |             |                  |                |          |
| 408 |               |              |                |                 |                |          |               |              | Nonparam    | netric Statistic | cs             |          |
| 409 |               |              |                |                 |                |          |               |              |             | Kaplan-Meier     |                |          |
| 410 |               |              |                |                 |                |          |               |              |             |                  |                | n 53.48  |
| 411 |               |              |                |                 |                |          |               |              |             |                  |                | 84.42    |
| 412 |               |              |                |                 |                |          |               |              |             |                  | SE of Mear     | -        |
| 413 |               |              |                |                 |                |          |               |              | 95% KM      | UTL with 9       | •              |          |
| 414 |               |              |                |                 |                |          |               |              |             |                  | ebyshev UPI    |          |
| 415 |               |              |                |                 |                |          |               |              |             |                  | % KM UPL (t    |          |
| 416 |               |              |                |                 |                |          |               |              |             |                  | Percentile (z  |          |
| 417 |               |              |                |                 |                |          |               |              |             |                  | Percentile (z  |          |
| 418 |               |              |                |                 |                |          |               |              |             | 99%              | Percentile (z  | ) 249.9  |
| 419 |               |              |                |                 |                |          |               |              |             |                  |                |          |
| 420 | Note: DL/2 is | s not a reco | ommended m     | ethod.          |                |          |               |              |             |                  |                |          |
| 421 |               |              |                |                 |                |          |               |              |             |                  |                |          |
| 422 |               |              |                |                 |                |          |               |              |             |                  |                |          |
| 423 | BAP EQUIV     | ALENT-HA     | LFND           |                 |                |          |               |              |             |                  |                |          |
| 424 |               |              |                |                 |                |          |               |              |             |                  |                |          |
| 425 |               |              |                |                 |                |          | Statistics    |              |             |                  |                |          |
| 426 |               |              |                |                 | of Valid Data  |          |               |              |             |                  | Detected Data  |          |
| 427 |               |              | Number         | of Distinct D   |                |          |               |              | Ν           | lumber of No     |                |          |
| 428 |               |              |                |                 | rance Factor   |          |               |              |             | Percen           | t Non-Detects  | 5.26%    |
| 429 |               |              | Ν              | lumber of Mi    | ssing Values   | 4        |               |              |             |                  |                |          |
| 430 |               |              |                |                 |                |          | 1             |              |             |                  |                |          |
| 431 |               |              | Raw S          | tatistics       |                | 1        |               | L            | .og-transfo | ormed Statist    |                | -        |
| 432 |               |              |                |                 | um Detected    |          |               |              |             |                  | num Detected   |          |
| 433 |               |              |                |                 | um Detected    |          |               |              |             | -                | num Detected   |          |
| 434 |               |              |                |                 | of Detected    |          |               |              |             |                  | an of Detected |          |
| 435 |               |              |                |                 | of Detected    |          |               |              |             |                  | D of Detected  |          |
| 436 |               |              |                |                 | Non-Detect     |          |               |              |             |                  | m Non-Detec    |          |
| 437 |               |              |                | Maximum         | Non-Detect     | 10       |               |              |             | Maximu           | m Non-Detec    | t 2.303  |
| 438 |               |              |                |                 |                |          |               |              |             |                  |                |          |
| 439 |               |              | a with Multipl |                 |                |          |               |              | -           | ion Limit Sce    |                |          |
| 440 |               |              | e DLs - Use o  |                 |                | nded     |               |              |             | Non-Detect v     | -              |          |
| 441 |               |              | KM, DL/2, ar   |                 | ods),          |          |               | Numb         |             | as Detected v    |                |          |
| 442 | Observations  | s < Largest  | ND are treate  | ea as NDs       |                |          |               |              | Single      | DL Non-Dete      | ct Percentage  | 16.84%   |
| 443 |               |              |                |                 |                | <b>.</b> |               |              |             |                  |                |          |
| 444 |               |              |                |                 | 4 ) / a !      | -        | nd Statistics |              |             |                  | -t             | <b>D</b> |
| 445 | N             | ormai Distr  | ribution Test  |                 |                | -        | Lo            | gnormal Dist | ridution Te | est with Dete    |                |          |
| 446 |               |              | -              |                 | Test Statistic |          |               |              |             |                  | Test Statistic |          |
| 447 |               |              |                | 5% Lilliefors ( |                | 0.0934   |               | Det 11       |             |                  | Critical Value | 0.0934   |
| 448 |               | Data no      | ot Normal at § | o% Significar   | nce Level      |          |               | Data not L   | .ognormal   | at 5% Signifi    | cance Level    |          |
| 449 |               |              |                |                 |                |          |               |              | <u> </u>    |                  |                |          |
| 450 |               | A            | ssuming Nor    | mal Distribut   | ion            |          |               | Ass          | uming Log   | normal Distri    | bution         |          |

|            | A B C D E                                          | F        | G H I J K                                          | L     |
|------------|----------------------------------------------------|----------|----------------------------------------------------|-------|
| 451        | DL/2 Substitution Method                           |          | DL/2 Substitution Method                           |       |
| 452        | Mean                                               | 230.2    | Mean (Log Scale)                                   | 4.355 |
| 453        |                                                    | 288.7    | SD (Log Scale)                                     | 1.891 |
| 454        | 95% UTL 90% Coverage                               | 672.1    | 95% UTL 90% Coverage                               | 1408  |
| 455        | 95% UPL (t)                                        | 712.2    | 95% UPL (t)                                        | 1831  |
| 456        | 90% Percentile (z)                                 | 600.1    | 90% Percentile (z)                                 | 878.7 |
| 457        | 95% Percentile (z)                                 |          | 95% Percentile (z)                                 |       |
| 458        | 99% Percentile (z)                                 | 901.7    | 99% Percentile (z)                                 | 6335  |
| 459        |                                                    |          |                                                    |       |
| 460        | Maximum Likelihood Estimate(MLE) Method            |          | Log ROS Method                                     |       |
| 461        | Mean                                               |          | Mean in Original Scale                             |       |
| 462        |                                                    | 328.3    | SD in Original Scale                               |       |
| 463        | 95% UTL with 90% Coverage                          | 699.3    | 95% UTL with 90% Coverage                          |       |
| 464        |                                                    |          | 95% BCA UTL with 90% Coverage                      |       |
| 465        |                                                    |          | 95% Bootstrap (%) UTL with 90% Coverage            |       |
| 466        | 95% UPL (t)                                        |          | 95% UPL (t)                                        |       |
| 467        | 90% Percentile (z)                                 |          | 90% Percentile (z)                                 |       |
| 468        | 95% Percentile (z)                                 |          | 95% Percentile (z)                                 |       |
| 469        | 99% Percentile (z)                                 | 960.4    | 99% Percentile (z)                                 | 6240  |
| 470        |                                                    |          |                                                    |       |
| 471        | Gamma Distribution Test with Detected Values On    | -        | Data Distribution Test with Detected Values Only   |       |
| 472        | k star (bias corrected)<br>Theta Star              |          | Data appear Gamma Distributed at 5% Significance L | evei  |
| 473        | nu star                                            |          |                                                    | [     |
| 474        |                                                    | 110      |                                                    |       |
| 475        | A-D Test Statistic                                 | 0.21     | Nonparametric Statistics                           |       |
| 476        | 5% A-D Critical Value                              |          | Kaplan-Meier (KM) Method                           |       |
| 477        | K-S Test Statistic                                 |          | Mean                                               | 230 1 |
| 478        | 5% K-S Critical Value                              |          |                                                    | 287.2 |
| 479        | Data appear Gamma Distributed at 5% Significance L |          | SE of Mean                                         |       |
| 480        |                                                    |          | 95% KM UTL with 90% Coverage                       |       |
| 481        | Assuming Gamma Distribution                        |          | 95% KM Chebyshev UPL                               |       |
| 482        | Gamma ROS Statistics with Extrapolated Data        |          | 95% KM UPL (t)                                     |       |
| 483        | Mean                                               | 229.9    | 90% Percentile (z)                                 |       |
| 484<br>485 | Median                                             |          | 95% Percentile (z)                                 |       |
| 485<br>486 |                                                    | 288.9    | 99% Percentile (z)                                 |       |
| 486<br>487 | k star                                             |          |                                                    |       |
| 487        | Theta star                                         |          | Gamma ROS Limits with Extrapolated Data            |       |
| 489        | Nu star                                            | 66.55    | 95% Wilson Hilferty (WH) Approx. Gamma UPL         | 847   |
| 490        | 95% Percentile of Chisquare (2k)                   | 3.045    | 95% Hawkins Wixley (HW) Approx. Gamma UPL          | 991.7 |
| 491        |                                                    | I        | 95% WH Approx. Gamma UTL with 90% Coverage         | 750.1 |
| 492        | 90% Percentile                                     | 663.9    | 95% HW Approx. Gamma UTL with 90% Coverage         | 857   |
| 493        | 95% Percentile                                     | 999.6    |                                                    |       |
| 494        | 99% Percentile                                     | 1856     |                                                    |       |
| 495        |                                                    | <u>I</u> | 1                                                  | 1     |
| 490        |                                                    |          |                                                    |       |

|            | A           | В              | С             | D             | E                | F                  | G             | Н          |             |        | J         |        | K          |       | L      |
|------------|-------------|----------------|---------------|---------------|------------------|--------------------|---------------|------------|-------------|--------|-----------|--------|------------|-------|--------|
| 496        | Note: DL /2 | is not a reco  | mmended m     | ethod.        |                  | •                  |               |            |             |        |           |        |            |       |        |
| 497        |             |                |               |               |                  |                    |               |            |             |        |           |        |            |       |        |
| 498        |             |                |               |               |                  |                    |               |            |             |        |           |        |            |       |        |
| 499        |             | /ALENT-PO      | S             |               |                  |                    |               |            |             |        |           |        |            |       |        |
| 500        |             |                |               |               |                  |                    |               |            |             |        |           |        |            |       |        |
| 501        |             |                |               |               |                  | Genera             | I Statistics  |            |             |        |           |        |            |       |        |
| 502        |             |                |               | Numbe         | r of Valid Data  | 95                 |               |            |             | N      | lumber    | of De  | etected D  | ata   | 90     |
| 503        |             |                | Number        | of Distinct   | Detected Data    | 89                 |               |            |             | Nur    | nber of   | Non-   | Detect D   | ata   | 5      |
| 504        |             |                |               | То            | lerance Factor   | <sup>.</sup> 1.531 |               |            |             |        | Perc      | cent l | Von-Dete   | ects  | 5.26%  |
| 505        |             |                | N             | lumber of N   | lissing Values   | 4                  |               |            |             |        |           |        |            |       |        |
| 506        |             |                |               |               |                  | 1                  | 1             |            |             |        |           |        |            |       |        |
| 507        |             |                | Raw S         | tatistics     |                  |                    |               |            | Log-tran    | sform  | ned Sta   | tistic | S          |       |        |
| 508        |             |                |               | Minii         | mum Detected     | 0.17               |               |            |             |        | М         | inimu  | Im Detec   | ted   | -1.772 |
| 509        |             |                |               | Maxii         | mum Detected     | 1282               |               |            |             |        | Ma        | aximu  | Im Detec   | ted   | 7.156  |
| 510        |             |                |               | Mea           | an of Detected   | 242.3              |               |            |             |        | Ν         | Mean   | of Detec   | ted   | 4.43   |
| 511        |             |                |               | S             | D of Detected    | 291.8              |               |            |             |        |           | SD     | of Detec   | ted   | 1.962  |
| 512        | 1           |                |               | Minimu        | Im Non-Detect    | 9.6                |               |            |             |        | Mini      | mum    | Non-De     | tect  | 2.262  |
| 513        |             |                |               | Maximu        | Im Non-Detect    | 10                 |               |            |             |        | Maxi      | mum    | Non-De     | tect  | 2.303  |
| 514        |             |                |               |               |                  |                    |               |            |             |        |           |        |            |       |        |
| 515        |             | Data           | with Multiple | e Detectior   | n Limits         |                    |               | S          | ingle Det   | ectior | Limit S   | Scena  | ario       |       |        |
| 516        | NULL DATE   | have multiple  | DLs - Use o   | f KM Metho    | od is recomme    | nded               |               | Numb       | er treated  | as No  | on-Dete   | ect wi | th Single  | DL    | 18     |
| 517        |             | ods (except    | KM, DL/2, an  | d ROS Me      | thods),          |                    |               | Nun        | nber treate | ed as  | Detecte   | ed wi  | th Single  | DL    | 77     |
| 518        | Observation | is < Largest I | ND are treate | ed as NDs     |                  |                    |               |            | Sing        | jle DL | Non-D     | etect  | Percenta   | age   | 18.95% |
| 519        |             |                |               |               |                  |                    |               |            |             |        |           |        |            |       |        |
| 520        |             |                |               |               |                  | Backgrou           | nd Statistics |            |             |        |           |        |            |       |        |
| 521        |             | Normal Distri  | bution Test v | with Detect   | ted Values Or    | ly                 | L             | ognormal D | istribution | Test   | with D    | etect  | ed Value   | s O   | nly    |
| 522        |             |                |               | Lilliefor     | s Test Statistic | 0.203              |               |            |             |        | Lillie    | fors 1 | est Stati  | stic  | 0.145  |
| 523        |             |                | 5             | 5% Lilliefors | Critical Value   | 0.0934             |               |            |             | 59     | % Lillief | ors C  | ritical Va | lue   | 0.0934 |
| 524        |             | Data no        | t Normal at 5 | 5% Signific   | ance Level       |                    |               | Data not   | t Lognorm   | nal at | 5% Sig    | nifica | ince Lev   | el    |        |
| 525        |             |                |               |               |                  |                    |               |            |             |        |           |        |            |       |        |
| 526        |             | As             | suming Nori   | mal Distrib   | ution            |                    |               | As         | suming L    | .ogno  | rmal Di   | stribu | ition      |       |        |
| 527        |             |                |               | DL/2 Subst    | itution Method   |                    |               |            |             | C      | DL/2 Su   | bstitu | tion Met   | hod   |        |
| 528        |             |                |               |               | Mean             | 229.8              |               |            |             |        | Ν         | Mean   | (Log Sca   | ale)  | 4.281  |
| 529        |             |                |               |               | SD               | 288.9              |               |            |             |        |           | SD     | (Log Sca   | ale)  | 2.012  |
| 530        |             |                | 9             | 5% UTL 9      | 0% Coverage      | 672.2              |               |            |             | 95     | 5% UTL    |        | % Covera   | -     |        |
| 531        |             |                |               |               | 95% UPL (t)      | 712.3              |               |            |             |        |           | 9      | 95% UPI    | _ (t) | 2081   |
| 532        |             |                |               | 90%           | Percentile (z)   | 600.1              |               |            |             |        | 9         | 0% P   | ercentile  | (z)   | 952.5  |
| 533        |             |                |               | 95%           | Percentile (z)   | 705.1              |               |            |             |        | 9         | 5% P   | ercentile  | (z)   | 1978   |
| 534        |             |                |               | 99%           | Percentile (z)   | 902                |               |            |             |        | 9         | 9% P   | ercentile  | (z)   | 7795   |
| 535        |             |                |               |               |                  |                    |               |            |             |        |           |        |            |       |        |
| 536        |             | Maxim          | um Likelihoo  | d Estimate    | (MLE) Method     |                    |               |            |             |        | I         | Log F  | OS Met     | hod   |        |
| 530<br>537 |             |                |               |               |                  | 191.1              |               |            |             |        | Mean      | in O   | riginal So | ale   | 229.8  |
| 538        |             |                |               |               |                  | 334.9              |               |            |             |        |           |        | riginal So |       |        |
| <u>539</u> |             |                | 95% l         | JTL with      | 0% Coverage      | 703.7              |               |            | 9           | 5% U   |           |        | % Cover    |       |        |
|            |             |                |               |               |                  |                    |               |            |             |        |           |        | % Cover    | -     |        |
| 540        |             |                |               |               |                  | 1                  | 1             |            |             |        |           |        |            | 5-    | -      |

|     | А            | В             | С             | D           |        | Е         |         | F    | G                                                | Н            |         | I       |        | J      |        | Τ     |       | <        | L     |
|-----|--------------|---------------|---------------|-------------|--------|-----------|---------|------|--------------------------------------------------|--------------|---------|---------|--------|--------|--------|-------|-------|----------|-------|
| 541 |              |               |               |             |        |           |         |      |                                                  | 95% Bo       | ootstra | ар (%)  | ) UT   | L with | ı 90   |       |       | -        |       |
| 542 |              |               |               |             |        | % UPL     |         |      |                                                  |              |         |         |        |        |        |       |       | .,       | 2081  |
| 543 |              |               |               | 90%         | % Per  | centile   | (z) 62  | 20.2 |                                                  |              |         |         |        | 9      | 0%     | Perc  | cent  | ile (z)  | 952.8 |
| 544 |              |               |               | 95%         | % Per  | centile   | (z) 74  | 41.9 |                                                  |              |         |         |        | 9      | 5%     | Perc  | cent  | tile (z) | 1979  |
| 545 |              |               |               | 99%         | % Per  | centile   | (z) 97  | 70.1 |                                                  |              |         |         |        | 9      | 9%     | Perc  | cent  | ile (z)  | 7792  |
| 546 |              |               |               |             |        |           |         |      |                                                  |              |         |         |        |        |        |       |       |          | _     |
| 547 | G            | amma Dist     | ribution Test | with Deteo  | cted \ | /alues    | Only    |      |                                                  | Data Distrib | oution  | Test    | with   | Dete   | cter   | d Va  | lue   | s Only   | 1     |
| 548 |              |               |               | k star (    | bias o | correcte  | ed) 0.  | .573 | Data appear Gamma Distributed at 5% Significance |              |         |         |        |        |        | nce L | evel  |          |       |
| 549 |              |               |               |             | ٦      | Theta S   | tar 42  | 23   |                                                  |              |         |         |        |        |        |       |       |          |       |
| 550 |              |               |               |             |        | nu s      | tar 10  | 03.1 |                                                  |              |         |         |        |        |        |       |       |          |       |
| 551 |              |               |               |             |        |           |         |      |                                                  |              |         |         |        |        |        |       |       |          |       |
| 552 |              |               |               | A-I         | D Tes  | st Statis | stic 0. | 407  |                                                  |              | Non     | baram   | etric  | : Stat | listic | s     |       |          |       |
| 553 |              |               |               | 5% A-[      | D Crit | ical Val  | lue 0.  | .81  |                                                  |              |         | ł       | Kapl   | an-M   | eier   | (KM   | '     | ethod    |       |
| 554 |              |               |               | K-          | S Tes  | st Statis | stic 0. | 0784 |                                                  |              |         |         |        |        |        |       |       | Mean     | 229.7 |
| 555 |              |               |               | 5% K-8      | S Crit | ical Val  | lue 0.  | .099 |                                                  |              |         |         |        |        |        |       |       | SD       | 287.5 |
| 556 | Data         | a appear Ga   | amma Distrib  | uted at 5%  | 5 Sigr | nificanc  | e Lev   | /el  |                                                  |              |         |         |        |        |        | SE    | E of  | Mean     | 29.66 |
| 557 |              |               |               |             |        |           |         |      |                                                  |              | 959     | % KM    | UTL    | . with | 9(     | 0% C  | Cov   | erage    | 669.9 |
| 558 |              | As            | ssuming Gan   | nma Distrit | butior | า         |         |      |                                                  |              |         |         | 959    | % KN   | I Ch   | ebys  | she   | √ UPL    | 1489  |
| 559 |              | Gamma         | ROS Statisti  | cs with Ext | rapol  | ated Da   | ata     |      |                                                  |              |         |         |        |        | 959    | % KN  | МU    | PL (t)   | 709.8 |
| 560 |              |               |               |             |        | Me        | an 22   | 29.6 |                                                  |              |         |         |        | 9      | 0%     | Perc  | cent  | ile (z)  | 598.1 |
| 561 |              |               |               |             |        | Medi      | ian 13  | 38   |                                                  |              |         |         |        | 9      | 15%    | Perc  | cent  | ile (z)  | 702.6 |
| 562 |              |               |               |             |        | ę         | SD 28   | 89.1 |                                                  |              |         |         |        | 9      | 9%     | Perc  | cent  | tile (z) | 898.5 |
| 563 |              |               |               |             |        | k s       | tar 0.  | .339 |                                                  |              |         |         |        |        |        |       |       |          |       |
| 564 |              |               |               |             | -      | Theta s   | tar 67  | 76.7 |                                                  | Gamma        | ROS     | Limits  | ; with | h Ext  | rapc   | late  | d D   | ata      | _     |
| 565 |              |               |               |             |        | Nu s      | tar 64  | 4.46 |                                                  | 95% Wils     | on Hil  | ferty ( | WH)    | ) App  | rox.   | Gan   | nma   | a UPL    | 857.5 |
| 566 |              |               | 95% Pe        | rcentile of | Chiso  | quare (2  | 2k) 2.  | .981 |                                                  | 95% Hawk     |         |         |        |        |        |       |       |          |       |
| 567 |              |               |               |             |        |           |         |      | 95                                               | % WH Appro   | ox. Ga  | amma    | UTL    | with   | 9(     | 0% C  | Cov   | erage    | 758.1 |
| 568 |              |               |               | ę           | 90%    | Percent   | tile 66 | 66   | 95% HW Approx. Gamma UTL with 90% Coverag        |              |         |         |        |        |        | erage | 870.8 |          |       |
| 569 |              |               |               | ę           | 95%    | Percent   | tile 10 | 009  |                                                  |              |         |         |        |        | -      |       |       |          |       |
| 570 |              |               |               | ę           | 99%    | Percent   | tile 18 | 886  |                                                  |              |         |         |        |        |        |       |       | -        |       |
| 571 |              |               |               |             |        |           |         |      |                                                  |              |         |         |        |        | -      |       |       |          | •     |
| 572 | Note: DL/2 i | is not a reco | ommended m    | ethod.      |        |           |         |      |                                                  |              |         |         |        |        |        |       |       |          |       |
| 573 |              |               |               |             |        |           |         |      |                                                  |              |         |         |        |        |        |       |       |          |       |
| _   |              |               |               |             |        |           |         |      |                                                  |              |         |         |        |        |        |       |       |          |       |

# ATTACHMENT B

# PRELIMINARY REMEDIAL GOAL CALCULATIONS

Attachment B

Preliminary Remedial Goal Calculations

Attachment B.1

Toxicity Values for Preliminary Remediation Goal Calculations

# Non-Cancer Toxicity Data -- Oral/Dermal Lockheed Martin, Middle River Complex Middle River, Maryland Page 1 of 2

| Chemical<br>of Potential      | Chronic/<br>Subchronic | Ore     | I RfD     | Oral Absorption<br>Efficiency | Absorbed Rf | D for Dermal <sup>(2)</sup> | Primary<br>Target  | Combined<br>Uncertainty/Modifying | RfD:Targ  | et Organ(s)             |
|-------------------------------|------------------------|---------|-----------|-------------------------------|-------------|-----------------------------|--------------------|-----------------------------------|-----------|-------------------------|
| Concern                       |                        | Value   | Units     | for Dermal <sup>(1)</sup>     | Value       | Units                       | Organ(s)           | Factors                           | Source(s) | Date(s)<br>(MM/DD/YYYY) |
| Volatile Organic Compounds    |                        |         |           |                               |             | 1.                          |                    |                                   |           |                         |
| 1,3-Dichlorobenzene           | NA                     | NA      | NĂ        | NA                            | NA          | NA                          | NA                 | NA                                | NA        | NA                      |
| 1,4-Dichlorobenzene           | Chronic                | 7.0E-02 | mg/kg/day | 1                             | 7.0E-02     | mg/kg/day                   | Liver              | 100/1                             | ATSDR     | 7/2006                  |
| 2-Butanone                    | Chronic                | 6.0E-01 | mg/kg/day | 1                             | 6.0E-01     | mg/kg/day                   | Body Weight        | 1000/1                            | IRIS      | 3/8/2011                |
| Acetone                       | Chronic                | 9.0E-01 | mg/kg/day | 1                             | 9.0E-01     | mg/kg/day                   | Liver, Kidney, CNS | 1000/1                            | IRIS      | 3/8/2011                |
| Carbon Disulfide              | Chronic                | 1.0E-01 | mg/kg/day | 1                             | 1.0E-01     | mg/kg/day                   | Fetal              | 100/1                             | IRIS      | 3/8/2011                |
| Chlorobenzene                 | Chronic                | 2.0E-02 | mg/kg/day | 1                             | 2.0E-02     | mg/kg/day                   | Liver              | 100/1                             | IRIS      | 3/8/2011                |
| Chloromethane                 | NA                     | NA      | NA        | NA                            | NA          | NA                          | NA                 | NA                                | NĂ        | NA                      |
| cis-1,2-Dichloroethene        | Chronic                | 2.0E-03 | mg/kg/day | 1                             | 2.0E-03     | mg/kg/day                   | Blood              | NA                                | IRIS      | 3/8/2011                |
| Isopropylbenzene              | Chronic                | 1.0E-01 | mg/kg/day | 1                             | 1.0E-01     | mg/kg/day                   | Kidney             | 1000/1                            | IRIS      | 3/8/2011                |
| Methyl Tert-Butyl Ether       | NA                     | NA      | NA        | NA                            | NA          | NA                          | NA                 | NA                                | NA        | NA                      |
| Naphthalene                   | Chronic                | 2.0E-02 | mg/kg/day | 1                             | 2.0E-02     | mg/kg/day                   | Body Weight        | 3000/1                            | IRIS      | 3/8/2011                |
| sec-Butylbenzene              | NA                     | NA      | NA        | NA                            | NA          | NA                          | NA                 | NA                                | NA        | NA                      |
| Tert-Butylbenzene             | NA                     | NA      | NA        | NA                            | NA          | NA                          | NA                 | NĂ                                | NA        | NA                      |
| Toluene                       | Chronic                | 8.0E-02 | mg/kg/day | 1                             | 8.0E-02     | mg/kg/day                   | Liver, Kidney      | 3000/1                            | IRIS      | 3/8/2011                |
| Semivolatile Organic Compou   |                        |         | _         |                               |             |                             |                    |                                   |           |                         |
| Bis(2-ethylhexyl)phthalate    | Chronic                | 2.0E-02 | mg/kg/day | 1                             | 2.0E-02     | mg/kg/day                   | Liver              | 1000/1                            | IRIS      | 3/8/2011                |
| Butyl Benzyl Phthalate        | Chronic                | 2.0E-01 | mg/kg/day | 1                             | 2.0E-01     | mg/kg/day                   | Liver              | 1000/1                            | IRIS      | 3/8/2011                |
| Carbazole                     | NA                     | NA      | NA        | NA                            | NA          | NA                          | NA                 | NA                                | NA        | NA                      |
| Dibenzofuran                  | Chronic                | 1.0E-03 | mg/kg/day | 1                             | 1.0E-03     | mg/kg/day                   | NA                 | NA                                | PPRTV     | 6/11/2007               |
| Polycyclic Aromatic Hydrocarl | bons                   |         |           |                               |             |                             |                    |                                   |           |                         |
| 1-Methylnaphthalene           | Chronic                | 7.0E-02 | mg/kg/day | 1                             | 7.0E-02     | mg/kg/day                   | Lungs              | 1000/1                            | ATSDR     | 9/2005                  |
| 2-Methylnaphthalene           | Chronic                | 4.0E-03 | mg/kg/day | 1                             | 4.0E-03     | mg/kg/day                   | Lungs              | 1000/1                            | IRIS      | 3/8/2011                |
| Acenaphthene                  | Chronic                | 6.0E-02 | mg/kg/day | 1                             | 6.0E-02     | mg/kg/day                   | Blood              | 3000/1                            | IRIS      | 3/8/2011                |
| Acenaphthylene <sup>(7)</sup> | Chronic                | 6.0E-02 | mg/kg/day | 1                             | 6.0E-02     | mg/kg/day                   | Blood              | 3000/1                            | IRIS      | 3/8/2011                |
| Anthracene                    | Chronic                | 3.0E-01 | mg/kg/day | 1                             | 3.0E-01     | mg/kg/day                   | NA                 | 3000/1                            | IRIS      | 3/8/2011                |
| Benzo(a)pyrene Equivalents    | NA                     | NA      | NA        | NA                            | NA          | NA                          | NA                 | NA                                | NA        | NA                      |
| Benzo(a)anthracene            | NA                     | NA      | NA        | NA                            | NA          | NA                          | NA                 | NA                                | NA        | NA                      |
| Benzo(a)pyrene                | NA                     | NA      | NA        | NA                            | NA          | NA                          | NA                 | NA                                | NA        | NA                      |
| Benzo(b)fluoranthene          | NA                     | NA      | NA        | NA                            | NA          | NA                          | NA                 | NA                                | NA        | NA                      |
| Benzo(g,h,i)perylene          | NA                     | NA      | NA        | NA                            | NA          | NA                          | NA                 | NA                                | NA        | NA                      |
| Benzo(k)fluoranthene          | NA                     | NA      | NA        | NA                            | NA          | NA                          | NA                 | NĂ                                | NA        | NA                      |
| Chrysene                      | NA                     | NA      | NA        | NA                            | NA          | NA                          | NA                 | NA                                | NA        | NA                      |
| Dibenzo(a,h)anthracene        | NA                     | NA      | NA        | NA                            | NA          | NA                          | NA                 | NA                                | NA        | NA                      |
| Indeno(1,2,3-cd)pyrene        | NA                     | NA      | NA        | NA                            | NA          | NA                          | NA                 | NA                                | NA        | NA                      |
| Fluoranthene                  | Chronic                | 4.0E-02 | mg/kg/day | 1                             | 4.0E-02     | mg/kg/day                   | Liver              | 3000/1                            | IRIS      | 3/8/2011                |
| Fluorene                      | Chronic                | 4.0E-02 | mg/kg/day | 1                             | 4.0E-02     | mg/kg/day                   | Blood              | 3000/1                            | IRIS      | 3/8/2011                |
| Naphthalene                   | Chronic                | 2.0E-02 | mg/kg/day | 1                             | 2.0E-02     | mg/kg/day                   | Body Weight        | 3000/1                            | IRIS      | 3/8/2011                |
| Phenanthrene <sup>(6)</sup>   | Chronic                | 3.0E-02 | mg/kg/day | 1                             | 3.0E-02     | mg/kg/day                   | Kidney             | 3000/1                            | IRIS      | 3/8/2011                |
| Pyrene                        | Chronic                | 3.0E-02 | mg/kg/day | 1                             | 3.0E-02     | mg/kg/day                   | Kidney             | 3000/1                            | IRIS      | 3/8/2011                |
| Polychlorinated Biphenyls     |                        |         |           |                               |             |                             |                    |                                   |           |                         |
| Aroclor-1248                  | NA                     | NA      | NA        | NA                            | NA          | NA                          | NA                 | NA                                | NA        | NA                      |
| Aroclor-1254                  | Chronic                | 2.0E-05 | mg/kg/day | 1                             | 2.0E-05     | mg/kg/day                   | Immune             | 300/1                             | IRIS      | 3/8/2011                |
| Aroclor-1260                  | NA                     | NA      | NA        | NA                            | NA          | NA                          | NA                 | NA                                | NA        | NA                      |

.

## Non-Cancer Toxicity Data -- Oral/Dermal Lockheed Martin, Middle River Complex Middle River, Maryland Page 2 of 2

| Chemical<br>of Potential | Chronic/<br>Subchronic |         |           | Oral Absorption<br>Efficiency | · · · · · · · · · · · · · · · · · · · |           | Primary<br>Target    | Combined<br>Uncertainty/Modifying | RfD:Target Organ(s) |                         |
|--------------------------|------------------------|---------|-----------|-------------------------------|---------------------------------------|-----------|----------------------|-----------------------------------|---------------------|-------------------------|
| Concern                  |                        | Value   | Units     | for Dermal <sup>(1)</sup>     | Value                                 | Units     | Organ(s)             | Factors                           | • • •               | Date(s)<br>(MM/DD/YYYY) |
| Metals                   |                        |         |           |                               |                                       |           |                      |                                   |                     |                         |
| Antimony                 | Chronic                | 4.0E-04 | mg/kg/day | 0.15                          | 6.0E-05                               | mg/kg/day | Blood                | 1000/1                            | IRIS                | 3/8/2011                |
| Arsenic                  | Chronic                | 3.0E-04 | mg/kg/day | 1                             | 3.0E-04                               | mg/kg/day | Skin, CVS            | 3/1                               | IRIS                | 3/8/2011                |
| Barium                   | Chronic                | 2.0E-01 | mg/kg/day | 0.07                          | 1.4E-02                               | mg/kg/day | Kidney               | 300/1                             | IRIS                | 3/8/2011                |
| Beryllium                | Chronic                | 2.0E-03 | mg/kg/day | 0.007                         | 1.4E-05                               | mg/kg/day | GS                   | 300/1                             | IRIS                | 3/8/2011                |
| Cadmium <sup>(3)</sup>   | Chronic                | 1.0E-03 | mg/kg/day | 0.025                         | 2.5E-05                               | mg/kg/day | Kidney               | 10/1                              | IRIS                | 3/8/2011                |
| Chromium <sup>(4)</sup>  | Chronic                | 1.5E+00 | mg/kg/day | 0.013                         | 2.0E-02                               | mg/kg/day | None Reported        | 300/3                             | IRIS                | 3/8/2011                |
| Cobalt                   | Chronic                | 3.0E-04 | mg/kg/day | 1                             | 3.0E-04                               | mg/kg/day | Blood                | NA                                | PPRTV               | 8/25/2008               |
| Copper                   | Chronic                | 4.0E-02 | mg/kg/day | 1                             | 4.0E-02                               | mg/kg/day | GS                   | NA                                | HEAST               | 7/1997                  |
| Dibutyltin               | Chronic                | 3.0E-04 | mg/kg/day | 1                             | 3.0E-04                               | mg/kg/day | NA                   | NA                                | PPRTV               | 3/1/2006                |
| Hexavalent Chromium      | Chronic                | 3.0E-03 | mg/kg/day | 0.025                         | 7.5E-05                               | mg/kg/day | None Reported        | 300/3                             | IRIS                | 3/8/2011                |
| Lead                     | NA                     | NA      | NA        | NA                            | NA                                    | NA        | NA                   | NA                                | NA                  | NA                      |
| Mercury <sup>(5)</sup>   | Chronic                | 3.0E-04 | mg/kg/day | 0.07                          | 2.1E-05                               | mg/kg/day | Autoimmune           | 1000/1                            | IRIS                | 3/8/2011                |
| Molybdenum               | Chronic                | 5.0E-03 | mg/kg/day | 1                             | 5.0E-03                               | mg/kg/day | Gout                 | 30/1                              | IRIS                | 3/8/2011                |
| Nickel                   | Chronic                | 2.0E-02 | mg/kg/day | 0.04                          | 8.0E-04                               | mg/kg/day | Body Weight          | 300/1                             | IRIS                | 3/8/2011                |
| Selenium                 | Chronic                | 5.0E-03 | mg/kg/day | 1                             | 5.0E-03                               | mg/kg/day | Hair Loss, CNS, Skin | 3/1                               | IRIS                | 3/8/2011                |
| Silver                   | Chronic                | 5.0E-03 | mg/kg/day | 0.04                          | 2.0E-04                               | mg/kg/day | Skin                 | 3/1                               | IRIS                | 3/8/2011                |
| Thallium                 | NA                     | NA      | NA        | NA                            | NA                                    | NA        | NA                   | NA                                | NA                  | NA                      |
| Vanadium                 | Chronic                | 5.0E-03 | mg/kg/day | 1                             | 5.0E-03                               | mg/kg/day | Hair Loss            | 300                               | RSL                 | 11/2010                 |
| Zinc                     | Chronic                | 3.0E-01 | mg/kg/day | 1                             | 3.0E-01                               | mg/kg/day | Blood                | 3/1                               | IŘIŠ                | 3/8/2011                |

Notes:

- 2 Adjusted dermal RfD = Oral RfD x Oral Absorption Efficiency for Dermal.
- 3 Values are for cadmium water.

4 - Values are for trivalent chromium.

5 - Values are for mercuric chloride.

6 - Toxicity criterion for pyrene is used as a surrogate for phenanthrene.

7 - Toxicity criterion for acenaphthene is used as a surrogate for acenaphthylene.

#### Definitions:

ATSDR = Agency for Toxic Substances and Disease Registry

CNS = Central Nervous System.

CVS = Cardiovascular system.

GS = Gastrointestinal.

HEAST = Health Effects Assessment Summary Tables

IRIS = Integrated Risk Information System.

NA = Not Available.

RSL = USEPA Regional Screening Levels for Chemical Contaminants at Superfund Sites, November 2010.

PPRTV = Provisional Peer Reviewed Toxicity Value.

U.S. EPA, 2004: Risk Assessment Guidance for Superfund (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim. EPA/540/R/99/005.

# Cancer Toxicity Data -- Oral/Dermal Lockheed Martin, Middle River Complex Middle River, Maryland Page 1 of 3

| Chemical<br>of Potential              | Oral Cancer Slope Factor |                           | Oral Absorption<br>Efficiency | Absorbed Cancer Slope Factor<br>for Dermal <sup>(2)</sup> |                           | Weight of Evidence/<br>Cancer Guideline | Oral CSF  |                         |
|---------------------------------------|--------------------------|---------------------------|-------------------------------|-----------------------------------------------------------|---------------------------|-----------------------------------------|-----------|-------------------------|
| Concern                               | Value                    | Units                     | for Dermai <sup>(1)</sup>     | Value                                                     | Units                     | Description                             | Source(s) | Date(s)<br>(MM/DD/YYYY) |
| Volatile Organic Compounds            |                          |                           |                               |                                                           |                           |                                         |           | •                       |
| 1,3-Dichlorobenzene                   | NA                       | NA                        | NA                            | NA                                                        | NA                        | NA                                      | NA        | NA                      |
| 1,4-Dichlorobenzene                   | 5.4E-03                  | (mg/kg/day) <sup>-1</sup> | 1                             | 5.4E-03                                                   | (mg/kg/day) <sup>-1</sup> | NA                                      | Cal EPA   | 11/2010                 |
| 2-Butanone                            | NA                       | NA                        | NA                            | NA                                                        | NA                        | NA                                      | NA        | NA                      |
| Acetone                               | NA                       | NA                        | NA                            | NA                                                        | NA                        | NA                                      | NA        | NA                      |
| Carbon Disulfide                      | NA                       | NA                        | NA                            | NA                                                        | NA                        | NA                                      | NA        | NA                      |
| Chlorobenzene                         | NA                       | NA                        | NA                            | NA                                                        | NA                        | NA                                      | NA        | NA                      |
| Chloromethane                         | NA                       | NA                        | NA                            | NA                                                        | NA                        | NA                                      | NA        | NA                      |
| cis-1,2-Dichloroethene                | NA                       | NA                        | NA                            | NA                                                        | NA                        | NA                                      | NA        | NA                      |
| Isopropylbenzene                      | NA                       | NA                        | NA                            | NA                                                        | NA                        | NA                                      | NA        | NA                      |
| Methyl Tert-Butyl Ether               | 1.8E-03                  | (mg/kg/day) <sup>-1</sup> | 1                             | 1.8E-03                                                   | (mg/kg/day) <sup>-1</sup> | NA                                      | Cal EPA   | 11/2010                 |
| Naphthalene                           | NA                       | NA                        | NA                            | NA                                                        | NA                        | NA                                      | NA        | NA                      |
| sec-Butylbenzene                      | NA                       | NA                        | NA                            | NA                                                        | NA                        | NA                                      | NA        | NA                      |
| Tert-Butylbenzene                     | NA                       | NA                        | NA                            | NA                                                        | NA                        | NA                                      | NA        | NA                      |
| Toluene                               | NA                       | NA                        | NA                            | NA                                                        | NA                        | NA                                      | NA        | NA                      |
| Semivolatile Organic Compounds        |                          |                           |                               |                                                           | ,,,,                      |                                         | 1         | 1 ,                     |
| Bis(2-ethylhexyl)phthalate            | 1.4E-02                  | (mg/kg/day) <sup>-1</sup> | 1 1                           | 1.4E-02                                                   | (mg/kg/day) <sup>1</sup>  | B2 / Probable human carcinogen          | IRIS      | 3/8/2011                |
| Butyl Benzyl Phthalate                | 1.9E-03                  | (mg/kg/day) <sup>-1</sup> | 1                             | 1.9E-03                                                   | (mg/kg/day) <sup>-1</sup> | NA                                      | PPRTV     | 10/1/2002               |
| Carbazole                             | NA                       | NA                        | NA                            | NA                                                        | NA                        | NA                                      | NA        | NA                      |
| Dibenzofuran                          | NA                       | NA                        | NA                            | NA                                                        | NA                        | NA                                      | NA        | NA                      |
| Polycyclic Aromatic Hydrocarbons      |                          |                           |                               |                                                           |                           |                                         |           | ,,,,                    |
| 1-Methylnaphthalene                   | 2.9E-02                  | (mg/kg/day) <sup>-1</sup> | 1 1                           | 2.9E-02                                                   | (mg/kg/day) <sup>-1</sup> | NA                                      | PPRTV     | 1/10/2008               |
| 2-Methylnaphthalene                   | NA                       | NA                        | NA                            | NA                                                        | NA                        | NA                                      | NA        | NA                      |
| Acenaphthene                          | NA                       | NA                        | NA                            | NA                                                        | NA                        | NA                                      | NA        | NA                      |
| Acenaphthylene                        | NA                       | NA                        | NA                            | NA                                                        | NA                        | NA                                      | NA        | NA                      |
| Anthracene                            | NA                       | NA                        | NA                            | NA                                                        | NA                        | NA                                      | NA        | NA                      |
| Benzo(a)pyrene Equivalents            | 7.3E+00                  | (mg/kg/day) <sup>-1</sup> | 1                             | 7.3E+00                                                   | (mg/kg/day) <sup>-1</sup> | B2 / Probable human carcinogen          | IRIS      | 3/8/2011                |
| Benzo(a)anthracene <sup>(3)</sup>     | 7.3E-01                  | (mg/kg/day)               | 1                             | 7.3E-01                                                   | (mg/kg/day) <sup>-1</sup> | B2 / Probable human carcinogen          | USEPA(1)  | 7/1993                  |
| Benzo(a)pyrene <sup>(3)</sup>         | 7.3E+00                  | (mg/kg/day)               | 1                             | 7.3E+00                                                   | (mg/kg/day) <sup>-1</sup> | B2 / Probable human carcinogen          | IRIS      | 3/8/2011                |
| Benzo(b)fluoranthene <sup>(3)</sup>   | 7.3E-01                  | (mg/kg/day) <sup>-1</sup> | 1                             | 7.3E-01                                                   | (mg/kg/day) <sup>-1</sup> | B2 / Probable human carcinogen          | USEPA(1)  | 7/1993                  |
| Benzo(g,h,i)perylene                  | NA                       | (mg/kg/day)<br>NA         | NA                            | NA                                                        | NA                        | NA                                      | NA NA     | NA                      |
| Benzo(k)fluoranthene <sup>(3)</sup>   | 7.3E-02                  | (mg/kg/day) <sup>-1</sup> | 1                             | 7.3E-02                                                   | (mg/kg/day) <sup>-1</sup> | B2 / Probable human carcinogen          | USEPA(1)  | 7/1993                  |
| Chrysene <sup>(3)</sup>               | 7.3E-02                  | (mg/kg/day)               | 1                             | 7.3E-02                                                   | (mg/kg/day) <sup>-1</sup> | B2 / Probable human carcinogen          | USEPA(1)  | 7/1993                  |
| Dibenzo(a,h)anthracene <sup>(3)</sup> | 7.3E+00                  | (mg/kg/day)               | 1                             | 7.3E+00                                                   | (mg/kg/day) <sup>-1</sup> | B2 / Probable human carcinogen          | USEPA(1)  | 7/1993                  |
| Indeno(1,2,3-cd)pyrene <sup>(3)</sup> | 7.3E-01                  | (mg/kg/day) <sup>-1</sup> | 1                             | 7.3E-01                                                   | (mg/kg/day) <sup>-1</sup> | B2 / Probable human carcinogen          | USEPA(1)  | 7/1993                  |
| Fluoranthene                          | NA                       | NA                        | NA                            | NA                                                        | NA NA                     | NA                                      | NA        | NA                      |
| Fluorene                              | NA                       | NA                        | NA                            | NA                                                        | NA                        | NA                                      | NA NA     | NA NA                   |
| Naphthalene                           | NA<br>NA                 | NA                        | NA                            | NA                                                        | NA                        | C / Possible human carcinogen           | IRIS      | 3/8/2011                |
| Phenanthrene                          | NA                       | NA                        | NA                            | NA                                                        | NA                        | NA                                      | NA NA     | NA                      |
| Pyrene                                | NA                       | NA NA                     | NA                            | NA                                                        | NA                        | NA                                      | NA<br>NA  | NA                      |

# Cancer Toxicity Data -- Oral/Dermal Lockheed Martin, Middle River Complex Middle River, Maryland Page 2 of 3

| Chemical<br>of Potential           | Oral Cancer Slope Factor |                           | -                         |         | cer Slope Factor<br>ermal <sup>(2)</sup> | Weight of Evidence/<br>Cancer Guideline | Oral CSF  |                         |
|------------------------------------|--------------------------|---------------------------|---------------------------|---------|------------------------------------------|-----------------------------------------|-----------|-------------------------|
| Concern                            | Value                    | Units                     | for Dermal <sup>(1)</sup> | Value   | Units                                    | Description                             | Source(s) | Date(s)<br>(MM/DD/YYYY) |
| Polychlorinated Biphenyls          |                          |                           |                           |         |                                          |                                         |           |                         |
| Aroclor-1248                       | 2.0E+00                  | (mg/kg/day) <sup>-1</sup> | 1                         | 2.0E+00 | (mg/kg/day) <sup>-1</sup>                | B2 / Probable human carcinogen          | USEPA(2)  | 9/1996                  |
| Aroclor-1254                       | 2.0E+00                  | (mg/kg/day) <sup>-1</sup> | 1                         | 2.0E+00 | (mg/kg/day) <sup>-1</sup>                | B2 / Probable human carcinogen          | USEPA(2)  | 9/1996                  |
| Aroclor-1260                       | 2.0E+00                  | (mg/kg/day) <sup>-1</sup> | 1                         | 2.0E+00 | (mg/kg/day) <sup>-1</sup>                | B2 / Probable human carcinogen          | USEPA(2)  | 9/1996                  |
| Metals                             |                          |                           |                           |         |                                          |                                         |           |                         |
| Antimony                           | NA                       | NA                        | NA                        | NA      | NA                                       | NA                                      | NA        | NA                      |
| Arsenic                            | 1.5E+00                  | (mg/kg/day) <sup>-1</sup> | 1                         | 1.5E+00 | (mg/kg/day) <sup>-1</sup>                | A / Known human carcinogen              | IRIS      | 3/8/2011                |
| Barium                             | NA                       | NA                        | NA                        | NA      | NA                                       | NA                                      | NA        | NA                      |
| Beryllium                          | NA                       | NA                        | NA                        | NA      | NA                                       | NA                                      | NA        | NA                      |
| Cadmium                            | NA                       | NA                        | NA                        | NA      | NA                                       | B1 / Probable human carcinogen          | IRIS      | 3/8/2011                |
| Chromium                           | NA                       | NA                        | NA                        | NA      | NA                                       | NA                                      | NA        | NA                      |
| Cobalt                             | NA                       | NA                        | NA                        | NA      | NA                                       | NA                                      | NA        | NA                      |
| Copper                             | NA                       | NA                        | NA                        | NA      | NA                                       | NA                                      | NA        | NA                      |
| Dibutyitin                         | NA                       | NA                        | NA                        | NA      | NA                                       | NA                                      | NA        | NA                      |
| Hexavalent Chromium <sup>(3)</sup> | 5.0E-01                  | (mg/kg/day) <sup>-1</sup> | 0.025                     | 2.0E+01 | (mg/kg/day) <sup>-1</sup>                | A / Known human carcinogen              | NJ        | 11/2010                 |
| Lead                               | NA                       | NA                        | NA                        | NA      | NA                                       | B2 / Probable human carcinogen          | IRIS      | 3/8/2011                |
| Mercury                            | NA                       | NA                        | NA                        | NA      | NA                                       | C / Possible human carcinogen           | IRIS      | 3/8/2011                |
| Molybdenum                         | NA                       | NA                        | NA                        | NA      | NA                                       | NA                                      | NA        | NA                      |
| Nickel                             | NA                       | NA                        | NA                        | NA      | NA                                       | NA                                      | NA        | NA                      |
| Selenium                           | NA                       | NA                        | NA                        | NA      | NA                                       | NA                                      | NA        | NA                      |
| Silver                             | NA                       | NA                        | NA                        | NA      | NA                                       | NA                                      | NA        | NA                      |
| Thallium                           | NA                       | NA                        | NA                        | NA      | NA                                       | NA                                      | NA        | NA                      |
| Vanadium                           | NA                       | NA                        | NA                        | NA      | NA                                       | NA                                      | NA        | NA                      |
| Zinc                               | NA                       | NA                        | NA                        | NA      | NA                                       | NA                                      | NA        | NA                      |

## Cancer Toxicity Data -- Oral/Dermal Lockheed Martin, Middle River Complex Middle River, Maryland Page 3 of 3

| Chemical<br>of Potential | Oral Cancer | Slope Factor | Oral Absorption<br>Efficiency | Absorbed Cano<br>for De | er Slope Factor<br>rmal <sup>(2)</sup> | Weight of Evidence/<br>Cancer Guideline | Oral      | CSF                     |
|--------------------------|-------------|--------------|-------------------------------|-------------------------|----------------------------------------|-----------------------------------------|-----------|-------------------------|
| Concern                  | Value       | Units        | for Dermal <sup>(1)</sup>     | Value                   | Units                                  | Description                             | Source(s) | Date(s)<br>(MM/DD/YYYY) |

Notes:

1 - USEPA, 2004: Risk Assessment Guidance for Superfund (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim. EPA/540/R/99/005.

2 - Adjusted cancer slope factor for dermal = Oral cancer slope factor / Oral Absorption Efficiency for Dermal.

3 - Several PAHs and hexavalent chromium are considered to act via the mutagenic mode of action. These chemicals are evaluated in accordance with USEPA's Supplemental Guidance for Assessing

Susceptibility from Early-Life Exposure to Carcinogens (2005).

Cal EPA = California Environmental Protection Agency.

IRIS = Integrated Risk Information System.

NA = Not Available.

NJ = New Jersey.

PPRTV = Provisional Peer Reviewed Toxicity Value.

USEPA(1) = OSWER Directive No.9285.7-75.

USEPA(2) = USEPA, PCBs: Cancer Dose-Response Assessment and Applications to Environmental Mixtures, September 1996, EPA/600/P-96/001F.

Attachment B.2

Sediment Direct Contact Preliminary Remediation Goals

# TABLE B-3 RISK-BASED CONCENTRATIONS FOR EXPOSURES TO SEDIMENTS LOCKHEED MARTIN, MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 1 OF 2

|                            | Child Recre  | ational User    | Adolescent Re | ecreational User | Adult Recre  | ational User    | Lifelong Reci | reational User |
|----------------------------|--------------|-----------------|---------------|------------------|--------------|-----------------|---------------|----------------|
| Chemical                   | Carcinogenic | Noncarcinogenic | Carcinogenic  | Noncarcinogenic  | Carcinogenic | Noncarcinogenic | Carcinogenic  | Carcinogenic   |
|                            | (mg/kg)      | (mg/kg)         | (mg/kg)       | (mg/kg)          | (mg/kg)      | (mg/kg)         | (mg/kg)       | (mg/kg)        |
| 1,3-Dichlorobenzene        | NA           | NA              | NA            | NA               | NA           | NA              | NA            | NA             |
| 1,4-Dichlorobenzene        | 780          | 25,000          | 2,100         | 130,000          | 1,400        | 230,000         | 500           | NA             |
| 2-Butanone                 | NA           | 220,000         | NA            | 1,100,000        | NA           | 2,000,000       | NA            | NA             |
| Acetone                    | NA           | 320,000         | NA            | 1,700,000        | NA           | 2,900,000       | NA            | NA             |
| Carbon Disulfide           | NA           | 36,000          | NA            | 190,000          | NA           | 330,000         | NA            | NA             |
| Chlorobenzene              | NA           | 7,200           | NA            | 38,000           | NA           | 65,000          | NA            | NA             |
| Chloromethane              | NA           | NA              | NA            | NA               | NA           | NA              | NÁ            | NA             |
| cis-1,2-Dichloroethene     | NA           | 720             | NA            | 3,800            | NA           | 6,500           | NA            | NA             |
| Isopropylbenzene           | NA           | 36,000          | NA            | 190,000          | NA           | 330,000         | NA            | NA             |
| Methyl Tert-Butyl Ether    | 2,300        | NA              | 6,200         | NA               | 4,200        | NA              | 1,500         | NA             |
| Naphthalene                | NA           | 5,700           | NA            | 30,000           | NA           | 48,000          | NA            | NA             |
| sec-Butylbenzene           | NA           | NA              | NA            | NA               | NA           | NA              | NA            | ŇÂ             |
| Tert-Butylbenzene          | NA           | NA              | NA            | NA               | NA           | NA              | NA            | NA             |
| Toluene                    | NĂ           | 29,000          | NA            | 150,000          | NA           | 260,000         | NA            | NA             |
| 1,2-Dichlorobenzene        | NA           | 32,000          | NA            | 170,000          | NA           | 290,000         | NA            | NA             |
| 1-Methylnaphthalene        | 120          | 21,000          | 320           | 110,000          | 210          | 180,000         | 77            | NA             |
| 2-Methylnaphthalene        | NA           | 1,200           | NA            | 6,400            | NA           | 10,000          | NA            | NA             |
| Acenaphthene               | NA           | 17,000          | NA            | 90,000           | NA           | 140,000         | NA            | NA             |
| Acenaphthylene             | NA           | NA              | NA            | NA               | NA           | NA              | NA            | NA             |
| Anthracene                 | NA           | 86,000          | NA            | 450,000          | NA           | 720,000         | NA            | NA             |
| BaP Equivalent             | 0.09         | NA              | 0.4           | NA               | 0.8          | NA              | 0.07          | NA             |
| Benzo(a)anthracene         | 0.9          | NA              | 4             | NA               | 8            | NA              | 0.7           | NA             |
| Benzo(a)pyrene             | 0.09         | NA              | 0.4           | NA               | 0.8          | NA              | 0.07          | NA             |
| Benzo(b)fluoranthene       | 0.9          | NA              | 4             | NA               | 8            | NA              | 0.7           | NA             |
| Benzo(g,h,i)perylene       | NA           | NA              | NA            | NA               | NA           | NA              | NA            | NA             |
| Benzo(k)fluoranthene       | 9            | NA              | 40            | NA               | 77           | NA              | 7             | NA             |
| Bis(2-ethylhexyl)phthalate | 250          | 6,100           | 670           | 32,000           | 430          | 52,000          | 160           | NA             |
| Butyl Benzyl Phthalate     | 1,900        | 61,000          | 4,900         | 320,000          | 3,200        | 520,000         | 1,200         | NA             |
| Carbazole                  | NA           | NA              | NA            | NA               | NA           | NA              | NA            | NA             |
| Chrysene                   | 86           | NA              | 400           | NA               | 770          | NA              | 70            | NA             |
| Dibenzo(a,h)anthracene     | 0.09         | NA              | 0.4           | NA               | 0.8          | NA              | 0.07          | NA             |
| Dibenzofuran               | NA           | 310             | NA            | 1,600            | NA           | 2,600           | NA            | NA             |
| Fluoranthene               | NA           | 11,000          | NA            | 60,000           | NA           | 96,000          | NA            | NA             |
| Fluorene                   | NA           | 11,000          | NA            | 60,000           | NA           | 96,000          | NA            | NA             |
| Indeno(1,2,3-cd)pyrene     | 0.9          | NA              | 4             | NA               | 8            | NA              | 0.7           | NA             |
| Naphthalene                | NA           | 5,700           | NA            | 30,000           | NA           | 48,000          | NA            | NA             |
| Phenanthrene               | NA           | NA              | NA            | NA               | NA           | NA              | NA            | NA             |
| Pyrene                     | NA           | 8,600           | NA            | 45,000           | NA           | 72,000          | NA            | NA             |
| Aroclor-1248               | 1.6          | NA              | 4.3           | NA               | 2.7          | NA              | 1.0           | NA             |
| Aroclor-1254               | 1.6          | 5.6             | 4.3           | 29               | 2.7          | 47              | 1,0           | NA             |

## TABLE B-3 RISK-BASED CONCENTRATIONS FOR EXPOSURES TO SEDIMENTS LOCKHEED MARTIN, MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 2 OF 2

|                     | Child Recre  | ational User    | Adolescent Re | creational User | Adult Recre  | ational User    | Lifelong Recreational User |              |
|---------------------|--------------|-----------------|---------------|-----------------|--------------|-----------------|----------------------------|--------------|
| Chemical            | Carcinogenic | Noncarcinogenic | Carcinogenic  | Noncarcinogenic | Carcinogenic | Noncarcinogenic | Carcinogenic               | Carcinogenic |
|                     | (mg/kg)      | (mg/kg)         | (mg/kg)       | (mg/kg)         | (mg/kg)      | (mg/kg)         | (mg/kg)                    | (mg/kg)      |
| Aroclor-1260        | 1.6          | NA              | 4.3           | NA              | 2.7          | NA              | 1.0                        | NA           |
| Antimony            | NA           | 132             | NA            | 694             | NA           | 1,150           | NA                         | NA           |
| Arsenic             | 2.8          | 108             | 7.4           | 574             | 5.1          | 978             | 1.8                        | NA           |
| Barium              | NA           | 55,900          | NA            | 291,000         | NA           | 465,000         | NA                         | NA           |
| Beryllium           | NA           | 156             | NA            | 784             | NA           | 1,090           | NA                         | NA           |
| Cadmium             | NA           | 352             | NA            | 1,860           | NA           | 3,150           | NA                         | NA           |
| Chromium            | NA           | 186,000         | NA            | 941,000         | NA           | 1,350,000       | NA                         | NA           |
| Cobalt              | NA           | 114             | NA            | 607             | NA           | 1,050           | NA                         | NA           |
| Copper              | NA           | 15,200          | NA            | 81,000          | NA           | 140,000         | NA                         | NA           |
| Lead                | NA           | NA              | NA            | NA              | NA           | NA              | NA                         | NA           |
| Mercury             | NA           | 84              | NA            | 440             | NA           | 700             | NA                         | NA           |
| Molybdenum          | NA           | 1,900           | NA            | 10,100          | NA           | 17,500          | NA                         | NA           |
| Nickel              | NA           | 4,600           | NA            | 23,800          | NA           | 36,500          | NA                         | NA           |
| Selenium            | NA           | 1,900           | NA            | 10,100          | NA           | 17,500          | NA                         | NA           |
| Silver              | NA           | 1,150           | NA            | 5,940           | NA           | 9,140           | NA                         | NA           |
| Thallium            | NA           | NA              | NA            | NA              | NA           | NA              | NA                         | NA           |
| Vanadium            | NA           | 1,900           | NA            | 10,000          | NA           | 17,600          | NA                         | NA           |
| Zinc                | NA           | 114,000         | NA            | 607,000         | NA           | 1,050,000       | NA                         | NA           |
| Hexavalent Chromium | 1.7          | 550             | 8.1           | 2,800           | 17           | 4,200           | 1.4                        | NA           |
| Dibutyltin          | NA           | 110             | NA            | 610             | NA           | 1050            | NA                         | NA           |

## CALCULATION OF SEDIMENT SCREENING LEVELS

#### SITE NAME: LOCKHEED MARTIN MIDDLE RIVER COMPLEX EXPOSURE POINT: COW PEN CREEK/DARK HEAD COVE EXPOSURE SCENARIO: ADOLESCENT RECREATIONAL USERS MEDIA: SEDIMENT DATE: JANUARY 20, 2011

THIS SPREADSHEET CALCULATES SCREENING LEVELS FOR EXPOSURES TO SEDIMENT VIA INCIDENTAL INGESTION AND DERMAL CONTACT.

## **RELEVANT EQUATIONS:**

| HELEVANT EQUATIONS. | DDC                      | TCR                                                                                                                                                                        |  |  |  |  |
|---------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Carcinogens         | RBC <sub>sed</sub> =     | Intake <sub>oral</sub> · CSF <sub>oral</sub> + Intake <sub>derm</sub> · CSF <sub>derm</sub>                                                                                |  |  |  |  |
| Noncarcinogens      | RBC <sub>sed</sub> =     | $\frac{\text{THI}}{\left(\frac{\text{Intake}_{\text{oral}}}{\text{RfD}_{\text{oral}}}\right)} + \left(\frac{\text{Intake}_{\text{derm}}}{\text{RfD}_{\text{derm}}}\right)$ |  |  |  |  |
|                     | intake <sub>oral</sub> = | IR x EF x ED x FI x CF<br>BW x AT                                                                                                                                          |  |  |  |  |
|                     | Intake <sub>derm</sub> = | SA x AF x ABS x EF x ED x CF x ADA<br>BW x AT                                                                                                                              |  |  |  |  |

## INPUT ASSUMPTIONS<sup>(1)</sup>:

|                      | Parameter | Value             | Definition                                                            |
|----------------------|-----------|-------------------|-----------------------------------------------------------------------|
| General              | RBC = :   |                   | Risk-based concentration screening level in sediment (mg/kg)          |
|                      | TCR = :   | 1.0E-06           | Target Cancer Risk                                                    |
|                      | THI = :   | 1                 | Target Hazard Index                                                   |
|                      | EF = :    | 70                | Exposure Frequency (days/year)                                        |
|                      | ED = :    | 12                | Exposure Duration (years)                                             |
|                      | BW = :    | 40                | Body Weight (kg) (USEPA, 1997)                                        |
|                      | ATc = :   | 25,550            | Averaging time for carcinogenic exposures (days)                      |
|                      | ATn = :   | 4,380             | Averaging time for noncarcinogenic exposures (days)                   |
|                      | CF = :    | 1.0E-06           | Conversion Factor (kg/mg)                                             |
|                      | ADAF = :  | Chemical Specific | Age Dependent Adjustment Factor                                       |
| Incidental Ingestion | IR = :    | 100               | Sediment Ingestion Rate (mg/day) (USEPA, 1993)                        |
|                      | FI = :    | 1                 | Fraction from contaminated source (unitless)                          |
| Dermal Contact       | SA = :    | 4,320             | Skin surface available for contact (cm <sup>2</sup> /day)             |
|                      | AF = :    | 0.07              | Sediment to skin adherence factor (mg/cm <sup>2</sup> ) (USEPA, 2004) |
|                      | ABS = :   | Chemical Specific | Absorption factor (unitless)                                          |

1 - Methodology from 2005 Surface Water and Sediment Sampling Report for the Lockheed Martin Middle River Complex, Middle River, Maryland (Tetra Tech, 2005). Т

# CALCULATION OF SEDIMENT SCREENING LEVELS (PAGE 2)

#### SITE NAME: LOCKHEED MARTIN MIDDLE RIVER COMPLEX EXPOSURE POINT: COW PEN CREEK/DARK HEAD COVE EXPOSURE SCENARIO: ADOLESCENT RECREATIONAL USERS MEDIA: SEDIMENT DATE: JANUARY 20, 2011

|                                                      | 1                  | Cancer Sid                | ppe Factor <sup>(2)</sup> | Referenc      | e Dose <sup>(2)</sup> | Age Dependent |
|------------------------------------------------------|--------------------|---------------------------|---------------------------|---------------|-----------------------|---------------|
| CHEMICAL                                             | ABS <sup>(1)</sup> | Oral                      | Dermal                    | Oral          | Dermal                | Adjustment    |
|                                                      |                    | (mg/kg/day) <sup>-1</sup> | (mg/kg/day) <sup>-1</sup> | (mg/kg/day)   | (mg/kg/day)           | Factor        |
| 1,3-Dichlorobenzene                                  | 3.0E-02            | NA NA                     | NA NA                     | NA            | NA                    | 1             |
| 1,4-Dichlorobenzene                                  | 3.0E-02            | 5.4E-03                   | 5.4E-03                   | 7.0E-02       | 7.0E-02               | 1             |
| 2-Butanone                                           | 3.0E-02            | NA                        | NA                        | 6.0E-01       | 6.0E-01               | 1             |
| Acetone                                              | 3.0E-02            | NA                        | NA                        | 9.0E-01       | 9.0E-01               | 1             |
| Carbon Disulfide                                     | 3.0E-02            | NA                        | NA                        | 1.0E-01       | 1.0E-01               | 1             |
| Chlorobenzene                                        | 3.0E-02            | NA                        | NA                        | 2.0E-02       | 2.0E-02               | 1             |
| Chloromethane                                        | 3.0E-02            | NA                        | NA                        | NA            | NA                    | 1             |
| cis-1,2-Dichloroethene                               | 3.0E-02            | NA                        | NA                        | 2.0E-03       | 2.0E-03               | 1             |
| isopropylbenzene                                     | 3.0E-02            | NA                        | NA                        | 1.0E-01       | 1.0E-01               | 1             |
| Methyl Tert-Butyl Ether                              | 3.0E-02            | 1.8E-03                   | 1.8E-03                   | NA            | NA                    | 1             |
| Naphthalene                                          | 1.3E-01            | NA                        | NA NA                     | 2.0E-02       | 2.0E-02               | 1             |
| sec-Butylbenzene                                     | 3.0E-02            | NA                        | NA                        | NA            | NA NA                 | 1             |
| Tert-Butylbenzene                                    | 3.0E-02            | NA                        | NA                        | NA            | NA                    | 1             |
| Toiuene                                              | 3.0E-02            | NA                        | NA                        | 8.0E-02       | 8.0E-02               | 1             |
| 1,2-Dichlorobenzene                                  | 3.0E-02            | NA                        | NA                        | 9.0E-02       | 9.0E-02               | 1             |
| 1-Methylnaphthalene                                  | 1.0E-01            | 2.9E-02                   | 2.9E-02                   | 7.0E-02       | 7.0E-02               | 1             |
| 2-Methylnaphthalene                                  | 1.0E-01            | NA                        | NA                        | 4.0E-03       | 4.0E-03               | 1             |
| Acenaphthene                                         | 1.3E-01            | NA                        | NA                        | 6.0E-02       | 6.0E-02               | 1             |
| Acenaphthylene                                       | 1.3E-01            | NA                        | NA                        | NA            | NA                    | 1             |
| Anthracene                                           | 1.3E-01            | NA                        | NA                        | 3.0E-01       | 3.0E-01               | 1             |
| BaP Equivalent                                       | 1.3E-01            | 7.3E+00                   | 7.3E+00                   | NA            | NA                    | 3             |
| Benzo(a)anthracene                                   | 1.3E-01            | 7.3E-01                   | 7.3E-01                   | NA            | NA                    | 3             |
| Benzo(a)pyrene                                       | 1.3E-01            | 7.3E+00                   | 7.3E+00                   | NA            | NA                    | 3             |
| Benzo(b)fluoranthene                                 | 1.3E-01            | 7.3E-01                   | 7.3E-01                   | NA            | NA                    | 3             |
| Benzo(g,h,i)perylene                                 | 1.3E-01            | NA<br>7 05 00             | NA<br>Z OF OD             | NA            | NA                    | 1             |
| Benzo(k)fluoranthene                                 | 1.3E-01            | 7.3E-02                   | 7.3E-02                   | NA<br>0.0E.00 |                       | 3             |
| Bis(2-ethylhexyl)phthalate<br>Butyl Benzyl Phthalate | 1.0E-01<br>1.0E-01 | 1.4E-02                   | 1.4E-02<br>1.9E-03        | 2.0E-02       | 2.0E-02               | 1             |
| Carbazole                                            | 1.0E-01            | 1.9E-03<br>NA             | NA                        | 2.0E-01<br>NA | 2.0E-01<br>NA         | 1             |
| Chrysene                                             | 1.3E-01            | 7.3E-03                   | 7.3E-03                   | NA NA         | NA NA                 | 3             |
| Dibenzo(a,h)anthracene                               | 1.3E-01            | 7.3E+00                   | 7.3E+00                   | NA            | NA                    | 3             |
| Dibenzofuran                                         | 1.0E-01            | NA                        | NA NA                     | 1.0E-03       | 1.0E-03               | 1             |
| Fluoranthene                                         | 1.3E-01            | NA                        | NA                        | 4.0E-02       | 4.0E-02               | 1             |
| Fluorene                                             | 1.3E-01            | NA NA                     | NA                        | 4.0E-02       | 4.0E-02               | 1 1           |
| Indeno(1,2,3-cd)pyrene                               | 1.3E-01            | 7.3E-01                   | 7.3E-01                   | NA            | NA                    | 3             |
| Naphthalene                                          | 1.3E-01            | NA                        | NA                        | 2.0E-02       | 2.0E-02               | 1             |
| Phenanthrene                                         | 1.3E-01            | NA                        | NA                        | NA            | NA                    | i             |
| Pyrene                                               | 1.3E-01            | NA                        | NA                        | 3.0E-02       | 3.0E-02               | 1 1           |
| Aroclor-1248                                         | 1.4E-01            | 2.0E+00                   | 2.0E+00                   | NA            | NA                    | 1 1           |
| Arocior-1254                                         | 1.4E-01            | 2.0E+00                   | 2.0E+00                   | 2.0E-05       | 2.0E-05               | 1             |
| Aroclor-1260                                         | 1.4E-01            | 2.0E+00                   | 2.0E+00                   | NA            | NA                    | 1 1           |
| Antimony                                             | 1.0E-02            | NA                        | NA                        | 4.0E-04       | 6.0E-05               | 1             |
| Arsenic                                              | 3.0E-02            | 1.5E+00                   | 1.5E+00                   | 3.0E-04       | 3.0E-04               | 1 1           |
| Barium                                               | 1.0E-02            | NA                        | NA                        | 2.0E-01       | 1.4E-02               | 1             |
| Beryllium                                            | 1.0E-02            | NA                        | NA                        | 2.0E-03       | 1.4E-05               | 1 1           |
| Cadmium                                              | 1.0E-03            | NA                        | NA                        | 1.0E-03       | 2.5E-05               | 1             |
| Chromium                                             | 1.0E-02            | NA                        | NA                        | 1.5E+00       | 2.0E-02               | 1             |
| Cobalt                                               | 1.0E-02            | NA                        | NA                        | 3.0E-04       | 3.0E-04               | 1             |
| Copper                                               | 1.0E-02            | NA                        | NA                        | 4.0E-02       | 4.0E-02               | 1             |
| Lead                                                 | 1.0E-02            | NA                        | NA                        | NĂ            | NA                    | 1             |
| Mercury                                              | 1.0E-02            | NA                        | NA                        | 3.0E-04       | 2.1E-05               | . 1           |
| Molybdenum                                           | 1.0E-02            | NA                        | NA                        | 5.0E-03       | 5.0E-03               | 1             |
| Nickel                                               | 1.0E-02            | NA                        | NA                        | 2.0E-02       | 8.0E-04               | 1             |
| Selenium                                             | 1.0E-02            | NA                        | NA                        | 5.0E-03       | 5.0E-03               | 1             |
| Silver                                               | 1.0E-02            | NA                        | NA                        | 5.0E-03       | 2.0E-04               | 1             |
| Thallium                                             | 1.0E-02            | NA                        | NA                        |               | NA                    | 1             |
| Vanadium                                             | 1.0E-02            | NA                        | NA                        | 5.0E-03       | 5.0E-03               | 1             |
| Zinc                                                 | 1.0E-02            | NA                        | NA                        | 3.0E-01       | 3.0E-01               | 1             |
| Hexavalent Chromium                                  | 1.0E-02            | 5.0E-01                   | 1.3E-02                   | 3.0E-03       | 7.5E-05               | 3             |
| Dibutyltin                                           | 1.0E-02            | NA                        | NA                        | 3.0E-04       | 3.0E-04               | 1             |
| Notes:                                               |                    |                           |                           |               |                       |               |

1 - All values from EPA's Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual (Part E, Supplemental

Guidance for Dermal Risk Assessment) Final, July 2004.

2 - See Tables B-1 and B-2 for toxicity value sources.

# CALCULATION OF SEDIMENT SCREENING LEVELS (PAGE 3)

## SITE NAME: LOCKHEED MARTIN MIDDLE RIVER COMPLEX EXPOSURE POINT: COW PEN CREEK/DARK HEAD COVE EXPOSURE SCENARIO: ADOLESCENT RECREATIONAL USERS MEDIA: SEDIMENT DATE: JANUARY 20, 2011

|                                    |                      | Intake Factors       |                      | c Intakes Factors    |
|------------------------------------|----------------------|----------------------|----------------------|----------------------|
| CHEMICAL                           | Oral                 | Dermal               | Oral                 | Dermal               |
|                                    | (kg/kg/day)          | (kg/kg/day)          | (kg/kg/day)          | (kg/kg/day)          |
| 1,3-Dichlorobenzene                | 8.22E-08             | 7.46E-09             | 4.79E-07             | 4.35E-08             |
| 1,4-Dichlorobenzene                | 8.22E-08             | 7.46E-09             | 4.79E-07             | 4.35E-08             |
| 2-Butanone                         | 8.22E-08             | 7.46E-09             | 4.79E-07             | 4.35E-08             |
| Acetone                            | 8.22E-08             | 7.46E-09             | 4.79E-07             | 4.35E-08             |
| Carbon Disulfide                   | 8.22E-08             | 7.46E-09             | 4.79E-07             | 4.35E-08             |
| Chlorobenzene                      | 8.22E-08             | 7.46E-09             | 4.79E-07             | 4.35E-08             |
| Chloromethane                      | 8.22E-08             | 7.46E-09             | 4.79E-07             | 4.35E-08             |
| cis-1,2-Dichloroethene             | 8.22E-08             | 7.46E-09             | 4.79E-07             | 4.35E-08             |
| Isopropylbenzene                   | 8.22E-08             | 7.46E-09             | 4.79E-07             | 4.35E-08             |
| Methyl Tert-Butyl Ether            | 8.22E-08             | <u>7.46E-09</u>      | 4.79E-07             | 4.35E-08             |
| Naphthalene                        | 8.22E-08             | 3.23E-08             | 4.79E-07             | 1.88E-07             |
| sec-Butylbenzene                   | 8.22E-08             | 7.46E-09             | 4.79E-07             | 4.35E-08             |
| Tert-Butylbenzene                  | 8.22E-08             | 7.46E-09             | 4.79E-07             | 4.35E-08             |
| Toluene                            | 8.22E-08             | 7.46E-09             | 4.79E-07             | 4.35E-08             |
| 1,2-Dichlorobenzene                | 8.22E-08             | 7.46E-09             | 4.79E-07             | 4.35E-08             |
| 1-Methylnaphthalene                | 8.22E-08             | 2.49E-08             | 4.79E-07             | 1.45E-07             |
| 2-Methylnaphthalene                | 8.22E-08             | 2.49E-08             | 4.79E-07             | 1.45E-07             |
| Acenaphthene                       | 8.22E-08             | 3.23E-08             | 4.79E-07             | 1.88E-07             |
| Acenaphthylene                     | 8.22E-08             | 3.23E-08             | 4.79E-07             | 1.88E-07             |
| Anthracene                         | 8.22E-08             | 3.23E-08             | 4.79E-07             | 1.88E-07             |
| BaP Equivalent                     | 2.47E-07             | 9.69E-08             | 4.79E-07             | 1.88E-07             |
| Benzo(a)anthracene                 | 2.47E-07             | 9.69E-08             | 4.79E-07             | 1.88E-07             |
| Benzo(a)pyrene                     | 2.47E-07             | 9.69E-08             | 4.79E-07             | 1.88E-07             |
| Benzo(b)fluoranthene               | 2.47E-07             | 9.69E-08             | 4.79E-07             | 1.88E-07             |
| Benzo(g,h,i)perylene               | 8.22E-08             | 3.23E-08             | 4.79E-07             | 1.88E-07             |
| Benzo(k)fluoranthene               | 2.47E-07             | 9.69E-08             | 4.79E-07             | 1.88E-07             |
| Bis(2-ethylhexyl)phthalate         | 8.22E-08             | 2.49E-08             | 4.79E-07             | 1.45E-07             |
| Butyl Benzyl Phthalate             | 8.22E-08             | 2.49E-08<br>2.49E-08 | 4.79E-07             | 1.45E-07             |
| Carbazole                          | 8.22E-08             |                      | 4.79E-07             | 1.45E-07             |
| Chrysene<br>Dibenzo(a,h)anthracene | 2.47E-07             | 9.69E-08             | 4.79E-07             | 1.88E-07             |
|                                    | 2.47E-07<br>8.22E-08 | 9.69E-08             | 4.79E-07             | 1.88E-07             |
| Dibenzofuran                       |                      | 2.49E-08             | 4.79E-07             | 1.45E-07             |
|                                    | 8.22E-08             | 3.23E-08             | 4.79E-07             | 1.88E-07             |
| Fluorene                           | 8.22E-08             | 3.23E-08             | 4.79E-07             | 1.88E-07             |
| Indeno(1,2,3-cd)pyrene             | 2.47E-07<br>8.22E-08 | 9.69E-08             | 4.79E-07             | 1.88E-07             |
| Naphthalene<br>Phenanthrene        | 8.22E-08             | 3.23E-08             | 4.79E-07             | 1.88E-07             |
| Pyrene                             | 8.22E-08             | 3.23E-08<br>3.23E-08 | 4.79E-07<br>4.79E-07 | 1.88E-07             |
| Aroclor-1248                       | 8.22E-08             | 3.48E-08             | 4.79E-07<br>4.79E-07 | 1.88E-07<br>2.03E-07 |
| Arocior-1246<br>Arocior-1254       | 8.22E-08             | 3.48E-08             | 4.79E-07<br>4.79E-07 |                      |
| Arocior-1260                       | 8.22E-08             | 3.48E-08             | 4.79E-07<br>4.79E-07 | 2.03E-07<br>2.03E-07 |
| Antimony                           | 8.22E-08             | 2.49E-08             | 4.79E-07<br>4.79E-07 |                      |
| Aranony                            | 8.22E-08             | 7.46E-09             | 4.79E-07<br>4.79E-07 | 1.45E-08<br>4.35E-08 |
| Barium                             | 8.22E-08             |                      | 4.79E-07<br>4.79E-07 |                      |
| Beryllium                          | 8.22E-08             | 2.49E-09<br>2.49E-09 | 4.79E-07<br>4.79E-07 | 1.45E-08<br>1.45E-08 |
| Cadmium                            | 8.22E-08             | 2.49E-09<br>2.49E-10 | 4.79E-07<br>4.79E-07 | 1.45E-08             |
| Chromium                           | 8.22E-08             | 2.49E-10             | 4.79E-07<br>4.79E-07 | 1.45E-09             |
| Cobalt                             | 8.22E-08             | 2.49E-09<br>2.49E-09 |                      | 1.45E-08             |
| Copper                             | 8.22E-08             | 2.49E-09             | 4.79E-07<br>4.79E-07 | 1.45E-08             |
| Lead                               | 8.22E-08             | 2.49E-09             | 4.79E-07<br>4.79E-07 | 1.45E-08             |
| Mercury                            | 8.22E-08             | 2.49E-09             | 4.79E-07<br>4.79E-07 | 1.45E-08             |
| Molybdenum                         | 8.22E-08             | 2.49E-09             | 4.79E-07<br>4.79E-07 | 1.45E-08             |
| Nickel                             | 8.22E-08             | 2.49E-09             | 4.79E-07<br>4.79E-07 | 1.45E-08             |
| Selenium                           | 8.22E-08             | 2.49E-09<br>2.49E-09 | 4.79E-07<br>4.79E-07 | 1.45E-08             |
| Silver                             | 8.22E-08<br>8.22E-08 | 2.49E-09             | 4.79E-07<br>4.79E-07 |                      |
| Thallium                           | 8.22E-08<br>8.22E-08 | 2.49E-09<br>2.49E-09 | 4.79E-07<br>4.79E-07 | 1.45E-08             |
| Vanadium                           | 8.22E-08<br>8.22E-08 | 2.49E-09             | 4.79E-07<br>4.79E-07 | 1.45E-08             |
|                                    |                      |                      |                      | 1.45E-08             |
| Zinc<br>Hexavalent Chromium        | 8.22E-08<br>2.47E-07 | 2.49E-09             | 4.79E-07             | 1.45E-08             |
|                                    |                      | 7.46E-09             | 4.79E-07             | 1.45E-08             |
| Dibutyitin                         | 8.22E-08             | 2.49E-09             | 4.79E-07             | 1.45E-08             |

## CALCULATION OF SEDIMENT SCREENING LEVELS (PAGE 4)

#### SITE NAME: LOCKHEED MARTIN MIDDLE RIVER COMPLEX EXPOSURE POINT: COW PEN CREEK/DARK HEAD COVE EXPOSURE SCENARIO: ADOLESCENT RECREATIONAL USERS MEDIA: SEDIMENT DATE: JANUARY 20, 2011

|                            | Sediment C   | oncentration    | Risk-Based <sup>(1)</sup> |
|----------------------------|--------------|-----------------|---------------------------|
| CHEMICAL                   | Carcinogenic | Noncarcinogenic | Concentration             |
|                            | (mg/kg)      | (mg/kg)         | (mg/kg)                   |
| 1,3-Dichlorobenzene        | NA           | NA              | NA                        |
| 1,4-Dichlorobenzene        | 2,066        | 133,857         | 2,066                     |
| 2-Butanone                 | NA           | 1,147,342       | 1,147,342                 |
| Acetone                    | NA           | 1,721,013       | 1,721,013                 |
| Carbon Disulfide           | NA NA        | 191,224         | 191,224                   |
| Chlorobenzene              | NA           | 38,245          | 38,245                    |
| Chloromethane              | NA           | NA              | NA                        |
| cis-1,2-Dichloroethene     | NA           | 3,824           | 3,824                     |
| Isopropylbenzene           | NA           | 191,224         | 191,224                   |
| Methyl Tert-Butyl Ether    | 6,197        | NA              | 6,197                     |
| Naphthalene                | NA NA        | 29,943          | 29,943                    |
| sec-Butylbenzene           | NA           | NA              | NA                        |
| Tert-Butylbenzene          | NA           | NA              | NA                        |
| Toluene                    | NA           | 152,979         | 152,979                   |
| 1,2-Dichlorobenzene        | NA           | 172,101         | 172,101                   |
| 1-Methylnaphthalene        | 322          | 112,101         | 322                       |
| 2-Methylnaphthalene        | NA           | 6,406           | 6,406                     |
| Acenaphthene               | NA           | 89,829          | 89,829                    |
| Acenaphthylene             | NA           | NA              | NA                        |
| Anthracene                 | NA           | 449,146         | 449,146                   |
| BaP Equivalent             | 0.40         | NA              | 0.40                      |
| Benzo(a)anthracene         | 4.0          | NA              | 4.0                       |
| Benzo(a)pyrene             | 0.40         | NA              | 0.40                      |
| Benzo(b)fluoranthene       | 4.0          | NA              | 4.0                       |
| Benzo(g,h,i)perylene       | NA           | NA              | NA                        |
| Benzo(k)fluoranthene       | 40           | NA              | 40                        |
| Bis(2-ethylhexyl)phthalate | 667          | 32,029          | 667                       |
| Butyl Benzyl Phthalate     | 4,917        | 320,288         | 4,917                     |
| Carbazole                  | NA           | NA              | NA                        |
| Chrysene                   | 399          | NA              | 399                       |
| Dibenzo(a,h)anthracene     | 0.40         | NA              | 0.40                      |
| Dibenzofuran               | NA           | 1601            | 1601                      |
| Fluoranthene               | NA           | 59,886          | 59,886                    |
| Fluorene                   | NA           | 59,886          | 59,886                    |
| Indeno(1,2,3-cd)pyrene     | 4.0          | NA NA           | 4.0                       |
| Naphthalene                | NA           | 29,943          | 29,943                    |
| Phenanthrene               | <u>NA</u>    | NA              | NA                        |
| Pyrene                     | NA           | 44,915          | 44,915                    |
| Aroclor-1248               | 4.27         | NA              | 4.27                      |
| Aroclor-1254               | 4.27         | 29.3            | 4.27                      |
| Aroclor-1260               | 4.27         | NA              | 4.27                      |
| Antimony                   | NA           | 694             | 694                       |
| Arsenic                    | 7.44         | 574             | 7.44                      |
| Barium                     | NA NA        | 291,301         | 291,301                   |
| Beryllium                  | NA NA        | 784             | 784                       |
| Cadmium                    |              | 1,861           | 1,861                     |
| Chromium                   | NA NA        | 940597          | 940597                    |
| Cobalt                     |              | 607<br>80,980   | 607                       |
| Copper                     | NA<br>NA     |                 | 80,980                    |
| Lead                       | NA NA        | NA<br>427       | NA 427                    |
| Mercury                    |              | 437             | 437                       |
| Molybdenum                 | NA NA        | 10,122          | 10,122                    |
| Nickel                     | NA           | 23,755          | 23,755                    |
| Selenium                   | NA NA        | 10,122          | 10,122                    |
| Silver                     | NA NA        | 5,939           | 5,939                     |
| Thallium                   |              | NA 10.100       | NA 10.100                 |
| Vanadium                   | NA           | 10,122          | 10,122                    |
|                            | NA           | 607,348         | 607,348                   |
| Hexavalent Chromium        | 8.10         | 2,832           | 8.10                      |
| Dibutyltin                 | NA           | 607             | 607                       |

Notes:

1 - Screening level is the lower of the carcinogenic sediment concentration and noncarcinogenic sediment concentration.

## CALCULATION OF SEDIMENT SCREENING LEVELS

#### SITE NAME: LOCKHEED MARTIN MIDDLE RIVER COMPLEX EXPOSURE POINT: COW PEN CREEK/DARK HEAD COVE EXPOSURE SCENARIO: ADULT RECREATIONAL USERS MEDIA: SEDIMENT **DATE: JANUARY 20, 2011**

THIS SPREADSHEET CALCULATES SCREENING LEVELS FOR EXPOSURES TO SEDIMENT VIA INCIDENTAL INGESTION AND DERMAL CONTACT.

## **RELEVANT EQUATIONS:**

**Carcinogens** 

# TCR

RBC<sub>sed</sub> = Intake<sub>oral</sub> · CSF<sub>oral</sub> + Intake<sub>derm</sub> · CSF<sub>derm</sub>

Noncarcinogens

THI  $RBC_{sed} = \frac{1}{\left(\frac{Intake_{oral}}{RfD_{oral}}\right) + \left(\frac{Intake_{derm}}{RfD_{derm}}\right)}$ 

Intake<sub>orai</sub> =

IR x EF x ED x FI x CF BW x AT

SA x AF x ABS x EF x ED x CF x ADAF BW x AT

| INCOLUT. | ASSUMPTIONS(1): |  |
|----------|-----------------|--|
| INPUL    | ASSUMPTIONS ::  |  |

|                      | Parameter | Value             | Definition                                                            |
|----------------------|-----------|-------------------|-----------------------------------------------------------------------|
| General              | RBC = :   |                   | Risk-based concentration screening level in sediment (mg/kg)          |
|                      | TCR = :   | 1.0E-06           | Target Cancer Risk                                                    |
|                      | THI = :   | 1                 | Target Hazard Index                                                   |
|                      | EF = :    | 70                | Exposure Frequency (days/year)                                        |
|                      | ED = :    | 30                | Exposure Duration (years)                                             |
|                      | BW = :    | 70                | Body Weight (kg) (USEPA, 1997)                                        |
|                      | ATc = :   | 25,550            | Averaging time for carcinogenic exposures (days)                      |
|                      | ATn = :   | 10,950            | Averaging time for noncarcinogenic exposures (days)                   |
|                      | CF = :    | 1.0E-06           | Conversion Factor (kg/mg)                                             |
|                      | ADAF = :  | Chemical Specific | Age Dependent Adjustment Factor                                       |
| Incidental Ingestion | IR = :    | 100               | Sediment Ingestion Rate (mg/day) (USEPA, 1993)                        |
| _                    | FI = :    | 1                 | Fraction from contaminated source (unitless)                          |
| Dermal Contact       | SA = :    | 5,700             | Skin surface available for contact (cm <sup>2</sup> /day)             |
|                      | AF = :    | 0.07              | Sediment to skin adherence factor (mg/cm <sup>2</sup> ) (USEPA, 2004) |
|                      | ABS = :   | Chemical Specific | Absorption factor (unitless)                                          |

1 - Methodology from 2005 Surface Water and Sediment Sampling Report for the Lockheed Martin Middle River Complex,

Middle River, Maryland (Tetra Tech, 2005).

٦

# CALCULATION OF SEDIMENT SCREENING LEVELS (PAGE 2)

#### SITE NAME: LOCKHEED MARTIN MIDDLE RIVER COMPLEX EXPOSURE POINT: COW PEN CREEK/DARK HEAD COVE EXPOSURE SCENARIO: ADULT RECREATIONAL USERS MEDIA: SEDIMENT DATE: JANUARY 20, 2011

|                                        |                    | Cancer Slo                | ppe Factor <sup>(2)</sup> | Referenc           | Reference Dose <sup>(2)</sup> |            |  |
|----------------------------------------|--------------------|---------------------------|---------------------------|--------------------|-------------------------------|------------|--|
| CHEMICAL                               | ABS <sup>(1)</sup> | Oral                      | Dermal                    | Oral               | Dermal                        | Adjustment |  |
| _                                      |                    | (mg/kg/day) <sup>-1</sup> | (mg/kg/day) <sup>-1</sup> | (mg/kg/day)        | (mg/kg/day)                   | Factor     |  |
| 1,3-Dichlorobenzene                    | 3.0E-02            | NA                        | NA                        | NA                 | NA                            | 1          |  |
| 1,4-Dichlorobenzene                    | 3.0E-02            | 5.4E-03                   | 5.4E-03                   | 7.0E-02            | 7.0E-02                       | 1          |  |
| 2-Butanone                             | 3.0E-02            | NA                        | NA                        | 6.0E-01            | 6.0E-01                       | 1          |  |
| Acetone                                | 3.0E-02            | NA                        | NA                        | 9.0E-01            | 9.0E-01                       | 1          |  |
| Carbon Disulfide                       | 3.0E-02            | NA                        | NA                        | 1.0E-01            | 1.0E-01                       | 1          |  |
| Chlorobenzene                          | 3.0E-02            | NA                        | NA                        | 2.0E-02            | 2.0E-02                       | 1          |  |
| Chloromethane                          | 3.0E-02            | NA                        | NA                        | NA                 | NA                            | 1          |  |
| cis-1,2-Dichloroethene                 | 3.0E-02            | NA                        | NA                        | 2.0E-03            | 2.0E-03                       | 1          |  |
| Isopropylbenzene                       | 3.0E-02            | NA                        | NA                        | 1.0E-01            | 1.0E-01                       | 1          |  |
| Methyl Tert-Butyl Ether                | 3.0E-02            | 1.8E-03                   | 1.8E-03                   | NA                 | NA                            | 1          |  |
| Naphthalene                            | 1.3E-01            | NA                        | NA                        | 2.0E-02            | 2.0E-02                       | 1          |  |
| sec-Butylbenzene                       | 3.0E-02            | NA                        | NA                        | NA                 | NA                            | 1          |  |
| Tert-Butylbenzene                      | 3.0E-02            | NA                        | NA                        | NA                 | NA                            | 1          |  |
| Toluene                                | 3.0E-02            | NA                        | NA                        | 8.0E-02            | 8.0E-02                       | 1          |  |
| 1,2-Dichlorobenzene                    | 3.0E-02            | NA                        | NA                        | 9.0E-02            | 9.0E-02                       | 1          |  |
| 1-Methylnaphthalene                    | 1.0E-01            | 2.9E-02                   | 2.9E-02                   | 7.0E-02            | 7.0E-02                       | 1          |  |
| 2-Methylnaphthalene                    | 1.0E-01            | NA NA                     | NA                        | 4.0E-03            | 4.0E-03                       | 1          |  |
| Acenaphthene                           | 1.3E-01<br>1.3E-01 | NA                        | NA                        | 6.0E-02            | 6.0E-02                       | 1          |  |
| Acenaphthylene                         |                    |                           | NA                        | NA<br>3.0E-01      |                               | 1          |  |
| Anthracene                             | 1.3E-01            | NA<br>Z OF LOO            | NA<br>7 05 - 00           |                    | 3.0E-01                       |            |  |
| BaP Equivalent                         | 1.3E-01<br>1.3E-01 | 7.3E+00<br>7.3E-01        | 7.3E+00                   | NA<br>NA           | NA NA                         | 1 1        |  |
| Benzo(a)anthracene                     | 1.3E-01            | 7.3E-01<br>7.3E+00        | 7.3E-01                   | NA                 | NA<br>NA                      | <u> </u>   |  |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene | 1.3E-01            | 7.3E+00                   | 7.3E+00<br>7.3E-01        | NA<br>NA           | NA<br>NA                      | 1          |  |
| Benzo(g,h,i)pervlene                   | 1.3E-01            | NA                        | NA                        | NA<br>NA           | NA NA                         | 1          |  |
| Benzo(g,n,)perviene                    | 1.3E-01            | 7.3E-02                   | 7.3E-02                   | NA NA              | NA<br>NA                      |            |  |
| Bis(2-ethylhexyl)phthalate             | 1.0E-01            | 1.4E-02                   | 1.4E-02                   | 2.0E-02            | 2.0E-02                       | 1          |  |
| Butvl Benzvl Phthalate                 | 1.0E-01            | 1.9E-03                   | 1.9E-02                   | 2.0E-02<br>2.0E-01 | 2.0E-02<br>2.0E-01            | 1 1        |  |
| Carbazole                              | 1.0E-01            | NA                        | NA                        | NA                 | NA                            | 1 1        |  |
| Chrysene                               | 1.3E-01            | 7.3E-03                   | 7.3E-03                   | NA                 | NA                            | <u> </u>   |  |
| Dibenzo(a,h)anthracene                 | 1.3E-01            | 7.3E+00                   | 7.3E+00                   | NA                 | NA                            | 1 1        |  |
| Dibenzofuran                           | 1.0E-01            | NA                        | NA                        | 1.0E-03            | 1.0E-03                       | <u>i</u>   |  |
| Fluoranthene                           | 1.3E-01            | NA                        | NA                        | 4.0E-02            | 4.0E-02                       | t i        |  |
| Fluorene                               | 1.3E-01            | NA                        | NA                        | 4.0E-02            | 4.0E-02                       | 1          |  |
| Indeno(1,2,3-cd)pyrene                 | 1.3E-01            | 7.3E-01                   | 7.3E-01                   | NA                 | NA                            | 1          |  |
| Naphthalene                            | 1.3E-01            | NA                        | NA                        | 2.0E-02            | 2.0E-02                       | 1          |  |
| Phenanthrene                           | 1.3E-01            | NA                        | NA                        | NA                 | NA                            | 1          |  |
| Pyrene                                 | 1.3E-01            | NA                        | NA                        | 3.0E-02            | 3.0E-02                       | 1          |  |
| Aroclor-1248                           | 1.4E-01            | 2.0E+00                   | 2.0E+00                   | NA                 | NA                            | 1          |  |
| Aroclor-1254                           | 1.4E-01            | 2.0E+00                   | 2.0E+00                   | 2.0E-05            | 2.0E-05                       | 1          |  |
| Aroclor-1260                           | 1.4E-01            | 2.0E+00                   | 2.0E+00                   | NA                 | NA                            | 1          |  |
| Antimony                               | 1.0E-02            | NA                        | NA                        | 4.0E-04            | 6.0E-05                       | 1          |  |
| Arsenic                                | 3.0E-02            | 1.5E+00                   | 1.5E+00                   | 3.0E-04            | 3.0E-04                       | 1          |  |
| Barium                                 | 1.0E-02            | NA                        | NA                        | 2.0E-01            | 1.4E-02                       | 1          |  |
| Beryllium                              | 1.0E-02            | NA                        | NA                        | 2.0E-03            | 1.4E-05                       | 1          |  |
| Cadmium                                | 1.0E-03            | NA                        | NA                        | 1.0E-03            | 2.5E-05                       | 1          |  |
| Chromium                               | 1.0E-02            | NA                        | NA                        | 1.5E+00            | 2.0E-02                       | 1          |  |
| Cobalt                                 | 1.0E-02            | NA                        | NA                        | 3.0E-04            | 3.0E-04                       | 1          |  |
| Copper                                 | 1.0E-02            | NA                        | NA                        | 4.0E-02            | 4.0E-02                       | 1          |  |
| Lead                                   | 1.0E-02            | NA                        | NA                        | NA                 | NA                            | 1          |  |
| Mercury                                | 1.0E-02            | NA                        | NA                        | 3.0E-04            | 2.1E-05                       | 1          |  |
| Molybdenum                             | 1.0E-02            | NA                        | NA                        | 5.0E-03            | 5.0E-03                       | 1          |  |
| Nickel                                 | 1.0E-02            | NA                        | NA                        | 2.0E-02            | 8.0E-04                       | 1          |  |
| Selenium                               | 1.0E-02            | NA                        | NA                        | 5.0E-03            | 5.0E-03                       | 1          |  |
| Silver                                 | 1.0E-02            | NA                        | NA                        | 5.0E-03            | 2.0E-04                       | 1          |  |
| Thallium                               | 1.0E-02            | NA                        | NA                        | NA                 | NA                            | 1          |  |
| Vanadium                               | 1.0E-02            | NA                        | NA                        | 5.0E-03            | 5.0E-03                       | 1          |  |
| Zinc                                   | 1.0E-02            | NA                        | ŇA                        | 3.0E-01            | 3.0E-01                       | 1          |  |
| Hexavalent Chromium                    | 1.0E-02            | 5.0E-01                   | 1.3E-02                   | 3.0E-03            | 7.5E-05                       | 1          |  |
| Dibutyltin                             | 1.0E-02            | NA                        | NA                        | 3.0E-04            | 3.0E-04                       | 1          |  |

Notes:

1 - All values from EPA's Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual (Part E, Supplemental

Guidance for Dermal Risk Assessment) Final, July 2004.

2 - See Tables B-1 and B-2 for toxicity value sources

# CALCULATION OF SEDIMENT SCREENING LEVELS (PAGE 3)

## SITE NAME: LOCKHEED MARTIN MIDDLE RIVER COMPLEX EXPOSURE POINT: COW PEN CREEK/DARK HEAD COVE EXPOSURE SCENARIO: ADULT RECREATIONAL USERS MEDIA: SEDIMENT DATE: JANUARY 20, 2011

|                                                   | Carcinogenic         | Intake Factors       | Noncarcinogeni       | c Intakes Factors    |
|---------------------------------------------------|----------------------|----------------------|----------------------|----------------------|
| CHEMICAL                                          | Oral                 | Dermal               | Orai                 | Dermal               |
|                                                   | (kg/kg/day)          | (kg/kg/day)          | (kg/kg/day)          | (kg/kg/day)          |
| 1,3-Dichlorobenzene                               | 1.17E-07             | 1.41E-08             | 2.74E-07             | 3.28E-08             |
| 1,4-Dichlorobenzene                               | 1.17E-07             | 1.41E-08             | 2.74E-07             | 3.28E-08             |
| 2-Butanone                                        | 1.17E-07             | 1.41E-08             | 2.74E-07             | 3.28E-08             |
| Acetone                                           | 1.17E-07             | 1.41E-08             | 2.74E-07             | 3.28E-08             |
| Carbon Disulfide                                  | 1.17E-07             | 1.41E-08             | 2.74E-07             | 3.28E-08             |
| Chlorobenzene                                     | 1.17E-07             | 1.41E-08             | 2.74E-07             | 3.28E-08             |
| Chloromethane                                     | 1.17E-07             | 1.41E-08             | 2.74E-07             | 3.28E-08             |
| cis-1,2-Dichloroethene                            | 1.17E-07             | 1.41E-08             | 2.74E-07             | 3.28E-08             |
| Isopropylbenzene                                  | 1.17E-07             | 1.41E-08             | 2.74E-07             | 3.28E-08             |
| Methyl Tert-Butyl Ether                           | 1.17E-07             | 1.41E-08             | 2.74E-07             | 3.28E-08             |
| Naphthalene                                       | 1.17E-07             | 6.09E-08             | 2.74E-07             | 1.42E-07             |
| sec-Butylbenzene                                  | 1.17E-07             | 1.41E-08             | 2.74E-07             | 3.28E-08             |
| Tert-Butylbenzene                                 | 1.17E-07             | 1.41E-08             | 2.74E-07             | 3.28E-08             |
| Toluene                                           | 1.17E-07             | 1.41E-08             | 2.74E-07             | 3.28E-08             |
| 1,2-Dichlorobenzene                               | 1.17E-07             | 1.41E-08             | 2.74E-07             | 3.28E-08             |
| 1-Methylnaphthalene                               | 1.17E-07             | 4.68E-08             | 2.74E-07             | 1.09E-07             |
| 2-Methylnaphthalene                               | 1.17E-07             | 4.68E-08             | 2.74E-07             | 1.09E-07             |
| Acenaphthene                                      | 1.17E-07             | 6.09E-08             | 2.74E-07             | 1.42E-07             |
| Acenaphthylene                                    | 1.17E-07             | 6.09E-08             | 2.74E-07             | 1.42E-07             |
| Anthracene                                        | 1.17E-07             | 6.09E-08             | 2.74E-07             | 1.42E-07             |
| BaP Equivalent                                    | 1.17E-07             | 6.09E-08             | 2.74E-07             | 1.42E-07             |
| Benzo(a)anthracene                                | <u>1.17E-07</u>      | 6.09E-08             | 2.74E-07<br>2.74E-07 | 1.42E-07             |
| Benzo(a)pyrene                                    | 1.17E-07<br>1.17E-07 | 6.09E-08             |                      | 1.42E-07             |
| Benzo(b)fluoranthene                              |                      | 6.09E-08             | 2.74E-07             | 1.42E-07             |
| Benzo(g,h,i)perylene                              | 1.17E-07             | 6.09E-08             | 2.74E-07             | 1.42E-07             |
| Benzo(k)fluoranthene                              | 1.17E-07<br>1.17E-07 | 6.09E-08             | 2.74E-07<br>2.74E-07 | 1.42E-07<br>1.09E-07 |
| Bis(2-ethylhexyl)phthalate Butyl Benzyl Phthalate | 1.17E-07             | 4.68E-08<br>4.68E-08 | 2.74E-07<br>2.74E-07 | 1.09E-07             |
| Carbazole                                         | 1.17E-07             | 4.68E-08             | 2.74E-07             | 1.09E-07             |
| Chrysene                                          | 1.17E-07             | 6.09E-08             | 2.74E-07<br>2.74E-07 | 1.42E-07             |
| Dibenzo(a,h)anthracene                            | 1.17E-07             | 6.09E-08             | 2.74E-07             | 1.42E-07             |
| Dibenzoluran                                      | 1.17E-07             | 4.68E-08             | 2.74E-07             | 1.09E-07             |
| Fluoranthene                                      | 1.17E-07             | 6.09E-08             | 2.74E-07             | 1.42E-07             |
| Fluorene                                          | 1.17E-07             | 6.09E-08             | 2.74E-07             | 1.42E-07             |
| Indeno(1,2,3-cd)pyrene                            | 1.17E-07             | 6.09E-08             | 2.74E-07             | 1.42E-07             |
| Naphthalene                                       | 1.17E-07             | 6.09E-08             | 2.74E-07             | 1.42E-07             |
| Phenanthrene                                      | 1.17E-07             | 6.09E-08             | 2.74E-07             | 1.42E-07             |
| Pyrene                                            | 1.17E-07             | 6.09E-08             | 2.74E-07             | 1.42E-07             |
| Aroclor-1248                                      | 1.17E-07             | 6.56E-08             | 2.74E-07             | 1.53E-07             |
| Aroclor-1254                                      | 1.17E-07             | 6.56E-08             | 2.74E-07             | 1.53E-07             |
| Aroclor-1260                                      | 1.17E-07             | 6.56E-08             | 2.74E-07             | 1.53E-07             |
| Antimony                                          | 1.17E-07             | 4.68E-09             | 2.74E-07             | 1.09E-08             |
| Arsenic                                           | 1.17E-07             | 1.41E-08             | 2.74E-07             | 3.28E-08             |
| Barium                                            | 1.17E-07             | 4.68E-09             | 2.74E-07             | 1.09E-08             |
| Beryllium                                         | 1.17E-07             | 4.68E-09             | 2.74E-07             | 1.09E-08             |
| Cadmium                                           | 1.17E-07             | 4.68E-10             | 2.74E-07             | 1.09E-09             |
| Chromium                                          | 1.17E-07             | 4.68E-09             | 2.74E-07             | 1.09E-08             |
| Cobalt                                            | 1.17E-07             | 4.68E-09             | 2.74E-07             | 1.09E-08             |
| Copper                                            | 1.17E-07             | 4.68E-09             | 2.74E-07             | 1.09E-08             |
| Lead                                              | 1.17E-07             | 4.68E-09             | 2.74E-07             | 1.09E-08             |
| Mercury                                           | 1.17E-07             | 4.68E-09             | 2.74E-07             | 1.09E-08             |
| Molybdenum                                        | 1.17E-07             | 4.68E-09             | 2.74E-07             | 1.09E-08             |
| Nickel                                            | 1.17E-07             | 4.68E-09             | 2.74E-07             | 1.09E-08             |
| Selenium                                          | 1.17E-07             | 4.68E-09             | 2.74E-07             | 1.09E-08             |
| Silver                                            | 1.17E-07             | 4.68E-09             | 2.74E-07             | 1.09E-08             |
| Thallium                                          | 1.17E-07             | 4.68E-09             | 2.74E-07             | 1.09E-08             |
| Vanadium                                          | 1.17E-07             | 4.68E-09             | 2.74E-07             | 1.09E-08             |
| Zinc                                              | 1.17E-07             | 4.68E-09             | 2.74E-07             | 1.09E-08             |
| Hexavalent Chromium                               | 1.17E-07             | 4.68E-09             | 2.74E-07             | 1.09E-08             |
|                                                   | 1.17E-07             | 4.68E-09             | 2.74E-07             | 1.09E-08             |

# CALCULATION OF SEDIMENT SCREENING LEVELS (PAGE 4)

#### SITE NAME: LOCKHEED MARTIN MIDDLE RIVER COMPLEX EXPOSURE POINT: COW PEN CREEK/DARK HEAD COVE EXPOSURE SCENARIO: ADULT RECREATIONAL USERS MEDIA: SEDIMENT DATE: JANUARY 20, 2011

|                                         | Sediment C   | Risk-Based <sup>(1)</sup> |                        |  |
|-----------------------------------------|--------------|---------------------------|------------------------|--|
| CHEMICAL                                | Carcinogenic | Noncarcinogenic           | Concentration          |  |
|                                         | (mg/kg)      | (mg/kg)                   | (mg/kg)                |  |
| 1,3-Dichlorobenzene                     | NA           | NA                        | NĀ                     |  |
| 1,4-Dichlorobenzene                     | 1,409        | 228,186                   | 1,409                  |  |
| 2-Butanone                              | NĂ           | 1,955,881                 | 1,955,881              |  |
| Acetone                                 | NA           | 2,933,822                 | 2,933,822              |  |
| Carbon Disulfide                        | NA           | 325,980                   | 325,980                |  |
| Chlorobenzene                           | NA           | 65,196                    | 65,196                 |  |
| Chloromethane                           | NA           | NA                        | NA                     |  |
| cis-1,2-Dichloroethene                  | NA           | 6,520                     | 6,520                  |  |
| Isopropylbenzene                        | NA           | 325,980                   | 325,980                |  |
| Methyl Tert-Butyl Ether                 | 4,226        | NA                        | 4,226                  |  |
| Naphthalene                             | NA           | 48,067                    | 48,067                 |  |
| sec-Butylbenzene                        | NA           | NA                        | NA                     |  |
| Tert-Butylbenzene                       | NA           | NA                        | NA                     |  |
| Toluene                                 | NA           | 260,784                   | 260,784                |  |
| 1,2-Dichlorobenzene                     | NA           | 293,382                   | 293,382                |  |
| 1-Methylnaphthalene                     | 210          | 182,630                   | 210                    |  |
| 2-Methylnaphthalene                     | NA           | 10,436                    | 10,436                 |  |
| Acenaphthene                            | NA           | 144,202                   | 144,202                |  |
| Acenaphthylene                          | NA           | NA                        | NA                     |  |
| Anthracene                              | NA           | 721,011                   | 721,011                |  |
| BaP Equivalent                          | 0.768        | NA                        | 0.768                  |  |
| Benzo(a)anthracene                      | 7.68         | NA                        | 7.68                   |  |
| Benzo(a)pyrene                          | 0.768        | NA                        | 0.768                  |  |
| Benzo(b)fluoranthene                    | 7.68         | NA                        | 7.68                   |  |
| Benzo(g,h,i)perviene                    | NA           | NA                        | NA                     |  |
| Benzo(k)fluoranthene                    | 76.8         | NA                        | 76.8                   |  |
| Bis(2-ethylhexyl)phthalate              | 435          | 52,180                    | 435                    |  |
| Butyl Benzyl Phthalate                  | 3,204        | 521,801                   | 3,204                  |  |
| Carbazole                               | NA           | NA                        | NA                     |  |
| Chrysene                                | 768          | NA                        | 768                    |  |
| Dibenzo(a,h)anthracene                  | 0.768        | NA                        | 0.768                  |  |
| Dibenzofuran                            | NA           | 2609                      | 2609                   |  |
| Fluoranthene                            | NA           | 96,135                    | 96,135                 |  |
| Fluorene                                | NA           | 96,135                    | 96,135                 |  |
| Indeno(1,2,3-cd)pyrene                  | 7.68         | NA                        | 7.68                   |  |
| Naphthalene                             | NA           | 48,067                    | 48,067                 |  |
| Phenanthrene                            | NA           | NA                        | NA                     |  |
| Pyrene                                  | NA           | 72,101                    | 72,101                 |  |
| Aroclor-1248                            | 2.73         | NA                        | 2.73                   |  |
| Aroclor-1254                            | 2.73         | 46.8                      | 2.73                   |  |
| Aroclor-1260                            | 2.73         | NA                        | 2.73                   |  |
| Antimony                                | NA           | 1,153                     | 1,153                  |  |
| Arsenic                                 | 5.07         | 978                       | 5.07                   |  |
| Barium                                  | <u>NA</u>    | 464,968                   | 464,968                |  |
| Beryllium                               | NA NA        | 1,090                     | 1,090                  |  |
| Cadmium                                 | NA           | 3.148                     | 3,148                  |  |
| Chromium                                | NA           | 1345463                   | 1345463                |  |
| Cobalt                                  | NA           | 1.053                     | 1,053                  |  |
| ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |              | 1 40,000                  | 4 40,000               |  |
| Lead                                    | NA<br>NA     | 140,398<br>NA             | 140,398<br>NA          |  |
| Mercury                                 | NA NA        | 697                       | 697                    |  |
| Molybdenum                              | NA           | 17,550                    | 17,550                 |  |
|                                         | NA NA        | 36,546                    | 36,546                 |  |
| Nickel                                  |              |                           | ,                      |  |
| Selenium                                | NA<br>NA     | 17,550                    | <u>17,550</u><br>9,136 |  |
| Silver                                  |              | 9,136                     |                        |  |
| Thallium                                | NA NA        | NA 17.550                 | NA                     |  |
| Vanadium                                | NA           | 17,550                    | 17,550                 |  |
| Zinc                                    | NA           | 1,052,986                 | 1,052,986              |  |
| Hexavalent Chromium                     | 17           | 4,218                     | 17                     |  |

#### Notes:

1 - Screening level is the lower of the carcinogenic sediment concentration and noncarcinogenic sediment concentration.

## CALCULATION OF SEDIMENT SCREENING LEVELS

#### SITE NAME: LOCKHEED MARTIN, MIDDLE RIVER COMPLEX EXPOSURE POINT: COW PEN CREEK/DARK HEAD COVE EXPOSURE SCENARIO: CHILD RECREATIONAL USERS **MEDIA: SEDIMENT** DATE: JANUARY 20, 2011

THIS SPREADSHEET CALCULATES SCREENING LEVELS FOR EXPOSURES TO SEDIMENT VIA INCIDENTAL INGESTION AND DERMAL CONTACT.

## RELEVANT EQUATIONS:

Carcinogens

 $\mathsf{RBC}_{\mathsf{sed}} = \frac{\mathsf{TCR}}{\mathsf{Intake}_{\mathsf{oral}} \cdot \mathsf{CSF}_{\mathsf{oral}} + \mathsf{Intake}_{\mathsf{derm}} \cdot \mathsf{CSF}_{\mathsf{derm}}}$ 

Noncarcinogens

 $\mathsf{RBC}_{\mathsf{sed}} = \frac{\mathsf{Intake}_{\mathsf{oral}}}{\mathsf{RfD}_{\mathsf{oral}}} + \left(\frac{\mathsf{Intake}_{\mathsf{derm}}}{\mathsf{RfD}_{\mathsf{derm}}}\right)$ THI IR x EF x ED x FI x CF x ADAF Intake<sub>oral</sub> = BW x AT SA x AF x ABS x EF x ED x CF x ADAF Intake<sub>derm</sub> =

BW x AT

| INPUT ASSUMPTIONS <sup>(1)</sup> : |           |                   |                   |                                                              |
|------------------------------------|-----------|-------------------|-------------------|--------------------------------------------------------------|
|                                    | Parameter | Child (0 - 2)     | Child (2 - 6)     | Definition                                                   |
| General                            | RBC = :   |                   |                   | Risk-based concentration screening level in sediment (mg/kg) |
|                                    | TCR = :   | 1.0E              | -06               | Target Cancer Risk                                           |
|                                    | THI = :   | 1.0E              | E+00              | Target hazard Index                                          |
|                                    | EF = :    | 70                | 70                | Exposure Frequency (days/year)                               |
|                                    | ED = :    | 2                 | 4                 | Exposure Duration (years)                                    |
|                                    | BW = :    | 15                | 15                | Body Weight (kg) (USEPA, 1997)                               |
|                                    | ATc = :   | 25,550            | 25,550            | Averaging time for carcinogenic exposures (days)             |
|                                    | ATn = :   | 730               | 1,460             | Averaging time for noncarcinogenic exposures (days)          |
|                                    | CF = :    | 1.0E-06           | 1.0E-06           | Conversion Factor (kg/mg)                                    |
|                                    | ADAF = :  | Chemical Specific | Chemical Specific | Age Dependent Adjustment Factor                              |
| Incidental Ingestion               | IR = :    | 200               | 200               | Sediment Ingestion Rate (mg/day) (USEPA 1993)                |
|                                    | FI = :    | 1                 | 1                 | Fraction from contaminated source (unitless)                 |
| Dermal Contact                     | SA = :    | 2800              | 2800              | Skin surface available for contact (cm <sup>2</sup> /day)    |
|                                    | AF = :    | 0.2               | 0.2               | Sediment to skin adherence factor (mg/cm2) (USEPA, 2004)     |
|                                    | ABS = :   | Chemical Specific | Chemical Specific | Absorption factor (unitless)                                 |

1 - Methodology from 2005 Surface Water and Sediment Sampling Report for the Lockheed Martin Middle River Complex,

Middle River, Maryland (Tetra Tech, 2005).

# CALCULATION OF SEDIMENT SCREENING LEVELS (PAGE 2)

#### SITE NAME: LOCKHEED MARTIN, MIDDLE RIVER COMPLEX EXPOSURE POINT: COW PEN CREEK/DARK HEAD COVE EXPOSURE SCENARIO: CHILD RECREATIONAL USERS MEDIA: SEDIMENT DATE: JANUARY 20, 2011

|                                       |                    | Cancer Sic                | pe Factor <sup>(2)</sup>  | Referenc      | e Dose <sup>(2)</sup> | Age Dependent |            |
|---------------------------------------|--------------------|---------------------------|---------------------------|---------------|-----------------------|---------------|------------|
| CHEMICAL                              | ABS(1)             | Oral Dermal               |                           | Oral          | Dermal                | Adjusme       | nt Factor  |
|                                       |                    | (mg/kg/day) <sup>-1</sup> | (mg/kg/day) <sup>-1</sup> | (mg/kg/day)   | (mq/kq/day)           | Ages 0 - 2    | Ages 2 - 6 |
| 1,3-Dichlorobenzene                   | 3.0E-02            | NA                        | NA                        | NA            | NA                    | 1             | 1          |
| 1,4-Dichlorobenzene                   | 3.0E-02            | 5.4E-03                   | 5.4E-03                   | 7.0E-02       | 7.0E-02               | 1             | 1          |
| 2-Butanone                            | 3.0E-02            | NA                        | NA                        | 6.0E-01       | 6.0E-01               | 1             | 1          |
| Acetone                               | 3.0E-02            | NA                        | NA                        | 9.0E-01       | 9.0E-01               | 1             | 1          |
| Carbon Disulfide                      | 3.0E-02            | NA                        | NA                        | 1.0E-01       | 1.0E-01               | 1             | 1          |
| Chiorobenzene                         | 3.0E-02            | NA                        | NA                        | 2.0E-02       | 2.0E-02               | 1             | 1          |
| Chloromethane                         | 3.0E-02            | NA                        | NA                        | NA            | NA                    | 1             | 1          |
| cis-1,2-Dichloroethene                | 3.0E-02            | NA                        | NA                        | 2.0E-03       | 2.0E-03               | 1             | 1          |
| Isopropylbenzene                      | 3.0E-02            | NA                        | NA                        | 1.0E-01       | 1.0E-01               | 1             | 1          |
| Methyl Tert-Butyl Ether               | 3.0E-02            | 1.8E-03                   | 1.8E-03                   | NA            | NA                    | 1             | 1          |
| Naphthalene                           | 1.3E-01            | NA                        | NA                        | 2.0E-02       | 2.0E-02               | 1             | 1          |
| sec-Butylbenzene                      | 3.0E-02            | NA                        | NA                        | NA            | NA                    | 1             | 1          |
| Tert-Butylbenzene                     | 3.0E-02            | NA                        | NA                        | NA            | NA                    | 1             | 1          |
| Toluene                               | 3.0E-02            | NA                        | NA                        | 8.0E-02       | 8.0E-02               | 1             | 1          |
| 1,2-Dichlorobenzene                   | 3.0E-02            | NA                        | NA                        | 9.0E-02       | 9.0E-02               | 1             | 1          |
| 1-Methylnaphthalene                   | 1.0E-01            | 2.9E-02                   | 2.9E-02                   | 7.0E-02       | 7.0E-02               | 1             | 1          |
| 2-Methylnaphthalene                   | 1.0E-01            | NA                        | NA                        | 4.0E-03       | 4.0E-03               | 1             | 1          |
| Acenaphthene                          | 1.3E-01            | NA                        | NA                        | 6.0E-02       | 6.0E-02               | 1             | 1          |
| Acenaphthylene                        | 1.3E-01            | NA                        | NA                        | NA            | NA                    | 1             | 1          |
| Anthracene                            | 1.3E-01            | NA                        | NA                        | 3.0E-01       | 3.0E-01               | 1             | 1          |
| BaP Equivalent                        | 1.3E-01            | 7.3E+00                   | 7.3E+00                   | NA            | NA                    | 10            |            |
| Benzo(a)anthracene                    | 1.3E-01            | 7.3E-01                   | 7.3E-01                   | NA            | NA                    | 10            | 3          |
| Benzo(a)pyrene                        | 1.3E-01            | 7.3E+00                   | 7.3E+00                   | NA            | NA                    | . 10          | 3          |
| Benzo(b)fluoranthene                  | 1.3E-01            | 7.3E-01                   | 7.3E-01                   | NA            | NA                    | 10            | 3          |
| Benzo(g,h,i)perylene                  | 1.3E-01            | NA                        | NA                        | NA            | NA                    | 1             | 1          |
| Benzo(k)fluoranthene                  | 1.3E-01            | 7.3E-02                   | 7.3E-02                   | NA            | NA                    | 10            | 3          |
| Bis(2-ethylhexyl)phthalate            | 1.0E-01            | 1.4E-02                   | 1.4E-02                   | 2.0E-02       | 2.0E-02               | 1             | 1          |
| Butyl Benzyl Phthalate                | 1.0E-01            | 1.9E-03                   | 1.9E-03                   | 2.0E-01       | 2.0E-01               | <u>t</u>      | 1          |
| Carbazole                             | 1.0E-01            | NA                        | NA                        | NA            | NA                    | 1             | 1          |
| Chrysene                              | 1.3E-01            | 7.3E-03                   | 7.3E-03                   | NA            | NA                    | 10            | 3          |
| Dibenzo(a,h)anthracene                | 1.3E-01            | 7.3E+00                   | 7.3E+00                   | NA NA         | NA<br>1 05 00         | 10            | 3          |
| Dibenzofuran                          | 1.0E-01            | NA                        | NA                        | 1.0E-03       | 1.0E-03               | 1             | 1          |
| Fluoranthene                          | 1.3E-01<br>1.3E-01 | NA NA                     | NA                        | 4.0E-02       | 4.0E-02<br>4.0E-02    | 1             | 1          |
| Fluorene                              | 1.3E-01            | 7.3E-01                   | NA<br>7.3E-01             | 4.0E-02<br>NA | 4.0E-02<br>NA         | 10            | 3          |
| Indeno(1,2,3-cd)pyrene<br>Naphthalene | 1.3E-01            | 7.3E-01                   | 7.3E-01<br>NA             | 2.0E-02       | 2.0E-02               | 10            | 3          |
| Phenanthrene                          | 1.3E-01            | NA                        | NA                        | NA            | NA                    | 1             | 1          |
| Pyrene                                | 1.3E-01            | NA                        | NA                        | 3.0E-02       | 3.0E-02               | 1             | 1          |
| Aroclor-1248                          | 1.4E-01            | 2.0E+00                   | 2.0E+00                   |               | NA                    | 1             | 1          |
| Aroclor-1254                          | 1.4E-01            | 2.0E+00                   | 2.0E+00                   | 2.0E-05       | 2.0E-05               | 1             | <u>_</u>   |
| Aroclor-1260                          | 1.4E-01            | 2.0E+00                   | 2.0E+00                   | NA            | NA                    | 1             |            |
| Antimony                              | 1.0E-02            | NA                        | NA                        | 4.0E-04       | 6.0E-05               | 1             | 1          |
| Arsenic                               | 3.0E-02            | 1.5E+00                   | 1.5E+00                   | 3.0E-04       | 3.0E-03               | 1             | 1          |
| Barium                                | 1.0E-02            | NA                        | NA NA                     | 2.0E-01       | 1.4E-02               | 1             | 1          |
| Beryllium                             | 1.0E-02            | NA NA                     | NA                        | 2.0E-03       | 1.4E-02               | 1             | 1          |
| Cadmium                               | 1.0E-02            | NA                        | NA NA                     | 1.0E-03       | 2.5E-05               | 1             | 1          |
| Chromium                              | 1.0E-02            | NA                        | NA                        | 1.5E+00       | 2.0E-02               | 1             | 1          |
| Cobalt                                | 1.0E-02            | NA                        | NA                        | 3.0E-04       | 3.0E-04               | 1             | 1          |
| Copper                                | 1.0E-02            | NA                        | NA                        | 4.0E-02       | 4.0E-02               | 1             | 1          |
| Lead                                  | 1.0E-02            | NA                        | NA                        | NA            | NA                    | 1             | 1          |
| Mercury                               | 1.0E-02            | NA                        | NA                        | 3.0E-04       | 2.1E-05               | - 1           | 1          |
| Molybdenum                            | 1.0E-02            | NA                        | NA                        | 5.0E-03       | 5.0E-03               | 1             | 1          |
| Nickel                                | 1.0E-02            | NA                        | NA                        | 2.0E-02       | 8.0E-04               | 1             | 1          |
| Selenium                              | 1.0E-02            | NA                        | NA                        | 5.0E-02       | 5.0E-03               | 1             | 1          |
| Silver                                | 1.0E-02            | NA                        | NA                        | 5.0E-03       | 2.0E-04               | 1             | 1          |
| Thallium                              | 1.0E-02            | NA                        | NA                        | NA            | NA                    | 1             | 1          |
| Vanadium                              | 1.0E-02            | NĂ                        | NA                        | 5.0E-03       | 5.0E-03               | 1             | 1          |
| Zinc                                  | 1.0É-02            | NA                        | NA                        | 3.0E-01       | 3.0E-01               | 1             | 1          |
| Hexavalent Chromium                   | 1.0E-02            | 5.0E-01                   | 1.3E-02                   | 3.0E-03       | 7.5E-05               | 10            | 3          |
| Dibutyltin                            | 1.0E-02            | NA                        | NA                        | 3.0E-04       | 3.0E-04               | 1             | 1          |

Notes:

1 - All values from EPA's Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual (Part E, Supplemental

Guidance for Dermal Risk Assessment) Final, July 2004.

2 - See Tables B-1 and B-2 for toxicity value sources

# CALCULATION OF SEDIMENT SCREENING LEVELS (PAGE 3)

## SITE NAME: LOCKHEED MARTIN, MIDDLE RIVER COMPLEX EXPOSURE POINT: COW PEN CREEK/DARK HEAD COVE EXPOSURE SCENARIO: CHILD RECREATIONAL USERS MEDIA: SEDIMENT DATE: JANUARY 20, 2011

|                            | Carcinogenic         | Intake Factors       | Noncarcinogeni       | c Intakes Factors    |
|----------------------------|----------------------|----------------------|----------------------|----------------------|
| CHEMICAL                   | Oral                 | Dermal               | Oral                 | Dermal               |
|                            | (kg/kg/day)          | (kg/kg/day)          | (kg/kg/day)          | (kg/kg/day)          |
| 1,3-Dichlorobenzene        | 2.19E-07             | 1.84E-08             | 2.56E-06             | 2.15E-07             |
| 1,4-Dichlorobenzene        | 2.19E-07             | 1.84E-08             | 2.56E-06             | 2.15E-07             |
| 2-Butanone                 | 2.19E-07             | 1.84E-08             | 2.56E-06             | 2.15E-07             |
| Acetone                    | 2.19E-07             | 1.84E-08             | 2.56E-06             | 2.15E-07             |
| Carbon Disulfide           | 2.19E-07             | 1.84E-08             | 2.56E-06             | 2.15E-07             |
| Chlorobenzene              | 2.19E-07             | 1.84E-08             | 2.56E-06             | 2.15E-07             |
| Chloromethane              | 2.19E-07             | 1.84E-08             | 2.56E-06             | 2.15E-07             |
| cis-1,2-Dichloroethene     | 2.19E-07             | 1.84E-08             | 2.56E-06             | 2.15E-07             |
| Isopropylbenzene           | 2.19E-07             | 1.84E-08             | 2.56E-06             | 2.15E-07             |
| Methyl Tert-Butyl Ether    | 2.19E-07             | 1.84E-08             | 2.56E-06             | 2.15E-07             |
| Naphthalene                | 2.19E-07             | 7.98E-08             | 2.56E-06             | 9.31E-07             |
| sec-Butylbenzene           | 2.19E-07             | 1.84E-08             | 2.56E-06             | 2.15E-07             |
| Tert-Butylbenzene          | 2.19E-07             | 1.84E-08             | 2.56E-06             | 2.15E-07             |
|                            | 2.19E-07             | 1.84E-08             | 2.56E-06             | 2.15E-07             |
| 1,2-Dichlorobenzene        | 2.19E-07<br>2.19E-07 | 1.84E-08             | 2.56E-06             | 2.15E-07             |
| 1-Methylnaphthalene        |                      | 6.14E-08             | 2.56E-06             | 7.16E-07             |
| 2-Methylnaphthalene        | 2.19E-07             | 6.14E-08             | 2.56E-06             | 7.16E-07             |
| Acenaphthene               | 2.19E-07<br>2.19E-07 | 7.98E-08<br>7.98E-08 | 2.56E-06<br>2.56E-06 | 9.31E-07<br>9.31E-07 |
| Anthracene                 | 2.19E-07<br>2.19E-07 | 7.98E-08             | 2.56E-06             | 9.31E-07<br>9.31E-07 |
| BaP Equivalent             | 1.17E-06             | 4.25E-07             | 2.56E-06             | 9.31E-07<br>9.31E-07 |
| Benzo(a)anthracene         | 1.17E-06             | 4.25E-07<br>4.25E-07 | 2.56E-06             | 9.31E-07             |
| Benzo(a)pyrene             | 1.17E-06             | 4.25E-07<br>4.25E-07 | 2.56E-06             | 9.31E-07             |
| Benzo(b)fluoranthene       | 1.17E-06             | 4.25E-07<br>4.25E-07 | 2.56E-06             | 9.31E-07             |
| Benzo(g,h,i)pervlene       | 2.19E-07             | 7.98E-08             | 2.56E-06             | 9.31E-07             |
| Benzo(k)fluoranthene       | 1.17E-06             | 4.25E-07             | 2.56E-06             | 9.31E-07             |
| Bis(2-ethylhexyl)phthalate | 2.19E-07             | 6.14E-08             | 2.56E-06             | 7.16E-07             |
| Butyl Benzyl Phthalate     | 2.19E-07             | 6.14E-08             | 2.56E-06             | 7.16E-07             |
| Carbazole                  | 2.19E-07             | 6.14E-08             | 2.56E-06             | 7.16E-07             |
| Chrysene                   | 1.17E-06             | 4.25E-07             | 2.56E-06             | 9.31E-07             |
| Dibenzo(a,h)anthracene     | 1.17E-06             | 4.25E-07             | 2.56E-06             | 9.31E-07             |
| Dibenzofuran               | 2.19E-07             | 6.14E-08             | 2.56E-06             | 7.16E-07             |
| Fluoranthene               | 2.19E-07             | 7.98E-08             | 2.56E-06             | 9.31E-07             |
| Fluorene                   | 2.19E-07             | 7.98E-08             | 2.56E-06             | 9.31E-07             |
| Indeno(1,2,3-cd)pyrene     | 1.17E-06             | 4.25E-07             | 2.56E-06             | 9.31E-07             |
| Naphthalene                | 2.19E-07             | 7.98E-08             | 2.56E-06             | 9.31E-07             |
| Phenanthrene               | 2.19E-07             | 7.98E-08             | 2.56E-06             | 9.31E-07             |
| Pyrene                     | 2.19E-07             | 7.98E-08             | 2.56E-06             | 9.31E-07             |
| Aroclor-1248               | 2.19E-07             | 8.59E-08             | 2.56E-06             | 1.00E-06             |
| Aroclor-1254               | 2.19E-07             | 8.59E-08             | 2.56E-06             | 1.00E-06             |
| Aroclor-1260               | 2.19E-07             | 8.59E-08             | 2.56E-06             | 1.00E-06             |
| Antimony                   | 2.19E-07             | 6.14E-09             | 2.56E-06             | 7.16E-08             |
| Arsenic                    | 2.19E-07             | 1.84E-08             | 2.56E-06             | 2.15E-07             |
| Barium                     | 2.19E-07             | 6.14E-09             | 2.56E-06             | 7.16E-08             |
| Beryllium                  | 2.19E-07             | 6.14E-09             | 2.56E-06             | 7.16E-08             |
| Cadmium                    | 2.19E-07             | 6.14E-10             | 2.56E-06             | 7.16E-09             |
| Chromium                   | 2.19E-07             | 6.14E-09             | 2.56E-06             | 7.16E-08             |
| Cobalt                     | 2.19E-07             | 6.14E-09             | 2.56E-06             | 7.16E-08             |
| Copper                     | 2.19E-07             | 6.14E-09             | 2.56E-06             | 7.16E-08             |
| Lead                       | 2.19E-07             | 6.14E-09             | 2.56E-06             | 7.16E-08             |
| Mercury                    | 2.19E-07             | 6.14E-09             | 2.56E-06             | 7.16E-08             |
| Molybdenum                 | 2.19E-07             | 6.14E-09             | 2.56E-06             | 7.16E-08             |
| Nickel                     | 2.19E-07             | 6.14E-09             | 2.56E-06             | 7.16E-08             |
| Selenium                   | 2.19E-07             | 6.14E-09             | 2.56E-06             | 7.16E-08             |
| Silver                     | 2.19E-07             | 6.14E-09             | 2.56E-06             | 7.16E-08             |
| Thallium                   | 2.19E-07             | 6.14E-09             | 2.56E-06             | 7.16E-08             |
| Vanadium                   | 2.19E-07             | 6.14E-09             | 2.56E-06             | 7.16E-08             |
| Zinc                       | 2.19E-07             | 6.14E-09             | 2.56E-06             | 7.16E-08             |
| Hexavalent Chromium        | 1.17E-06             | 3.27E-08             | 2.56E-06             | 7.16E-08             |
| Dibutyltin                 | 2.19E-07             | 6.14E-09             | 2.56E-06             | 7.16E-08             |

# CALCULATION OF SEDIMENT SCREENING LEVELS (PAGE 4)

#### SITE NAME: LOCKHEED MARTIN, MIDDLE RIVER COMPLEX EXPOSURE POINT: COW PEN CREEK/DARK HEAD COVE EXPOSURE SCENARIO: CHILD RECREATIONAL USERS MEDIA: SEDIMENT DATE: JANUARY 20, 2011

| _                          | Sediment C   | oncentration    | Risk-Based <sup>(1)</sup> |  |
|----------------------------|--------------|-----------------|---------------------------|--|
| CHEMICAL                   | Carcinogenic | Noncarcinogenic | Concentration             |  |
|                            | (mg/kg)      | (mg/kg)         | (mg/kg)                   |  |
| 1,3-Dichlorobenzene        | NA           | NA              | NA                        |  |
| 1,4-Dichlorobenzene        | 779          | 25,254          | 779                       |  |
| 2-Butanone                 | NA           | 216,460         | 216,460                   |  |
| Acetone                    | NA           | 324,690         | 324,690                   |  |
| Carbon Disulfide           | NA           | 36,077          | 36,077                    |  |
| Chlorobenzene              | NA           | 7,215           | 7,215                     |  |
| Chloromethane              | NA           | NA              | NA                        |  |
| cis-1,2-Dichloroethene     | NA           | 722             | 722                       |  |
| isopropylbenzene           | NA           | 36,077          | 36,077                    |  |
| Methyl Tert-Butyl Ether    | 2,338        | NA              | 2,338                     |  |
| Naphthalene                | NA           | 5,734           | 5,734                     |  |
| sec-Butylbenzene           | NA           | NA              | NA                        |  |
| Tert-Butylbenzene          | NA           | NA              | NA                        |  |
| Toluene                    | NA           | 28,861          | 28,861                    |  |
| 1,2-Dichlorobenzene        | NA           | 32,469          | 32,469                    |  |
| 1-Methylnaphthalene        | 123          | 21,387          | 123                       |  |
| 2-Methylnaphthalene        | NĀ           | 1,222           | 1,222                     |  |
| Acenaphthene               | NA           | 17,203          | 17,203                    |  |
| Acenaphthylene             | NA           | NA              | NA                        |  |
| Anthracene                 | NA           | 86,013          | 86,013                    |  |
| BaP Equivalent             | 0.086        | NA              | 0.086                     |  |
| Benzo(a)anthracene         | 0.859        | NA              | 0.859                     |  |
| Benzo(a)pyrene             | 0.086        | NA              | 0.086                     |  |
| Benzo(b)fluoranthene       | 0.859        | NA              | 0.859                     |  |
| Benzo(g,h,i)perylene       | NA           | NA              | NA                        |  |
| Benzo(k)fluoranthene       | 8.59         | NA              | 8.59                      |  |
| Bis(2-ethylhexyl)phthalate | 255          | 6,110           | 255                       |  |
| Butyl Benzyl Phthalate     | 1,876        | 61,105          | 1,876                     |  |
| Carbazole                  | NA           | NA              | NA                        |  |
| Chrysene                   | 85.9         | NA              | 85.9                      |  |
| Dibenzo(a,h)anthracene     | 0.086        | NA              | 0.086                     |  |
| Dibenzofuran               | NA           | 306             | 306                       |  |
| Fluoranthene               | NA           | 11,468          | 11,468                    |  |
| Fluorene                   | NA           | 11,468          | 11,468                    |  |
| Indeno(1,2,3-cd)pyrene     | 0.859        | NA              | 0.859                     |  |
| Naphthalene                | NA           | 5,734           | 5,734                     |  |
| Phenanthrene               | NA           | NA              | NA                        |  |
| Pyrene                     | NA           | 8,601           | 8,601                     |  |
| Aroclor-1248               | 1.64         | NA              | 1.64                      |  |
| Aroclor-1254               | 1.64         | 5.62            | 1.64                      |  |
| Aroclor-1260               | 1.64         | NA              | 1.64                      |  |
| Antimony                   | NA .         | 132             | 132                       |  |
| Arsenic                    | 2.81         | 108             | 2.81                      |  |
| Barium                     | NA           | 55,867          | 55,867                    |  |
| Beryllium                  | NA           | 156             | 156                       |  |
| Cadmium                    | NA           | 352             | 352                       |  |
| Chromium                   | NA           | 185997          | 185997                    |  |
| Cobalt                     | NA           | 114             | 114                       |  |
| Copper                     | NA           | 15,217          | 15,217                    |  |
| Lead                       | NA           | NA              | NA                        |  |
| Mercury                    | NA           | 83.8            | 83.8                      |  |
| Molybdenum                 | NA           | 1,902           | 1,902                     |  |
| Nickel                     | NA           | 4,601           | 4,601                     |  |
| Selenium                   | NA NA        | 1,902           | 1,902                     |  |
| Silver                     | NA           | 1,150           | 1,150                     |  |
| Thallium                   | NA           | NA              | NA                        |  |
| Vanadium                   | NA           | 1,902           | 1,902                     |  |
| Zinc                       | NA           | 114,126         | 114,126                   |  |
| Hexavalent Chromium        | 1.71         | 553             | 1.71                      |  |

#### Notes:

1 - Screening level is the lower of the carcinogenic sediment concentration and noncarcinogenic sediment concentration.

## CALCULATION OF RISK-BASED PRELIMINARY CLEANUP LEVELS

#### SITE NAME: LOCKHEED MARTIN MIDDLE RIVER COMPLEX EXPOSURE POINT: COW PEN CREEK/DARK HEAD COVE EXPOSURE SCENARIO: LIFELONG (CHILD AND ADULT) RECREATIONAL USERS MEDIA: SEDIMENT DATE: JANUARY 20, 2011

THIS SPREADSHEET CALCULATES RISK-BASED CLEANUP GOALS FOR EXPOSURES TO SEDIMENT THE INCIDENTAL INGESTION AND DERMAL CONTACT ROUTES OF EXPOSURE ARE CONSIDERED.

#### RELEVANT EQUATION:

Carcinogens

 $RBC_{sed} = \frac{TCR}{IntakeFac_{oral} \cdot CSF_{oral} + IntakeFac_{derm} \cdot CSF_{derm}}$ 

 $\text{IntakeFac}_{\text{oral}} = \left[\frac{\text{EF} \times \text{FI} \times \text{CF}}{\text{AT}}\right] \left[\frac{\text{IR}_{\text{child}} \times \text{ED}_{\text{child}}}{\text{BW}_{\text{ohild}}} + \frac{\text{IR}_{\text{addiescent}} \times \text{ED}_{\text{addiescent}}}{\text{BW}_{\text{addiescent}}} + \frac{\text{IR}_{\text{addiescent}} \times \text{ED}_{\text{addiescent}}}{\text{BW}_{\text{addiescent}}}\right]$ 

 $\mathsf{IntakeFac}_{\mathsf{derm}} = \left[\frac{\mathsf{ABS} \times \mathsf{EF} \times \mathsf{CF}}{\mathsf{AT}}\right] \left[\frac{\mathsf{SA}_{\mathsf{child}} \times \mathsf{AF}_{\mathsf{child}} \times \mathsf{ED}_{\mathsf{child}}}{\mathsf{BW}_{\mathsf{child}}} + \frac{\mathsf{SA}_{\mathsf{accutescent}} \times \mathsf{AF}_{\mathsf{accutescent}} \times \mathsf{ED}_{\mathsf{adolescent}}}{\mathsf{BW}_{\mathsf{adolescent}}} + \frac{\mathsf{SA}_{\mathsf{accut}} \times \mathsf{AF}_{\mathsf{accut}} \times \mathsf{ED}_{\mathsf{adol}}}{\mathsf{BW}_{\mathsf{adolescent}}}\right]$ 

WHERE:

| :  [                          | Child(0-2) | Child(2-6) | Adolescent  | Adult   |                                                                   |
|-------------------------------|------------|------------|-------------|---------|-------------------------------------------------------------------|
| PRG <sub>soil</sub> = :       |            |            |             |         | Concentration in soil (mg/kg)                                     |
| TCR = :                       |            | 1.0        | E-06        |         | Target Cancer Risk                                                |
| IR = :                        | 200        | 200        | 100         | 100     | Soil Ingestion Rate (mg/day) (USEPA, 1993)                        |
| CF = :                        | 1.0E-06    | 1.0E-06    | 1.0E-06     | 1.0E-06 | Conversion Factor (kg/mg)                                         |
| FI = :                        | 1          | 1          | 1           | 1       | Fraction from contaminated source (unitless)                      |
| SA = :                        | 2800       | 2800       | 4320        | 5700    | Skin surface available for contact (cm <sup>2</sup> /day)         |
| AF = :                        | 0.2        | 0.2        | 0.07        | 0.07    | Soil to skin adherence factor (mg/cm <sup>2</sup> ) (USEPA, 2004) |
| ABS = :                       |            | Chemic     | al Specific |         | Absorption factor (unitless)                                      |
| EF = :                        | 70         | 70         | 70          | 70      | Exposure Frequency (days/year)                                    |
| ED ≠ :                        | 2          | 4          | 10          | 14      | Exposure Duration (years)                                         |
| BW = :                        | 15         | 15         | 40          | 70      | Body Weight (kg) (USEPA, 1997)                                    |
| ATc = :                       | 25,550     | 25,550     | 25,550      | 25,550  | Averaging time for carcinogenic exposures (days)                  |
| IntakeFac <sub>oral</sub> = : | 7.3E-08    | 1.5E-07    | 6.8E-08     | 5.5E-08 | Intake factor - Ingestion (kg/kg-day)                             |
| IntakeFac <sub>dem</sub> = :  | 2.0E-07    | 4.1E-07    | 2.1E-07     | 2.2E-07 | Intake factor - Dermal (kg/kg-day)                                |

An exposure duration of 10 years is used for the adolescent recreational user when calculating a PRG for lifelong exposures in order to conform with USEPA's Supplemental Guidance of Assessing Susceptibility from Early-Life Exposure to Carcinogens (USEPA, 2005), which defends an adolescent as being between the ages of 6 to 16 years old.

# CALCULATION OF RISK-BASED PRELIMINARY CLEANUP LEVELS (PAGE 2)

# SITE NAME: LOCKHEED MARTIN MIDDLE RIVER COMPLEX EXPOSURE POINT: COW PEN CREEK/DARK HEAD COVE EXPOSURE SCENARIO: LIFELONG (CHILD AND ADULT) RECREATIONAL USERS MEDIA: SEDIMENT DATE: JANUARY 20, 2011

|                            | 1                  | Cancer Slope Factor <sup>(2)</sup> |                                     | Age-dependent Adjustment Factor (ADAF) |          |          |            |  |
|----------------------------|--------------------|------------------------------------|-------------------------------------|----------------------------------------|----------|----------|------------|--|
| CHEMICAL                   | ABS <sup>(1)</sup> | Oral<br>(mg/kg/day) <sup>-1</sup>  | Dermal<br>(mg/kg/day) <sup>-1</sup> | 0 - 2                                  | 2 - 6    | 6 - 16   | >16        |  |
| 1,3-Dichlorobenzene        | 3.0E-02            | NA                                 | NĀ                                  | 1                                      | 1        | 1        | 1          |  |
| 1,4-Dichlorobenzene        | 3.0E-02            | 5.4E-03                            | 5.4E-03                             | 1                                      | 11       | 1        | 1          |  |
| 2-Butanone                 | 3.0E-02            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
| Acetone                    | 3.0E-02            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
| Carbon Disulfide           | 3.0E-02            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
| Chlorobenzene              | 3.0E-02            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
| Chloromethane              | 3.0E-02            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
| cis-1,2-Dichloroethene     | 3.0E-02            | NA                                 | NA                                  | 1                                      | 1 1      | 1        | 1          |  |
| Isopropylbenzene           | 3.0E-02            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
| Methyl Tert-Butyl Ether    | 3.0E-02            | 1.8E-03                            | 1.8E-03                             | 1                                      | 1 1      | 1        | 1          |  |
| Naphthalene                | 1.3E-01            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
| sec-Butylbenzene           | 3.0E-02            | NA                                 | NA NA                               | 1                                      | 1        | 1        | 1          |  |
| Tert-Butylbenzene          | 3.0E-02            | NA                                 | NA                                  | 1                                      | 1 1      | 1        | 1          |  |
| Toluene                    | 3.0E-02            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
| 1,2-Dichlorobenzene        | 3.0E-02            | NA                                 | NA                                  | 1                                      | 1 1      | 1 1      | i          |  |
| 1-Methylnaphthalene        | 1.0E-01            | 2.9E-02                            | 2.9E-02                             | 1                                      | 1 1      | 1        | 1          |  |
| 2-Methylnaphthalene        | 1.0E-01            | NA                                 | <u>2.9L-02</u><br>NA                | 1                                      | 1        | <u> </u> | 1          |  |
| Acenaphthene               | 1.3E-01            | NA NA                              | NA                                  | 1                                      | 1        | 1        | 1          |  |
| Acenaphthylene             | 1.3E-01            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1 1        |  |
| Anthracene                 | 1.3E-01            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
|                            | 1.3E-01            | 7.3E+00                            | 7.3E+00                             | 10                                     | 3        | 3        | 1          |  |
| BaP Equivalent             |                    |                                    |                                     |                                        |          | -        |            |  |
| Benzo(a)anthracene         | 1.3E-01            | 7.3E-01                            | 7.3E-01                             | 10                                     | 3        | 3        | 1          |  |
| Benzo(a)pyrene             | 1.3E-01            | 7.3E+00                            | 7.3E+00                             | 10                                     | 3        | 3        | 1          |  |
| Benzo(b)fluoranthene       | 1.3E-01            | 7.3E-01                            | 7.3E-01                             | 10                                     | 3        | 3        | 1          |  |
| Benzo(g,h,i)perylene       | 1.3E-01            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
| Benzo(k)fluoranthene       | 1.3E-01            | 7.3E-02                            | 7.3E-02                             | 10                                     | 3        | 3        | 1          |  |
| Bis(2-ethylhexyl)phthalate | 1.0E-01            | 1.4E-02                            | 1.4E-02                             | 1                                      | 1        | 1        | 1          |  |
| Butyl Benzyl Phthalate     | 1.0E-01            | 1.9E-03                            | 1.9E-03                             | 1                                      | 1        | 1        | 1          |  |
| Carbazole                  | 1.0E-01            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
| Chrysene                   | 1.3E-01            | 7.3E-03                            | 7.3E-03                             | 10                                     | 3        | 3        | 1          |  |
| Dibenzo(a,h)anthracene     | 1.3E-01            | 7.3E+00                            | 7.3E+00                             | 10                                     | 3        | 3        | 1          |  |
| Dibenzofuran               | 1.0E-01            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
| Fluoranthene               | 1.3E-01            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
| Fluorene                   | 1.3E-01            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
| Indeno(1,2,3-cd)pyrene     | 1.3E-01            | 7.3E-01                            | 7.3E-01                             | 10                                     | 3        | 3        | 1          |  |
| Naphthalene                | 1.3E-01            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
| Phenanthrene               | 1.3E-01            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
| Pyrene                     | 1.3E-01            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
| Aroclor-1248               | 1.4E-01            | 2.0E+00                            | 2.0E+00                             | 1                                      | 1        | 1        | 1          |  |
| Aroclor-1254               | 1.4E-01            | 2.0E+00                            | 2.0E+00                             | 1                                      | 1        | 1        | 1          |  |
| Aroclor-1260               | 1.4E-01            | 2.0E+00                            | 2.0E+00                             | 1                                      | 1        | 1        | 1          |  |
| Antimony                   | 1.0E-02            | NA                                 | NA                                  | 1                                      | i i      |          | i          |  |
| Arsenic                    | 3.0E-02            | 1.5E+00                            | 1.5E+00                             | 1                                      | 1 1      | 1        | 1i         |  |
| Barium                     | 1.0E-02            | NA                                 | NA                                  | <u>1</u>                               | <u>i</u> | 1        | 1 1        |  |
| Beryllium                  | 1.0E-02            | NA                                 | NA NA                               | 1                                      | <u> </u> | 1        | +          |  |
| Cadmium                    | 1.0E-02            | NA                                 | NA -                                | 1                                      | 1 1      | 1        | 1 1        |  |
| Chromium                   | 1.0E-00            | NA                                 | NA                                  |                                        | 1        | 1        | 1          |  |
| Cobalt                     | 1.0E-02            | NA                                 | NA NA                               | 1                                      | 1        | 1        | 1          |  |
| Copper                     | 1.0E-02            | NA                                 | NA                                  | 1                                      |          | 1        | 1          |  |
| Lead                       | 1.0E-02            | NA NA                              | NA<br>NA                            | 1                                      |          | 1        |            |  |
| Mercury                    | 1.0E-02            | NA NA                              | NA<br>NA                            | 1                                      | 1 1      | 1        |            |  |
| Molybdenum                 | 1.0E-02            |                                    | NA NA                               | 1                                      | 1 1      |          |            |  |
|                            | 1.0E-02            | NA NA                              |                                     | <u>1</u>                               |          | 1        | 1 1        |  |
| Nickel                     |                    |                                    | NA                                  |                                        |          |          |            |  |
| Selenium                   | 1.0E-02            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
| Silver                     | 1.0E-02            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
| Thallium                   | 1.0E-02            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
| Vanadium                   | 1.0E-02            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
| Zinc                       | 1.0E-02            | NA                                 | NĀ                                  | 1                                      | 1        | 1        | 1          |  |
| Hexavalent Chromium        | 1.0E-02            | 5.0E-01                            | 1.3E-02                             | 10                                     | 3        | 3        | [ <u>1</u> |  |
| Dibutyltin                 | 1.0E-02            | NA                                 | NA                                  | 1                                      | 1        | 1        | 1          |  |
|                            |                    |                                    |                                     |                                        |          |          |            |  |

 Dibutytin
 Instructive
 Instructive

### CALCULATION OF RISK-BASED PRELIMINARY CLEANUP LEVELS (PAGE 3)

### SITE NAME: LOCKHEED MARTIN MIDDLE RIVER COMPLEX EXPOSURE POINT: COW PEN CREEK/DARK HEAD COVE EXPOSURE SCENARIO: LIFELONG (CHILD AND ADULT) RECREATIONAL USERS MEDIA: SEDIMENT DATE: JANUARY 20, 2011

| Chemical                   | Ris   | k-Based Sediment C | oncentration (n | ng/kg)   |
|----------------------------|-------|--------------------|-----------------|----------|
|                            | Child | Adolescent         | Adult           | Lifelong |
| 1,3-Dichlorobenzene        | NA    | NA                 | NA              | NA       |
| 1,4-Dichlorobenzene        | 779   | 2,479              | 3,018           | 496      |
| 2-Butanone                 | NA    | NA                 | NA              | NA       |
| Acetone                    | NA    | NA                 | NA              | NA       |
| Carbon Disulfide           | NA    | NA                 | NA              | NA       |
| Chlorobenzene              | NA    | NA                 | NA              | NA       |
| Chloromethane              | NA    | NA                 | NA              | NA       |
| cis-1,2-Dichloroethene     | NA    | NA                 | NA              | NA       |
| Isopropylbenzene           | NA    | NA                 | NA              | NA       |
| Methyl Tert-Butyl Ether    | 2,338 | 7,436              | 9,055           | 1,487    |
| Naphthalene                | NA    | NA                 | NA              | NA       |
| sec-Butylbenzene           | NA    | NA                 | NA              | NA       |
| Tert-Butylbenzene          | NA    | NA                 | NA              | NA NA    |
| Toluene                    | NA    | NA                 | NA              | NA       |
| 1,2-Dichlorobenzene        | NA    | NA                 | NA              | NA       |
| 1-Methylnaphthalene        | 123   | 387                | 450             | 77.2     |
| 2-Methylnaphthalene        | NA    | NA                 | NA              | NA       |
| Acenaphthene               | NA    | NA                 | NA              | NA       |
| Acenaphthylene             | NA    | NA                 | NA              | NA       |
| Anthracene                 | NA    | NA                 | NA              | NA       |
| BaP Equivalent             | 0.086 | 0.479              | 1.646           | 0.070    |
| Benzo(a)anthracene         | 0.859 | 4.79               | 16.46           | 0.698    |
| Benzo(a)pyrene             | 0.086 | 0.479              | 1.646           | 0.070    |
| Benzo(b)fluoranthene       | 0.859 | 4.79               | 16.46           | 0.698    |
| Benzo(g,h,i)perylene       | NA    | NA                 | NA              | NA       |
| Benzo(k)fluoranthene       | 8.59  | 47.9               | 164.6           | 6.98     |
| Bis(2-ethylhexyl)phthalate | 255   | 801                | 932             | 160      |
| Butyl Benzyl Phthalate     | 1,876 | 5,900              | 6,866           | 1179     |
| Carbazole                  | NA    | NA                 | NA              | NA       |
| Chrysene                   | 85.9  | 479                | 1646            | 69.8     |
| Dibenzo(a,h)anthracene     | 0.086 | 0.479              | 1.646           | 0.070    |
| Dibenzofuran               | NA    | NA                 | NA              | NA       |
| Fluoranthene               | NA    | NA                 | NA              | NA       |
| Fluorene                   | NA    | NA                 | NA              | NA       |
| Indeno(1,2,3-cd)pyrene     | 0.859 | 4.79               | 16.46           | 0.698    |
| Naphthalene                | NA    | NA                 | NA              | NA       |
| Phenanthrene               | NA    | NA                 | NA              | NA       |
| Pyrene                     | NA    | NA                 | NA              | NA       |
| Aroclor-1248               | 1.64  | 5.13               | 5.85            | 1.025    |
| Aroclor-1254               | 1.64  | 5.13               | 5.85            | 1.025    |
| Aroclor-1260               | 1.64  | 5.13               | 5.85            | 1.025    |
| Antimony                   | NA    | NA                 | NA              | NA       |
| Arsenic                    | 2.81  | 8.92               | 10.87           | 1.78     |
| Barium                     | NA    | NA                 | NA              | NA       |
| Beryllium                  | NA    | NA                 | <u>NA</u>       | NA       |
| Cadmium                    | NA    | NA                 | NA              | NA       |
| Chromium                   | NA    | NA                 | NA              | NA       |
| Cobalt                     | NA    | NA                 | NA              | NA       |
| Copper                     | NA    | NA                 | NA              | NA       |
| Lead                       | NA    | NA                 | NA              | NA       |
| Mercury                    | NA    | NA                 | NA              | NA       |
| Molybdenum                 | NA    | NA                 | NA              | NA       |
| Nickel                     | NA    | NA                 | NA              | NA       |
| Selenium                   | NA    | NA                 | NA              | NA       |
| Silver                     | NA    | NA                 | NA              | NA       |
| Thallium                   | NA    | NA                 | NA              | NA       |
| Vanadium                   | NA    | NĂ                 | NA              | NA       |
| Zinc                       | NA    | NA                 | NA              | NA       |
| Hexavalent Chromium        | 1.71  | 9.73               | 36.5            | 1.40     |
| Dibutyltin                 | NA    | NA                 | NA              | NA       |

Page 1 of 4

| CLIENT:                         |               | MBER-           |
|---------------------------------|---------------|-----------------|
| LOCKHEED MARTIN MIDDLE RIVER CO | OMPLEX 2135   | inden.          |
| SUBJECT:                        |               | ······          |
| CALCULATION OF RISK BASED CLEAN |               |                 |
| EXPOSED TO ARSENIC IN SEDIMENT  |               | CREATIONAL USER |
| BASED ON:                       |               |                 |
| USEPA, DEC. 1989                |               |                 |
| BY:                             | CHECKED BY:   | DATE:           |
| R. JUPIN                        | mattin Diraus | 6/8/2009        |

 PURPOSE:
 This spreadsheet calculates risk-based cleanup goals for exposures to sediment.

 Exposures through incidental ingestion and dermal contact are considered.

**RELEVANT EQUATIONS:** 

<u>Carcinogens</u> TCR RBC = Intake <sub>oral</sub> CSF <sub>oral</sub> + Intake <sub>derm</sub> CSF <sub>derm</sub> sed THI **NonCarcinogens** RBC sed = Intake Intake oral derm + RfD RfD IR x EF x ED x FI x CF BW x AT Intake<sub>oral</sub> = SA x AF x ABS x EF x ED x CF intake<sub>derm</sub> = BW x AT

Page 2 of 4

| CLIENT:                         | JOB                                    | NUMBER:           |
|---------------------------------|----------------------------------------|-------------------|
| LOCKHEED MARTIN MIDDLE RIVER CO | OMPLEX 2135                            |                   |
| SUBJECT:                        | ······································ |                   |
| CALCULATION OF RISK BASED CLEAN | NUP GOAL FOR AN CHILD                  | RECREATIONAL USER |
| EXPOSED TO ARSENIC IN SEDIMENT  | · · · · · · · · · · · · · · · · · · ·  |                   |
| BASED ON:                       |                                        |                   |
| USEPA, DEC. 1989                |                                        | • .               |
| BY:                             | CHECKED BY:                            | DATE:             |
| R. JUPIN                        | Martan Onran                           | 6/8/2009          |

|                     | Parameter   | Value   | Definition                                                        | - |
|---------------------|-------------|---------|-------------------------------------------------------------------|---|
| General             | PRG = :     |         | Screening level in soil (mg/kg)                                   |   |
|                     | TCR = :     | 1.0E-06 | Target Cancer Risk                                                |   |
|                     | THI = :     | 1       | Target Hazard Index                                               |   |
| 1                   | CF = :      | 1.0E-06 | Conversion Factor (kg/mg)                                         |   |
|                     | EF = :      | 70      | Exposure Frequency (days/year)                                    |   |
|                     | ED = :      | 6       | Exposure Duration (years)                                         |   |
|                     | BW = :      | 15      | Body Weight (kg) (USEPA, 1997)                                    |   |
|                     | ATc = :     | 25,550  | Averaging time for carcinogenic exposures (days)                  |   |
|                     | ATn = :     | 2,190   | Averaging time for noncarcinogenic exposures (days)               |   |
| ncidental Ingestion | IR = :      | 200     | Soil Ingestion Rate (mg/day) (USEPA, 1993)                        |   |
|                     | Fl = ;      | 1       | Fraction from contaminated source (unitless)                      |   |
| Dermal Contact      | SA = :      | 2800    | Skin surface available for contact (cm <sup>2</sup> /event)(1)    |   |
|                     | AF = :      | 0.2     | Soil to skin adherence factor (mg/cm <sup>2</sup> ) (USEPA, 2004) |   |
|                     | ABS = :     | 0.03    | Absorption factor (unitless) Chemical Specific (USEPA, 2004)      |   |
| Toxicity Values     | CSForal = : | 1.5E+00 | oral carcinogenic slope factor ((mg/kg/day) <sup>1</sup> )        |   |
| · · · · ·           | RfDoral = : | 3.0E-04 | oral noncarcinogenic reference dose (mg/kg/day)                   |   |
|                     | CSFderm = : | 1.5E+00 | dermal carcinogenic slope factor ((mg/kg/day) <sup>-1</sup> )     |   |
|                     | RfDderm = : | 3.0E-04 | dermal noncarcinogenic reference dose (mg/kg/day)                 |   |

Page 3 of 4

| CLIENT:                         | JOB                  | NUMBER:             |
|---------------------------------|----------------------|---------------------|
| LOCKHEED MARTIN MIDDLE RIVER CO | OMPLEX 213           | 5                   |
| SUBJECT:                        |                      |                     |
| CALCULATION OF RISK BASED CLEAN | JUP GOAL FOR AN CHIL | D RECREATIONAL USER |
| EXPOSED TO ARSENIC IN SEDIMENT  |                      |                     |
| BASED ON:                       |                      |                     |
| USEPA, DEC. 1989                |                      |                     |
| BY:                             | CHECKED BY:          | DATE:               |
| R. JUPIN                        | Mathatt Solean       | 6/8/2009            |

## EXAMPLE CALCULATION FOR INCIDENTAL INGESTION OF SEDIMENT - CARCINOGENS

| Intake <sub>oral</sub> = | 200 mg/day x 70 days/year x 6 years x 1 x 1.0E-06 kg/mg |
|--------------------------|---------------------------------------------------------|
| oral                     | 15 kg x 25550 days                                      |

Intake<sub>oral</sub> = 2.19E-07 kg/kg-day

## EXAMPLE CALCULATION FOR INCIDENTAL INGESTION OF SEDIMENT - NONCARCINOGENS

| Intake <sub>oral</sub> = | 200 mg/day x 70 days/year x 6 years x 1 x 1.0E-06 kg/mg |
|--------------------------|---------------------------------------------------------|
| oral                     | 15 kg x 2190 days                                       |

Intake<sub>oral</sub> = 2.56E-06 kg/kg-day

## EXAMPLE CALCULATION FOR DERMAL CONTACT WITH SEDIMENT - CARCINOGENS

| Intake <sub>derm</sub> = | 2800 cm2/event x 0.2 mg/cm2 x 0.03 x 70 events/year x 6 years x 1.0E-06 kg/mg |
|--------------------------|-------------------------------------------------------------------------------|
| interne derm -           | 15 kg x 25550 days                                                            |

Intake<sub>derm</sub> = 1.84E-08 kg/kg-day

## **EXAMPLE CALCULATION FOR DERMAL CONTACT WITH SEDIMENT - NONCARCINOGENS**

| Intake <sub>derm</sub> = | 2800 cm2/event x 0.2 mg/cm2 x 0.03 x 70 events/year x 6 years x 1.0E-06 kg/mg |  |
|--------------------------|-------------------------------------------------------------------------------|--|
| HILLING OBIM -           | 15 kg x 2190 days                                                             |  |

Intake<sub>derm</sub> = 2.15E-07 kg/kg-day

**1**52

Page 4 of 4

| CLIENT:                         |                         | JOB NUMBER:             |
|---------------------------------|-------------------------|-------------------------|
| LOCKHEED MARTIN MIDDLE RIVER CO |                         | 2135                    |
| SUBJECT:                        |                         |                         |
| CALCULATION OF RISK BASED CLEAN | UP GOAL FOR AN C        | HILD RECREATIONAL LISER |
| EXPOSED TO ARSENIC IN SEDIMENT  |                         |                         |
| BASED ON:                       | • • • • • • • • • • • • |                         |
| USEPA, DEC. 1989                |                         |                         |
| BY:                             | CHECKED BY:             | 1 DATE:                 |
| R. JUPIN                        | Matthe VOU              | 6/8/2009                |

## EXAMPLE CALCULATION OF PRGsed - CARCINOGENS

| PRG <sub>sed</sub> = | 1.0E-06                                                                                  |  |  |
|----------------------|------------------------------------------------------------------------------------------|--|--|
|                      | (2.19E-07 kg/kg-day x 1.5E+00 kg-day/mg) + (1.84E-08 kg/kg-day x 1.5E+00 kg-day/mg)      |  |  |
| PRG <sub>sed</sub> = | 2.81 mg/kg                                                                               |  |  |
| EXAMPLE CALCULATION  | ON OF PRGsed - NONCARCINOGENS                                                            |  |  |
| PRG <sub>sed</sub> = | 1<br>(2.56E-06 kg/kg/day / 3.0E-04 mg/kg-day) + (2.15E-07 kg/kg/day / 3.0E-04 mg/kg-day) |  |  |
|                      | (2.552 55 kg/kg/day / 3.52-54 mg/kg-bay) + (2.152-57 kg/kg/day / 3.52-04 mg/kg-day)      |  |  |
| PRG <sub>sed</sub> = | 108 mg/kg                                                                                |  |  |

Page 1 of 4

| CLIENT:                         |                                        | JOB NUMBER:                  |
|---------------------------------|----------------------------------------|------------------------------|
| LOCKHEED MARTIN MIDDLE RIVER C  | OMPLEX                                 | 2135                         |
| SUBJECT:                        |                                        |                              |
| CALCULATION OF RISK BASED CLEAN | VUP GOAL FOR AN /                      | ADOLESCENT RECREATIONAL USER |
| EXPOSED TO ARSENIC IN SEDIMENT  |                                        |                              |
| BASED ON:                       | ······································ |                              |
| USEPA, DEC. 1989                |                                        |                              |
| BY:                             | CHECKED BY:                            | DATE:                        |
| R. JUPIN                        | Matter DN                              | raus 6/8/2009                |

 PURPOSE:
 This spreadsheet calculates risk-based cleanup goals for exposures to sediment.

 Exposures through incidental ingestion and dermal contact are considered.

RELEVANT EQUATIONS:

<u>Carcinogens</u>

NonCarcinogens

TCR  $\mathsf{RBC}_{\mathsf{sed}} =$ Intake oral · CSF oral + Intake derm · CSF derm THI RBC sed Intake RfD Intake RfD 018 derm + oral derm IR x EF x ED x FI x CF BW x AT Intake<sub>oral</sub> = SA x AF x ABS x EF x ED x CF Intake<sub>derm</sub> = BW x AT

Page 2 of 4

| CLIENT:                        | JOB                    | NUMBER:                  |  |
|--------------------------------|------------------------|--------------------------|--|
| LOCKHEED MARTIN MIDDLE RIVER   | COMPLEX 2135           |                          |  |
| SUBJECT:                       |                        |                          |  |
| CALCULATION OF RISK BASED CLE  | EANUP GOAL FOR AN ADOL | ESCENT RECREATIONAL USER |  |
| EXPOSED TO ARSENIC IN SEDIMENT |                        |                          |  |
| BASED ON:                      |                        |                          |  |
| USEPA, DEC. 1989               |                        |                          |  |
| BY:                            | CHECKED BY:            | DATE:                    |  |
| R. JUPIN                       | matter Olraw           | 6/8/2009                 |  |

|                    | Parameter      | Value     | Definition                                                        |
|--------------------|----------------|-----------|-------------------------------------------------------------------|
| General            | PRG = :        |           | Screening level in soil (mg/kg)                                   |
|                    | TCR = :        | 1.0E-06   | Target Cancer Risk                                                |
|                    | THI = :        | 1         | Target Hazard Index                                               |
|                    | CF = :         | 1.0E-06 · | Conversion Factor (kg/mg)                                         |
|                    | EF = :         | 70        | Exposure Frequency (days/year)                                    |
|                    | ED = :         | 12        | Exposure Duration (years)                                         |
|                    | BW = :         | 40        | Body Weight (kg) (USEPA, 1997)                                    |
|                    | . ATc = :      | 25,550    | Averaging time for carcinogenic exposures (days)                  |
|                    | ATn = :        | 4,380     | Averaging time for noncarcinogenic exposures (days)               |
| cidental Ingestion | IR = :         | 100       | Soil Ingestion Rate (mg/day) (USEPA, 1993)                        |
|                    | Fl = ;         | 1         | Fraction from contaminated source (unitless)                      |
| Dermal Contact     | SA = :         | 4320      | Skin surface available for contact (cm <sup>2</sup> /event)(1)    |
|                    | AF = :         | 0.07      | Soil to skin adherence factor (mg/cm <sup>2</sup> ) (USEPA, 2004) |
|                    | <u>ABS</u> = : | 0.03      | Absorption factor (unitless) Chemical Specific (USEPA, 2004)      |
| Toxicity Values    | CSForal = :    | 1.5E+00   | oral carcinogenic slope factor ((mg/kg/day) <sup>-1</sup> )       |
|                    | RfDoral = :    | 3.0E-04   | oral noncarcinogenic reference dose (mg/kg/day)                   |
|                    | CSFderm = :    | 1.5E+00   | dermal carcinogenic slope factor ((mg/kg/day) <sup>-1</sup> )     |
|                    | RfDderm = :    | 3.0E-04   | dermal noncarcinogenic reference dose (mg/kg/day)                 |

•

Page 3 of 4

|                                       | JOB NUMBER:  |                                  |
|---------------------------------------|--------------|----------------------------------|
| ER COMPLEX                            | 2135         |                                  |
| · · · · · · · · · · · · · · · · · · · | 1            | ,                                |
| LEANUP GOAL FOR AN                    | ADOLESCENT P | RECREATIONAL LISER               |
| 1ENT                                  |              | LONGAHONAE USEN                  |
|                                       |              |                                  |
|                                       |              |                                  |
| CHECKED BY:                           |              | DATE:                            |
| Mattheo D!                            | Vraue 6      | /8/2009                          |
|                                       |              | CLEANUP GOAL FOR AN ADOLESCENT F |

## EXAMPLE CALCULATION FOR INCIDENTAL INGESTION OF SEDIMENT - CARCINOGENS

Intake<sub>oral</sub> = <u>100 mg/day x 70 days/year x 12 years x 1 x 1.0E-06 kg/mg</u> 40 kg x 25550 days

Intake<sub>oral</sub> = 8.22E-08 kg/kg-day

## EXAMPLE CALCULATION FOR INCIDENTAL INGESTION OF SEDIMENT - NONCARCINOGENS

| Intake <sub>oral</sub> = | 100 mg/day x 70 days/year x 12 years x 1 x 1.0E-06 kg/mg |
|--------------------------|----------------------------------------------------------|
| - Oran                   | 40 kg x 4380 days                                        |

Intake<sub>oral</sub> = 4.79E-07 kg/kg-day

## EXAMPLE CALCULATION FOR DERMAL CONTACT WITH SEDIMENT - CARCINOGENS

| Intake <sub>derm</sub> = |   | 4320 cm2/event x 0.07 mg/cm2 x 0.03 x 70 events/year x 12 years x 1.0E-06 kg/mg |
|--------------------------|---|---------------------------------------------------------------------------------|
| Centi                    | · | 40 kg x 25550 days                                                              |

Intake<sub>derm</sub> = 7.46E-09 kg/kg-day

## **EXAMPLE CALCULATION FOR DERMAL CONTACT WITH SEDIMENT - NONCARCINOGENS**

| Intake <sub>derm</sub> = | 4320 cm2/event x 0.07 mg/cm2 x 0.03 x 70 events/year x 12 years x 1.0E-06 kg/mg |
|--------------------------|---------------------------------------------------------------------------------|
| 00m                      | 40 kg x 4380 days                                                               |

Intake<sub>derm</sub> = 4.35E-08 kg/kg-day

Page 4 of 4

| CLIENT:                         |                                                   | JOB NUMBE | R:                  |
|---------------------------------|---------------------------------------------------|-----------|---------------------|
| LOCKHEED MARTIN MIDDLE RIVER CO | OMPLEX                                            | 2135      |                     |
| SUBJECT:                        |                                                   |           |                     |
| CALCULATION OF RISK BASED CLEAN | UP GOAL FOR AN                                    | ADOLESCEN | T RECREATIONAL USER |
| EXPOSED TO ARSENIC IN SEDIMENT  |                                                   |           |                     |
| BASED ON:                       | · <del>····································</del> |           |                     |
| USEPA, DEC. 1989                |                                                   |           |                     |
| BY:                             | CHECKED BY;                                       | 01        | DATE:               |
| R. JUPIN                        | Matter                                            | 8Nmo      | 6/8/2009            |

## EXAMPLE CALCULATION OF PRGsed - CARCINOGENS

| PRG <sub>sed</sub> = | 1.0E-06                                                                             |
|----------------------|-------------------------------------------------------------------------------------|
| 1 1 0 500            | (8.22E-08 kg/kg-day x 1.5E+00 kg-day/mg) + (7.46E-09 kg/kg-day x 1.5E+00 kg-day/mg) |
| PRG <sub>sed</sub> = | 7.44 mg/kg                                                                          |
| EXAMPLE CALCULAT     | ION OF PRGsed - NONCARCINOGENS                                                      |
|                      |                                                                                     |
| PRG <sub>sed</sub> = | 1                                                                                   |
|                      | (4.79E-07 kg/kg/day / 3.0E-04 mg/kg-day) + (4.35E-08 kg/kg/day / 3.0E-04 mg/kg-day) |
| PRG <sub>sed</sub> = | 574 mg/kg                                                                           |
|                      |                                                                                     |

Page 1 of 4

| CLIENT:                       |                  | JOB NUMBER:              |
|-------------------------------|------------------|--------------------------|
| LOCKHEED MARTIN MIDDLE RIVER  | COMPLEX          | 2135                     |
| SUBJECT:                      |                  |                          |
| CALCULATION OF RISK BASED CLE | ANUP GOAL FOR AN | ADULT RECREATIONAL LISER |
| EXPOSED TO ARSENIC IN SEDIMEN | T                |                          |
| BASED ON:                     | <u> </u>         |                          |
| USEPA, DEC. 1989              |                  |                          |
| BY:                           | CHECKED BY:      | DATE:                    |
| R. JUPIN                      | mattower         | 6/8/2009                 |

PURPOSE: This spreadsheet calculates risk-based cleanup goals for exposures to sediment. Exposures through incidental ingestion and dermal contact are considered.

**RELEVANT EQUATIONS:** 

Carcinogens

NonCarcinogens

TCR RBC sed = Intake oral · CSF oral + Intake derm · CSF derm THI RBC sed Intake RfD htake RfD oral derm + IR x EF x ED x FI x CF Intake<sub>oral</sub> = BW x AT SA x AF x ABS x EF x ED x CF Intake<sub>derm</sub> = BW x AT

Page 2 of 4

| CLIENT:                         |                   | JOB NUMBER:                            |  |
|---------------------------------|-------------------|----------------------------------------|--|
| LOCKHEED MARTIN MIDDLE RIVER CO | OMPLEX            | 2135                                   |  |
| SUBJECT:                        |                   | ······································ |  |
| CALCULATION OF RISK BASED CLEAN | IUP GOAL FOR AN A | DULT RECREATIONAL USER                 |  |
| EXPOSED TO ARSENIC IN SEDIMENT  |                   |                                        |  |
| BASED ON:                       |                   |                                        |  |
| USEPA, DEC. 1989                |                   |                                        |  |
| BY:                             | CHECKED BY:       | DATE:                                  |  |
| R. JUPIN                        | "Inattion "       | 1aus 6/8/2009                          |  |

|                      | Parameter      | Value   | Definition                                                        |
|----------------------|----------------|---------|-------------------------------------------------------------------|
| General              | PRG = :        |         | Screening level in soil (mg/kg)                                   |
|                      | TCR = :        | 1.0E-06 | Target Cancer Risk                                                |
|                      | THI = :        | 1       | Target Hazard Index                                               |
|                      | CF = :         | 1.0E-06 | Conversion Factor (kg/mg)                                         |
|                      | EF = :         | 70      | Exposure Frequency (days/year)                                    |
|                      | ED = :         | 30      | Exposure Duration (years)                                         |
|                      | BW = :         | 70      | Body Weight (kg) (USEPA, 1997)                                    |
|                      | ATc = :        | 25,550  | Averaging time for carcinogenic exposures (days)                  |
|                      | ATn = :        | 10,950  | Averaging time for noncarcinogenic exposures (days)               |
| Incidental Ingestion | IR = :         | 100     | Soil Ingestion Rate (mg/day) (USEPA, 1993)                        |
|                      | Fl = :         | 1       | Fraction from contaminated source (unitless)                      |
| Dermal Contact       | SA = :         | 5700    | Skin surface available for contact (cm <sup>2</sup> /event)(1)    |
|                      | AF = :         | 0.07    | Soil to skin adherence factor (mg/cm <sup>2</sup> ) (USEPA, 2004) |
|                      | <u>ABS = :</u> | 0.03    | Absorption factor (unitless) Chemical Specific (USEPA, 2004)      |
| Toxicity Values      | CSForal = :    | 1.5E+00 | oral carcinogenic slope factor ((mg/kg/day) <sup>-1</sup> )       |
|                      | RfDoral = :    | 3.0E-04 | oral noncarcinogenic reference dose (mg/kg/day)                   |
|                      | CSFderm = :    | 1.5E+00 | dermal carcinogenic slope factor ((mg/kg/day) <sup>-1</sup> )     |
|                      | RfDderm = :    | 3.0E-04 | dermal noncarcinogenic reference dose (mg/kg/day)                 |

Page 3 of 4

| CLIENT:                        | JOB                                   | NUMBER:           |
|--------------------------------|---------------------------------------|-------------------|
| LOCKHEED MARTIN MIDDLE RIVER   | COMPLEX 2135                          |                   |
| SUBJECT:                       |                                       |                   |
| CALCULATION OF RISK BASED CLEA | ANUP GOAL FOR AN ADULT                | RECREATIONAL USER |
| EXPOSED TO ARSENIC IN SEDIMEN  |                                       |                   |
| BASED ON:                      | · · · · · · · · · · · · · · · · · · · |                   |
| USEPA, DEC. 1989               | :                                     |                   |
| BY:                            | CHECKED BY:                           | DATE:             |
| R. JUPIN                       | Matton & May                          | <b>6/8/2009</b>   |

## **EXAMPLE CALCULATION FOR INCIDENTAL INGESTION OF SEDIMENT - CARCINOGENS**

| Intake <sub>oral</sub> = | 100 mg/day x 70 days/year x 30 years x 1 x 1.0E-06 kg/mg |
|--------------------------|----------------------------------------------------------|
| oral -                   | 70 kg x 25550 days                                       |

Intake<sub>oral</sub> = 1.17E-07 kg/kg-day

## **EXAMPLE CALCULATION FOR INCIDENTAL INGESTION OF SEDIMENT - NONCARCINOGENS**

| intake <sub>oral</sub> = | 100 mg/day x 70 days/year x 30 years x 1 x 1.0E-06 kg/mg |
|--------------------------|----------------------------------------------------------|
| orai -                   | 70 kg x 10950 days                                       |

Intake<sub>oral</sub> = 2.74E-07 kg/kg-day

## **EXAMPLE CALCULATION FOR DERMAL CONTACT WITH SEDIMENT - CARCINOGENS**

| Intake <sub>derm</sub> = | 5700 cm2/event x 0.07 mg/cm2 x 0.03 x 70 events/year x 30 years x 1.0E-06 kg/mg |
|--------------------------|---------------------------------------------------------------------------------|
| man ogen -               | 70 kg x 25550 days                                                              |

Intake<sub>derm</sub> = 1.41E-08 kg/kg-day

## **EXAMPLE CALCULATION FOR DERMAL CONTACT WITH SEDIMENT - NONCARCINOGENS**

| Intake <sub>derm</sub> = | 5700 cm2/event x 0.07 mg/cm2 x 0.03 x 70 events/year x 30 years x 1.0E-06 kg/mg |
|--------------------------|---------------------------------------------------------------------------------|
| manoderm -               | 70 kg x 10950 days                                                              |

Intake<sub>derm</sub> = 3.28E-08 kg/kg-day

Page 4 of 4

| CLIENT:                         | · · · · · · · · · · · · · · · · · · · | JOB NUMBER | 2                                      |
|---------------------------------|---------------------------------------|------------|----------------------------------------|
| LOCKHEED MARTIN MIDDLE RIVER CO | OMPLEX                                | 2135       |                                        |
| SUBJECT:                        |                                       |            | ······································ |
| CALCULATION OF RISK BASED CLEAN | NUP GOAL FOR AN                       |            | ATIONAL USER                           |
| EXPOSED TO ARSENIC IN SEDIMENT  |                                       |            |                                        |
| BASED ON:                       |                                       |            |                                        |
| USEPA, DEC. 1989                |                                       |            |                                        |
| BY:                             | CHECKED BY:                           | -04        | DATE:                                  |
| R. JUPIN                        | madde D.                              | AV         | 6/8/2009                               |

## EXAMPLE CALCULATION OF PRGsed - CARCINOGENS

| PRG <sub>sed</sub> = _ | 1.0E-06                                                                             |  |  |
|------------------------|-------------------------------------------------------------------------------------|--|--|
| 390                    | (1.17E-07 kg/kg-day x 1.5E+00 kg-day/mg) + (1.41E-08 kg/kg-day x 1.5E+00 kg-day/mg) |  |  |
| PRG <sub>sed</sub> =   | 5.07 mg/kg                                                                          |  |  |
| EXAMPLE CALCULAT       | ION OF PRGsed - NONCARCINOGENS                                                      |  |  |
| PPO                    | 1                                                                                   |  |  |

 $PRG_{sed} =$ 

(2.74E-07 kg/kg/day / 3.0E-04 mg/kg-day) + (3.28E-08 kg/kg/day / 3.0E-04 mg/kg-day)

 $PRG_{sed} =$ 

978 mg/kg

| CLIENT:                                   | · · · · · · · · · · · · · · · · · · · | JOB NUMBER:       | · |  |
|-------------------------------------------|---------------------------------------|-------------------|---|--|
| LOCKHEED MARTIN MIDDLE RIVER COMPLEX 2135 |                                       |                   |   |  |
| SUBJECT:                                  |                                       |                   |   |  |
| CALCULATION OF RISK BASED                 | CLEANUP GOAL FOR AN LIFELONG F        | RECREATIONAL USER |   |  |
| EXPOSED TO ARSENIC IN SEDI                | EXPOSED TO ARSENIC IN SEDIMENT        |                   |   |  |
| BASED ON:                                 |                                       |                   |   |  |
| USEPA, DEC. 1989                          |                                       |                   |   |  |
| BY:                                       | CHECKED BY:                           | DATE:             |   |  |
| R. JUPIN 6/8/2009                         |                                       |                   |   |  |

 PURPOSE:
 This spreadsheet calculates risk-based cleanup goals for exposures to sediment.

 Exposures through incidental ingestion and dermal contact are considered.

## **RELEVANT EQUATIONS:**

Carcinogens

$$\mathsf{RBC}_{\mathsf{red}} = \frac{\mathsf{TCR}}{\mathsf{Intake}_{\mathsf{red}} \cdot \mathsf{CSF}_{\mathsf{red}} + \mathsf{Intake}_{\mathsf{red}} \cdot \mathsf{CSF}_{\mathsf{red}}}$$

$$Intake_{oral} = \frac{EF \cdot FI \cdot CF}{AT} \cdot \left[ \frac{IR_{child} \cdot ED_{child}}{BW_{child}} + \frac{IR_{adol} \cdot ED_{Adol}}{BW_{adol}} + \frac{IR_{adult} \cdot IR_{adult}}{BW_{adol}} \right]$$

$$Intake_{derm} = \frac{ABS \cdot EF \cdot CF}{AT} \cdot \left[ \frac{SA_{child} \cdot AF_{child} \cdot ED_{child}}{BW_{child}} + \frac{SA_{adol} \cdot AF_{adol} \cdot ED_{adol}}{BW_{adol}} + \frac{SA_{adol} \cdot AF_{adol} \cdot ED_{adol}}{BW_{adol}} \right]$$

| CLIENT:                          |                                     | JOB NUMBER: |  |  |
|----------------------------------|-------------------------------------|-------------|--|--|
| LOCKHEED MARTIN MIDDLE RIVER COM | 2135                                |             |  |  |
| SUBJECT:                         |                                     |             |  |  |
| CALCULATION OF RISK BASED CLEANU | GOAL FOR AN LIFELONG RECREATIONAL U | ISER        |  |  |
| EXPOSED TO ARSENIC IN SEDIMENT   |                                     |             |  |  |
| BASED ON:                        |                                     |             |  |  |
| USEPA, DEC. 1989                 |                                     |             |  |  |
| BY:                              | CHECKED BY:                         | DATE:       |  |  |
| R. JUPIN                         | Matton D Mail                       | 6/8/2009    |  |  |

|                     | Parameter   | Child   | Adolescent | Adult   | Definition                                                        |
|---------------------|-------------|---------|------------|---------|-------------------------------------------------------------------|
| General             | PRG = :     |         |            |         | Screening level in soil (mg/kg)                                   |
| ,                   | TCR = :     | 1.0E-06 | 1.0E-06    | 1.0E-06 | Target Cancer Risk                                                |
|                     | CF = :      | 1.0E-06 | 1.0E-06    | 1.0E-06 | Conversion Factor (kg/mg)                                         |
|                     | EF = :      | 70      | 70         | 70      | Exposure Frequency (days/year)                                    |
|                     | ED = :      | 6       | 10         | 14      | Exposure Duration (years)                                         |
|                     | BW = :      | 15      | 40         | 70      | Body Weight (kg) (USEPA, 1997)                                    |
|                     | ATc = :     | 25,550  | 25,550     | 25,550  | Averaging time for carcinogenic exposures (days)                  |
| ncidental Ingestion | IR = ;      | 200     | 100        | 100     | Soil Ingestion Rate (mg/day) (USEPA, 1993)                        |
|                     | Fl = :      | 1       | 1          | 1       | Fraction from contaminated source (unitless)                      |
| Dermal Contact      | SA = :      | 2800    | 4320       | 5700    | Skin surface available for contact (cm <sup>2</sup> /event)(1)    |
|                     | AF = :      | 0.2     | 0.07       | 0.07    | Soil to skin adherence factor (mg/cm <sup>2</sup> ) (USEPA, 2004) |
|                     | ABS = :     | 0.03    | 0.03       | 0.03    | Absorption factor (unitless) Chemical Specific (USEPA, 2004)      |
| Toxicity Values     | CSForal = : |         | 1.5E+00    |         | oral carcinogenic slope factor ((mg/kg/day) <sup>-1</sup> )       |
| CSFderm =           |             |         | 1.5E+00    |         | dermal carcinogenic slope factor ((mg/kg/day) <sup>-1</sup> )     |

An exposure duration of 10 years is used for the adolescent recreational user when calculating a PRG for lifelong exposures in order to conform with USEPA's Supplemental Guidance of Assessing Susceptibility from Early-Life Exposure to Carcinogens (USEPA, 2005) which defines an adolescent as being between the ages of 6 to 16 years old.

Page 3 of 3

| CLIENT:                 |                                          | JOB NUMBER:                           |  |  |  |  |
|-------------------------|------------------------------------------|---------------------------------------|--|--|--|--|
|                         | OCKHEED MARTIN MIDDLE RIVER COMPLEX 2135 |                                       |  |  |  |  |
| SUBJECT                 |                                          | · · · · · · · · · · · · · · · · · · · |  |  |  |  |
| CALCULATION OF RISK BAS | SED CLEANUP GOAL FOR AN I                | JFELONG RECREATIONAL USER             |  |  |  |  |
| EXPOSED TO ARSENIC IN S |                                          |                                       |  |  |  |  |
| BASED ON:               |                                          |                                       |  |  |  |  |
| USEPA, DEC. 1989        |                                          |                                       |  |  |  |  |
| BY:                     | CHECKED BY:                              | DATE:                                 |  |  |  |  |
| R. JUPIN                | What the T                               | Malle 6/8/2009                        |  |  |  |  |

EXAMPLE CALCULATION FOR INCIDENTAL INGESTION OF SEDIMENT - CARCINOGENS

| Intake <sub>oral</sub> = | <u>70 days/yr x 1 x 1.0E-06 kg/mg</u> | 200 mg/day x 6 years | 100 mg/day x 10 years | 100 mg/day x 14 years |
|--------------------------|---------------------------------------|----------------------|-----------------------|-----------------------|
| Juli                     | 25550 days                            | 15 kg                | 40 kg                 | 70 kg                 |

Intake<sub>orat</sub> = 3.42E-07 kg/kg-day

EXAMPLE CALCULATION FOR DERMAL CONTACT WITH SEDIMENT - CARCINOGENS

| Intake <sub>derm</sub> = | 0.03 x 70 days/yr x 1.0E-06 | 2800 cm2/event x 0.2 mg/cm2 x 6 yrs | 4320 cm2/event x 0.07 mg/cm2 x 10 yrs | 5700 cm2/event x 0.07 mg/cm2 x 14 yrs |
|--------------------------|-----------------------------|-------------------------------------|---------------------------------------|---------------------------------------|
| <b>G</b>                 | 25550 days                  | 15 kg                               | 40 kg                                 | 70 kg                                 |

Intakedem = 3.12E-08 kg/kg-day

### EXAMPLE CALCULATION OF PRGsed - CARCINOGENS

| PRG <sub>sed</sub> = | 1.0E-06                                                                         |
|----------------------|---------------------------------------------------------------------------------|
| · · · · • \$40 -     | 3.42E-07 kg/kg/day x 1.5E+00 kg-day/mg + 3.12E-08 kg/kg/day x 1.5E+00 kg-day/mg |

-

PRG<sub>sed</sub> = 1.78E+00 mg/kg

Attachment B.3

Sediment-to-Fish Tissue Preliminary Remediation Goals

# TABLE B-4 EXPOSURE ASSUMPTIONS FOR ADULT RECREATIONAL USERS FOR THE FISH CONSUMPTION EXPOSURE ROUTE LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 1 OF 1

| Parameter<br>Code | Parameter Definition          | Units      | Value  | Reference              | Equation                         |
|-------------------|-------------------------------|------------|--------|------------------------|----------------------------------|
| IR                | Ingestion Rate of fish        | kg/meal    | 0.129  | USEPA, August 1997     | <u>Cfish x IR x FI x EF x ED</u> |
| Fl                | Fraction ingested from source | unitless   | 1      | Professional Judgement | BW x AT                          |
| EF                | Exposure Frequency            | meals/year | 52     | Professional Judgement |                                  |
| ED                | Exposure Duration             | years      | 30     | USEPA, May 1993        |                                  |
| BW                | Body Weight                   | kg         | 70     | USEPA, May 1993        |                                  |
| AT-C              | Averaging Time (Cancer)       | days       | 25,550 | USEPA, December 1989   |                                  |
| AT-N              | Averaging Time (Non-Cancer)   | days       | 10,950 | USEPA, December 1989   |                                  |

Ingestion Intake - Cancer1.13E-04Ingestion Intake - Noncancer2.63E-04

## TABLE B-5A 0-6 FT. SEDIMENT RISK-BASED CONCENTRATIONS (RBCS) FOR ADULT RECREATIONAL USERS FOR THE FISH CONSUMPTION EXPOSURE ROUTE LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 1 OF 1

| 1.00E-06 |                                           |
|----------|-------------------------------------------|
| 1        |                                           |
| 1.2      | (Average % lipids in fish tissue samples) |
| 3.19     | (Average TOC in sediment)                 |
|          | 1<br>1.2                                  |

| Chemical                                           | CAS #                | CSFo <sup>(2)</sup> | RfDo <sup>(3)</sup> | Fish Tissue<br>Concentration -<br>Cancer | Fish Tissue<br>Concentration -<br>Noncancer | BSAF <sup>(1)</sup> | Sediment RBC -<br>Cancer                | Sediment<br>RBC -<br>Noncancer | Sediment<br>RBC      |
|----------------------------------------------------|----------------------|---------------------|---------------------|------------------------------------------|---------------------------------------------|---------------------|-----------------------------------------|--------------------------------|----------------------|
|                                                    |                      | (mg/kg/day)         | (mg/kg/day)         | mg/kg                                    | mg/kg                                       |                     | mg/kg                                   | mg/kg                          | mg/kg                |
| Antimony (metallic)                                | 7440-36-0            |                     | 0.0004              | <u> </u>                                 | 1.52E+00                                    | 0.16                |                                         | 9.52E+00                       | 9.52E+00             |
| Arsenic, Inorganic                                 | 7440-38-2            | 1.5                 | 0.0003              | 1.48E-01                                 | 2.86E+01                                    | 0.02288             | 6.47E+00                                | 1.25E+03                       | 6.47E+00             |
| Barium                                             | 7440-39-3            |                     | 0.2                 |                                          | 7.62E+02                                    | 0.16                | 0.112.00                                | 4.76E+03                       | 4.76E+03             |
| Beryllium and compounds                            | 7440-41-7            |                     | 0.002               |                                          | 7.62E+00                                    | 0.16                |                                         | 4.76E+01                       | 4.76E+01             |
| Cadmium (Diet)                                     | 7440-43-9            |                     | 0.001               | +                                        | 3.81E+00                                    | 0.096               |                                         | 3.97E+01                       | 3.97E+01             |
| Chromium VI (particulates)                         | 18540-29-9           | 0.5                 | 0.003               | 1.78E-02                                 | 1.14E+01                                    | 0.016               | 1.11E+00                                | 7.14E+02                       | 1.11E+00             |
| Cobalt                                             | 7440-48-4            |                     | 0.0003              |                                          | 1.14E+00                                    | 0.16                |                                         | 7.14E+00                       | 7.14E+00             |
| Copper                                             | 7440-50-8            |                     | 0.04                |                                          | 1.52E+02                                    | 0.24896             |                                         | 6.12E+02                       | 6.12E+02             |
| Lead                                               | 7439-92-1            | 1                   | 0.01                |                                          |                                             | 0.01136             |                                         | 0.122.02                       | 0.100102             |
| Methyl Mercury                                     | 22967-92-6           | 1                   | 0.0001              |                                          | 3.81E-01                                    | 0.18176             |                                         | 2.10E+00                       | 2.10E+00             |
| Molybdenum                                         | 7439-98-7            |                     | 0.005               |                                          | 1.90E+01                                    | 0.16                | <u> </u>                                | 1.19E+02                       | 1.19E+02             |
| Nickel Soluble Salts                               | 7440-02-0            |                     | 0.02                |                                          | 7.62E+01                                    | 0.07776             |                                         | 9.80E+02                       | 9.80E+02             |
| Selenium                                           | 7782-49-2            |                     | 0.005               |                                          | 1.90E+01                                    | 0.16                |                                         | 1.19E+02                       | 1.19E+02             |
| Silver                                             | 7440-22-4            |                     | 0.005               |                                          | 1.90E+01                                    | 0.16                | · · ·                                   | 1.19E+02                       | 1.19E+02             |
| Thallium (Soluble Salts)                           | 7440-28-0            |                     | 0.000               |                                          |                                             | 0.16                |                                         |                                |                      |
| Vanadium and Compounds                             | NA                   | + +                 | 0.005               |                                          | 1.90E+01                                    | 0.16                |                                         | 1.19E+02                       | 1,19E+02             |
| Zinc (Metallic)                                    | 7440-66-6            |                     | 0.005               |                                          | 1.14E+03                                    | 0.30976             |                                         | 3.69E+03                       | 3.69E+03             |
| Chromium III                                       | 18540-29-9           | <u> </u>            | 1.5                 | +                                        | 5.71E+03                                    | 0.005/0             |                                         | 3.57E+05                       | 3.57E+05             |
| Dibutyltin                                         | 1002-53-5            | +                   | 3.00E-04            |                                          | 1.14E+00                                    | 16                  |                                         | 7.14E-02                       | 7.14E-02             |
| ~Methylnaphthalene, 1-                             | 90-12-0              | 2.9E-02             | 7.0E-02             | 3.06E-01                                 | 2.67E+02                                    |                     | 8.15E-01                                | 7.09E+02                       | 8.15E-01             |
| ~Methylnaphthalene, 2-                             | 91-57-6              | 2.32-02             | 0.004               | 0.002-01                                 | 1.52E+01                                    | ┝╼╾┼╼╾╴             | 0.152-01                                | 4.05E+01                       | 4.05E+01             |
| ~Acenaphthene                                      | 83-32-9              | ++                  | 0.06                |                                          | 2.29E+02                                    | 0.29                |                                         | 2.09E+03                       | 2.09E+03             |
| ~Acenaphthene                                      | 208-96-8             | + +                 | 0.06                |                                          | 2.29E+02                                    | 0.29                |                                         | 2.09E+03                       | 2.09E+03             |
| ~Acenaphtnylene                                    | 120-12-7             |                     | 0.3                 |                                          | 1.14E+03                                    | 0.29                |                                         | 1.05E+04                       | 1.05E+04             |
|                                                    | 56-55-3              | 0.73                | 0.5                 | 1.22E-02                                 | 1.142703                                    | 0.29                | 1.12E-01                                | 1.032+04                       | 1.12E-01             |
| -Benz[a]anthracene<br>Benzo[a]pyrene               | 50-32-8              | 7.3                 |                     | 1.22E-02                                 |                                             | 0.29                | 1.12E-01                                |                                | 1.12E-01             |
| Benzo[b]fluoranthene                               | 205-99-2             | 0.73                |                     | 1.22E-03                                 |                                             | 0.29                | 1.12E-02                                |                                | 1.12E-02             |
|                                                    | 191-24-2             | 0.73                | 0.03                | 1.225-02                                 | 1.14E+02                                    | 0.29                | 1.125-01                                | 1.05E+03                       | 1.05E+03             |
| Benzo(g,h,i)perylene                               | 207-08-9             | 0.073               | 0.03                | 1.22E-01                                 | 1.142402                                    | 0.29                | 1.12E+00                                | 1.032+03                       | 1.12E+00             |
| Benzo[k]fluoranthene<br>Bis(2-ethylhexyl)phthalate | 117-81-7             | 0.073               | 0.02                | 6.35E-01                                 | 7.62E+01                                    | 1                   | 1.69E+00                                | 2.03E+02                       | 1.69E+00             |
| Butyl Benzyl Phthlate                              | 85-68-7              | 0.0014              | 0.02                | 0.352-01                                 | 7.62E+02                                    | 1                   | 1.092+00                                | 2.03E+02                       | 2.03E+03             |
|                                                    | 86-74-8              | 0.0019              | 0.2                 | +                                        | 7.021702                                    | 0.29                | · - · · · · · · · · · · · · · · · · · · | 2.036+03                       | 2.032+03             |
| Carbazole                                          | 218-01-9             | 0.0073              |                     | 1.22E+00                                 |                                             | 0.29                | 1.12E+01                                |                                | 1.12E+01             |
| Chrysene                                           | 53-70-3              | 7.3                 |                     | 1.22E+00                                 |                                             | 0.29                | 1.12E+01                                |                                | 1.12E+01             |
| Dibenz[a,h]anthracene                              |                      | 1.3                 | 0.001               | 1.22E-V3                                 | 3.81E+00                                    | 1                   | 1.125-02                                | 1.01E+01                       | 1.01E+01             |
| Dibenzofuran                                       | 132-64-9<br>206-44-0 |                     |                     |                                          | 1.52E+02                                    | 0.29                |                                         | 1.40E+03                       | 1.40E+03             |
| Fluoranthene                                       | 86-73-7              |                     | 0.04                |                                          | 1.52E+02<br>1.52E+02                        | 0.29                |                                         | 1.40E+03                       | 1.40E+03             |
| Fluorene                                           |                      | 0.73                | 0.04                | 1.22E-02                                 | 1.52E+02                                    | 0.29                | 1.12E-01                                | 1.40E+03                       |                      |
| Indeno[1,2,3-cd]pyrene                             | 193-39-5<br>91-20-3  | 0.73                | 0.02                | 1.22E-02                                 | 7.62E+01                                    | 0.29                | 1.12E-01                                | 6.98E+02                       | 1.12E-01<br>6.98E+02 |
| Naphthalene                                        | 85-01-8              |                     | 0.02                |                                          | 1.14E+02                                    | 0.29                |                                         | 1.05E+02                       | 1.05E+02             |
| Phenanthrene                                       | 129-00-0             |                     |                     |                                          | 1.14E+02                                    | 0.29                | · · · ·                                 |                                |                      |
| Pyrene 10                                          | 95-50-1              |                     | 0.03                |                                          | 3.43E+02                                    |                     | · · ·                                   | 1.05E+03<br>9.11E+02           | 1.05E+03<br>9.11E+02 |
| Dichlorobenzene, 1,2-                              |                      |                     | 0.09                |                                          | 3.43E+02                                    | 1                   |                                         | 9.11E+02                       | 9.11E+02             |
| Dichlorobenzene, 1,3-                              | 541-73-1             | 0.0054              | 0.07                | 1.055.000                                |                                             | 1                   | 4.005.00                                | -                              | 4 205 400            |
| Dichlorobenzene, 1,4-                              | 106-46-7             | 0.0054              | 0.07                | 1.65E+00                                 | 2.29E+03                                    | 1                   | 4.38E+00                                | 6.005.00                       | 4.38E+00<br>6.08E+03 |
| Methyl Ethyl Ketone (2-Butanone)                   | 78-93-3              | -                   | 0.6                 |                                          |                                             |                     |                                         | 6.08E+03                       |                      |
| Acetone                                            | 67-64-1<br>75-15-0   |                     | 0.9                 |                                          | 3.43E+03<br>3.81E+02                        | 1                   |                                         | 9.11E+03<br>1.01E+03           | 9.11E+03<br>1.01E+03 |
| Carbon Disulfide                                   |                      | +                   | 0.1                 |                                          |                                             |                     |                                         |                                |                      |
| Chlorobenzene                                      | 108-90-7             |                     | 0.02                | +                                        | 7.62E+01                                    | 1                   | l                                       | 2.03E+02                       | 2.03E+02             |
| Chloromethane                                      | 74-87-3              |                     | 0.005.00            |                                          | 7.005.00                                    | 1                   |                                         | 0.005.07                       | 0.005.01             |
| Dichloroethylene, 1,2-cis-                         | 156-59-2             |                     | 2.00E-03            | +                                        | 7.62E+00                                    | 1                   |                                         | 2.03E+01                       | 2.03E+01             |
| Cumene                                             | 98-82-8              | 1                   | 0.1                 | 1015.05                                  | 3.81E+02                                    | 1                   | 1.015.05                                | 1.01E+03                       | 1.01E+03             |
| Methyl tert-Butyl Ether (MTBE)                     | 1634-04-4            | 0.0018              |                     | 4.94E+00                                 |                                             | 1                   | 1.31E+01                                |                                | 1.31E+01             |
| sec-Butylbenzene                                   | 135-9-88             |                     | _                   | · · · ·                                  |                                             | 1                   |                                         |                                |                      |
| tert-Butylbenzene                                  | 98-06-6              |                     |                     | · · · ·                                  |                                             | 1                   |                                         |                                |                      |
| Toluene                                            | 108-88-3             |                     | 0.08                |                                          | 3.05E+02                                    | 1                   |                                         | 8.10E+02                       | 8.10E+02             |
| Aroclor 1260                                       | 11096-82-5           | 2.0                 |                     | 4.44E-03                                 |                                             | 1.85                | 6.39E-03                                |                                | 6.39E-03             |
| Aroclor 1254                                       | 11097-69-1           | 2.0                 | 0.00002             | 4.44E-03                                 | 7.62E-02                                    | 1.85                | 6.39E-03                                | 1.09E-01                       | 6.39E-03             |

## TABLE B-5B >6-18 FT. SEDIMENT RISK-BASED CONCENTRATIONS (RBCS) FOR ADULT RECREATIONAL USERS FOR THE FISH CONSUMPTION EXPOSURE ROUTE LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 1 05 1

| PAGE | 1 OF | 1 |
|------|------|---|
|      |      |   |

| Target Cancer Risk (TCR)     | 1.00E-06 |                                           |
|------------------------------|----------|-------------------------------------------|
| Target Hazard Quotient (THQ) | 1        |                                           |
| Percent Lipids (%)           | 1.2      | (Average % lipids in fish tissue samples) |
| Percent TOC (%)              | 2.56     | (Average TOC in sediment)                 |

| Chemical                         | CAS #                  | CSFo <sup>(2)</sup>      | RfDo <sup>(3)</sup> | Fish Tissue<br>Concentration<br>Cancer | Fish Tissue<br>Concentration -<br>Noncancer | BSAF <sup>(1)</sup> | Sediment<br>RBC - Cancer | Sediment<br>RBC -<br>Noncancer | Sediment<br>RBC |
|----------------------------------|------------------------|--------------------------|---------------------|----------------------------------------|---------------------------------------------|---------------------|--------------------------|--------------------------------|-----------------|
|                                  |                        | (mg/kg/day) <sup>1</sup> | (mg/kg/day)         | mg/kg                                  | mg/kg                                       |                     | mg/kg                    | mg/kg                          | rng/kg          |
| Antimony (metallic)              | 7440-36-0              |                          | 0.0004              | · · · · ·                              | 1.52E+00                                    | 0.16                |                          | 9.52E+00                       | 9.52E+00        |
| Arsenic, Inorganic               | 7440-38-2              | 1.5                      | 0.0003              | 1.48E-01                               | 2.86E+01                                    | 0.02288             | 6.47E+00                 | 1.25E+03                       | 6.47E+00        |
| Barium                           | 7440-39-3              |                          | 0.2                 |                                        | 7.62E+02                                    | 0.16                |                          | 4.76E+03                       | 4.76E+03        |
| Beryllium and compounds          | 7440-41-7              |                          | 0.002               |                                        | 7.62E+00                                    | 0.16                |                          | 4.76E+01                       | 4.76E+01        |
| Cadmium (Diet)                   | 7440-43-9              |                          | 0.001               |                                        | 3.81E+00                                    | 0.096               |                          | 3.97E+01                       | 3.97E+01        |
| Chromium VI (particulates)       | 18540-29-9             | 0.5                      | 0.003               | 1.78E-02                               | 1.14E+01                                    | 0.016               | 1.11E+00                 | 7.14E+02                       | 1.11E+00        |
| Cobalt                           | 7440-48-4              |                          | 0.0003              |                                        | 1.14E+00                                    | 0.16                |                          | 7.14E+00                       | 7.14E+00        |
| Copper                           | 7440-50-8              |                          | 0.04                |                                        | 1.52E+02                                    | 0.24896             |                          | 6.12E+02                       | 6.12E+02        |
| Lead                             | 7439-92-1              |                          |                     |                                        |                                             | 0.01136             |                          |                                |                 |
| Methyl Mercury                   | 22967-92-6             |                          | 0.0001              |                                        | 3.81E-01                                    | 0.18176             |                          | 2.10E+00                       | 2.10E+00        |
| Molybdenum                       | 7439-98-7              |                          | 0.005               |                                        | 1.90E+01                                    | 0.16                |                          | 1.19E+02                       | 1.19E+02        |
| Nickel Soluble Salts             | 7440-02-0              |                          | 0.02                |                                        | 7.62E+01                                    | 0.07776             |                          | 9.80E+02                       | 9.80E+02        |
| Selenium                         | 7782-49-2              |                          | 0.005               |                                        | 1.90E+01                                    | 0.16                |                          | 1.19E+02                       | 1.19E+02        |
| Silver                           | 7440-22-4              |                          | 0.005               |                                        | 1.90E+01                                    | 0.16                |                          | 1.19E+02                       | 1.19E+02        |
| Thallium (Soluble Salts)         | 7440-28-0              |                          |                     |                                        |                                             | 0.16                |                          |                                |                 |
| Vanadium and Compounds           | NA                     |                          | 0.005               |                                        | 1.90E+01                                    | 0.16                |                          | 1.19E+02                       | 1.19E+02        |
| Zinc (Metallic)                  | 7440-66-6              |                          | 0.3                 |                                        | 1.14E+03                                    | 0.30976             |                          | 3.69E+03                       | 3.69E+03        |
| Chromium III                     | 18540-29-9             |                          | 1.5                 |                                        | 5.71E+03                                    | 0.016               |                          | 3.57E+05                       | 3.57E+05        |
| Dibutyltin                       | 1002-53-5              |                          | 3.00E-04            |                                        | 1.14E+00                                    | 16                  |                          | 7.14E-02                       | 7.14E-02        |
| ~Methylnaphthalene, 1-           | 90-12-0                | 2.9E-02                  | 7.0E-02             | 3.06E-01                               | 2.67E+02                                    | 1                   | 6.54E-01                 | 5.69E+02                       | 6.54E-01        |
| ~Methylnaphthalene, 2-           | 91-57-6                |                          | 0.004               |                                        | 1.52E+01                                    | 1                   |                          | 3.25E+01                       | 3.25E+01        |
| ~Acenaphthene                    | 83-32-9                |                          | 0.06                |                                        | 2.29E+02                                    | 0.29                |                          | 1.68E+03                       | 1.68E+03        |
| ~Acenaphthylene                  | 208-96-8               |                          | 0.06                |                                        | 2.29E+02                                    | 0.29                |                          | 1.68E+03                       | 1.68E+03        |
| ~Anthracene                      | 120-12-7               |                          | 0.3                 |                                        | 1.14E+03                                    | 0.29                |                          | 8.41E+03                       | 8.41E+03        |
| ~Benz[a]anthracene               | 56-55-3                | 0.73                     |                     | 1.22E-02                               |                                             | 0.29                | 8.96E-02                 |                                | 8.96E-02        |
| Benzo[a]pyrene                   | 50-32-8                | 7.3                      |                     | 1.22E-03                               |                                             | 0.29                | 8.96E-03                 | _                              | 8.96E-03        |
| Benzo[b]fluoranthene             | 205-99-2               | 0.73                     |                     | 1.22E-02                               |                                             | 0.29                | 8.96E-02                 |                                | 8.96E-02        |
| Benzo(g,h,i)perylene             | 191-24-2               |                          | 0.03                |                                        | 1.14E+02                                    | 0.29                |                          | 8.41E+02                       | 8.41E+02        |
| Benzo[k]fluoranthene             | 207-08-9               | 0.073                    |                     | 1.22E-01                               |                                             | 0.29                | 8.96E-01                 |                                | 8.96E-01        |
| Bis(2-ethylhexyl)phthalate       | 117-81-7               | 0.014                    | 0.02                | 6.35E-01                               | 7.62E+01                                    | 1                   | 1.35E+00                 | 1.63E+02                       | 1.35E+00        |
| Butyl Benzyl Phthlate            | 85-68-7                | 0.0019                   | 0.2                 |                                        | 7.62E+02                                    | 1                   |                          | 1.63E+03                       | 1.63E+03        |
| Carbazole                        | 86-74-8                |                          |                     |                                        |                                             | 0.29                |                          |                                |                 |
| Chrysene                         | 218-01-9               | 0.0073                   |                     | 1.22E+00                               |                                             | 0.29                | 8.96E+00                 |                                | 8.96E+00        |
| Dibenz[a,h]anthracene            | 53-70-3                | 7.3                      |                     | 1.22E-03                               |                                             | 0.29                | 8.96E-03                 |                                | 8.96E-03        |
| Dibenzofuran                     | 132-64-9               |                          | 0.001               |                                        | 3.81E+00                                    | 1                   |                          | 8.13E+00                       | 8.13E+00        |
| Fluoranthene                     | 206-44-0               |                          | 0.04                |                                        | 1.52E+02                                    | 0.29                |                          | 1.12E+03                       | 1.12E+03        |
| Fluorene                         | 86-73-7                |                          | 0.04                |                                        | 1.52E+02                                    | 0.29                |                          | 1.12E+03                       | 1.12E+03        |
| Indeno[1,2,3-cd]pyrene           | 193-39-5               | 0.73                     |                     | 1.22E-02                               |                                             | 0.29                | 8.96E-02                 |                                | 8.96E-02        |
| Naphthalene                      | 91-20-3                |                          | 0.02                |                                        | 7.62E+01                                    | 0.29                |                          | 5.60E+02                       | 5.60E+02        |
| Phenanthrene                     | 85-01-8                |                          | 0.03                |                                        | 1.14E+02                                    | 0.29                |                          | 8.41E+02                       | 8.41E+02        |
| Pyrene                           | 129-00-0               |                          | 0.03                |                                        | 1.14E+02                                    | 0.29                |                          | 8.41E+02                       | 8.41E+02        |
| Dichlorobenzene, 1,2-            | 95-50-1                |                          | 0.09                |                                        | 3.43E+02                                    | 1                   |                          | 7.31E+02                       | 7.31E+02        |
| Dichlorobenzene, 1,3-            | 541-73-1               |                          |                     |                                        |                                             | 1                   |                          |                                |                 |
| Dichlorobenzene, 1,4-            | 106-46-7               | 0.0054                   | 0.07                | 1.65E+00                               |                                             | 1                   | 3.51E+00                 |                                | 3.51E+00        |
| Methyl Ethyl Ketone (2-Butanone) | 78-93-3                | <u> </u>                 | 0.6                 |                                        | 2.29E+03                                    | 1                   |                          | 4.88E+03                       | 4.88E+03        |
| Acetone                          | 67-64-1                | ╂─────┤                  | 0.9                 | +                                      | 3.43E+03                                    | 1                   | ļ                        | 7.31E+03                       | 7.31E+03        |
| Carbon Disulfide                 | 75-15-0                | ┨────┤                   | 0.1                 | <b></b>                                | 3.81E+02                                    | 1                   | [                        | 8.13E+02                       | 8.13E+02        |
| Chlorobenzene                    | 108-90-7               |                          | 0.02                |                                        | 7.62E+01                                    | 1                   |                          | 1.63E+02                       | 1.63E+02        |
| Chloromethane                    | 74-87-3                | ┟───┥                    | 0.005.00            |                                        | 7.005.00                                    | 1                   | []                       | 1.005.01                       | 1 005 01        |
| Dichloroethylene, 1,2-cis-       | 156-59-2               | <b>├</b> ─── <b>│</b>    | 2.00E-03            | l                                      | 7.62E+00                                    | 1                   | <u>├</u>                 | 1.63E+01                       | 1.63E+01        |
| Cumene                           | 98-82-8                |                          | 0.1                 | 1015 05                                | 3.81E+02                                    | 1                   | 1 055 03                 | 8.13E+02                       | 8.13E+02        |
| Methyl tert-Butyl Ether (MTBE)   | 1634-04-4              | 0.0018                   |                     | 4.94E+00                               |                                             | 1                   | 1.05E+01                 |                                | 1.05E+01        |
| sec-Butylbenzene                 | 135-9-88               | <u> </u>                 |                     |                                        |                                             | 1                   |                          |                                |                 |
| tert-Butylbenzene                | 98-06-6                | ┼───┤                    |                     | 4                                      |                                             | 1                   |                          |                                |                 |
| T-1                              |                        | 1 1                      | 0.08                | 1                                      | 3.05E+02                                    | 1                   |                          | 6.50E+02                       | 6.50E+02        |
| Toluene<br>Aroclor 1260          | 108-88-3<br>11096-82-5 | 2                        | 0.00                | 4.44E-03                               |                                             | 1.85                | 5.12E-03                 |                                | 5.12E-03        |

## TABLE B-5C >18-30 FT. SEDIMENT RISK-BASED CONCENTRATIONS (RBCS) FOR ADULT RECREATIONAL USERS FOR THE FISH CONSUMPTION EXPOSURE ROUTE LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 1 OF 1

| Target Cancer Risk (TCR)     | 1.00E-06 |                                           |
|------------------------------|----------|-------------------------------------------|
| Target Hazard Quotient (THQ) | 1        |                                           |
| Percent Lipids (%)           | 1.2      | (Average % lipids in fish tissue samples) |
| Percent TOC (%)              | 2.51     | (Average TOC in sediment)                 |

| Chemical                               | CAS #              | CSFo <sup>(2)</sup>      | RfDo <sup>(3)</sup> | Fish Tissue<br>Concentration<br>Cancer | Fish Tissue<br>Concentration<br>Noncancer | BSAF <sup>(1)</sup> | Sediment<br>RBC - Cancer | Sediment<br>RBC -<br>Noncancer | Sediment<br>RBC      |
|----------------------------------------|--------------------|--------------------------|---------------------|----------------------------------------|-------------------------------------------|---------------------|--------------------------|--------------------------------|----------------------|
|                                        |                    | (mg/kg/day) <sup>1</sup> | (mg/kg/day)         | mg/kg                                  | mg/kg                                     |                     | mg/kg                    | mg/kg                          | mg/kg                |
| Antimony (metallic)                    | 7440-36-0          | 1                        | 0.0004              |                                        | 1.52E+00                                  | 0.16                |                          | 9.52E+00                       | 9.52E+00             |
| Arsenic, Inorganic                     | 7440-38-2          | 1.5                      | 0.0003              | 1.48E-01                               | 2.86E+01                                  | 0.02288             | 6.47E+00                 | 1.25E+03                       | 6.47E+00             |
| Barium                                 | 7440-39-3          |                          | 0.2                 |                                        | 7.62E+02                                  | 0.16                |                          | 4.76E+03                       | 4.76E+03             |
| Beryllium and compounds                | 7440-41-7          |                          | 0.002               |                                        | 7.62E+00                                  | 0.16                |                          | 4.76E+01                       | 4.76E+01             |
| Cadmium (Diet)                         | 7440-43-9          |                          | 0.001               |                                        | 3.81E+00                                  | 0.096               |                          | 3.97E+01                       | 3.97E+01             |
| Chromium VI (particulates)             | 18540-29-9         | 0.5                      | 0.003               | 1.78E-02                               | 1.14E+01                                  | 0.016               | 1.11E+00                 | 7.14E+02                       | 1.11E+00             |
| Cobalt                                 | 7440-48-4          |                          | 0.0003              |                                        | 1.14E+00                                  | 0.16                |                          | 7.14E+00                       | 7.14E+00             |
| Copper                                 | 7440-50-8          |                          | 0.04                |                                        | 1.52E+02                                  | 0.24896             |                          | 6.12E+02                       | 6.12E+02             |
| Lead                                   | 7439-92-1          |                          |                     |                                        |                                           | 0.01136             |                          |                                |                      |
| Methyl Mercury                         | 22967-92-6         |                          | 0.0001              |                                        | 3.81E-01                                  | 0.18176             |                          | 2.10E+00                       | 2.10E+00             |
| Molybdenum                             | 7439-98-7          |                          | 0.005               |                                        | 1.90E+01                                  | 0.16                |                          | 1.19E+02                       | 1.19E+02             |
| Nickel Soluble Salts                   | 7440-02-0          |                          | 0.02                |                                        | 7.62E+01                                  | 0.07776             |                          | 9.80E+02                       | 9.80E+02             |
| Selenium                               | 7782-49-2          |                          | 0.005               | L                                      | 1.90E+01                                  | 0.16                |                          | 1.19E+02                       | 1.19E+02             |
| Silver                                 | 7440-22-4          |                          | 0.005               |                                        | 1.90E+01                                  | 0.16                |                          | 1.19E+02                       | 1.19E+02             |
| Thallium (Soluble Salts)               | 7440-28-0          |                          |                     |                                        | 1.005.01                                  | 0.16                |                          | 1 105 05                       | 1 105 05             |
| Vanadium and Compounds                 | NA                 |                          | 0.005               |                                        | 1.90E+01                                  | 0.16                | <b>├</b> ────┤           | 1.19E+02                       | 1.19E+02             |
| Zinc (Metallic)                        | 7440-66-6          |                          | 0.3                 |                                        | 1.14E+03                                  | 0.30976             | -                        | 3.69E+03                       | 3.69E+03             |
| Chromium III                           | 18540-29-9         |                          | 1.5                 | +                                      | 5.71E+03                                  | 0.016               |                          | 3.57E+05                       | 3.57E+05             |
| Dibutyttin                             | 1002-53-5          | 0.05.00                  | 3.00E-04            | 0.005.04                               | 1.14E+00                                  | 16                  | 0.445.04                 | 7.14E-02                       | 7.14E-02             |
| ~Methylnaphthalene, 1-                 | 90-12-0            | 2.9E-02                  | 7.0E-02             | 3.06E-01                               | 2.67E+02                                  | 1                   | 6.41E-01                 | 5.58E+02                       | 6.41E-01             |
| ~Methylnaphthalene, 2-                 | 91-57-6            |                          | 0.004               |                                        | 1.52E+01                                  | 1                   |                          | 3.19E+01                       | 3.19E+01             |
| ~Acenaphthene                          | 83-32-9            |                          | 0.06                | -                                      | 2.29E+02                                  | 0.29                |                          | 1.65E+03                       | 1.65E+03             |
| ~Acenaphthylene                        | 208-96-8           |                          | 0.06                |                                        | 2.29E+02                                  | 0.29                |                          | 1.65E+03<br>8.24E+03           | 1.65E+03             |
| Anthracene                             |                    | 0.70                     | 0.3                 | 1.22E-02                               | 1.14E+03                                  | 0.29                | 8.78E-02                 | 0.24E+03                       | 8.24E+03             |
| ~Benz[a]anthracene                     | 56-55-3<br>50-32-8 | 0.73                     |                     | 1.22E-02                               |                                           | 0.29                | 8.78E-02                 |                                | 8.78E-02<br>8.78E-03 |
| Benzo[a]pyrene<br>Benzo[b]fluoranthene | 205-99-2           | 0.73                     |                     | 1.22E-03                               |                                           | 0.29                | 8.78E-03                 |                                | 8.78E-03             |
|                                        | 191-24-2           | 0.73                     | 0.03                | 1.222-02                               | 1.14E+02                                  | 0.29                | 0.702-02                 | 8.24E+02                       | 8.24E+02             |
| Benzo(g,h,i)perylene                   | 207-08-9           | 0.073                    | 0.03                | 1.22E-01                               | 1.146+02                                  | 0.29                | 8.78E-01                 | 0.246+02                       | 8.78E-01             |
| Bis(2-ethylhexyl)phthalate             | 117-81-7           | 0.073                    | 0.02                | 6.35E-01                               | 7.62E+01                                  | 0.2.5               | 1.33E+00                 | 1.59E+02                       | 1.33E+00             |
| Butyl Benzyl Phthlate                  | 85-68-7            | 0.0019                   | 0.02                | 0.002-01                               | 7.62E+02                                  |                     | 1.002400                 | 1.59E+02                       | 1.59E+03             |
| Carbazole                              | 86-74-8            | 0.0013                   | 0.2                 | · · ··                                 | 1.02L+02                                  | 0.29                |                          | 1.552+05                       | 1.001-+00            |
| Chrysene                               | 218-01-9           | 0.0073                   |                     | 1.22E+00                               | 1                                         | 0.29                | 8.78E+00                 |                                | 8.78E+00             |
| Dibenz[a,h]anthracene                  | 53-70-3            | 7.3                      |                     | 1.22E-03                               |                                           | 0.29                | 8.78E-03                 |                                | 8.78E-03             |
| Dibenzofuran                           | 132-64-9           | 7.0                      | 0.001               | 1.222 00                               | 3.81E+00                                  | 1                   | 0.702.00                 | 7.97E+00                       | 7.97E+00             |
| Fluoranthene                           | 206-44-0           |                          | 0.04                |                                        | 1.52E+02                                  | 0.29                |                          | 1.10E+03                       | 1.10E+03             |
| Fluorene                               | 86-73-7            |                          | 0.04                | · · · · · · · · · · · · · · · · · · ·  | 1.52E+02                                  | 0.29                |                          | 1.10E+03                       | 1.10E+03             |
| Indeno[1,2,3-cd]pyrene                 | 193-39-5           | 0.73                     |                     | 1.22E-02                               |                                           | 0.29                | 8.78E-02                 | ······                         | 8.78E-02             |
| Naphthalene                            | 91-20-3            |                          | 0.02                |                                        | 7.62E+01                                  | 0.29                |                          | 5.49E+02                       | 5.49E+02             |
| Phenanthrene                           | 85-01-8            |                          | 0.03                |                                        | 1.14E+02                                  | 0.29                |                          | 8.24E+02                       | 8.24E+02             |
| Pyrene                                 | 129-00-0           |                          | 0.03                | 1                                      | 1.14E+02                                  | 0.29                |                          | 8.24E+02                       | 8.24E+02             |
| Dichlorobenzene, 1,2-                  | 95-50-1            |                          | 0.09                |                                        | 3.43E+02                                  | 1                   |                          | 7.17E+02                       | 7.17E+02             |
| Dichlorobenzene, 1,3-                  | 541-73-1           |                          |                     |                                        |                                           | 1                   |                          |                                |                      |
| Dichlorobenzene, 1,4-                  | 106-46-7           | 0.0054                   | 0.07                | 1.65E+00                               | 1                                         | 1                   | 3.44E+00                 |                                | 3.44E+00             |
| Methyl Ethyl Ketone (2-Butanone)       | 78-93-3            |                          | 0.6                 |                                        | 2.29E+03                                  | 1                   |                          | 4.78E+03                       | 4.78E+03             |
| Acetone                                | 67-64-1            |                          | 0.9                 |                                        | 3.43E+03                                  | 1                   |                          | 7.17E+03                       | 7.17E+03             |
| Carbon Disulfide                       | 75-15-0            |                          | 0.1                 |                                        | 3.81E+02                                  | 1                   |                          | 7.97E+02                       | 7.97E+02             |
| Chlorobenzene                          | 108-90-7           |                          | 0.02                |                                        | 7.62E+01                                  | 1                   |                          | 1.59E+02                       | 1.59E+02             |
| Chloromethane                          | 74-87-3            |                          |                     |                                        |                                           | 1                   |                          |                                |                      |
| Dichloroethylene, 1,2-cis-             | 156-59-2           |                          | 2.00E-03            |                                        | 7.62E+00                                  | 1                   |                          | 1.59E+01                       | 1.59E+01             |
| Curnene                                | 98-82-8            |                          | 0.1                 |                                        | 3.81E+02                                  | 1                   |                          | 7.97E+02                       | 7.97E+02             |
| Methyl tert-Butyl Ether (MTBE)         | 1634-04-4          | 0.0018                   |                     | 4.94E+00                               | L                                         | 1                   | 1.03E+01                 |                                | 1.03E+01             |
| sec-Butylbenzene                       | 135-9-88           |                          |                     | L                                      | ļ                                         | 1                   |                          |                                |                      |
| tert-Butylbenzene                      | 98-06-6            | Į                        |                     | <b> </b>                               |                                           | 1                   | ļ]                       |                                | ·                    |
| Toluene                                | 108-88-3           |                          | 0.08                |                                        | 3.05E+02                                  | 1                   |                          | 6.37E+02                       | 6.37E+02             |
| Aroclor 1260                           | 11096-82-5         | 2                        |                     | 4.44E-03                               |                                           | 1.85                | 5.02E-03                 |                                | 5.02E-03             |
| Aroclor 1254                           | 11097-69-1         | 2.0E+00                  | 2.0E-05             | 4.44E-03                               | 7.62E-02                                  | 1.85                | 5.02E-03                 | 8.61E-02                       | 5.02E-03             |

## TABLE B-5D >30 FT. RISK-BASED CONCENTRATIONS (RBCS) FOR ADULT RECREATIONAL USERS FOR THE FISH CONSUMPTION EXPOSURE ROUTE LOCKHEED MARTIN MIDDLE RIVER COMPLEX MIDDLE RIVER, MARYLAND PAGE 1 OF 1

| Target Cancer Risk (TCR)     | 1.00E-06 |                                           |
|------------------------------|----------|-------------------------------------------|
| Target Hazard Quotient (THQ) | 1        |                                           |
| Percent Lipids (%)           | 1.2      | (Average % lipids in fish tissue samples) |
| Percent TOC (%)              | 1.14     | (Average TOC in sediment)                 |

| Chemical                          | CAS #               | CSFo <sup>(2)</sup>      | RfDo <sup>(3)</sup> | Fish Tissue<br>Concentration<br>Cancer | Fish Tissue<br>Concentration | BSAF <sup>(1)</sup> | Sediment<br>RBC - Cancer | Sediment<br>RBC -<br>Noncancer | Sediment<br>RBC |
|-----------------------------------|---------------------|--------------------------|---------------------|----------------------------------------|------------------------------|---------------------|--------------------------|--------------------------------|-----------------|
|                                   |                     | (mg/kg/day) <sup>1</sup> | (mg/kg/day)         | mg/kg                                  | mg/kg                        |                     | mg/kg                    | mg/kg                          | mg/kg           |
| Antimony (metallic)               | 7440-36-0           |                          | 0.0004              |                                        | 1.52E+00                     | 0.16                |                          | 9.52E+00                       | 9.52E+00        |
| Arsenic, Inorganic                | 7440-38-2           | 1.5                      | 0.0003              | 1.48E-01                               | 2.86E+01                     | 0.02288             | 6.47E+00                 | 1.25E+03                       | 6.47E+00        |
| Barium                            | 7440-39-3           |                          | 0.2                 |                                        | 7.62E+02                     | 0.16                |                          | 4.76E+03                       | 4.76E+03        |
| Beryllium and compounds           | 7440-41-7           |                          | 0.002               |                                        | 7.62E+00                     | 0.16                |                          | 4.76E+01                       | 4.76E+01        |
| Cadmium (Diet)                    | 7440-43-9           |                          | 0.001               |                                        | 3.81E+00                     | 0.096               |                          | 3.97E+01                       | 3.97E+01        |
| Chromium VI (particulates)        | 18540-29-9          | 0.5                      | 0.003               | 1.78E-02                               |                              | 0.016               | 1.11E+00                 | 7.14E+02                       | 1.11E+00        |
| Cobalt                            | 7440-48-4           |                          | 0.0003              |                                        | 1.14E+00                     | 0.16                |                          | 7.14E+00                       | 7.14E+00        |
| Copper                            | 7440-50-8           |                          | 0.04                |                                        | 1.52E+02                     | 0.24896             |                          | 6.12E+02                       | 6.12E+02        |
| Lead                              | 7439-92-1           |                          |                     |                                        |                              | 0.01136             |                          |                                |                 |
| Methyl Mercury                    | 22967-92-6          |                          | 0.0001              |                                        | 3.81E-01                     | 0.18176             |                          | 2.10E+00                       | 2.10E+00        |
| Molybdenum                        | 7439-98-7           |                          | 0.005               |                                        | 1.90E+01                     | 0.16                |                          | 1.19E+02                       | 1.19E+02        |
| Nickel Soluble Salts              | 7440-02-0           |                          | 0.02                |                                        | 7.62E+01                     | 0.07776             |                          | 9.80E+02                       | 9.80E+02        |
| Selenium                          | 7782-49-2           |                          | 0.005               |                                        | 1.90E+01                     | 0.16                |                          | 1.19E+02                       | 1.19E+02        |
| Silver                            | 7440-22-4           |                          | 0.005               |                                        | 1.90E+01                     | 0.16                |                          | 1.19E+02                       | 1.19E+02        |
| Thallium (Soluble Salts)          | 7440-28-0           | <u> </u>                 |                     |                                        |                              | 0.16                |                          |                                |                 |
| Vanadium and Compounds            | NA                  | L                        | 0.005               | ļ                                      | 1.90E+01                     | 0.16                |                          | 1.19E+02                       | 1.19E+02        |
| Zinc (Metallic)                   | 7440-66-6           | ļ                        | 0.3                 |                                        | 1.14E+03                     | 0.30976             |                          | 3.69E+03                       | 3.69E+03        |
| Chromium IIt                      | 18540-29-9          |                          | 1.5                 | -                                      | 5.71E+03                     | 0.016               |                          | 3.57E+05                       | 3.57E+05        |
| Dibutyltin                        | 1002-53-5           |                          | 3.00E-04            |                                        | 1.14E+00                     | 16                  |                          | 7.14E-02                       | 7.14E-02        |
| ~Methylnaphthalene, 1-            | 90-12-0             | 2.9E-02                  | 7.0E-02             | 3.06E-01                               | 2.67E+02                     | 1                   | 2.91E-01                 | 2.53E+02                       | 2.91E-01        |
| ~Methylnaphthalene, 2-            | 91-57-6             |                          | 0.004               |                                        | 1.52E+01                     | 1                   |                          | 1.45E+01                       | 1.45E+01        |
| ~Acenaphthene                     | 83-32-9             |                          | 0.06                |                                        | 2.29E+02                     | 0.29                |                          | 7.49E+02                       | 7.49E+02        |
| ~Acenaphthylene                   | 208-96-8            |                          | 0.06                |                                        | 2.29E+02                     | 0.29                |                          | 7.49E+02                       | 7.49E+02        |
| ~Anthracene                       | 120-12-7            |                          | 0.3                 |                                        | 1.14E+03                     | 0.29                |                          | 3.74E+03                       | 3.74E+03        |
| ~Benz[a]anthracene                | 56-55-3             | 0.73                     |                     | 1.22E-02                               | ·                            | 0.29                | 3.99E-02                 |                                | 3.99E-02        |
| Benzo[a]pyrene                    | 50-32-8             | 7.3                      |                     | 1.22E-03                               |                              | 0.29                | 3.99E-03                 |                                | 3.99E-03        |
| Benzo[b]fluoranthene              | 205-99-2            | 0.73                     |                     | 1.22E-02                               |                              | 0.29                | 3.99E-02                 | 0 7 45 00                      | 3.99E-02        |
| Benzo(g,h,i)perylene              | 191-24-2            | 0.073                    | 0.03                | 1.005.01                               | 1.14E+02                     | 0.29                | 0.005.01                 | 3.74E+02                       | 3.74E+02        |
| Benzo[k]fluoranthene              | 207-08-9            |                          | 0.00                | 1.22E-01                               | 7.005.01                     | 0.29                | 3.99E-01                 | 7045-01                        | 3.99E-01        |
| Bis(2-ethylhexyl)phthalate        | 117-81-7<br>85-68-7 | 0.014                    | 0.02                | 6.35E-01                               | 7.62E+01<br>7.62E+02         | 1                   | 6.03E-01                 | 7.24E+01<br>7.24E+02           | 6.03E-01        |
| Butyl Benzyl Phthlate             | 86-74-8             | 0.0019                   | 0.2                 |                                        | 7.02E+02                     | 0.29                |                          | 7.24E+02                       | 7.24E+02        |
|                                   | 218-01-9            | 0.0073                   |                     | 1.22E+00                               |                              | 0.29                | 3.99E+00                 |                                | 3.99E+00        |
| Chrysene<br>Dibenz[a,h]anthracene | 53-70-3             | 7.3                      |                     | 1.22E+00                               |                              | 0.29                | 3.99E+00<br>3.99E-03     |                                | 3.99E+00        |
| Dibenzofuran                      | 132-64-9            | /.5                      | 0.001               | 1.222-03                               | 3.81E+00                     | 1                   | 3.992-03                 | 3.62E+00                       | 3.62E+00        |
| Fluoranthene                      | 206-44-0            |                          | 0.04                |                                        | 1.52E+02                     | 0.29                |                          | 4.99E+02                       | 4.99E+02        |
| Fluorene                          | 86-73-7             |                          | 0.04                |                                        | 1.52E+02                     | 0.29                |                          | 4.99E+02                       | 4.99E+02        |
| Indeno[1,2,3-cd]pyrene            | 193-39-5            | 0.73                     | 0.04                | 1.22E-02                               | T.OELTOL                     | 0.29                | 3.99E-02                 | 4.55L+02                       | 3.99E-02        |
| Naphthalene                       | 91-20-3             | 0.70                     | 0.02                | I.LLL UL                               | 7.62E+01                     | 0.29                | 0.002 02                 | 2.50E+02                       | 2.50E+02        |
| Phenanthrene                      | 85-01-8             |                          | 0.03                |                                        | 1.14E+02                     | 0.29                |                          | 3.74E+02                       | 3.74E+02        |
| Pyrene                            | 129-00-0            |                          | 0.03                |                                        | 1.14E+02                     | 0.29                |                          | 3.74E+02                       | 3.74E+02        |
| Dichlorobenzene, 1,2-             | 95-50-1             |                          | 0.09                |                                        | 3.43E+02                     | 1                   |                          | 3.26E+02                       | 3.26E+02        |
| Dichlorobenzene, 1,3-             | 541-73-1            | 1 1                      |                     | 1                                      |                              | 1                   | t I                      |                                |                 |
| Dichlorobenzene, 1,4-             | 106-46-7            | 0.0054                   | 0.07                | 1.65E+00                               |                              | 1                   | 1.56E+00                 |                                | 1.56E+00        |
| Methyl Ethyl Ketone (2-Butanone)  | 78-93-3             |                          | 0.6                 | 1                                      | 2.29E+03                     | 1                   |                          | 2.17E+03                       | 2.17E+03        |
| Acetone                           | 67-64-1             | <u> </u>                 | 0.9                 | 1                                      | 3.43E+03                     | 1                   |                          | 3.26E+03                       | 3.26E+03        |
| Carbon Disulfide                  | 75-15-0             |                          | 0.1                 | 1                                      | 3.81E+02                     | 1                   |                          | 3.62E+02                       | 3.62E+02        |
| Chlorobenzene                     | 108-90-7            |                          | 0.02                | 1                                      | 7.62E+01                     | 1                   |                          | 7.24E+01                       | 7.24E+01        |
| Chloromethane                     | 74-87-3             |                          |                     | 1                                      | 1                            | 1                   |                          |                                |                 |
| Dichloroethylene, 1,2-cis-        | 156-59-2            |                          | 2.00E-03            | 1                                      | 7.62E+00                     | 1                   |                          | 7.24E+00                       | 7.24E+00        |
| Cumene                            | 98-82-8             |                          | 0.1                 |                                        | 3.81E+02                     | 1                   |                          | 3.62E+02                       | 3.62E+02        |
| Methyl tert-Butyl Ether (MTBE)    | 1634-04-4           | 0.0018                   | _                   | 4.94E+00                               |                              | 1                   | 4.69E+00                 |                                | 4.69E+00        |
| sec-Butylbenzene                  | 135-9-88            |                          |                     |                                        |                              | 1                   |                          |                                |                 |
| tert-Butylbenzene                 | 98-06-6             |                          |                     |                                        |                              | 1                   |                          |                                | -               |
| Toluene                           | 108-88-3            |                          | 0.08                |                                        | 3.05E+02                     | 1                   |                          | 2.89E+02                       | 2.89E+02        |
| Aroclor 1248                      | 12672-29-6          | 2                        |                     | 4.44E-03                               |                              | 1.85                | 2.28E-03                 |                                | 2.28E-03        |
| Aroclor 1260                      | 11096-82-5          | 2                        |                     | 4.44E-03                               |                              | 1.85                | 2.28E-03                 |                                | 2.28E-03        |
| Aroclor 1254                      | 11097-69-1          | 2.0E+00                  | 2.0E-05             | 4.44E-03                               | 7.62E-02                     | 1.85                | 2.28E-03                 | 3.91E-02                       | 2.28E-03        |

Page 1 of 2

| CLIENT:                                                                  |               |                                        |                         | JOB NUM         | BER:               |  |  |  |  |
|--------------------------------------------------------------------------|---------------|----------------------------------------|-------------------------|-----------------|--------------------|--|--|--|--|
|                                                                          |               | TIN, MIDDLE RIVER COM                  | IPLEX                   | 03214           |                    |  |  |  |  |
| SUBJECT:<br>CALCULATION OF INTAKE/RISK FROM INCIDENTAL INGESTION OF FISH |               |                                        |                         |                 |                    |  |  |  |  |
|                                                                          |               |                                        |                         | ION OF FISH     |                    |  |  |  |  |
|                                                                          |               | RE ADULT RECREATION                    | AL USER                 | <del></del>     |                    |  |  |  |  |
| BASED C                                                                  |               | 0                                      |                         |                 |                    |  |  |  |  |
| USEPA, [<br>BY:                                                          | JEC. 198      | <u> </u>                               | CHECKED BY:             |                 | DATE.              |  |  |  |  |
| L. CIOFAI                                                                | NI            |                                        |                         |                 | DATE:<br>03/08/11  |  |  |  |  |
|                                                                          |               |                                        | - Eflipsi               |                 |                    |  |  |  |  |
| PURPOS                                                                   | E:            | This spreadsheet calcu                 | lates risk-based cond   | centrations for | ingestion of fish. |  |  |  |  |
|                                                                          |               |                                        |                         |                 | Ũ                  |  |  |  |  |
| 0                                                                        |               |                                        | TCR                     |                 | 、                  |  |  |  |  |
| Carcinoge                                                                | ens           | $RBC_{fish} = -$                       |                         |                 |                    |  |  |  |  |
|                                                                          |               | In                                     | take CSF                |                 |                    |  |  |  |  |
|                                                                          |               |                                        |                         |                 |                    |  |  |  |  |
| Noncarcir                                                                | nogens        |                                        | ТНІ                     |                 |                    |  |  |  |  |
|                                                                          |               | $RBCfish = \frac{1}{4}$                | Intake                  |                 |                    |  |  |  |  |
|                                                                          |               |                                        |                         |                 |                    |  |  |  |  |
|                                                                          |               | (                                      | 、RfD )                  |                 |                    |  |  |  |  |
|                                                                          |               |                                        |                         |                 |                    |  |  |  |  |
|                                                                          |               | Intake = IR                            | x EF x ED x Fl          |                 |                    |  |  |  |  |
|                                                                          |               |                                        | BW x AT                 |                 |                    |  |  |  |  |
| Where:                                                                   |               |                                        |                         |                 |                    |  |  |  |  |
| Intake                                                                   | =             | estimated exposure inta                | ike (mo/ko/dav)         |                 |                    |  |  |  |  |
| TCR                                                                      | =             | target cancer risk (unitle             |                         |                 |                    |  |  |  |  |
| THI                                                                      | =             | target hazard index (uni               |                         |                 |                    |  |  |  |  |
| <b>RBC</b> <sub>fish</sub>                                               | =             | risk-based concentration               | n for fish tissue (mg/l | ka)             |                    |  |  |  |  |
| IR                                                                       | =             | incidental soil ingestion              |                         |                 |                    |  |  |  |  |
| EF                                                                       | =             | exposure frequency (me                 |                         |                 |                    |  |  |  |  |
| ED                                                                       | =             | exposure duration (year                | s)                      |                 |                    |  |  |  |  |
| FI                                                                       | =             | fraction ingested from c               | ontaminated source      | (unitless)      |                    |  |  |  |  |
| BW                                                                       | =             | body weight (kg)                       |                         |                 |                    |  |  |  |  |
| AT                                                                       | =             | averaging time (days)                  |                         |                 |                    |  |  |  |  |
| CSF                                                                      | =             | oral carcinogenic slope                |                         |                 |                    |  |  |  |  |
| RfD                                                                      | =             | oral noncarcinogenic ref               | ference dose (mg/kg     | /day)           |                    |  |  |  |  |
| RISKS:                                                                   |               |                                        |                         |                 |                    |  |  |  |  |
| <u>mənə.</u>                                                             | <b>BBCfie</b> | sh <sub>c</sub> (Carcinogens) = Intal  | (ma/ka/dov) v CS        | En (ma/ka/day   | \-1                |  |  |  |  |
|                                                                          |               |                                        |                         |                 | •                  |  |  |  |  |
|                                                                          | RECIIS        | sh <sub>nc</sub> (Noncarcinogens) = In | паке (mg/кg/day) / R    | rDo (mg/kg/d    | ay)                |  |  |  |  |
|                                                                          |               |                                        |                         |                 |                    |  |  |  |  |
|                                                                          |               |                                        |                         |                 |                    |  |  |  |  |
|                                                                          |               |                                        |                         |                 |                    |  |  |  |  |

Page 2 of 2

| CLIENT:     |             |           |           | ······································ | JOB NUM   | BER:     |
|-------------|-------------|-----------|-----------|----------------------------------------|-----------|----------|
| LOCKHEED N  | /ARTIN,     | MIDDLE F  | IVER COM  | IPLEX                                  | 03214     |          |
| SUBJECT:    |             |           |           |                                        | •         |          |
| CALCULATIO  | N OF IN     | TAKE/RISł | K FROM IN | CIDENTAL INGESTIO                      | N OF FISH |          |
| CURRENT/FL  | JTURE A     | DULT REC  | CREATION  | AL USER                                |           | ·        |
| BASED ON:   |             |           |           |                                        |           |          |
| USEPA, DEC. | 1989        |           |           |                                        |           |          |
| BY:         |             |           |           | CHECKED BY:                            |           | DATE:    |
| L. CIOFANI  |             |           |           | Rhugi                                  |           | 03/08/11 |
|             |             |           |           | $\overline{\sigma}$                    |           |          |
| ASSUMPTION  | <u> NS:</u> |           |           |                                        |           |          |
| Intake      | =           |           | mg/kg     | Chemical: Aroclor-125                  | 54        |          |
| TCR         | =           | 1.0E-06   | unitless  |                                        |           |          |
| THI         | =           | 1         | unitless  |                                        |           |          |
| IR          | =           | 0.129     | kg/meal   |                                        |           |          |
| EF          | =           | 52        | meals/yea | ır                                     |           |          |
| ED          | =           | 30        | years     |                                        |           |          |
| FI          | =           | 1         | unitless  |                                        |           |          |
| BW          | =           | 70        | kg        |                                        |           |          |
| ATc         | =           | 25550     | days      |                                        |           |          |
| ATnc        | =           | 10950     | days      |                                        |           |          |
| CSF         | =           | 2.0E+00   | (mg/kg/da | y) <sup>-1</sup>                       |           |          |

RfD = 2.0E-05 (mg/kg/day)

.

## **EXAMPLE FISH TISSUE RBC CALCULATION - CARCINOGENIC**

| = | 0.129 kg/meal x 52 meals/year x 30 years x 1 |                                           |  |  |
|---|----------------------------------------------|-------------------------------------------|--|--|
|   |                                              | 70 kg x 25550 days                        |  |  |
| = | 1.13E-04                                     | / dav                                     |  |  |
|   | -                                            |                                           |  |  |
| = | 0.000001 /                                   | (1.13E-04 / day x 2.00E+00 (mg/kg/day)-1) |  |  |
| = | 4.44E-03                                     | mg/kg                                     |  |  |
|   | =                                            | = 1.13E-04<br>= 0.000001 /                |  |  |

## **EXAMPLE FISH TISSUE RBC CALCULATION - NONCARCINOGENIC**

Intake<sub>nc</sub> =  $\frac{0.129 \text{ kg/meal x 52 meals/year x 30 years x 1}}{70 \text{ kg x 10950 days}}$ Intake<sub>nc</sub> = 2.63E-04 / dayRBCfish<sub>nc</sub> = 1 / (2.63E-04 / day / 2.00E-05 (mg/kg/day))RBCfish<sub>nc</sub> = 7.62E-02 mg/kg

| CLIENT:                       |                                | JOB NUMBER: |  |
|-------------------------------|--------------------------------|-------------|--|
| LOCKHEED MARTIN, MIDDLE RIVER | 03214                          |             |  |
| SUBJECT:                      |                                |             |  |
| CALCULATION OF SEDIMENT CONC  | ENTRATION PROTECTIVE OF INGEST | ION OF FISH |  |
| CURRENT/FUTURE ADULT RECREA   |                                |             |  |
| BASED ON:                     |                                |             |  |
| USEPA, DEC. 1989              |                                |             |  |
| BY:                           | CHECKED BY:                    | DATE:       |  |
| L. CIOFANI                    | Rumi                           | 03/08/11    |  |
|                               |                                |             |  |

## PURPOSE:

This spreadsheet calculates risk-based concentrations for surface sediment protective of fish ingestion.

## FOR ORGANICS:

| RBC <sub>sed-to-fish</sub> = | Cfish x % TOC   |
|------------------------------|-----------------|
| sed-to-lish -                | BSAF x % Lipids |

| Where:<br>Cfish <sub>c</sub><br>Cfish <sub>nc</sub> | = | target carcinogenic concentration in fish tissue (mg/kg)<br>target noncarcinogenic concentration in fish tissue (mg/kg) |
|-----------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------|
| % TOC                                               |   |                                                                                                                         |
|                                                     | = | average percent total organic carbon in surface sediment (%)                                                            |
| BSAF                                                | = | biota-sediment accumulation factor (unitless)                                                                           |
| % lipids                                            | = | average percent lipids in site fish tissue data (%)                                                                     |

| CLIENT:<br>LOCKHEED MARTIN, MIDDLE RIV |                                  | JOB NUMBER:<br>03214 |  |
|----------------------------------------|----------------------------------|----------------------|--|
| SUBJECT:                               |                                  | 00214                |  |
| CALCULATION OF SEDIMENT CO             | NCENTRATION PROTECTIVE OF INGEST | ION OF FISH          |  |
| CURRENT/FUTURE ADULT RECR              | EATIONAL USER                    |                      |  |
| BASED ON:                              |                                  |                      |  |
| USEPA, DEC. 1989                       |                                  |                      |  |
| BY:                                    | CHECKED BY:                      | DATE:                |  |
| L. CIOFANI                             | Rleini                           | 03/08/11             |  |
|                                        |                                  |                      |  |

## ASSUMPTIONS:

| Cfish <sub>c</sub>  | = | 4.44E-03 mg/kg | Chemical: Aroclor-1254 |
|---------------------|---|----------------|------------------------|
| Cfish <sub>nc</sub> | = | 7.6E-02 mg/kg  |                        |
| % TOC               | = | 3.19 %         |                        |
| BSAF                | = | 1.85 unitless  |                        |
| % Lipids            | = | 1.2 %          |                        |

## **EXAMPLE SEDIMENT-TO-FISH INGESTION RBC CALCULATION - CARCINOGENIC**

| RBC <sub>sed-to-fishc</sub> | = 0.00444 mg/kg x 0.0319<br>1.85 x 0.012 |          |       |
|-----------------------------|------------------------------------------|----------|-------|
| RBC <sub>sed-to-fishc</sub> | =                                        | 6.38E-03 | mg/kg |

## EXAMPLE FISH TISSUE RBC CALCULATION - NONCARCINOGENIC

| RBC <sub>sed-to-fishnc</sub> | = | 0.07     | 62 mg/kg x 0.0319<br>1.85 x 0.012 |
|------------------------------|---|----------|-----------------------------------|
| RBC <sub>sed-to-fishnc</sub> | = | 1.09E-01 | mg/kg                             |

Final RBC<sub>sed-to-fish</sub> = 6.38E-03 mg/kg

## APPENDIX B—DEVELOPMENT OF ECOLOGICAL PRELIMINARY REMEDIATION GOALS

## TABLE OF CONTENTS

| APPENDIX | B DEVELOPMENT OF ECOLOGICAL PRELIMINARY<br>REMEDIATION GOALS FOR MIDDLE RIVER COMPLEX |    |
|----------|---------------------------------------------------------------------------------------|----|
|          | SEDIMENT                                                                              | 1  |
| B.1      | INTRODUCTION                                                                          | 1  |
| B.2      | BACKGROUND THEORY OF BIOAVAILABILITY                                                  | 2  |
|          | B.2.1 Bulk Chemistry                                                                  | 2  |
|          | B.2.2 AVS/SEM                                                                         | 2  |
|          | B.2.3 Sediment Porewater                                                              | 4  |
|          | B.2.4 Benthic Macroinvertebrate Community Survey                                      | 4  |
| B.3      | 2010 ADDITIONAL CHARACTERIZATION INVESTIGATION                                        |    |
|          | B.3.1 Bulk Sediment Chemistry                                                         | 6  |
|          | B.3.2 AVS/SEM                                                                         |    |
|          | B.3.3 Sediment Porewater                                                              |    |
|          | B.3.4 Benthic Macroinvertebrate Community Survey                                      | 8  |
| B.4      | SUMMARY OF RISKS FROM THE ERA                                                         |    |
| B.5      | DEVELOPMENT OF PRGS                                                                   | 11 |
| B.6      | REFERENCES                                                                            | 19 |
|          |                                                                                       |    |

## LIST OF TABLES

| Table B-1. | Sediment Ecological Benchmarks                                     | .21 |
|------------|--------------------------------------------------------------------|-----|
| Table B-2. | Bulk Sediment, Porewater, and Acid Volatile Sulfide/Simultaneously |     |
|            | Extracted Metals Data                                              | .21 |

## APPENDIX B Development of Ecological Preliminary Remediation Goals for Middle River Complex Sediment

## **B.1** INTRODUCTION

The ecological risk assessment (ERA) conducted for the sediment adjacent to the Lockheed Martin Middle River Complex (MRC), in Middle River, Maryland evaluated the potential for adverse ecological effects due to exposure to chemicals released to the environment through historical activities at the MRC. Based on the ERA, total polychlorinated biphenyls (PCBs measured as Aroclors) and select metals were retained as final chemicals of potential concern (COPCs) for evaluating risks to benthic macroinvertebrates.

The objective of this memorandum is to present the development of preliminary remediation goals (PRGs) for the ecological COPCs, which were used to define the spatial extent of sediment contamination to be addressed in the feasibility study (FS). Because the bioavailability of the COPCs was considered when developing the PRGs, this memorandum also presents the methods used to evaluate the site-specific bioavailability of sediment COPCs.

Lockheed Martin initiated a baseline characterization of the surface water and sediment at the MRC in March and October 2005. As part of these investigations, surface water and/or sediment samples were collected from Dark Head Cove and Cow Pen Creek, the water bodies adjacent to the facility's southern and western property boundaries, respectively. Further sediment sampling in November 2008 sought to better define the distribution of PCBs, polycyclic aromatic hydrocarbons (PAHs), and metals in sediment. Finally, additional characterization of sediment in Dark Head Cove, Cow Pen Creek, and the confluence of these two water bodies was completed in 2010 to further identify and characterize the nature and extent of contamination in sediment. Sampling was also conducted at three reference locations (i.e., Marshy Point, Bowleys Quarters, and Middle River) for comparison purposes to aid in the evaluation of site data. Sediment

samples were collected at all locations for bulk sediment chemical analysis and at selected locations, sediment samples were collected for:

- Analysis of acid volatile sulfides (AVS)/simultaneously extracted metals (SEM),
- Extraction and chemical analysis of sediment porewater, and,
- Evaluation of the benthic macroinvertebrate community.

The above measures provide multiple lines of evidence regarding the potential bioavailability of the sediment COPCs.

## B.2 BACKGROUND THEORY OF BIOAVAILABILITY

This section presents the bioavailability theory associated with each line of evidence discussed above including bulk chemistry, AVS/SEM, porewater, and benthic community structure.

## B.2.1 Bulk Chemistry

Bulk sediment chemistry is important for defining the nature and extent of contamination and comparison to sediment benchmarks (i.e., sediment guidelines/benchmarks/criteria) and background concentrations. However, while the most common method of assessing chemical impacts to sediment macroinvertebrates is the comparison of bulk sediment concentrations to sediment benchmarks, this measurement does not provide information on site-specific bioavailability of the chemical (ITRC, 2011). Sediment benchmarks found in the literature are not site-specific values. Some of the benchmarks are based on theoretical estimates (such as equilibrium-partitioning modeling) and others based on empirical toxicity or benthic community data specific to the test site in the literature. They are usually very conservative values, and are best reserved for screening purposes. Other measures, such as AVS/SEM, sediment porewater, and benthic macroinvertebrate community metrics can be better predictors of the potential bioavailability of chemicals in sediment.

## B.2.2 AVS/SEM

AVS and SEM is used as a measure of the potential bioavailability of metals in sediment based on the theory that AVS binds, on a mole-to-mole basis, a number of cationic divalent metals of environmental concern (e.g., cadmium, copper, nickel, lead, zinc) forming insoluble sulfide complexes with minimal biological availability (Ankley et al., 1996). Therefore, in sediment samples where the AVS molar concentrations are greater than SEM molar concentrations, the SEM metals are expected to be bound by AVS and consequently not be bioavailable or directly toxic to benthic macroinvertebrates (Ankley et al., 1996). The converse, that is, sediment with excess SEM compared to AVS, is not necessarily true and may not be toxic because the partitioning of metals with non-AVS sediment components, such as particulate organic carbon and iron and manganese oxides also affect the concentrations of metals found in interstitial water (Boothman et al., 2001).

In 2005, the U.S. Environmental Protection Agency (USEPA) published Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver, and Zinc) which describes recommended procedures for the derivation of concentrations of metal mixtures in sediment that are protective of benthic organisms (USEPA, 2005). The procedures in that document are based on equilibrium partitioning theory which predicts that these metals partition in sediment between AVS, interstitial (pore) water, benthic organisms, and other sediment phases such as organic carbon. By incorporating the fraction of organic carbon ( $f_{oc}$ ) into the AVS/SEM equation, a more accurate prediction of potential toxicity results can be made. USEPA (2005) indicates that the following assumptions are useful for deriving a benchmark:

- 1. Any sediment with  $(SEM-AVS)/f_{oc}$  less than 130 micromoles per gram (µmols/g) of organic carbon (g<sub>oc</sub>) should pose low risk of adverse biological effects due to cadmium, copper, lead, nickel, and zinc.
- 2. Any sediment with  $(SEM-AVS)/f_{oc}$  between 130 and 3,000 µmols/g<sub>oc</sub> may have adverse biological effects due to cadmium, copper, lead, nickel, and zinc.
- 3. In any sediment with  $(SEM-AVS)/f_{oc}$  greater than 3,000 µmols/g<sub>oc</sub>, adverse biological effects due to cadmium, copper, lead, nickel, and zinc may be expected.
- 4. Any sediment with AVS>0 will not cause adverse biological effects due to silver.

Note that silver, which was not included as an SEM metal in earlier documents, was included in the 2005 USEPA document because studies had shown that silver, a cationic monovalent metal, binds to AVS. Also, chromium is not expected to be bioavailable if AVS is present in the sediment (USEPA, 2005).

## **B.2.3 Sediment Porewater**

The principal routes of exposure to toxic substances for benthic macroinvertebrates are through ingestion of contaminated sediment and/or direct exposure to contaminated porewater. Generally, there is a good correlation between biological effects and porewater concentrations but not total sediment concentrations (ITRC, 2011). The bioavailability of a COPC from porewater is theoretically expressed as the "truly" dissolved phase of the contaminant (ITRC, 2011). Therefore, because toxicity to benthic organisms is generally correlated to porewater concentrations, porewater concentrations can be used to evaluate the toxicity of sediment-associated chemicals. This is done by carefully extracting the porewater from the sediment and comparing the chemical concentrations in the porewater to surface water ecological benchmark values. Porewater measurements are useful when existing site data, based on bulk sediment chemistry and possibly aquatic toxicity testing or benthic community analysis, suggest that a specific contaminant may be responsible for an observed toxic response (ITRC, 2011).

## B.2.4 Benthic Macroinvertebrate Community Survey

Benthic macroinvertebrate community surveys typically involve collecting multiple replicate surficial sediment samples from locations using methods appropriate for the site. For low energy or non-wadable waters, such as those found at the site and associated reference stations, a commonly used method is a Ponar or petite Ponar grab sampler. Sediment collected with a grab sampler is removed from the sampler and then passed through a sieve (typically 500 micron mesh size). The retained sediment is sorted at a laboratory and benthic macroinvertebrates are identified to lowest possible taxon and counted. A suite of benthic assemblage-level characteristics (i.e., metrics) are then calculated, and most of these are based on abundance and diversity. Metrics such as these are used to calculate the *Chesapeake Bay Benthic Index of Biotic Integrity* (CB-B-IBI) for oligohaline estuaries. The various metrics from the site locations are then compared to metrics from reference locations to determine if the benthic community at the site locations is impacted.

A benthic macroinvertebrate community survey can be used to directly determine the abundance and diversity of the benthic community. This information can then be used to help evaluate relative impairment of or degree of impact at a site. However, the results of these surveys can be difficult to interpret because benthic communities are sensitive to a variety of stressors other than chemical contaminants. For example, chemical and physical stressors such as siltation, low dissolved oxygen levels, organic debris, nutrients, and especially habitat can affect the types and numbers of benthic macroinvertebrates present at a site. In addition, it may be difficult to correlate chemical concentrations in sediment to benthic macroinvertebrate community data. This lack of correlation may be due to multiple factors, including chemical bioavailability or heterogeneous distribution of chemicals in sediment. The latter may be important because the benthic macroinvertebrate samples, while collected near chemistry sampling locations, are not collected at the exact same locations.

## **B.3 2010 ADDITIONAL CHARACTERIZATION INVESTIGATION**

As indicated above, sediment samples were collected from Dark Head Cove, Cow Pen Creek, and reference locations in 2010 for analysis of bulk sediment chemical concentrations, analysis of AVS/SEM, extraction and chemical analysis of sediment porewater, and evaluation of the benthic macroinvertebrate community. The results of the investigation are presented in the Sediment Risk Assessment for Lockheed Martin MRC (Tetra Tech, 2011). This section briefly describes the components of those investigations.

Sediment samples for chemical analysis were collected in 2010 from three locations distant from possible MRC influences to determine background conditions reflecting an urbanized coastal area (see Figure 2-5 in the main text of this report). Benthic-invertebrate samples were also collected from these same three locations for comparison to site samples. One location was in an area with little to no shoreline development (Marshy Point), and the other two locations were in areas having typical regional waterfront development, similar to the Dark Head Cove area (Bowleys Quarters and Middle River). Field observations at the time of sample collection indicated that the three background locations were not near any industrial point sources, and they had similar substrates to site locations.

Criteria used to assess the similarity of reference sampling locations to site sampling locations included grain size, water depth, salinity, temperature, and pH. Field instruments measured salinity, temperature, dissolved oxygen, and pH. Depth was measured with a tape, and grain size was evaluated qualitatively by comparison to a grain-size chart. To compare substrate from the reference locations, a composite sample was collected from each sampling location and analyzed

for grain size and total organic carbon. The surface sediment at Marshy Point, Bowleys Quarters and Middle River was described as a very wet and very soft silt with a little clay and a little fine grain sand (at Bowleys Quarters), while the subsurface sediment had more clay. This is similar to the sediment in most of the Dark Head Cove samples, and the further downstream Cow Pen Creek samples.

In addition, two sample locations in upper Cow Pen Creek (SD-1 and SD-78), which are upgradient of the MRC facility's first outfall in the creek (slightly south of Eastern Boulevard), and well upstream of the tidally influenced portion of the creek, were considered background samples (see Figure 2-4 in the main text of this report). Only chemical data were collected from these two locations.

## B.3.1 Bulk Sediment Chemistry

Sediment samples were collected from four depth intervals (0 to 6 inches, >6 to 18 inches, >18 to 30 inches, and >30 to 52 inches) from multiple locations throughout the study area and analyzed for a variety of parameters including metals, PCBs, PAHs, and pesticides. The same depth intervals were sampled at the Marshy Point, Bowleys Quarters and Middle River background locations, while only the surface interval was sampled at SD-1, and the top two intervals were sampled at SD-78. Because of the limited data set, the maximum detected chemical concentrations in each interval at the background locations were used as the background values. Therefore, there were different background values for each of the four depth intervals.

One of the three 2010 reference locations (Middle River) was approximately 4,000 feet south of MRC. Sediment analytical data indicated that concentrations of some metals in some of the depth intervals there were elevated relative to sediment concentrations in the Bowleys Quarters and Marshy Point samples. Whether the metals concentrations at this sampling location are due to MRC influence or to other sources is not clear; however, data from this sampling location suggests that it might not represent regional background conditions. Therefore, chemical data from this location were excluded from the background data set (further discussed below).

Based on the results of the ERA, only select metals and total PCBs were retained as final COPCs based on potential risks to benthic macroinvertebrates. Sediment samples were analyzed for

Aroclors as a measure of PCBs, so the terms Aroclors and PCBs may be used interchangeably throughout this document.

Chemical-specific benchmarks for evaluating risks to benthic macroinvertebrates were used to evaluate chemical concentrations measured in site sediments. In the screening step of an ERA, conservative screening benchmarks (i.e., "lower-effects" values) are typically used to select COPCs, while less conservative sediment benchmarks (referred to herein as "higher effects" values) are often used for deriving risk estimates and are also used for developing PRGs. The lower-effects values are typically defined as concentrations below which effects on sediment macroinvertebrates are not expected, whereas higher effects values are typically defined as concentrations above which adverse effects to sediment macroinvertebrates are probable (MacDonald, et al., 1996, 2000a).

In the ERA, sediment data were compared to the lower of the USEPA Region 3 Biological Technical Assistance Group (BTAG) freshwater or saltwater sediment screening levels. This was done based on USEPA Region 3 BTAG methodology because the salinity of surface water at the site was between 1 and 10 parts per thousand (actual measurements ranged from 2.4–3.9 parts per thousand), which is defined as a brackish environment. Several of the sediment screening levels are threshold effects concentrations (TECs) (MacDonald et al., 2000a) for freshwater or threshold-effects levels (TELs) (MacDonald, et al. 1994), for saltwater. The respective higher effects benchmarks for these screening levels are the probable effects concentrations (PECs) (MacDonald, et al., 2000a) for freshwater and the probable-effects levels (PELs) (MacDonald, et al., 1994) for saltwater. In addition, for PCBs the Region 3 BTAG marine sediment screening level is a TEC as cited from MacDonald, et al., (2000b). That document also lists a Midrange Effects Concentration (MEC), which has a similar definition as the higher-effects levels.

## B.3.2 AVS/SEM

Section B.2.2 presents background information regarding the analysis of AVS/SEM in sediment. Sediment samples from seven locations throughout the study area that represented a range of concentrations were collected from each of the four depth intervals previously described and analyzed for AVS/SEM. Note that although the locations with the maximum concentrations of metals were not analyzed for AVS/SEM, the development of PRGs for the site was not impacted,

as discussed below in Section B.4. Metals included in the SEM analysis consisted of cadmium, chromium, copper, lead, nickel, silver, and zinc.

## **B.3.3 Sediment Porewater**

*Ex situ* porewater samples (i.e., porewater extracted in a laboratory) were collected from sediment samples from the top three intervals sampled for bulk chemistry analysis (0–6, >6-18, and >18–30 inches) at the same seven locations from which AVS/SEM data were collected. Sediment porewater was not collected from the >30 to 52 inch interval because elevated chemical concentrations were not found in that interval. Also, with very few exceptions, sediment macroinvertebrates are not found at depths greater than 30 inches. In fact, most organisms will be found in the top 6 inches of sediment, which is considered the bioactive zone. The porewater was extracted from the sediment samples at the laboratory via centrifugation. The porewater samples were analyzed for metals, PCBs, and PAHs and the analytical results were compared to surface water ecological-screening values in the ERA.

## B.3.4 Benthic Macroinvertebrate Community Survey

Sediment samples for benthic macroinvertebrate community analyses were collected at seven site locations (five in Dark Head Cove and two in Cow Pen Creek) and analyzed to determine abundance and diversity of the benthic macroinvertebrate community associated with site sediments. Benthic macroinvertebrate samples were also collected from two background/reference locations (Marshy Point and Bowleys Quarters) and one reference location (Middle River Downstream). Background locations are presumed unaffected by site-related contaminants and reference location data were used for comparison to site data. The one exception may be the Middle River location, as discussed above in Section B.3.1. This sampling was conducted to determine the current health of the benthic community near the site and that of the benthic communities in the surrounding area. This was done by evaluating the numbers and types (i.e., abundance and diversity) of benthic macroinvertebrates found at each area and comparing the results from the site samples to the results from the background/reference locations.

#### B.4 SUMMARY OF RISKS FROM THE ERA

All of the data collected from the 2010 investigation, as well as the data collected from previous investigations, were evaluated in a "lines of evidence approach" in the ERA. The receptors evaluated in the ERA included benthic macroinvertebrates, fish, and piscivorous birds and mammals. The conclusions of the ERA were that risks to benthic macroinvertebrates from metals in sediment are possible, with the greatest likelihood of those effects occurring in the areas where the PECs and PELs were exceeded. Concentrations of metals at some site locations were similar to background concentrations. However, concentrations of cadmium, copper, lead, mercury, and zinc at many site locations exceeded PECs, PELs, and background values (see Figures 2-8 through 2-13 in the main body of this report for a comparison of the metals concentrations to their respective PECs). Generally, the highest concentrations in the >30–52 inch interval. Total PCBs posed potential risks to benthic macroinvertebrates at several onsite locations, especially in Dark Head Cove surface sediment near Outfall 05 (see Figure 2-15 in the main body of this report for a comparison to the PCB concentrations to its PEC).

PAHs also pose potential risks to benthic macroinvertebrates at several onsite locations, especially in Dark Head Cove near Outfall 05 and at the eastern end of the cove (see Figure 2-16 in the main body of this report for a comparison of the PAH concentrations to its PEC). However, PAH concentrations in most samples near the MRC were similar to PAH concentrations throughout the region, based on background data (see Section B.3.1 for a discussion of the background data set). Total PAH concentrations exceeded the background value in only eight of the 101 surface-sediment samples and PAH forensic data suggest that PAHs in most MRC samples were representative of typical urban runoff. Therefore, PAHs were not retained for further evaluation or identified as a COC.

Chromium concentrations in samples at all four depth intervals exceed the 111 mg/kg PEC (see Table 2). All porewater concentrations of chromium are less than its ecological screening-value for surface water, even though the sediment concentrations in some corresponding sediment samples were quite high. For example, the porewater concentration in PW-02 in the >18-30 inch interval was 17.5  $\mu$ g/L, even though the concentration in the co-located sediment sample at the

same depth was 1,530 mg/kg. Only two sediment samples had chromium concentrations that exceeded 1,530 mg/kg.

Chromium is found in sediments primarily in two oxidation states: trivalent chromium, which is relatively insoluble and nontoxic, and hexavalent chromium, which is much more soluble and toxic. Hexavalent chromium is thermodynamically unstable in anoxic sediments, and AVS is formed only in anoxic sediments; therefore, sediments with measurable AVS concentrations are not likely to contain toxic hexavalent chromium (USEPA, 2005). Thus, the AVS/SEM data in Table 2 suggest that chromium in the seven samples analyzed for AVS/SEM is not toxic. Sediment chromium concentrations in a few samples exceed those in the samples tested for AVS/SEM. Overall, the porewater and AVS/SEM data indicate that potential risks posed by chromium is limited to a few sampling locations. Therefore, chromium was not retained for further evaluation or identified as a COC.

The ERA noted that some measure of uncertainty exists as to whether chemicals in the sediment were bioavailable and significantly affecting the benthic community. This was based on an evaluation of the AVS/SEM data, *ex situ* porewater data, and benthic macroinvertebrate community data. At most locations where AVS/SEM and *ex situ* porewater samples were collected, chemical bioavailability was concluded to be low. As presented in Section B.3.2, AVS/SEM (and porewater analyses) were not conducted at locations where the greatest bulk sediment chemical concentrations exist. However, this does not impact the development of PRGs at the site because the PRGs that were ultimately developed (see Section B.5 below) are within the range of chemical concentrations in the samples collected for AVS/SEM and porewater analyses. Therefore, having AVS/SEM and porewater samples from locations with greater chemical concentrations would not have changed the PRG values.

The benthic macroinvertebrate investigation found that all 10 samples (seven from near MRC and three reference samples) had high percentages of pollution–indicative taxa, and all 10 samples had low percentages of pollution–sensitive taxa. Nevertheless, one reference site (Marshy Point) had good benthic conditions according to the CB-B-IBI. The other two reference sites (Bowleys Quarters and Middle River Downstream) had values indicating some type of stressful conditions for benthic macroinvertebrates. All seven sites near MRC in Cow Pen Creek

and Dark Head Cove had CB-B-IBI scores indicating stress to benthic organisms. The evaluation of benthic data suggests that habitat, nutrient conditions (such as a high levels of detritus), or some other type of background disturbances or inputs are negatively affecting benthic organisms in the general study area (in MRC samples as well as background samples). One local reference site that was located in the least developed area (i.e., Marshy Point) had somewhat better benthic conditions than the MRC sites.

Based on COPC concentrations in fish tissue collected from Cow Pen Creek and Dark Head Cove, the ERA concluded that fish did not appear to be at significant risk from sediment contamination, and/or that risks were similar to those estimated for other similar environments within the region.

In the ERA, food chain modeling was conducted to evaluate risks to piscivorous birds and mammals consuming fish and sediment (incidental) from Cow Pen Creek and Dark Head Cove. The ERA concluded that bioaccumulative chemicals in sediment at all four depth intervals posed negligible risks to piscivorous birds and mammals via the dietary pathways, based on average chemical concentrations, body weights, food consumption rates, sediment ingestion rates, and bioaccumulation factors, when available.

In summary, benthic macroinvertebrates were the only ecological receptors evaluated in the risk assessment that were potentially at risk from chemicals in sediment at the site. Although uncertainty exists with regard to whether benthic macroinvertebrates were being significantly impacted, cadmium, copper, lead, mercury, zinc, and total PCB concentrations in site sediments exceeded selected higher-effects benchmarks (such as PELs and PECs); these chemicals were therefore retained as final ecological COPCs. Cadmium and total PCBs posed the greatest current potential risk to benthic macroinvertebrates, based on comparisons of chemical concentrations in surface sediment to higher-effects benchmarks.

#### B.5 DEVELOPMENT OF PRGS

This section presents the methodology used to develop sediment PRGs for the protection of benthic macroinvertebrates. As discussed in the previous section, the ERA concluded that there were potential risks to benthic macroinvertebrates from exposure to select metals and total PCBs in sediment. This conclusion was based on an evaluation of surficial sediment, as well as subsurface sediment (i.e. >6-18 inch and >18-30 inch intervals).

#### **B.5.1 General Evaluation Approach**

Under current conditions, ecological receptors are primarily exposed to the surficial sediment (i.e., top 6 inches), and cadmium and total PCBs are the risk-drivers in this depth interval. Benthic macroinvertebrates could be exposed to deeper sediments if the surficial sediment is removed such as during dredging, or if the deeper sediments are mobilized. Subsurface sediments were, therefore, also evaluated to address possible future exposure scenarios. Copper, lead, mercury, and zinc could also be of concern to benthic macroinvertebrates if they are exposed to subsurface sediments. PRGs were developed for cadmium, copper, lead, mercury, zinc, and total PCBs in sediment. The following site-specific lines of evidence were used to support the PRGs:

- bulk sediment chemistry
- AVS/SEM results
- porewater chemistry
- benthic macroinvertebrate community data

As discussed above, because the salinity of the surface water was between 1 and 10 part per thousand, the lower of the freshwater or marine surface water and sediment screening levels were used in the ERA to meet conservative screening objectives. This approach was followed for selecting the surface water screening levels used to evaluate the porewater results in this PRG document for the same reason. Porewater results were not used to set PRGs; they were used to evaluate the relative bioavailability of the chemicals in the sediment (see Section B.5.1.2).

However, because the sediment benchmarks were used to set PRGs, the greater of the freshwater or marine benchmark were used as the basis. That is because in a brackish environment, as exists at the site, both the freshwater and marine screening values are appropriate. A The approach used for setting PRGs is less conservative than the approach used in a screening-level ERA to identify COPCs.

#### B.5.1.1 Bulk Sediment Chemistry Evaluation

Sediment screening levels, which are used to initially select COPCs, are generally not recommended for use as cleanup levels for several reasons. Sediment benchmarks are often linked to receptor groups (e.g., benthic macroinvertebrates) rather than specific taxa that may be locally important. Also, sediment benchmarks are generally not associated with toxicity threshold concentrations, but are instead commonly based on co-location of benthic macroinvertebrates and sediment chemical concentrations from other diverse locations (i.e., they are not based on cause and effect relationships, and are not site-specific). The higher effects values are often considered for use as a starting point for development of site-specific PRGs. The first step in the PRG development process for this site identified the higher effects values for each of the sediment COPCs (Table 1).

As discussed above and in Section B.5.2, the greater of the freshwater or marine sediment benchmarks were used as the initial basis for the sediment PRGs. For all chemicals (except for lead where the background concentration was used as a PRG), the selected benchmarks were the freshwater PECs because they are the higher of the two benchmarks. As previously discussed, the PECs do not account for site-specific chemical bioavailability of the chemicals; they are just literature-based values derived from studies conducted at other sites. Therefore, the potential bioavailability of the chemicals in the sediment was determined by evaluating the AVS/SEM and porewater data to determine whether the PECs could be adjusted to account for the site-specific bioavailability.

#### B.5.1.2 AVS/SEM and Porewater Evaluation

Table 2 presents the bulk sediment chemistry concentrations, the AVS/SEM results, and the porewater results for the samples collected from the seven locations adjacent to the site. Note that porewater samples for PCB analysis were only collected from three locations. The table also presents the PECs and surface water criteria used for comparison to porewater results. The surface water criteria in Table 2 are the lower of freshwater and marine water ecological screening levels from USEPA Region 3 BTAG (USEPA, July 2006a,b) as discussed in Section B.5.1. The only exception is for PCBs, as discussed below in Section B.5.2.4.

The sediment concentrations are shaded black on Table 2 if the concentrations were greater than their respective PECs and the porewater concentrations are shaded black if the concentrations exceeded their respective surface water screening level. Also, the (SEM-AVS)/ $f_{oc}$  values are shaded black if the values exceeded 130 µmol/g. The table includes the results for all of the metals included in the SEM analysis, because the results for all the metals are needed to calculate a total SEM value.

The concentrations of the metals exceeded their respective PECs in one or more samples. Cadmium, copper, and lead were the only metals with porewater concentrations that exceeded their respective screening levels. Cadmium porewater concentrations in seven of the 21 samples exceeds its screening level, however four of the detected concentrations (0.13 µg/L in two samples, 0.14  $\mu$ g/L, and 0.23  $\mu$ g/L) only slightly exceeds the screening level of 0.12  $\mu$ g/L. The three samples with the greater cadmium porewater concentrations were collected from different depths at the same location (SD-85). This is also the sample location where the copper porewater concentration exceeded NRWQC in two depths (0 - 6", >6 - 18"), and where lead porewater concentration exceeded its NRWQC in one depth (>6 - 18"). It is not known why these three metals had elevated porewater concentrations at this one sample location. The bulk chemistry concentrations for these metals were much lower in the sediment samples from location SD-85 than they were at most of the other locations where porewater samples were collected. Having assumed similar sediment characteristics across the site, elevated levels of cadmium in the porewater samples from SD-85 were unexpected. Also, the maximum (SEM-AVS)/foc value in the samples from SD-85 was 16.3 µmol/g, which is much lower than the screening threshold of 130 µmol/g. Although AVS was only detected in the 0-6" sample, the low SEM values and the relatively high  $f_{oc}$  values indicates that the metals are unexpected in the porewater at elevated concentrations. One possible explanation is that the porewater samples were not filtered before chemical analysis, so it is possible that some of the finer particulates remained suspended in the sample, even after the centrifugation step.

All of the (SEM-AVS)/ $f_{oc}$  values in the sediment samples collected from 0–6" at all seven locations were less than 130 µmol/g. AVS concentrations in four of the samples were greater than the SEM concentrations, resulting in negative values. Only three sediment samples in the deeper intervals (two at SD87 from >6 – 18" and >18 – 30" and one at SD89 from >18 – 30" had

 $(SEM-AVS)/f_{oc}$  values that were slightly greater than 130 µmol/g. The total SEM values in those three samples are based primarily on the SEM concentration for zinc; the SEM concentrations for the other metals combined account for less than 25 percent of the total SEM value. Also, none of the porewater concentrations in those three samples had any parameters that exceeded their respective surface water criteria, indicating that the metals were not partitioning from the sediment to the porewater.

#### B.5.1.3 Benthic Macroinvertebrate Community Evaluation

The benthic macroinvertebrate community study provides a third line of site-specific evidence used to develop the PRGs. As presented above, benthic macroinvertebrate samples were collected from seven site locations and three reference locations. All seven sites near MRC in Cow Pen Creek and Dark Head Cove had CB-B-IBI scores indicating stress to benthic organisms. The CB-B-IBI is calculated by scoring six metrics of benthic community structure and function according to established thresholds. The scores for each metric (on a 1–5 scale) are then averaged to form the index for each site. Samples with index values of 3.0 or more are considered to have good benthic conditions, indicative of good habitat quality. One of the reference sites (Marshy Point) had good benthic conditions according to the CB-B-IBI (3.0) while the other two reference sites (Bowleys Quarters [2.3] and Middle River Downstream [2.0]) had values that were similar to the ones from the site locations (1.7 to 2.3), indicating stressful conditions for benthic macroinvertebrates based on CB-B-IBI scores.

Because contaminants such as metals and PCBs are elevated in some of the site samples where benthic macroinvertebrates were collected, it is possible that the contaminants contribute to the findings discussed above. However, the evaluation of benthic data also suggested that habitat, nutrient conditions (i.e., high levels of detritus [non-living organic material such as dead plants]), or some other type of background disturbances or inputs are negatively affecting benthic organisms in the general study area (in MRC samples as well as background samples). Some benthic macroinvertebrates, such as pollution-tolerant *tubificid oligochaetes* and *spionid polychaetes* (as found at the site, and to a lesser degree at the reference sites), can survive in sediment with high amounts of detritus, while this type of environment may not be conducive to other more sensitive macroinvertebrates. Therefore, although the total abundance of benthic

macroinvertebrates increased at the locations with high amounts of detritus, other metrics such as the low abundance of pollution-sensitive taxa, and other tolerance scores led to lower CB-B-IBI scores.

#### B.5.1.4 Summary of Data Evaluation

In summary, the porewater and AVS/SEM results provide two lines of evidence that metals in the sediment are not highly bioavailable. In addition, the benthic community evaluation indicated that although the benthic community at the site samples is stressed, it is also similarly stressed at two of the three background/reference stations. Although there is uncertainty in whether the stress is being caused by the chemicals at the site or natural conditions, the benthic community at the site is generally similar to that in the surrounding area so it does not appear to be significantly impacted by chemicals in the sediment.

#### B.5.2 Development of Chemical-Specific PRGs

Based on the site-specific bioavailability data, chemical concentrations greater than the PEC will be protective of ecological receptors. This section presents the development of the chemical-specific PRGs by using the sediment benchmarks with consideration of the bioavailability data. Table 3 presents the selected PRGs for each of the chemicals.

#### B.5.2.1 Cadmium PRG

Based on the AVS/SEM and porewater analyses in the surficial sediment samples, cadmium at concentrations greater than at least six times the PEC (4.98 mg/kg) was not bioavailable. Also, in the deeper sediment samples, cadmium at concentrations greater than ten times the PEC was not bioavailable. Although this evaluation supports a higher PRG, it is recommended that the PRG for cadmium be set at twice the PEC. This value was selected because it is still conservative and is expected to be protective of sediment macroinvertebrates, and because remedial alternatives would not change significantly with slightly greater PRGs.

#### B.5.2.2 Copper PRG

All porewater concentrations of copper were less than its surface water screening level with an exception at SD-85 This was expected based on the AVS/SEM results because, as noted in

USEPA (2005), chemical equilibrium calculations suggest that the relative affinity of metals for AVS should be silver>copper>lead>cadmium>zinc>nickel. This means that the appearance of the metals in interstitial water as AVS is exhausted should occur in an inverse order. For example, zinc would replace nickel in a monosulfide complex and nickel would be liberated to the interstitial water, and so on (USEPA, 2005). This was first observed by Berry et al., (1996) who noted that in a few studies, as SEM/AVS ratios increased, the other metals appeared in the order of their solubility product constants. For example, the metal with the least soluble sulfide (copper) appeared last and at the lowest concentration (Berry et al., 1996). Note that silver was not evaluated in Berry et al., (1996). This indicates that copper should be even less bioavailable than cadmium in the site sediment. Therefore, similar to that of cadmium, and for similar reasons, it is recommended that the PRG for copper be set at twice its PEC. This value would still be conservative, and slightly higher PRGs would not change the remedial alternatives.

#### B.5.2.3 Lead, Mercury, and Zinc PRGs

The lead and zinc bulk chemistry concentrations in the sediment samples selected for AVS/SEM and porewater analyses were less than two times their respective PECs, with the exception of a few lead samples (see Table 2). Based on the AVS/SEM and porewater analysis, the bioavailability of lead and zinc is expected to be low. Mercury was not analyzed for in the AVS/SEM or porewater samples. Although specific bioavailability data was not available for mercury, the bioavailability of mercury is expected to be similar to that for the other metals. In addition, as seen from Figure 2-12 in the main body of this report, very few mercury detections were greater than the PEC, especially in the top two depth intervals.

Therefore, the PRGs for lead, mercury, and zinc were set at the greater of the PEC or background concentration. The background level of lead is 190 mg/kg, which is greater than the PEC of 149 mg/kg. The PECs for mercury (1.06 mg/kg) and zinc (459 mg/kg) are greater than their respective background concentrations. Therefore, the PRG for lead is based on its background concentration and the PRGs for mercury and zinc are based on their PECs.

#### B.5.2.4 PCB PRG

Similar to what was done for the metals, the greater of the freshwater or marine higher effects value was used for the developing a PRG for total PCBs. The freshwater PEC in MacDonald et al., (2000a) of 0.676 mg/kg is greater than the PEL of 0.189 mg/kg from MacDonald et al., (1996).

The primary site-specific parameter that affects the bioavailability of PCBs is organic carbon concentration in the sediment. Nonionic chemicals, such as PCB are assumed to partition to bulk sediment organic carbon and the pore-water concentration can be predicted from the measured bulk sediment concentration and total organic carbon concentration (ITRC, 2011). The average percent of organic carbon in the surficial sediment at the site is greater than 3 percent whereas in MacDonald et al., (2000b), the sediment quality guidelines that were expressed on an organic carbon–normalized basis were converted to dry weight (dry wt)–normalized concentrations assuming 1 percent organic carbon. Those guidelines would be higher if 3 percent organic carbon were used to convert the values. The relatively high organic carbon concentration in the site sediments compared to the assumptions used to develop the PEC provides a line of evidence to suggest that using the PEC for PCBs is likely to be conservative.

Although aquatic toxicity data are limited for Aroclor-1260, Suter and Tsao (1996) developed a secondary chronic value (SCV) of 94  $\mu$ g/L for aquatic life exposed to Aroclor-1260 in surface water. This value was developed from acute toxicity data that was then divided by uncertainty factors to estimate a chronic value. Suter and Tsao (1996) did present a lowest chronic value of 1.3  $\mu$ g/L for fish, but they indicated that the chronic value is ambiguous because significant effects occurred in a 30-day fathead minnow larval test at the lowest concentrations tested (1.3  $\mu$ g/L), but not in a 240-day lifecycle at the highest concentration tested (2.1  $\mu$ g/L). Nevertheless, as presented on Table 2, all of the porewater detections were much lower than 1.3  $\mu$ g/L so risks to aquatic organisms, including sediment macroinvertebrates, from PCBs in the porewater are not likely. Therefore, although PCB concentrations exceed the PEC of 0.676 mg/kg in several samples where porewater was collected, the low porewater concentrations greater than the

PEC. As a result, the PEC is expected to be protective of benthic macroinvertebrates at the site, and is selected as the PRG.

#### B.6 REFERENCES

- 1. Ankley, Gerald T., D.M. Di Toro, D.J. Hansen, and W.J. Berry. 1996. Technical Basis and Proposal for Deriving Sediment Quality Criteria for Metals. Environmental Toxicology and Chemistry. Vol. 15(12), pp. 2056-2066.
- Berry, W.J., D.J. Hansen, J.D. Mahony, D.L. Robson, D.M. Di Toro, B.P. Shipley, B. Rogers, J.M. Corbin and W.S. Boothman. 1996. Predicting the Toxicity of Metal-Spiked Laboratory Sediments using Acid-Volatile Sulfide and Interstitial Water Normalizations. Environmental Toxicology and Chemistry. Vol. 15(12), pp. 2067–2079.
- Boothman, W.S., D.J. Hanson, W.J. Berry, D.L. Robson, A. Helmstetter, J.M. Corbin, and S.D. Pratt. 2001. Biological Response to Variation of Acid-Volatile Sulfides and metals in Field-Exposed Spiked Sediments. Environmental Toxicology and Chemistry. Vol. 20(2), pp. 264-272.
- 4. ITRC. 2011. Incorporating Bioavailability Considerations into the Evaluation of Contaminated Sediment Sites. The Interstate Technology & Regulatory Council, Contaminated Sediments Team. February.
- Llansó, R.J. and D.M. Dauer. 2002. Methods for Calculating the Chesapeake Bay Benthic Index of Biotic Integrity. Prepared for the Chesapeake Bay Benthic Monitoring Program. Accessed November 22, 2010 at <u>http://sci.odu.edu/chesapeakebay/data/benthic/BIBIcalc.pdf</u>
- MacDonald, D. D., R. S. Carr, F. D. Calder, E. R. Long, and C. G. Ingersoll, 1996. "Development and evaluation of sediment quality guidelines for Florida coastal waters." Ecotoxicology. 5: 253-278.
- MacDonald, D.D., C.G. Ingersoll, and T.A. Berger, 2000. "Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems." Archives of Environmental Contamination and Toxicology, Vol. 39, pp. 20-31.
- 8. Suter, G.W. II. and C.L. Tsao. 1996. <u>Toxicological Benchmarks for Screening Potential</u> <u>Constituents of Concern for Effects on Aquatic Biota:1996 Revision</u>. Environmental Sciences Division, Oak Ridge National Laboratory. ES/ER/TM-96/R2.
- 9. Tetra Tech (Tetra Tech, Inc). 2011. Sediment Risk Assessment Lockheed Martin Middle River Complex. May 10.
- USEPA (U.S. Environmental Protection Agency). 2005. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver, and Zinc). Office of Research and Development. EPA-600-R-02-011. January.

- 11. USEPA, 2006. Region 3 Freshwater Surface Water Screening Benchmarks. July.
- 12. http://www.epa.gov/reg3hwmd/risk/eco/btag/sbv/fw/screenbench.htm
- 13. USEPA, 2006. Region 3 Freshwater Sediment Screening Benchmarks. August.
- 14. http://www.epa.gov/reg3hwmd/risk/eco/btag/sbv/fwsed/screenbench.htm
- 15. USEPA, 2006. Region 3 Marine Sediment Screening Benchmarks. July.
- 16. http://www.epa.gov/reg3hwmd/risk/eco/btag/sbv/marsed/screenbench.htm
- 17. USEPA, 2006. Region 3 Marine Surface Water Screening Benchmarks. July.
- 18. http://www.epa.gov/reg3hwmd/risk/eco/btag/sbv/marine/screenbench.htm
- 19. Weisberg, S.B., J.A. Ranasinghe, L.C. Schaffner, R.J. Diaz, D.M. Dauer, and J.B. Frithsen. 1997. An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay. *Estuaries* 20(1): 149-158.

#### Table B-1 Sediment Ecological Benchmarks Lockheed Martin, Middle River Complex Middle River, Maryland

| Parameter  | Freshwater<br>Probable Effects<br>Concentration <sup>(1)</sup><br>(mg/kg) | Marine<br>Probable Effects<br>Level <sup>(2)</sup><br>(mg/kg) |
|------------|---------------------------------------------------------------------------|---------------------------------------------------------------|
| Cadmium    | 4.98                                                                      | 4.21                                                          |
| Copper     | 149                                                                       | 108                                                           |
| Lead       | 128                                                                       | 112                                                           |
| Mercury    | 1.06                                                                      | 0.696                                                         |
| Zinc       | 459                                                                       | 271                                                           |
| Total PCBs | 0.676                                                                     | 0.189                                                         |

1 - Consensus based Probable Effects Concentration for freshwater systems (MacDonald et al., 2000)

2 - Probable Effects Level for coastal and marine waters (MacDonald et al., 1996)

### Table B-2 Bulk Sediment, Pore Water, and Acid Volatile Sulfide/Simultaneously Extracted Metals Data Lockheed Martin, Middle River Complex Middle River, Maryland

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SD-85-SS                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                         | SD-87-SS                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                           | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SD-88-SS                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                        | r                                                                                                                                                                                                                                       | SD-89-SS                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                 | r                                                                                                                                                                                                                                                                  | SD-90-SS                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                       | SD-99-SS                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                    | SD-101-SS                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sediment                                                                                                                                                                                                                                                                                                                      | Sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pore Water                                                                                                                                                                                                                             | AVS or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sediment                                                                                                                                                                                                                                | Pore Water                                                                                                                                                                                                                                      | AVS or                                                                                                                                                                                                                                                                                                                                                                                    | Sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pore Water                                                                                                                                                                                                                          | AVS or                                                                                                                                                                                                                                                                                                 | Sediment                                                                                                                                                                                                                                | Pore Water                                                                                                                                                                                                                                      | AVS or                                                                                                                                                                                                                                                          | Sediment                                                                                                                                                                                                                                                           | Pore Water                                                                                                                                                                                                                                  | AVS or                                                                                                                                                                                                                                                                                                                | Sediment                                                                                                                                                                                                                                                                | Pore Water                                                                                                                                                                                                                                                                                  | AVS or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sediment                                                                                                                                                                                                                           | Pore Water                                                                                                                                                                                                                                            | AVS or                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Criteria <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Criteria <sup>(2)</sup>                                                                                                                                                                                                                                                                                                       | Conc.                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Conc.                                                                                                                                                                                                                                  | SEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Conc.                                                                                                                                                                                                                                   | Conc.                                                                                                                                                                                                                                           | SEM                                                                                                                                                                                                                                                                                                                                                                                       | Conc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conc.                                                                                                                                                                                                                               | SEM                                                                                                                                                                                                                                                                                                    | Conc.                                                                                                                                                                                                                                   | Conc.                                                                                                                                                                                                                                           | SEM                                                                                                                                                                                                                                                             | Conc.                                                                                                                                                                                                                                                              | Conc.                                                                                                                                                                                                                                       | SEM                                                                                                                                                                                                                                                                                                                   | Conc.                                                                                                                                                                                                                                                                   | Conc.                                                                                                                                                                                                                                                                                       | SEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conc.                                                                                                                                                                                                                              | Conc.                                                                                                                                                                                                                                                 | SEM                                                                                                                                                                                                                                                          |
| Surface Sediment, 0-6 inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (ug/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (mg/kg)                                                                                                                                                                                                                                                                                                                       | (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ug/L)                                                                                                                                                                                                                                 | (umol/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (mg/kg)                                                                                                                                                                                                                                 | (ug/L)                                                                                                                                                                                                                                          | (umol/g)                                                                                                                                                                                                                                                                                                                                                                                  | (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ug/L)                                                                                                                                                                                                                              | (umol/g)                                                                                                                                                                                                                                                                                               | (mg/kg)                                                                                                                                                                                                                                 | (ug/L)                                                                                                                                                                                                                                          | (umol/g)                                                                                                                                                                                                                                                        | (mg/kg)                                                                                                                                                                                                                                                            | (ug/L)                                                                                                                                                                                                                                      | (umol/g)                                                                                                                                                                                                                                                                                                              | (mg/kg)                                                                                                                                                                                                                                                                 | (ug/L)                                                                                                                                                                                                                                                                                      | (umol/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (mg/kg)                                                                                                                                                                                                                            | (ug/L)                                                                                                                                                                                                                                                | (umol/g)                                                                                                                                                                                                                                                     |
| Parameter<br>Acid Volatile Sulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                     | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                              | 18.4                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                  | 3.3                                                                                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                              | 11.9                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                          | 22.6 J                                                                                                                                                                                                                                                                                                                | NA                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                          | 0.41 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                                    | 44.6 J                                                                                                                                                                                                                                                       |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.98                                                                                                                                                                                                                                                                                                                          | 8.5 L                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                     | 0.085 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.9                                                                                                                                                                                                                                    | 0.13 J                                                                                                                                                                                                                                          | 0.25                                                                                                                                                                                                                                                                                                                                                                                      | 19.3 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.23 J                                                                                                                                                                                                                              | 0.15                                                                                                                                                                                                                                                                                                   | 11.9 J                                                                                                                                                                                                                                  | 0.13 J                                                                                                                                                                                                                                          | 0.087                                                                                                                                                                                                                                                           | 5.2 J                                                                                                                                                                                                                                                              | 0.11 U                                                                                                                                                                                                                                      | 0.034 J                                                                                                                                                                                                                                                                                                               | 0.61 L                                                                                                                                                                                                                                                                  | 0.11 U                                                                                                                                                                                                                                                                                      | 0.0035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.6 J                                                                                                                                                                                                                              | 0.11 U                                                                                                                                                                                                                                                | 0.033 J                                                                                                                                                                                                                                                      |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111                                                                                                                                                                                                                                                                                                                           | 55.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.3                                                                                                                                                                                                                                    | 0.61 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 277                                                                                                                                                                                                                                     | 13.7                                                                                                                                                                                                                                            | 1.6                                                                                                                                                                                                                                                                                                                                                                                       | 336 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.9                                                                                                                                                                                                                                | 2.5                                                                                                                                                                                                                                                                                                    | 251 J                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                              | 1.7                                                                                                                                                                                                                                                             | 110 J                                                                                                                                                                                                                                                              | 13                                                                                                                                                                                                                                          | 0.71 J                                                                                                                                                                                                                                                                                                                | 29.6                                                                                                                                                                                                                                                                    | 8.5                                                                                                                                                                                                                                                                                         | 0.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 133 J                                                                                                                                                                                                                              | 10.3                                                                                                                                                                                                                                                  | 1 J                                                                                                                                                                                                                                                          |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 149                                                                                                                                                                                                                                                                                                                           | 16.9 L                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.7                                                                                                                                                                                                                                    | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108                                                                                                                                                                                                                                     | 1.3 J                                                                                                                                                                                                                                           | 0.011 B                                                                                                                                                                                                                                                                                                                                                                                   | 94.2 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2 J                                                                                                                                                                                                                               | 0.53                                                                                                                                                                                                                                                                                                   | 118 J                                                                                                                                                                                                                                   | 0.98 J                                                                                                                                                                                                                                          | 0.68                                                                                                                                                                                                                                                            | 116 J                                                                                                                                                                                                                                                              | 1.2 J                                                                                                                                                                                                                                       | 0.086 J                                                                                                                                                                                                                                                                                                               | 21 L                                                                                                                                                                                                                                                                    | 2.2                                                                                                                                                                                                                                                                                         | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 156 J                                                                                                                                                                                                                              | 1.1 J                                                                                                                                                                                                                                                 | 0.48 J                                                                                                                                                                                                                                                       |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.5<br>8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 128<br>48.6                                                                                                                                                                                                                                                                                                                   | 53.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2 J<br>6.8                                                                                                                                                                                                                           | 0.16 J<br>0.096 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 142 K<br>32.8                                                                                                                                                                                                                           | 1.6 J                                                                                                                                                                                                                                           | 0.52                                                                                                                                                                                                                                                                                                                                                                                      | 170<br>40.3 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.54 J                                                                                                                                                                                                                              | 0.63                                                                                                                                                                                                                                                                                                   | 147 J<br>42.9 L                                                                                                                                                                                                                         | 0.1 B                                                                                                                                                                                                                                           | 0.5                                                                                                                                                                                                                                                             | 111 J<br>36.4 J                                                                                                                                                                                                                                                    | 1 J                                                                                                                                                                                                                                         | 0.36 J<br>0.17 J                                                                                                                                                                                                                                                                                                      | 14.3<br>21.2 L                                                                                                                                                                                                                                                          | 0.7 J                                                                                                                                                                                                                                                                                       | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120 J<br>37.7 J                                                                                                                                                                                                                    | 0.21 B<br>0.7 B                                                                                                                                                                                                                                       | 0.44 J<br>0.2 J                                                                                                                                                                                                                                              |
| Nickel<br>Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 48.6                                                                                                                                                                                                                                                                                                                          | 16.6 L<br>0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.036 U                                                                                                                                                                                                                                | 0.096 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.8                                                                                                                                                                                                                                    | 1.2<br>0.036 U                                                                                                                                                                                                                                  | 0.14<br>0.00036 U                                                                                                                                                                                                                                                                                                                                                                         | 40.3 L<br>7.2 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.97 B<br>0.036 U                                                                                                                                                                                                                   | 0.19 0.011                                                                                                                                                                                                                                                                                             | 42.9 L<br>5.6 J                                                                                                                                                                                                                         | 0.036 U                                                                                                                                                                                                                                         | 0.16 0.0093                                                                                                                                                                                                                                                     | 36.4 J<br>2.8 J                                                                                                                                                                                                                                                    | 0.036 U                                                                                                                                                                                                                                     | 0.0005 UJ                                                                                                                                                                                                                                                                                                             | 0.091 J                                                                                                                                                                                                                                                                 | 1.1<br>0.036 U                                                                                                                                                                                                                                                                              | 0.077<br>0.00035 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.6 J                                                                                                                                                                                                                              | 0.036 U                                                                                                                                                                                                                                               | 0.2 J<br>0.0011 J                                                                                                                                                                                                                                            |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 459                                                                                                                                                                                                                                                                                                                           | 12.7 L                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38.9                                                                                                                                                                                                                                   | 1.2 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 524                                                                                                                                                                                                                                     | 3.9 J                                                                                                                                                                                                                                           | 6.8                                                                                                                                                                                                                                                                                                                                                                                       | 404 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.5 J                                                                                                                                                                                                                               | 4.1                                                                                                                                                                                                                                                                                                    | 415 J                                                                                                                                                                                                                                   | 4.7 J                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                               | 382 J                                                                                                                                                                                                                                                              | 3.8 J                                                                                                                                                                                                                                       | 3.9 J                                                                                                                                                                                                                                                                                                                 | 69.7                                                                                                                                                                                                                                                                    | 6.5                                                                                                                                                                                                                                                                                         | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 350 J                                                                                                                                                                                                                              | 2.4 J                                                                                                                                                                                                                                                 | 3.7 J                                                                                                                                                                                                                                                        |
| Total Organic Carbon (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                            | 0.989                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                     | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.81                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                        | 3.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                     | 2.86                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                              | 2.8 J                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                          | NA                                                                                                                                                                                                                                                                                                                    | 3.13                                                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.03 J                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                                           |
| Total SEM <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                     | 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                              | 7.72                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                  | 5.61                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                              | 5.43                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                          | 4.55                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                          | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                                    | 4.85                                                                                                                                                                                                                                                         |
| SEM - AVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                     | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                              | -10.68                                                                                                                                                                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                  | 2.31                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                              | -6.47                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                          | -18.05                                                                                                                                                                                                                                                                                                                | NA                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                          | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                                    | -39.75                                                                                                                                                                                                                                                       |
| (SEM - AVS)/f <sub>oc</sub> <sup>(4)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                     | 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                              | -184                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                  | 73.0                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                              | -226                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                          | -645                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                          | 14.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                                    | -790                                                                                                                                                                                                                                                         |
| Total PCBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.676                                                                                                                                                                                                                                                                                                                         | 0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                     | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.38                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                        | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.49 J                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                     | 1.8                                                                                                                                                                                                                                     | 0.18 J                                                                                                                                                                                                                                          | NA                                                                                                                                                                                                                                                              | 0.69                                                                                                                                                                                                                                                               | 0.61 J                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                    | 0.014                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.19                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SD-85-01                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                         | SD-87-01                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SD-88-01                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                         | SD-89-01                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                    | SD-90-01                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                         | SD-99-01                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                  | SD-101-01                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sediment                                                                                                                                                                                                                                                                                                                      | Sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pore Water                                                                                                                                                                                                                             | AVS or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sediment                                                                                                                                                                                                                                | Pore Water                                                                                                                                                                                                                                      | AVS or                                                                                                                                                                                                                                                                                                                                                                                    | Sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pore Water                                                                                                                                                                                                                          | AVS or                                                                                                                                                                                                                                                                                                 | Sediment                                                                                                                                                                                                                                | Pore Water                                                                                                                                                                                                                                      | AVS or                                                                                                                                                                                                                                                          | Sediment                                                                                                                                                                                                                                                           | Pore Water                                                                                                                                                                                                                                  | AVS or                                                                                                                                                                                                                                                                                                                | Sediment                                                                                                                                                                                                                                                                | Pore Water                                                                                                                                                                                                                                                                                  | AVS or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sediment                                                                                                                                                                                                                           | Pore Water                                                                                                                                                                                                                                            | AVS or                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Criteria <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Criteria <sup>(2)</sup>                                                                                                                                                                                                                                                                                                       | Conc.                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Conc.                                                                                                                                                                                                                                  | SEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Conc.                                                                                                                                                                                                                                   | Conc.                                                                                                                                                                                                                                           | SEM                                                                                                                                                                                                                                                                                                                                                                                       | Conc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conc.                                                                                                                                                                                                                               | SEM                                                                                                                                                                                                                                                                                                    | Conc.                                                                                                                                                                                                                                   | Conc.                                                                                                                                                                                                                                           | SEM                                                                                                                                                                                                                                                             | Conc.                                                                                                                                                                                                                                                              | Conc.                                                                                                                                                                                                                                       | SEM                                                                                                                                                                                                                                                                                                                   | Conc.                                                                                                                                                                                                                                                                   | Conc.                                                                                                                                                                                                                                                                                       | SEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conc.                                                                                                                                                                                                                              | Conc.                                                                                                                                                                                                                                                 | SEM                                                                                                                                                                                                                                                          |
| Surface Sediment, >6-18 inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ug/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (mg/kg)                                                                                                                                                                                                                                                                                                                       | (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ug/L)                                                                                                                                                                                                                                 | (umol/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (mg/kg)                                                                                                                                                                                                                                 | (ug/L)                                                                                                                                                                                                                                          | (umol/g)                                                                                                                                                                                                                                                                                                                                                                                  | (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ug/L)                                                                                                                                                                                                                              | (umol/g)                                                                                                                                                                                                                                                                                               | (mg/kg)                                                                                                                                                                                                                                 | (ug/L)                                                                                                                                                                                                                                          | (umol/g)                                                                                                                                                                                                                                                        | (mg/kg)                                                                                                                                                                                                                                                            | (ug/L)                                                                                                                                                                                                                                      | (umol/g)                                                                                                                                                                                                                                                                                                              | (mg/kg)                                                                                                                                                                                                                                                                 | (ug/L)                                                                                                                                                                                                                                                                                      | (umol/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (mg/kg)                                                                                                                                                                                                                            | (ug/L)                                                                                                                                                                                                                                                | (umol/g)                                                                                                                                                                                                                                                     |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                             | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                       | 40 -                                                                                                                                                                                                                                                         |
| Acid Volatile Sulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA<br>4.98                                                                                                                                                                                                                                                                                                                    | NA<br>0.14 I                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA<br>23                                                                                                                                                                                                                               | 0.23 U<br>0.00026 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA<br>64.7                                                                                                                                                                                                                              | NA<br>0 14 1                                                                                                                                                                                                                                    | 2.4<br>0.48                                                                                                                                                                                                                                                                                                                                                                               | NA<br>15.7 、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA<br>0.11 U                                                                                                                                                                                                                        | 8.8<br>0.12                                                                                                                                                                                                                                                                                            | NA<br>17.8 L                                                                                                                                                                                                                            | NA<br>0.11 U                                                                                                                                                                                                                                    | 4.6                                                                                                                                                                                                                                                             | NA<br>12.5                                                                                                                                                                                                                                                         | NA<br>0.11 U                                                                                                                                                                                                                                | 19<br>0.085                                                                                                                                                                                                                                                                                                           | NA<br>0.4 L                                                                                                                                                                                                                                                             | NA<br>0.11.11                                                                                                                                                                                                                                                                               | 0.38 U<br>0.0014 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA<br>12.6                                                                                                                                                                                                                         | NA<br>0.11 U                                                                                                                                                                                                                                          | 10.5<br>0.084                                                                                                                                                                                                                                                |
| Cadmium<br>Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.12<br>57.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.98                                                                                                                                                                                                                                                                                                                          | 0.14 L<br>13.8                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23<br>16.1                                                                                                                                                                                                                             | 0.00026 J<br>0.016 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64.7<br>541                                                                                                                                                                                                                             | <b>0.14 J</b><br>14.8                                                                                                                                                                                                                           | 0.48                                                                                                                                                                                                                                                                                                                                                                                      | 15.7 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.7                                                                                                                                                                                                                                | 2.4                                                                                                                                                                                                                                                                                                    | 17.8 L<br>336                                                                                                                                                                                                                           | 13.6                                                                                                                                                                                                                                            | 2.5                                                                                                                                                                                                                                                             | 12.5<br>212                                                                                                                                                                                                                                                        | 12.5                                                                                                                                                                                                                                        | 0.085                                                                                                                                                                                                                                                                                                                 | 0.4 L<br>27.7                                                                                                                                                                                                                                                           | . 0.11 U<br>7.8                                                                                                                                                                                                                                                                             | 0.0014 J<br>0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.6                                                                                                                                                                                                                               | 13.4                                                                                                                                                                                                                                                  | 0.084                                                                                                                                                                                                                                                        |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 149                                                                                                                                                                                                                                                                                                                           | 9.5 L                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.3                                                                                                                                                                                                                                    | 0.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 88.7                                                                                                                                                                                                                                    | 14.0<br>1.7 J                                                                                                                                                                                                                                   | 0.18                                                                                                                                                                                                                                                                                                                                                                                      | 95.2 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.3 J                                                                                                                                                                                                                               | 0.52                                                                                                                                                                                                                                                                                                   | 107 L                                                                                                                                                                                                                                   | 0.75 J                                                                                                                                                                                                                                          | 0.41                                                                                                                                                                                                                                                            | 130 J                                                                                                                                                                                                                                                              | 0.78 J                                                                                                                                                                                                                                      | 0.037                                                                                                                                                                                                                                                                                                                 | 20.1 L                                                                                                                                                                                                                                                                  | . 2                                                                                                                                                                                                                                                                                         | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 98.8                                                                                                                                                                                                                               | 0.81 J                                                                                                                                                                                                                                                | 0.41                                                                                                                                                                                                                                                         |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128                                                                                                                                                                                                                                                                                                                           | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.5                                                                                                                                                                                                                                    | 0.015 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 205 K                                                                                                                                                                                                                                   | 0.63 J                                                                                                                                                                                                                                          | 0.73                                                                                                                                                                                                                                                                                                                                                                                      | 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.26 J                                                                                                                                                                                                                              | 0.75                                                                                                                                                                                                                                                                                                   | 187                                                                                                                                                                                                                                     | 0.098 B                                                                                                                                                                                                                                         | 0.58                                                                                                                                                                                                                                                            | 257 J                                                                                                                                                                                                                                                              | 0.65 J                                                                                                                                                                                                                                      | 0.66                                                                                                                                                                                                                                                                                                                  | 12.5                                                                                                                                                                                                                                                                    | 0.48 J                                                                                                                                                                                                                                                                                      | 0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 158 K                                                                                                                                                                                                                              | 0.27 J                                                                                                                                                                                                                                                | 0.51                                                                                                                                                                                                                                                         |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48.6                                                                                                                                                                                                                                                                                                                          | 13.2 L                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.9                                                                                                                                                                                                                                    | 0.035 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31.5                                                                                                                                                                                                                                    | 2.3                                                                                                                                                                                                                                             | 0.16                                                                                                                                                                                                                                                                                                                                                                                      | 42.1 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 1                                                                                                                                                                                                                                 | 0.2                                                                                                                                                                                                                                                                                                    | 46.5 L                                                                                                                                                                                                                                  | 1.3                                                                                                                                                                                                                                             | 0.18                                                                                                                                                                                                                                                            | 41.8                                                                                                                                                                                                                                                               | 0.96 B                                                                                                                                                                                                                                      | 0.18                                                                                                                                                                                                                                                                                                                  | 20.5 L                                                                                                                                                                                                                                                                  | 1.5                                                                                                                                                                                                                                                                                         | 0.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39.8                                                                                                                                                                                                                               | 0.59 B                                                                                                                                                                                                                                                | 0.17                                                                                                                                                                                                                                                         |
| Silver<br>Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.77<br>459                                                                                                                                                                                                                                                                                                                   | 0.042 J<br>34.5 L                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.078 B<br>47.5                                                                                                                                                                                                                        | 0.0002 U<br>0.11 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.7<br>497                                                                                                                                                                                                                              | 0.036 U<br>4.7 J                                                                                                                                                                                                                                | 0.001 J<br>6.9                                                                                                                                                                                                                                                                                                                                                                            | 6.8 L<br>392 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.036 U<br>3.7 J                                                                                                                                                                                                                    | 0.0083                                                                                                                                                                                                                                                                                                 | 7.1<br>441                                                                                                                                                                                                                              | 0.036 U<br>2.6 J                                                                                                                                                                                                                                | 0.0063                                                                                                                                                                                                                                                          | 8.9<br>386                                                                                                                                                                                                                                                         | 0.055 B<br>3.5 J                                                                                                                                                                                                                            | 0.00095 J<br>4.2                                                                                                                                                                                                                                                                                                      | 0.068 J<br>67.4                                                                                                                                                                                                                                                         | J 0.036 U<br>4.3 J                                                                                                                                                                                                                                                                          | 0.00033 U<br>0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.1<br>371                                                                                                                                                                                                                         | 0.036 U<br>1.7 J                                                                                                                                                                                                                                      | 0.004 3.4                                                                                                                                                                                                                                                    |
| Total Organic Carbon (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A39<br>NA                                                                                                                                                                                                                                                                                                                     | 2.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47.5<br>NA                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.88                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                        | 3.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     | NA                                                                                                                                                                                                                                                                                                     | 2.73                                                                                                                                                                                                                                    | NA NA                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                              | 3.59                                                                                                                                                                                                                                                               | NA NA                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                                                    | 3.49                                                                                                                                                                                                                                                                    | 4.3 J<br>NA                                                                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.6                                                                                                                                                                                                                                | NA NA                                                                                                                                                                                                                                                 | NA NA                                                                                                                                                                                                                                                        |
| Total SEM <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                     | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                              | 8.45                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                  | 5.69                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                              | 5.29                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                          | 5.16                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                          | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                                    | 4.58                                                                                                                                                                                                                                                         |
| SEM - AVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                     | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                              | 6.05                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                  | -3.11                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                              | 0.69                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                          | -13.84                                                                                                                                                                                                                                                                                                                | NA                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                          | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                                    | -5.92                                                                                                                                                                                                                                                        |
| (SEM - AVS)/f <sub>oc</sub> <sup>(4)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                     | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                              | 210                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                  | -95.6                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                              | 25.4                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                          | -385                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                          | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                 | NA                                                                                                                                                                                                                                                    | -228                                                                                                                                                                                                                                                         |
| Total PCBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.676                                                                                                                                                                                                                                                                                                                         | 0.0018 U                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                     | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.35                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                        | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.13 J                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                     | 1.5                                                                                                                                                                                                                                     | 0.1 J                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                | 0.55 J                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                    | 0.0028 U                                                                                                                                                                                                                                                                | NA                                                                                                                                                                                                                                                                                          | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.24                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SD-85-02                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                         | SD-87-02                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SD-88-02                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                         | SD-89-02                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                    | SD-90-02                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                         | SD-99-02                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                    | SD-101-02                                                                                                                                                                                                                                             | AVS or                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sediment                                                                                                                                                                                                                                                                                                                      | Sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pore Water                                                                                                                                                                                                                             | AVS or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sediment                                                                                                                                                                                                                                | Pore Water                                                                                                                                                                                                                                      | AVSor                                                                                                                                                                                                                                                                                                                                                                                     | Sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pore Water                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                        | Sediment                                                                                                                                                                                                                                | Pore Water                                                                                                                                                                                                                                      | AVS or                                                                                                                                                                                                                                                          | Sediment                                                                                                                                                                                                                                                           | Pore Water                                                                                                                                                                                                                                  | AVS or                                                                                                                                                                                                                                                                                                                | Sediment                                                                                                                                                                                                                                                                | Pore Water                                                                                                                                                                                                                                                                                  | AVS or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sediment                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water<br>Criteria <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sediment<br>Criteria <sup>(2)</sup>                                                                                                                                                                                                                                                                                           | Sediment<br>Conc.                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pore Water<br>Conc.                                                                                                                                                                                                                    | AVS or<br>SEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sediment<br>Conc.                                                                                                                                                                                                                       | Pore Water<br>Conc.                                                                                                                                                                                                                             | AVS or<br>SEM                                                                                                                                                                                                                                                                                                                                                                             | Sediment<br>Conc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pore Water<br>Conc.                                                                                                                                                                                                                 | AVS or<br>SEM                                                                                                                                                                                                                                                                                          | Sediment<br>Conc.                                                                                                                                                                                                                       | Pore Water<br>Conc.                                                                                                                                                                                                                             | AVS or<br>SEM                                                                                                                                                                                                                                                   | Sediment<br>Conc.                                                                                                                                                                                                                                                  | Pore Water<br>Conc.                                                                                                                                                                                                                         | AVS or<br>SEM                                                                                                                                                                                                                                                                                                         | Sediment<br>Conc.                                                                                                                                                                                                                                                       | Pore Water<br>Conc.                                                                                                                                                                                                                                                                         | AVS or<br>SEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sediment<br>Conc.                                                                                                                                                                                                                  | Pore Water<br>Conc.                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                              |
| Surface Sediment, >18-30 inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water<br>Criteria <sup>(1)</sup><br>(ug/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sediment<br>Criteria <sup>(2)</sup><br>(mg/kg)                                                                                                                                                                                                                                                                                | Sediment<br>Conc.<br>(mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pore Water<br>Conc.<br>(ug/L)                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sediment<br>Conc.<br>(mg/kg)                                                                                                                                                                                                            | Pore Water<br>Conc.<br>(ug/L)                                                                                                                                                                                                                   | SEM                                                                                                                                                                                                                                                                                                                                                                                       | Conc.<br>(mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pore Water<br>Conc.<br>(ug/L)                                                                                                                                                                                                       | AVS or<br>SEM<br>(umol/g)                                                                                                                                                                                                                                                                              | Sediment<br>Conc.<br>(mg/kg)                                                                                                                                                                                                            | Pore Water<br>Conc.<br>(ug/L)                                                                                                                                                                                                                   | AVS or<br>SEM<br>(umol/g)                                                                                                                                                                                                                                       | Conc.<br>(mg/kg)                                                                                                                                                                                                                                                   | Pore Water<br>Conc.<br>(ug/L)                                                                                                                                                                                                               | AVS or<br>SEM<br>(umol/g)                                                                                                                                                                                                                                                                                             | Sediment<br>Conc.<br>(mg/kg)                                                                                                                                                                                                                                            | Pore Water<br>Conc.<br>(ug/L)                                                                                                                                                                                                                                                               | AVS or<br>SEM<br>(umol/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sediment<br>Conc.<br>(mg/kg)                                                                                                                                                                                                       | Pore Water<br>Conc.<br>(ug/L)                                                                                                                                                                                                                         | SEM<br>(umol/g)                                                                                                                                                                                                                                              |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Criteria <sup>(1)</sup><br>(ug/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Criteria <sup>(2)</sup><br>(mg/kg)                                                                                                                                                                                                                                                                                            | Conc.<br>(mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conc.<br>(ug/L)                                                                                                                                                                                                                        | SEM<br>(umol/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Conc.<br>(mg/kg)                                                                                                                                                                                                                        | Conc.<br>(ug/L)                                                                                                                                                                                                                                 | SEM<br>(umol/g)                                                                                                                                                                                                                                                                                                                                                                           | Conc.<br>(mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conc.<br>(ug/L)                                                                                                                                                                                                                     | SEM<br>(umol/g)                                                                                                                                                                                                                                                                                        | Conc.<br>(mg/kg)                                                                                                                                                                                                                        | Conc.<br>(ug/L)                                                                                                                                                                                                                                 | SEM<br>(umol/g)                                                                                                                                                                                                                                                 | Conc.<br>(mg/kg)                                                                                                                                                                                                                                                   | Conc.<br>(ug/L)                                                                                                                                                                                                                             | SEM<br>(umol/g)                                                                                                                                                                                                                                                                                                       | Conc.<br>(mg/kg)                                                                                                                                                                                                                                                        | Conc.<br>(ug/L)                                                                                                                                                                                                                                                                             | SEM<br>(umol/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conc.<br>(mg/kg)                                                                                                                                                                                                                   | Conc.<br>(ug/L)                                                                                                                                                                                                                                       | SEM<br>(umol/g)                                                                                                                                                                                                                                              |
| Parameter<br>Acid Volatile Sulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Criteria <sup>(1)</sup><br>(ug/L)<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA                                                                                                                                                                                                                                                                                      | Conc.<br>(mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conc.<br>(ug/L)                                                                                                                                                                                                                        | SEM<br>(umol/g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Conc.<br>(mg/kg)                                                                                                                                                                                                                        | Conc.<br>(ug/L)                                                                                                                                                                                                                                 | SEM<br>(umol/g)<br>4.4                                                                                                                                                                                                                                                                                                                                                                    | Conc.<br>(mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conc.<br>(ug/L)                                                                                                                                                                                                                     | SEM<br>(umol/g)                                                                                                                                                                                                                                                                                        | Conc.<br>(mg/kg)<br>NA                                                                                                                                                                                                                  | Conc.<br>(ug/L)                                                                                                                                                                                                                                 | SEM<br>(umol/g)                                                                                                                                                                                                                                                 | Conc.<br>(mg/kg)                                                                                                                                                                                                                                                   | Conc.<br>(ug/L)                                                                                                                                                                                                                             | SEM<br>(umol/g)<br>18.7                                                                                                                                                                                                                                                                                               | Conc.<br>(mg/kg)                                                                                                                                                                                                                                                        | Conc.<br>(ug/L)                                                                                                                                                                                                                                                                             | SEM<br>(umol/g)<br>0.41 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Conc.<br>(mg/kg)                                                                                                                                                                                                                   | Conc.<br>(ug/L)                                                                                                                                                                                                                                       | SEM<br>(umol/g)<br>4.4                                                                                                                                                                                                                                       |
| Parameter<br>Acid Volatile Sulfide<br>Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98                                                                                                                                                                                                                                                                              | Conc.<br>(mg/kg)<br>NA<br>0.19 L                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conc.<br>(ug/L)<br>NA<br>1.4                                                                                                                                                                                                           | SEM<br>(umol/g)<br>0.29 U<br>0.0007 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conc.<br>(mg/kg)<br>NA<br>207                                                                                                                                                                                                           | Conc.<br>(ug/L)<br>NA<br>0.11 U                                                                                                                                                                                                                 | SEM<br>(umol/g)<br>4.4<br>1.4                                                                                                                                                                                                                                                                                                                                                             | Conc.<br>(mg/kg)<br>NA<br>35.5 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conc.<br>(ug/L)<br>NA<br>0.11 U                                                                                                                                                                                                     | SEM<br>(umol/g)<br>5<br>0.25                                                                                                                                                                                                                                                                           | Conc.<br>(mg/kg)<br>NA<br>30.2 L                                                                                                                                                                                                        | Conc.<br>(ug/L)<br>NA<br>0.11 U                                                                                                                                                                                                                 | SEM<br>(umol/g)<br>0.74 J<br>0.19                                                                                                                                                                                                                               | Conc.<br>(mg/kg)<br>NA<br>38.7                                                                                                                                                                                                                                     | Conc.<br>(ug/L)<br>NA<br>0.11 U                                                                                                                                                                                                             | SEM<br>(umol/g)<br>18.7<br>0.22                                                                                                                                                                                                                                                                                       | Conc.<br>(mg/kg)<br>NA<br>0.4 L                                                                                                                                                                                                                                         | Conc.<br>(ug/L)<br>NA<br>0.11 U                                                                                                                                                                                                                                                             | SEM<br>(umol/g)<br>0.41 U<br>0.0013 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Conc.<br>(mg/kg)<br>NA<br>44.7                                                                                                                                                                                                     | Conc.<br>(ug/L)<br>NA<br>0.11 U                                                                                                                                                                                                                       | SEM<br>(umol/g)<br>4.4<br>0.27                                                                                                                                                                                                                               |
| Parameter<br>Acid Volatile Sulfide<br>Cadmium<br>Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Criteria <sup>(1)</sup><br>(ug/L)<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA                                                                                                                                                                                                                                                                                      | Conc.<br>(mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conc.<br>(ug/L)                                                                                                                                                                                                                        | SEM<br>(umol/g)<br>0.29 U<br>0.0007 J<br>0.0089 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Conc.<br>(mg/kg)<br>NA<br>207<br>1530                                                                                                                                                                                                   | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5                                                                                                                                                                                                         | SEM<br>(umol/g)<br>4.4<br>1.4<br>15.4                                                                                                                                                                                                                                                                                                                                                     | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8                                                                                                                                                                                              | SEM<br>(umol/g)<br>5<br>0.25<br>5.6                                                                                                                                                                                                                                                                    | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569                                                                                                                                                                                                 | Conc.<br>(ug/L)                                                                                                                                                                                                                                 | SEM<br>(umol/g)                                                                                                                                                                                                                                                 | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690                                                                                                                                                                                                                              | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3                                                                                                                                                                                                      | SEM<br>(umol/g)<br>18.7                                                                                                                                                                                                                                                                                               | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6                                                                                                                                                                                                                                 | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6                                                                                                                                                                                                                                                     | SEM<br>(umol/g)<br>0.41 U<br>0.0013 J<br>0.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719                                                                                                                                                                                              | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6                                                                                                                                                                                                               | SEM<br>(umol/g)<br>4.4                                                                                                                                                                                                                                       |
| Parameter<br>Acid Volatile Sulfide<br>Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111                                                                                                                                                                                                                                                                       | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8                                                                                                                                                                                                                                                                                                                                                                                                                            | Conc.<br>(ug/L)<br>NA<br>1.4<br>18.7                                                                                                                                                                                                   | SEM<br>(umol/g)<br>0.29 U<br>0.0007 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conc.<br>(mg/kg)<br>NA<br>207                                                                                                                                                                                                           | Conc.<br>(ug/L)<br>NA<br>0.11 U                                                                                                                                                                                                                 | SEM<br>(umol/g)<br>4.4<br>1.4                                                                                                                                                                                                                                                                                                                                                             | Conc.<br>(mg/kg)<br>NA<br>35.5 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conc.<br>(ug/L)<br>NA<br>0.11 U                                                                                                                                                                                                     | SEM<br>(umol/g)<br>5<br>0.25                                                                                                                                                                                                                                                                           | Conc.<br>(mg/kg)<br>NA<br>30.2 L                                                                                                                                                                                                        | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5                                                                                                                                                                                                         | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9                                                                                                                                                                                                                        | Conc.<br>(mg/kg)<br>NA<br>38.7                                                                                                                                                                                                                                     | Conc.<br>(ug/L)<br>NA<br>0.11 U                                                                                                                                                                                                             | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9                                                                                                                                                                                                                                                                                | Conc.<br>(mg/kg)<br>NA<br>0.4 L                                                                                                                                                                                                                                         | Conc.<br>(ug/L)<br>NA<br>0.11 U                                                                                                                                                                                                                                                             | SEM<br>(umol/g)<br>0.41 U<br>0.0013 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Conc.<br>(mg/kg)<br>NA<br>44.7                                                                                                                                                                                                     | Conc.<br>(ug/L)<br>NA<br>0.11 U                                                                                                                                                                                                                       | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9                                                                                                                                                                                                                        |
| Parameter<br>Acid Volatile Sulfide<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6                                                                                                                                                                                                                                                 | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L                                                                                                                                                                                                                                                                                                                                                                                                  | Conc.<br>(ug/L)<br>NA<br>1.4<br>18.7<br>1.4 J<br>2.2<br>2.2                                                                                                                                                                            | SEM<br>(umol/g)<br>0.29 U<br>0.0007 J<br>0.0089 J<br>0.03<br>0.011 J<br>0.044 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8                                                                                                                                                                           | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2                                                                                                                                                                              | SEM<br>(umol/g)<br>4.4<br>1.4<br>15.4<br>0.32<br>1<br>0.29                                                                                                                                                                                                                                                                                                                                | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>72.2 L<br>158<br>38.8 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8                                                                                                                                                                      | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.5<br>0.15                                                                                                                                                                                                                                              | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L                                                                                                                                                                       | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4                                                                                                                                                                              | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2                                                                                                                                                                                                 | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1                                                                                                                                                                                                     | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3                                                                                                                                                                              | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19                                                                                                                                                                                                                                                    | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L                                                                                                                                                                                                     | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4                                                                                                                                                                                                                             | SEM<br>(umol/g)<br>0.41 U<br>0.0013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6                                                                                                                                                                     | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1                                                                                                                                                                                     | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21                                                                                                                                                                                                |
| Parameter<br>Acid Volatile Sulfide<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Nickel<br>Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23                                                                                                                                                                                                                                                                                                                                                                                                                                            | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77                                                                                                                                                                                                                                         | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J                                                                                                                                                                                                                                                                                                                                                                                       | Conc.<br>(ug/L)<br>NA<br>1.4<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B                                                                                                                                                                 | SEM<br>(umol/g)<br>0.29 U<br>0.0007 J<br>0.0089 J<br>0.03<br>0.011 J<br>0.044 J<br>0.0045 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5                                                                                                                                                                    | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U                                                                                                                                                                   | SEM<br>(umol/g)<br>4.4<br>1.4<br>15.4<br>0.32<br>1<br>0.29<br>0.0048                                                                                                                                                                                                                                                                                                                      | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>72.2 L<br>158<br>38.8 L<br>13.6 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.036 U                                                                                                                                                           | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.5<br>0.15<br>0.0072                                                                                                                                                                                                                                    | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23                                                                                                                                                                 | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U                                                                                                                                                                   | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014                                                                                                                                                                                        | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3                                                                                                                                                                                             | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B                                                                                                                                                                   | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.00066 J                                                                                                                                                                                                                                       | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J                                                                                                                                                                                          | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U                                                                                                                                                                                                                  | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.00036 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8                                                                                                                                                             | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U                                                                                                                                                                          | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.0067                                                                                                                                                                                      |
| Parameter<br>Acid Volatile Sulfide<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Nickel<br>Silver<br>Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81                                                                                                                                                                                                                                                                                                                                                                                                                                      | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459                                                                                                                                                                                                                                  | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L                                                                                                                                                                                                                                                                                                                                                                             | Conc.<br>(ug/L)<br>NA<br>1.4<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7                                                                                                                                                          | SEM<br>(umol/g)<br>0.29 U<br>0.0089 J<br>0.03<br>0.011 J<br>0.044 J<br>0.00025 U<br>0.35 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5<br>762                                                                                                                                                             | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9 J                                                                                                                                                          | SEM<br>(umol/g)<br>4.4<br>15.4<br>15.4<br>0.32<br>1<br>0.29<br>0.0048<br>9.3                                                                                                                                                                                                                                                                                                              | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>72.2 L<br>158<br>38.8 L<br>13.6 L<br>572 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.036 U<br>21.4                                                                                                                                                   | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.5<br>0.15<br>0.0072<br>6                                                                                                                                                                                                                               | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492                                                                                                                                                          | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J                                                                                                                                                          | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1                                                                                                                                                                                 | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524                                                                                                                                                                                      | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J                                                                                                                                                          | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.00066 J<br>5.3                                                                                                                                                                                                                                | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8                                                                                                                                                                                  | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J                                                                                                                                                                                                         | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.00036 U<br>0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479                                                                                                                                                      | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>2.4 J                                                                                                                                                                 | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.43<br>0.47<br>0.21<br>0.0067<br>4.2                                                                                                                                                                       |
| Parameter<br>Acid Volatile Sulfide<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Nickel<br>Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23                                                                                                                                                                                                                                                                                                                                                                                                                                            | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77                                                                                                                                                                                                                                         | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J                                                                                                                                                                                                                                                                                                                                                                                       | Conc.<br>(ug/L)<br>NA<br>1.4<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B                                                                                                                                                                 | SEM<br>(umol/g)<br>0.29 U<br>0.0007 J<br>0.0089 J<br>0.03<br>0.011 J<br>0.044 J<br>0.0045 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5                                                                                                                                                                    | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U                                                                                                                                                                   | SEM<br>(umol/g)<br>4.4<br>1.4<br>15.4<br>0.32<br>1<br>0.29<br>0.0048                                                                                                                                                                                                                                                                                                                      | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>72.2 L<br>158<br>38.8 L<br>13.6 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.036 U                                                                                                                                                           | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.5<br>0.15<br>0.0072                                                                                                                                                                                                                                    | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23                                                                                                                                                                 | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U                                                                                                                                                                   | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014                                                                                                                                                                                        | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3                                                                                                                                                                                             | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B                                                                                                                                                                   | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.00066 J                                                                                                                                                                                                                                       | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J                                                                                                                                                                                          | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U                                                                                                                                                                                                                  | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.00036 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8                                                                                                                                                             | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U                                                                                                                                                                          | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.0067                                                                                                                                                                                      |
| Parameter<br>Acid Volatile Sulfide<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Nickel<br>Silver<br>Zinc<br>Total Organic Carbon (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA                                                                                                                                                                                                                            | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.55                                                                                                                                                                                                                                                                                                                                                                     | Conc.<br>(ug/L)<br>NA<br>1.4<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA                                                                                                                                                    | SEM<br>(umol/g)<br>0.029 U<br>0.0007 J<br>0.0089 J<br>0.031 J<br>0.011 J<br>0.0044 J<br>0.00025 U<br>0.35 J<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5<br>762<br>2.87                                                                                                                                                     | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9 s<br>NA                                                                                                                                                    | SEM<br>(umol/g)<br>4.4<br>15.4<br>0.32<br>1<br>0.29<br>0.0048<br>9.3<br>NA                                                                                                                                                                                                                                                                                                                | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>72.2 L<br>158<br>38.8 L<br>13.6 L<br>572 L<br>3.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.036 U<br>21.4<br>NA                                                                                                                                             | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.5<br>0.15<br>0.0072<br>6<br>NA                                                                                                                                                                                                                         | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71                                                                                                                                                  | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA                                                                                                                                          | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>NA                                                                                                                                                                           | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59                                                                                                                                                                              | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA                                                                                                                                                    | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.00066 J<br>5.3<br>NA                                                                                                                                                                                                                          | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49                                                                                                                                                                          | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA                                                                                                                                                                                                   | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.00036 U<br>0.43<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84                                                                                                                                              | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>2.4 J<br>NA                                                                                                                                                           | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.0067<br>4.2<br>NA                                                                                                                                                                         |
| Parameter<br>Acid Volatile Sulfide<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Nickel<br>Silver<br>Zinc<br>Total Organic Carbon (%)<br>Total SEM <sup>(3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                           | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                          | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA                                                                                                                                                                                                                      | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.55<br>NA                                                                                                                                                                                                                                                                                                                                                               | Conc.<br>(ug/L)<br>NA<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA                                                                                                                                                     | SEM<br>(umol/g)<br>0.029 U<br>0.0007 J<br>0.0089 J<br>0.003<br>0.011 J<br>0.0044 J<br>0.0025 U<br>0.35 J<br>NA<br>0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5<br>762<br>2.87<br>NA                                                                                                                                               | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9 J<br>NA<br>NA                                                                                                                                              | SEM<br>(umol/g)<br>4.4<br>1.4<br>15.4<br>0.32<br>1<br>0.29<br>0.0048<br>9.3<br>NA<br>12.31                                                                                                                                                                                                                                                                                                | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>72.2 L<br>158<br>38.8 L<br>13.6 L<br>572 L<br>3.59<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.35 J<br>1.8<br>0.036 U<br>21.4<br>NA<br>NA                                                                                                                      | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.5<br>0.15<br>0.072<br>6<br>NA<br>7.20                                                                                                                                                                                                                  | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA                                                                                                                                            | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>0.36 U<br>0.36 J<br>NA<br>NA                                                                                                                                   | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>NA<br>5.66                                                                                                                                                                          | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA                                                                                                                                                                        | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA                                                                                                                                              | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.00066 J<br>5.3<br>NA<br>6.18                                                                                                                                                                                                                  | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49<br>NA                                                                                                                                                                    | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA<br>NA                                                                                                                                                                                             | SEM<br>(umol/g)<br>0.41 U<br>0.0013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.0036 U<br>0.43<br>NA<br>0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA                                                                                                                                        | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>2.4 J<br>NA<br>NA                                                                                                                                                     | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.0067<br>4.2<br>NA<br>5.58                                                                                                                                                                 |
| Parameter<br>Acid Volatile Sulfide<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Nickel<br>Silver<br>Zinc<br>Total Organic Carbon (%)<br>Total SEM <sup>(3)</sup><br>SEM - AVS                                                                                                                                                                                                                                                                                                                                                                                                              | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA<br>NA<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                              | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>NA                                                                                                                                                                                                          | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.55<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                         | Conc.<br>(ug/L)<br>NA<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA<br>NA<br>NA                                                                                                                                         | SEM<br>(umol/g)<br>0.029 U<br>0.0007 J<br>0.0089 J<br>0.003<br>0.011 J<br>0.044 J<br>0.0025 U<br>0.35 J<br>NA<br>0.44<br>0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>4338<br>8.5<br>762<br>2.87<br>NA<br>NA                                                                                                                                         | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9 C<br>NA<br>NA<br>NA                                                                                                                                        | SEM<br>(umol/g)<br>4.4<br>15.4<br>0.32<br>1<br>0.29<br>0.0048<br>9.3<br>NA<br>12.31<br>7.91                                                                                                                                                                                                                                                                                               | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>72.2 L<br>158<br>38.8 L<br>13.6 L<br>572 L<br>3.59<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.036 U<br>2.1.4<br>NA<br>NA<br>NA                                                                                                                                | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.5<br>0.15<br>0.0072<br>6<br>NA<br>7.20<br>2.20                                                                                                                                                                                                         | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA<br>NA                                                                                                                                      | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA<br>NA<br>NA                                                                                                                                        | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>NA<br>5.66<br>4.92                                                                                                                                                           | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA<br>NA                                                                                                                                                                  | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA<br>NA                                                                                                                                        | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.00066 J<br>5.3<br>NA<br>6.18<br>-12.52                                                                                                                                                                                                        | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49<br>NA<br>NA                                                                                                                                                              | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA<br>NA<br>NA<br>NA                                                                                                                                                                                 | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.00036 U<br>0.43<br>NA<br>0.51<br>0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA<br>NA                                                                                                                                  | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>2.4 J<br>NA<br>NA<br>NA                                                                                                                                               | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.0067<br>4.2<br>NA<br>5.58<br>1.18                                                                                                                                                         |
| Parameter           Acid Volatile Sulfide           Cadmium           Chromium           Copper           Lead           Nickel           Silver           Zinc           Total Organic Carbon (%)           Total SEM <sup>(3)</sup> SEM - AVS           (SEM - AVS)/foc <sup>(4)</sup>                                                                                                                                                                                                                                                                                                  | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                            | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                                                                                                                    | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.55<br>NA<br>NA<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                             | Conc.<br>(ug/L)<br>NA<br>1.4<br>18.7<br>1.4 J<br>2.2<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                         | SEM<br>(umol/g)<br>0.29 U<br>0.0007 J<br>0.0089 J<br>0.003 J<br>0.0011 J<br>0.0044 J<br>0.00025 U<br>0.35 J<br>NA<br>0.44<br>0.29<br>11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5<br>762<br>2.87<br>NA<br>NA<br>NA<br>NA                                                                                                                             | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                                        | SEM<br>(umol/g)<br>4.4<br>15.4<br>0.32<br>1<br>0.29<br>0.0048<br>9.3<br>NA<br>12.31<br>7.91<br>276                                                                                                                                                                                                                                                                                        | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>72.2 L<br>158<br>38.8 L<br>13.6 L<br>572 L<br>3.59<br>NA<br>NA<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.35 J<br>1.8<br>0.36 U<br>21.4<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.054 U                                                                                    | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.5<br>0.15<br>0.0072<br>6<br>NA<br>7.20<br>2.20<br>61.4                                                                                                                                                                                                 | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA<br>NA<br>NA                                                                                                                                | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                                | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>VA<br>5.66<br>4.92<br>133                                                                                                                                                    | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA<br>NA<br>NA<br>NA                                                                                                                                                      | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                                | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.00066 J<br>5.3<br>NA<br>6.18<br>-12.52<br>-349                                                                                                                                                                                                | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49<br>NA<br>NA<br>NA<br>NA                                                                                                                                                  | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                                                                                     | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.00036 U<br>0.43<br>NA<br>0.51<br>0.31<br>8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA<br>NA<br>NA                                                                                                                            | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>2.4 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                                             | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.0067<br>4.2<br>NA<br>5.58<br>1.18<br>41.7                                                                                                                                                 |
| Parameter           Acid Volatile Sulfide           Cadmium           Chromium           Copper           Lead           Nickel           Silver           Zinc           Total Organic Carbon (%)           Total SEM <sup>(3)</sup> SEM - AVS           (SEM - AVS)/foc <sup>(4)</sup>                                                                                                                                                                                                                                                                                                  | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>8.1<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>Surface                                                                                                                                                                                                                                                                                                                                                                                      | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.676                                                                                                                                                                                     | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.55<br>NA<br>NA<br>NA<br>0.0022 U                                                                                                                                                                                                                                                                                                                                       | Conc.<br>(ug/L)<br>NA<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-85-04                                                                                                                       | SEM<br>(umol/g)<br>0.0007 J<br>0.0089 J<br>0.03<br>0.011 J<br>0.0025 U<br>0.035 J<br>0.044 J<br>0.0025 U<br>0.35 J<br>NA<br>0.44<br>0.29<br>11.4<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5<br>762<br>2.87<br>NA<br>NA<br>NA<br>NA<br>0.77                                                                                                                     | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-87-04                                                                                                          | SEM<br>(umol/g)<br>4.4<br>15.4<br>0.32<br>1<br>0.29<br>0.0048<br>9.3<br>NA<br>12.31<br>7.91<br>276<br>NA                                                                                                                                                                                                                                                                                  | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>72.2 L<br>158<br>38.8 L<br>33.8 L<br>372 L<br>572 L<br>3.59<br>NA<br>NA<br>NA<br>NA<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.35 J<br>21.4<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-88-04                                                                                                          | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.15<br>0.072<br>6<br>NA<br>7.20<br>2.20<br>61.4<br>NA                                                                                                                                                                                                   | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA<br>NA<br>NA<br>NA<br>1.3                                                                                                                   | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.054 U<br>SD-89-04                                                                                                     | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>NA<br>5.66<br>4.92<br>133<br>NA                                                                                                                                              | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA<br>NA<br>NA<br>NA<br>O.4                                                                                                                                               | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-90-04                                                                                                                | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.0066 J<br>5.3<br>NA<br>6.18<br>-12.52<br>-349<br>NA                                                                                                                                                                                           | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                                                            | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-99-04                                                                                                                                                         | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.0036 U<br>0.43<br>NA<br>0.51<br>0.31<br>0.31<br>8.8<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA<br>NA<br>NA<br>NA<br>0.062                                                                                                             | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>2.4 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-101-04                                                                                                                | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.43<br>0.47<br>0.21<br>0.0067<br>4.2<br>NA<br>5.58<br>1.18<br>41.7<br>NA                                                                                                                                   |
| Parameter           Acid Volatile Sulfide           Cadmium           Chromium           Copper           Lead           Nickel           Silver           Zinc           Total Organic Carbon (%)           Total SEM <sup>(3)</sup> SEM - AVS           (SEM - AVS)/foc <sup>(4)</sup>                                                                                                                                                                                                                                                                                                  | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.000074<br>Surface<br>Water                                                                                                                                                                                                                                                                                                                                                                        | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.676<br>Sediment                                                                                                                                                                               | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.55<br>NA<br>NA<br>NA<br>0.0022 U<br>Sediment                                                                                                                                                                                                                                                                                                                           | Conc.<br>(ug/L)<br>NA<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-85-04<br>Pore Water                                                                                                         | SEM<br>(umol/g)<br>0.29 U<br>0.0007 J<br>0.0089 J<br>0.035 J<br>0.011 J<br>0.0044 J<br>0.00025 U<br>0.35 J<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>AVS or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5<br>762<br>2.87<br>NA<br>NA<br>NA<br>NA<br>O.77<br>Sediment                                                                                                         | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9 Q<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-87-04<br>Pore Water                                                                                            | SEM<br>(umol/g)<br>4.4<br>15.4<br>0.32<br>1<br>0.29<br>0.0048<br>9.3<br>NA<br>12.31<br>7.91<br>276<br>NA                                                                                                                                                                                                                                                                                  | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>72.2 L<br>72.2 L<br>158<br>38.8 L<br>3.5 A<br>NA<br>NA<br>NA<br>NA<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.036 U<br>21.4<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-88-04<br>Pore Water                                                                                           | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.5<br>0.05<br>0.0072<br>6<br>NA<br>7.20<br>2.20<br>61.4<br>NA<br>AVS or                                                                                                                                                                                 | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA<br>NA<br>NA<br>NA<br>1.3<br>Sediment                                                                                                       | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-89-04<br>Pore Water                                                                                            | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>4.1<br>NA<br>5.66<br>4.92<br>133<br>NA                                                                                                                                       | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA<br>NA<br>NA<br>NA<br>O.4<br>Sediment                                                                                                                                   | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-90-04<br>Pore Water                                                                                                  | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.00066 J<br>5.3<br>NA<br>6.18<br>-12.52<br>-349<br>NA<br>AVS or                                                                                                                                                                                | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49<br>NA<br>NA<br>NA<br>NA<br>NA<br>Sediment                                                                                                                                | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-99-04<br>Pore Water                                                                                                                                           | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.00036 U<br>0.43<br>NA<br>0.51<br>0.31<br>8.8<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA<br>NA<br>NA<br>NA<br>0.062<br>Sediment                                                                                                 | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>2.4 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-101-04<br>Pore Water                                                                                            | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.0067<br>4.2<br>NA<br>5.58<br>1.18<br>41.7<br>NA<br>AVS or                                                                                                                                 |
| Parameter<br>Acid Volatile Sulfide<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Nickel<br>Silver<br>Zinc<br>Total Organic Carbon (%)<br>Total Stam <sup>(3)</sup><br>SEM - AVS<br>(SEM - AVS)/f <sub>oc</sub> <sup>(4)</sup><br>Total PCBs                                                                                                                                                                                                                                                                                                                                                 | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA<br>NA<br>NA<br>NA<br>NA<br>O.000074<br>Surface<br>Water<br>Criteria <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                             | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SA<br>Sediment<br>Criteria <sup>(2)</sup>                                                                                                                                                 | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.55<br>NA<br>NA<br>NA<br>NA<br>0.0022 U<br>Sediment<br>Conc.                                                                                                                                                                                                                                                                                                            | Conc.<br>(ug/L)<br>NA<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-85-04<br>Pore Water<br>Conc.                                                                                                | SEM<br>(umol/g)<br>0.29 U<br>0.007 J<br>0.0089 J<br>0.013 J<br>0.0044 J<br>0.00025 U<br>0.35 J<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>AVS or<br>SEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>433<br>8.5<br>762<br>2.87<br>NA<br>NA<br>NA<br>NA<br>O.77<br>Sediment<br>Conc.                                                                                                 | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9 Q<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-87-04<br>Pore Water<br>Conc.                                                                                         | SEM<br>(umol/g)<br>4.4<br>15.4<br>0.32<br>1<br>0.29<br>0.0048<br>9.3<br>NA<br>12.31<br>7.91<br>276<br>NA<br>XVS or<br>SEM                                                                                                                                                                                                                                                                 | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>72.2 L<br>158<br>38.8 L<br>13.6 L<br>572 L<br>3.59<br>NA<br>NA<br>NA<br>NA<br>NA<br>O.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.036 U<br>21.4<br>NA<br>NA<br>NA<br>NA<br>SD-88-04<br>Pore Water<br>Conc.                                                                                        | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.5<br>0.15<br>0.0072<br>6<br>NA<br>7.20<br>2.20<br>61.4<br>NA<br>4VS or<br>SEM                                                                                                                                                                          | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA<br>NA<br>NA<br>NA<br>NA<br>Sediment<br>Conc.                                                                                               | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-89-04<br>Pore Water<br>Conc.                                                                                         | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>VA<br>5.66<br>4.92<br>133<br>NA<br>AVS or<br>SEM                                                                                                                             | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA<br>NA<br>NA<br>NA<br>O.4<br>Sediment<br>Conc.                                                                                                                          | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-90-04<br>Pore Water<br>Conc.                                                                                         | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.00066 J<br>5.3<br>NA<br>6.18<br>-12.52<br>-349<br>NA<br>AVS or<br>SEM                                                                                                                                                                         | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49<br>NA<br>NA<br>NA<br>NA<br>NA<br>Sediment<br>Conc.                                                                                                                       | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-99-04<br>Pore Water<br>Conc.                                                                                                                                        | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.00036 U<br>0.43<br>NA<br>0.51<br>0.31<br>8.8<br>NA<br>AVS or<br>SEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA<br>NA<br>NA<br>NA<br>0.062<br>Sediment<br>Conc.                                                                                        | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>2.4 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>Pore Water<br>Conc.                                                                                                | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.0067<br>4.2<br>NA<br>5.58<br>1.18<br>41.7<br>NA<br>AVS or<br>SEM                                                                                                                          |
| Parameter           Acid Volatile Sulfide           Cadmium           Chromium           Copper           Lead           Nickel           Silver           Zinc           Total Organic Carbon (%)           Total SEM <sup>(3)</sup> SEM - AVS           (SEM - AVS)/foc <sup>(4)</sup>                                                                                                                                                                                                                                                                                                  | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.000074<br>Surface<br>Water                                                                                                                                                                                                                                                                                                                                                                        | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.676<br>Sediment                                                                                                                                                                               | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.55<br>NA<br>NA<br>NA<br>0.0022 U<br>Sediment                                                                                                                                                                                                                                                                                                                           | Conc.<br>(ug/L)<br>NA<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-85-04<br>Pore Water                                                                                                         | SEM<br>(umol/g)<br>0.29 U<br>0.0007 J<br>0.0089 J<br>0.035 J<br>0.011 J<br>0.0044 J<br>0.00025 U<br>0.35 J<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>AVS or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5<br>762<br>2.87<br>NA<br>NA<br>NA<br>NA<br>O.77<br>Sediment                                                                                                         | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9 Q<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-87-04<br>Pore Water                                                                                            | SEM<br>(umol/g)<br>4.4<br>15.4<br>0.32<br>1<br>0.29<br>0.0048<br>9.3<br>NA<br>12.31<br>7.91<br>276<br>NA                                                                                                                                                                                                                                                                                  | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>72.2 L<br>72.2 L<br>158<br>38.8 L<br>3.5 A<br>NA<br>NA<br>NA<br>NA<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.036 U<br>21.4<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-88-04<br>Pore Water                                                                                           | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.5<br>0.05<br>0.0072<br>6<br>NA<br>7.20<br>2.20<br>61.4<br>NA<br>AVS or                                                                                                                                                                                 | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA<br>NA<br>NA<br>NA<br>1.3<br>Sediment                                                                                                       | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-89-04<br>Pore Water                                                                                            | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>4.1<br>NA<br>5.66<br>4.92<br>133<br>NA                                                                                                                                       | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA<br>NA<br>NA<br>NA<br>O.4<br>Sediment                                                                                                                                   | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-90-04<br>Pore Water                                                                                                  | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.00066 J<br>5.3<br>NA<br>6.18<br>-12.52<br>-349<br>NA<br>AVS or                                                                                                                                                                                | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49<br>NA<br>NA<br>NA<br>NA<br>NA<br>Sediment                                                                                                                                | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-99-04<br>Pore Water                                                                                                                                           | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.00036 U<br>0.43<br>NA<br>0.51<br>0.31<br>8.8<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA<br>NA<br>NA<br>NA<br>0.062<br>Sediment                                                                                                 | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>2.4 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-101-04<br>Pore Water                                                                                            | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.0067<br>4.2<br>NA<br>5.58<br>1.18<br>41.7<br>NA<br>AVS or                                                                                                                                 |
| Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead         Nickel         Silver         Zinc         Total Organic Carbon (%)         Total SEM <sup>(3)</sup> SEM - AVS)(foc <sup>(4)</sup> )         Total PCBs         Surface Sediment, >30-52 inches                                                                                                                                                                                                                                                                              | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA<br>NA<br>NA<br>NA<br>NA<br>O.000074<br>Surface<br>Water<br>Criteria <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                             | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.676<br>Sediment<br>Criteria <sup>(2)</sup><br>(mg/kg)                                                                                                                                         | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.55<br>NA<br>NA<br>NA<br>NA<br>0.0022 U<br>Sediment<br>Conc.                                                                                                                                                                                                                                                                                                            | Conc.<br>(ug/L)<br>NA<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-85-04<br>Pore Water<br>Conc.                                                                                                | SEM<br>(umol/g)<br>0.29 U<br>0.0007 J<br>0.0089 J<br>0.013 J<br>0.0044 J<br>0.00025 U<br>0.35 J<br>0.035 J<br>0.035 J<br>0.044<br>0.29<br>11.4<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.26 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>433<br>8.5<br>762<br>2.87<br>NA<br>NA<br>NA<br>NA<br>O.77<br>Sediment<br>Conc.                                                                                                 | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9 Q<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-87-04<br>Pore Water<br>Conc.                                                                                         | SEM<br>(umol/g)<br>4.4<br>15.4<br>0.32<br>1<br>0.29<br>0.0048<br>9.3<br>NA<br>12.31<br>7.91<br>276<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.38 U                                                                                                                                                                                                                                           | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>72.2 L<br>158<br>38.8 L<br>13.6 L<br>572 L<br>3.59<br>NA<br>NA<br>NA<br>NA<br>NA<br>O.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.036 U<br>21.4<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-88-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA                                                                  | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.5<br>0.05<br>0.0072<br>6<br>NA<br>7.20<br>2.20<br>61.4<br>NA<br>7.20<br>2.20<br>61.4<br>NA<br>VS or<br>SEM<br>(umol/g)<br>0.31 U                                                                                                                       | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA<br>NA<br>NA<br>NA<br>NA<br>Sediment<br>Conc.                                                                                               | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>O.054 U<br>SD-89-04<br>Pore Water<br>Conc.<br>(ug/L)                                                              | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>4.1<br>4.1<br>5.66<br>4.92<br>133<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.32 U                                                                                               | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA<br>NA<br>NA<br>NA<br>O.4<br>Sediment<br>Conc.                                                                                                                          | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-90-04<br>Pore Water<br>Conc.                                                                                         | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.00066 J<br>5.3<br>NA<br>6.18<br>-12.52<br>-349<br>NA<br>AVS or<br>SEM                                                                                                                                                                         | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49<br>NA<br>NA<br>NA<br>0.0031 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA                                                                                                      | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-99-04<br>Pore Water<br>Conc.<br>(ug/L)                                                                                                                        | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.00036 U<br>0.43<br>NA<br>0.51<br>0.31<br>8.8<br>NA<br>AVS or<br>SEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA<br>NA<br>NA<br>NA<br>0.062<br>Sediment<br>Conc.                                                                                        | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>2.4 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>Pore Water<br>Conc.                                                                                                | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.0067<br>4.2<br>NA<br>5.58<br>1.18<br>41.7<br>NA<br>AVS or<br>SEM                                                                                                                          |
| Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead         Nickel         Silver         Zinc         Total Organic Carbon (%)         Total SEM <sup>(3)</sup> SEM - AVS)/foc <sup>(4)</sup> Total PCBs         Surface Sediment, >30-52 inches         Parameter         Acid Volatile Sulfide         Cadmium                                                                                                                                                                                                                        | Criteria <sup>(1)</sup><br>(ug/L)<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.000074<br>Surface<br>Water<br>Criteria <sup>(1)</sup><br>(ug/L)                                                                                                                                                                                                                                                                                                                                                 | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.676<br>Sediment<br>Criteria <sup>(2)</sup><br>(mg/kg)<br>NA                                                                                                                                   | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.55<br>NA<br>NA<br>NA<br>0.0022 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.21 L                                                                                                                                                                                                                                                                                       | Conc.<br>(ug/L)<br>NA<br>1.4<br>18.7<br>1.4 J<br>2.2<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-85-04<br>Pore Water<br>Conc.<br>(ug/L)                                                                        | SEM<br>(umol/g)<br>0.007 J<br>0.0089 J<br>0.003<br>0.011 J<br>0.0044 J<br>0.0042 J<br>0.0045 U<br>0.35 J<br>NA<br>0.44<br>0.44<br>0.44<br>0.29<br>11.4<br>NA<br>NA<br><b>AVS or<br/>SEM</b><br>(umol/g)<br>0.26 U<br>0.00062 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5<br>762<br>2.87<br>NA<br>NA<br>NA<br>NA<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>11.4                                                                               | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>2.2<br>0.036 U<br>1.9<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-87-04<br>Pore Water<br>Conc.<br>(ug/L)                                                                                           | SEM<br>(umol/g)<br>4.4<br>1.4<br>15.4<br>0.32<br>1<br>0.29<br>0.0048<br>9.3<br>NA<br>12.31<br>7.91<br>276<br>NA<br>VS or<br>SEM<br>(umol/g)<br>0.38 U<br>0.035                                                                                                                                                                                                                            | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>172.2 L<br>158<br>38.8 L<br>3.69<br>NA<br>NA<br>NA<br>0.22<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>4.9 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.036 U<br>21.4<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-88-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA                                                                  | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.5<br>0.15<br>0.072<br>6<br>NA<br>7.20<br>61.4<br>NA<br>7.20<br>61.4<br>NA<br>8<br>SEM<br>(umol/g)<br>0.31 U<br>0.012                                                                                                                                   | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA<br>NA<br>NA<br>NA<br>1.3<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>4.2 L                                                                    | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-89-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA                                                                         | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>NA<br>5.66<br>4.92<br>133<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.32 U<br>0.025                                                                                              | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA<br>NA<br>NA<br>0.4<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.1                                                                                                        | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-90-04<br>Pore Water<br>Conc.<br>(ug/L)                                                                               | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.0066 J<br>5.3<br>NA<br>6.18<br>-12.52<br>-3.49<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.27 U<br>0.0068                                                                                                                                         | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49<br>NA<br>NA<br>NA<br>NA<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.34 L                                                                                                  | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>0.036 U<br>0.036 U<br>0.036 U<br>0.036 U<br>0.036 U<br>0.036 U<br>0.036 U<br>NA<br>NA<br>NA<br>NA<br>SD-99-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA                                                          | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.0017<br>0.039 J<br>0.00036 U<br>0.43<br>NA<br>0.51<br>0.31<br>8.8<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>5.7<br>0.0014 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA<br>NA<br>NA<br>0.062<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.9                                                                      | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>0.036 U<br>0.036 U<br>0.036 U<br>0.036 U<br>0.036 U<br>NA<br>NA<br>NA<br>NA<br>SD-101-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA                                       | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.0067<br>4.2<br>NA<br>5.58<br>1.18<br>41.7<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.33 J<br>0.012                                                                                           |
| Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead         Nickel         Silver         Zinc         Total Organic Carbon (%)         Total SEM <sup>(3)</sup> SEM - AVS         (SEM - AVS)/foc <sup>(4)</sup> Total PCBs         Surface Sediment, >30-52 inches         Parameter         Acid Volatile Sulfide         Cadmium         Chromium                                                                                                                                                                                    | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>Surface<br>Water<br>Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5                                                                                                                                                                                                                                                                                                             | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>O.676<br>Sediment<br>Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>NA                                                                                                                       | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.55<br>NA<br>NA<br>NA<br>0.0022 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.21 L<br>9.8                                                                                                                                                                                                                                                                                | Conc.<br>(ug/L)<br>NA<br>1.4<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-85-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA                                                             | SEM<br>(umol/g)<br>0.0007 J<br>0.0089 J<br>0.003<br>0.011 J<br>0.0044 J<br>0.0025 U<br>0.35 J<br>NA<br>0.444<br>0.29<br>11.4<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>NA<br>0.44<br>0.29<br>0.11.4<br>NA<br>0.29<br>0.11.4<br>NA<br>0.29<br>0.11.4<br>NA<br>0.29<br>0.26 U<br>0.0007 J<br>0.0007 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5<br>762<br>2.87<br>NA<br>NA<br>NA<br>0.77<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>11.4<br>114                                                                      | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-87-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA                                                                           | SEM<br>(umol/g)<br>4.4<br>15.4<br>0.32<br>1<br>0.29<br>0.0048<br>9.9.3<br>NA<br>12.31<br>7.91<br>276<br>NA<br>XVS or<br>SEM<br>(umol/g)<br>0.38 U<br>0.035<br>0.52                                                                                                                                                                                                                        | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>158<br>38.8 L<br>33.68 L<br>572 L<br>572 L<br>3.59<br>NA<br>NA<br>NA<br>0.22<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>NA<br>9.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.35 J<br>1.8<br>0.036 U<br>21.4<br>NA<br>NA<br>NA<br>NA<br>SD-88-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA                                                 | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.15<br>0.0072<br>6<br>NA<br>7.20<br>2.20<br>61.4<br>NA<br>NA<br>8<br>KWS or<br>SEM<br>(umol/g)<br>0.31 U<br>0.012<br>0.19                                                                                                                               | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA<br>NA<br>NA<br>1.3<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>4.2 L<br>102                                                                   | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-89-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA                                                             | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>NA<br>5.66<br>4.92<br>133<br>NA<br>NA<br>SEM<br>(umol/g)<br>0.32 U<br>0.025<br>0.48                                                                                          | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA<br>NA<br>NA<br>0.4<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.1                                                                                                        | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-90-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA                                                             | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.00066 J<br>5.3<br>NA<br>6.18<br>-12.52<br>-349<br>NA<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.027 U<br>0.0068<br>0.18                                                                                                                          | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>774.8<br>3.49<br>NA<br>NA<br>NA<br>NA<br>0.0031 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.34 L<br>25.8                                                                             | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-99-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA                                                                                                            | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.0036 U<br>0.43<br>NA<br>0.51<br>0.31<br>0.31<br>8.8<br>NA<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>5.7<br>0.0014 J<br>0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA<br>NA<br>0.062<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.9<br>56.7                                                                    | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>2.4 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-101-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA                                                                         | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.0067<br>4.2<br>NA<br>5.58<br>1.18<br>41.7<br>NA<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.33 J<br>0.012<br>0.29                                                                             |
| Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead         Nickel         Silver         Zinc         Total Organic Carbon (%)         Total SEM <sup>(3)</sup> SEM - AVS         (SEM - AVS)/foc <sup>(4)</sup> Total PCBs         Surface Sediment, >30-52 inches         Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper                                                                                                                                                                     | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>8.1<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.000074<br>Surface<br>Water<br>Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1                                                                                                                                                                                                                                                                 | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.676<br>Sediment<br>Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>1111<br>149                                                                                                      | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.55<br>NA<br>NA<br>0.0022 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.21 L<br>9.8<br>7.1 L                                                                                                                                                                                                                                                                             | Conc.<br>(ug/L)<br>NA<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-85-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA                                                                    | SEM<br>(umol/g)<br>0.29 U<br>0.0007 J<br>0.0089 J<br>0.03<br>0.011 J<br>0.0044 J<br>0.0025 U<br>0.35 J<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.26 U<br>0.0062 J<br>0.0062 J<br>0.0067 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5<br>762<br>2.87<br>NA<br>NA<br>NA<br>0.77<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>11.4<br>114<br>33.1                                                              | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-87-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA                                                                   | SEM<br>(umol/g)<br>4.4<br>15.4<br>0.32<br>0.29<br>0.0048<br>9.3<br>NA<br>12.31<br>7.91<br>276<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.38 U<br>0.035<br>0.52<br>0.26                                                                                                                                                                                                                       | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>72.2 L<br>77.2 L<br>158<br>38.8 L<br>3.59<br>NA<br>NA<br>NA<br>0.22<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>4.9 L<br>49.5<br>31.7 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.35 J<br>21.4<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-88-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA                                                 | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.15<br>0.072<br>6<br>NA<br>7.20<br>2.20<br>61.4<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.31 U<br>0.012<br>0.19<br>0.11                                                                                                                                   | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA<br>NA<br>NA<br>1.3<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>4.2 L<br>102<br>30.5 L                                                         | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-89-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA                                                       | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>NA<br>5.66<br>4.92<br>133<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.32 U<br>0.025<br>0.48<br>0.11                                                                              | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA<br>NA<br>NA<br>NA<br>O.4<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.1<br>1.1                                                                                           | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-90-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA                                                       | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.00066 J<br>5.3<br>NA<br>6.18<br>-12.52<br>-349<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.27 U<br>0.0068<br>0.18<br>0.064                                                                                                                        | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49<br>NA<br>NA<br>NA<br>0.0031 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.34 L<br>25.8<br>17.6 L                                                                          | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-99-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA                                                                                                      | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.0036 U<br>0.43<br>NA<br>0.51<br>0.31<br>0.31<br>8.8<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>5.7<br>0.0014 J<br>0.038<br>0.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA<br>NA<br>0.062<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.9<br>56.7<br>13.3                                                            | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>2.4 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-101-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA                                                                   | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.0067<br>4.2<br>NA<br>5.58<br>1.18<br>41.7<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.33 J<br>0.012<br>0.29<br>0.253                                                                          |
| Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead         Nickel         Silver         Zinc         Total Organic Carbon (%)         Total SEM <sup>(3)</sup> SEM - AVS         (SEM - AVS)/f <sub>oc</sub> <sup>(4)</sup> Total PCBs         Surface Sediment, >30-52 inches         Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead                                                                                                                                            | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.000074<br>Surface<br>Water<br>Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5                                                                                                                                                                                                                                                                                               | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.676<br>Sediment<br>Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>A.98<br>111<br>149<br>128                                                                                                      | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.555<br>NA<br>NA<br>NA<br>0.0022 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.21 L<br>9.8<br>7.1 L<br>3.8                                                                                                                                                                                                                                                               | Conc.<br>(ug/L)<br>NA<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA<br>NA<br>NA<br>SD-85-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA                                                                    | SEM<br>(umol/g)<br>0.29 U<br>0.0007 J<br>0.0089 J<br>0.013 J<br>0.014 J<br>0.0025 U<br>0.35 J<br>0.035 J<br>0.057 J<br>0.26 U<br>0.0057 J<br>0.0057 J<br>0.0057 J<br>0.0013 J<br>0.0013 J<br>0.0071 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5<br>762<br>2.87<br>NA<br>NA<br>NA<br>NA<br>0.77<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>11.4<br>33.1<br>35.6 K                                                     | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9<br>XA<br>NA<br>NA<br>NA<br>NA<br>SD-87-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA                                                               | SEM<br>(umol/g)<br>4.4<br>15.4<br>0.32<br>0.29<br>0.0048<br>9.3<br>NA<br>12.31<br>7.91<br>276<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.38 U<br>0.035<br>0.52<br>0.26<br>0.2                                                                                                                                                                                                                | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>72.2 L<br>72.2 L<br>72.2 L<br>558<br>38.8 L<br>3.59<br>NA<br>NA<br>NA<br>0.22<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>4.9 L<br>4.9.5<br>31.7 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.35 J<br>2.1.4<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-88-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA                                                | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.5<br>0.05<br>0.072<br>6<br>NA<br>7.20<br>2.20<br>61.4<br>NA<br>7.20<br>2.20<br>61.4<br>NA<br>0.11<br>0.012<br>0.31 U<br>0.012<br>0.11<br>0.065                                                                                                         | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA<br>NA<br>NA<br>1.3<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>4.2 L<br>102<br>30.5 L<br>33.9                                                 | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-89-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                           | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>4.1<br>NA<br>5.66<br>4.92<br>133<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.32 U<br>0.025<br>0.48<br>0.11<br>0.087                                                              | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA<br>NA<br>NA<br>NA<br>0.4<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.1<br>44.7<br>5.9<br>13.7 J                                                                         | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-90-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA                                                 | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.00066 J<br>5.3<br>NA<br>6.18<br>-12.52<br>-349<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.27 U<br>0.0068<br>0.18<br>0.18<br>0.18<br>0.064<br>0.033                                                                                               | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49<br>NA<br>NA<br>NA<br>0.0031 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.34 L<br>25.8<br>17.6 L<br>11.5                                                                  | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-99-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.0036 U<br>0.43<br>0.43<br>0.51<br>0.31<br>8.8<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>5.7<br>0.0014 J<br>0.038<br>0.042<br>0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA<br>NA<br>NA<br>0.062<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.9<br>56.7<br>13.3<br>19.8 K                                            | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>2.4 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-101-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA                                                             | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.0067<br>4.2<br>NA<br>5.58<br>1.18<br>41.7<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.33 J<br>0.012<br>0.29<br>0.053<br>0.057                                                                 |
| Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead         Nickel         Silver         Zinc         Total Organic Carbon (%)         Total SEM <sup>(3)</sup> SEM - AVS         (SEM - AVS)/foc <sup>(4)</sup> Total PCBs         Surface Sediment, >30-52 inches         Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper                                                                                                                                                                     | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>8.1<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.000074<br>Surface<br>Water<br>Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1                                                                                                                                                                                                                                                                 | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.676<br>Sediment<br>Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>1111<br>149                                                                                                      | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.55<br>NA<br>NA<br>0.0022 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.21 L<br>9.8<br>7.1 L                                                                                                                                                                                                                                                                             | Conc.<br>(ug/L)<br>NA<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-85-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA                                                                    | SEM<br>(umol/g)<br>0.29 U<br>0.0007 J<br>0.0089 J<br>0.03<br>0.011 J<br>0.0044 J<br>0.0025 U<br>0.35 J<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.26 U<br>0.0062 J<br>0.0062 J<br>0.0067 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5<br>762<br>2.87<br>NA<br>NA<br>NA<br>0.77<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>11.4<br>114<br>33.1                                                              | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-87-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA                                                                   | SEM<br>(umol/g)<br>4.4<br>15.4<br>0.32<br>0.29<br>0.0048<br>9.3<br>NA<br>12.31<br>7.91<br>276<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.38 U<br>0.035<br>0.52<br>0.26                                                                                                                                                                                                                       | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>72.2 L<br>77.2 L<br>158<br>38.8 L<br>3.59<br>NA<br>NA<br>NA<br>0.22<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>4.9 L<br>49.5<br>31.7 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.35 J<br>21.4<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-88-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA                                                 | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.15<br>0.072<br>6<br>NA<br>7.20<br>2.20<br>61.4<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.31 U<br>0.012<br>0.19<br>0.11                                                                                                                                   | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA<br>NA<br>NA<br>1.3<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>4.2 L<br>102<br>30.5 L                                                         | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-89-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA                                                       | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>NA<br>5.66<br>4.92<br>133<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.32 U<br>0.025<br>0.48<br>0.11                                                                              | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA<br>NA<br>NA<br>NA<br>O.4<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.1<br>1.1                                                                                           | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-90-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA                                                 | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.00066 J<br>5.3<br>NA<br>6.18<br>-12.52<br>-349<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.27 U<br>0.0068<br>0.18<br>0.064                                                                                                                        | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49<br>NA<br>NA<br>NA<br>NA<br>0.0031 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.34 L<br>25.8<br>17.6 L                                                                    | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-99-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA                                                                                                      | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.0036 U<br>0.43<br>NA<br>0.51<br>0.31<br>0.31<br>8.8<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>5.7<br>0.0014 J<br>0.038<br>0.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA<br>NA<br>NA<br>0.062<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.9<br>56.7<br>13.3                                                      | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>2.4 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-101-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA                                                                   | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.0067<br>4.2<br>NA<br>5.58<br>1.18<br>41.7<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.33 J<br>0.012<br>0.29<br>0.253                                                                          |
| Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead         Nickel         Silver         Zinc         Total Organic Carbon (%)         Total SEM <sup>(3)</sup> SEM - AVS)/foc <sup>(4)</sup> Total PCBs         Surface Sediment, >30-52 inches         Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead         Nickel                                                                                                                                                            | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.000074<br>Surface<br>Water<br>Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>8.2                                                                                                                                                                                                                                                                           | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.676<br>Sediment<br>Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128                                                                                                      | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.55<br>NA<br>NA<br>NA<br>NA<br>0.0022 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.21 L<br>9.8<br>7.1 L<br>3.8<br>9.3 L                                                                                                                                                                                                                                                 | Conc.<br>(ug/L)<br>NA<br>1.4<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>Pore Water<br>Conc.<br>(ug/L)<br>VA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                           | SEM<br>(umol/g)<br>0.007 J<br>0.0089 J<br>0.003<br>0.011 J<br>0.044 J<br>0.0025 U<br>0.35 J<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>0.44<br>0.29<br>0.1.4<br>NA<br>0.29<br>0.1.4<br>NA<br>0.29<br>0.026 U<br>0.0057 J<br>0.0057 J<br>0.0057 J<br>0.0071 J<br>0.0071 J<br>0.003 J<br>0.003 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5<br>762<br>2.87<br>NA<br>NA<br>NA<br>NA<br>NA<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>11.4<br>114<br>33.1<br>35.6 K<br>29.1                                        | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9<br>NA<br>NA<br>NA<br>NA<br>SD-87-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA                                                         | SEM<br>(umol/g)<br>4.4<br>1.4<br>1.4<br>1.4<br>1.4<br>0.32<br>1<br>0.29<br>0.0048<br>0.9.3<br>NA<br>12.31<br>7.91<br>276<br>NA<br>VS or<br>SEM<br>(umol/g)<br>0.38 U<br>0.035<br>0.52<br>0.26<br>0.2<br>0.2<br>0.13                                                                                                                                                                       | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>158<br>38.8 L<br>33.69<br>NA<br>572 L<br>3.59<br>NA<br>NA<br>NA<br>0.22<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>NA<br>0.22<br>NA<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>31.7 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.35 J<br>1.8<br>0.036 U<br>21.4<br>NA<br>NA<br>NA<br>NA<br>SD-88-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.15<br>0.072<br>6<br>NA<br>7.20<br>61.4<br>NA<br>2.20<br>61.4<br>NA<br>0.012<br>0.11<br>0.012<br>0.11<br>0.065<br>0.052                                                                                                                                 | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA<br>NA<br>NA<br>NA<br>NA<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>4.2 L<br>102<br>30.5 L<br>33.9<br>24.6 L                                  | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-89-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                               | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>NA<br>5.66<br>4.92<br>133<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.32 U<br>0.025<br>0.48<br>0.11<br>0.087<br>0.042                                                            | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA<br>NA<br>NA<br>0.4<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.1<br>44.7<br>15.9<br>NA<br>1.1.1<br>44.7                                                                 | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-90-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.0066 J<br>5.3<br>NA<br>6.18<br>-12.52<br>-349<br>NA<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.27 U<br>0.0068<br>0.18<br>0.024 J                                                                                                                 | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49<br>NA<br>NA<br>NA<br>NA<br>NA<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.34 L<br>25.8<br>17.6 L<br>11.5<br>20.3 L                                                        | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-99-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                          | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.0036 U<br>0.43<br>NA<br>0.51<br>0.31<br>8.8<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>5.7<br>0.0014 J<br>0.038<br>0.042<br>0.019<br>0.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA<br>NA<br>0.062<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.9<br>56.7<br>13.3<br>19.8 K<br>12.1                                          | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>2.4 J<br>NA<br>NA<br>NA<br>NA<br>SD-101-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                       | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.0067<br>4.2<br>NA<br>5.58<br>1.18<br>41.7<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.33 J<br>0.012<br>0.29<br>0.053<br>0.057<br>0.035                                                        |
| Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead         Nickel         Silver         Zinc         Total Organic Carbon (%)         Total SEM <sup>(3)</sup> SEM - AVS         (SEM - AVS)/f <sub>oc</sub> <sup>(4)</sup> Total PCBs         Surface Sediment, >30-52 inches         Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead         Nickel         Silver         Zinc         Total Organic Carbon (%) <sup>(5)</sup>                                                 | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.000074<br>Surface<br>Water<br>Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA                                                                                                                                                                                                                                                                    | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.676<br>Sediment<br>Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>(1.77<br>459<br>NA                                                                  | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.555<br>NA<br>NA<br>0.0022 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.21 L<br>9.8<br>7.1 L<br>3.8<br>9.3 L<br>0.029 J<br>2.9.2 L<br>2.55                                                                                                                                                                                                                              | Conc.<br>(ug/L)<br>NA<br>1.4<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-85-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA             | SEM<br>(umol/g)<br>0.29 U<br>0.0007 J<br>0.0089 J<br>0.003<br>0.011 J<br>0.0044 J<br>0.0043 J<br>0.0045 U<br>0.35 J<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br><b>AVS or<br/>SEM</b><br>(umol/g)<br>0.0067 J<br>0.0057 J<br>0.0057 J<br>0.0057 J<br>0.0071 J<br>0.0071 J<br>0.003 J<br>0.003 J<br>0.003 J<br>0.003 J<br>0.003 J<br>0.0022 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5<br>762<br>2.87<br>NA<br>NA<br>NA<br>NA<br>O.77<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>11.4<br>114<br>33.1<br>35.6 K<br>29.1<br>0.85<br>139<br>2.87               | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>2.2<br>0.036 U<br>1.9<br>NA<br>NA<br>NA<br>NA<br>SD-87-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                     | SEM<br>(umol/g)<br>4.4<br>1.4<br>1.4<br>1.4<br>1.4<br>0.32<br>1<br>0.29<br>0.0048<br>9.3<br>NA<br>12.31<br>7.91<br>276<br>NA<br>4VS or<br>SEM<br>(umol/g)<br>0.38 U<br>0.035<br>0.52<br>0.26<br>0.26<br>0.2<br>0.13<br>0.0022 J<br>1.2<br>NA                                                                                                                                              | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>158<br>38.8 L<br>33.8 L<br>33.59<br>NA<br>NA<br>NA<br>0.22<br>Sediment<br>Conc.<br>(mg/kg)<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>49.5<br>31.7 L<br>31<br>103 L<br>0.56<br>4370<br>3.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.036 U<br>2.1.4<br>NA<br>NA<br>NA<br>NA<br>SD-88-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA           | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.5<br>0.15<br>0.072<br>6<br>NA<br>7.20<br>61.4<br>NA<br>7.20<br>61.4<br>NA<br>0.072<br>6<br>1.4<br>NA<br>0.012<br>0.11<br>0.012<br>0.11<br>0.055<br>0.052<br>0.0019<br>0.48<br>NA                                                                       | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA<br>NA<br>NA<br>1.3<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>4.2 L<br>102<br>30.5 L<br>33.9<br>24.6 L<br>1.9<br>102<br>2.73                 | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA<br>NA<br>NA<br>NA<br>0.054 U<br>SD-89-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA  | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>NA<br>5.66<br>4.92<br>133<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.32 U<br>0.025<br>0.48<br>0.11<br>0.087<br>0.042<br>0.0038<br>0.7<br>NA                                     | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA<br>NA<br>NA<br>0.4<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.1<br>44.7<br>15.9<br>13.7 J<br>15.4<br>1.7<br>15.2<br>3.59                                               | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-90-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                   | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.0066 J<br>5.3<br>NA<br>6.18<br>-12.52<br>-349<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.27 U<br>0.0068<br>0.18<br>0.064<br>0.033<br>0.024 J<br>0.0055<br>0.42<br>NA                                                                             | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49<br>NA<br>NA<br>NA<br>0.0031 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.34 L<br>25.8<br>17.6 L<br>11.5<br>20.3 L<br>0.061 J<br>70.9<br>3.49                             | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA<br>NA<br>NA<br>NA<br>SD-99-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                  | SEM<br>(umol/g)<br>0.041 U<br>0.0013 J<br>0.032<br>0.023 J<br>0.0017<br>0.039 J<br>0.00036 U<br>0.43<br>NA<br>0.51<br>0.31<br>8.8<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>5.7<br>0.0014 J<br>0.038<br>0.042<br>0.019<br>0.049<br>0.049<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA<br>NA<br>0.062<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.9<br>56.7<br>13.3<br>19.8 K<br>12.1<br>0.41<br>57.7<br>2.6                   | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>0.36 U<br>2.4 J<br>NA<br>NA<br>NA<br>NA<br>SD-101-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA         | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.067<br>4.2<br>NA<br>5.58<br>1.18<br>41.7<br>NA<br><b>AVS or</b><br>SEM<br>(umol/g)<br>0.33 J<br>0.012<br>0.29<br>0.053<br>0.057<br>0.035<br>0.001 J<br>0.46<br>NA                         |
| Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead         Nickel         Silver         Zinc         Total Organic Carbon (%)         Total SEM <sup>(3)</sup> SEM - AVS)/foc <sup>(4)</sup> Total PCBs         Surface Sediment, >30-52 inches         Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead         Nickel         Silver         Zinc         Total Organic Carbon (%) <sup>(6)</sup> Total SEM <sup>(3)</sup>                                                       | Criteria <sup>(1)</sup><br>(ug/L)<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA<br>NA<br>NA<br>NA<br>0.000074<br>Surface<br>Water<br>Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA                                                                                                                                                                                                                                                                                        | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>0.676<br>Sediment<br>Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA                                                                                     | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.55<br>NA<br>NA<br>0.0022 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.21 L<br>9.8<br>7.1 L<br>3.8<br>9.3 L<br>0.029 J<br>29.2 L                                                                                                                                                                                                                                        | Conc.<br>(ug/L)<br>NA<br>1.4<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                            | SEM<br>(umol/g)<br>0.007 J<br>0.0089 J<br>0.003<br>0.011 J<br>0.044 J<br>0.0025 U<br>0.35 J<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>0.29<br>0.0057 J<br>0.0057 J<br>0.0057 J<br>0.0057 J<br>0.0071 J<br>0.0071 J<br>0.003 J<br>0.0072 U<br>0.224 U<br>0.229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5<br>762<br>2.87<br>NA<br>NA<br>NA<br>NA<br>NA<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>11.4<br>114<br>33.1<br>35.6 K<br>2.9.1<br>0.85<br>139<br>2.87<br>NA          | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-87-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                     | SEM<br>(umol/g)<br>4.4<br>1.5<br>15.4<br>0.32<br>1<br>0.29<br>0.0048<br>9.3<br>NA<br>12.31<br>7.91<br>276<br>NA<br>276<br>NA<br>4VS or<br>SEM<br>(umol/g)<br>0.38 U<br>0.035<br>0.52<br>0.26<br>0.22<br>0.26<br>0.22<br>0.26<br>0.22<br>0.22<br>0.2                                                                                                                                       | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>158<br>38.8 L<br>33.69<br>NA<br>572 L<br>3.59<br>NA<br>NA<br>0.22<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>NA<br>0.22<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>31.7 L<br>31.7 L<br>31. | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.35 J<br>1.8<br>0.35 J<br>21.4<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                     | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.15<br>0.072<br>6<br>NA<br>7.20<br>61.4<br>NA<br>7.20<br>61.4<br>NA<br>0.12<br>0.012<br>0.012<br>0.012<br>0.012<br>0.019<br>0.11<br>0.065<br>0.052<br>0.0019 J<br>0.48<br>NA<br>0.72                                                                    | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA<br>NA<br>NA<br>NA<br>1.3<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>4.2 L<br>102<br>30.5 L<br>33.9<br>24.6 L<br>19<br>102<br>2.73<br>NA      | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-89-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>NA<br>5.66<br>4.92<br>133<br>NA<br><b>AVS or</b><br>SEM<br>(umol/g)<br>0.32 U<br>0.025<br>0.48<br>0.11<br>0.087<br>0.042<br>0.0038<br>0.7                                    | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA<br>NA<br>NA<br>0.4<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.1<br>44.7<br>15.9<br>13.7 J<br>15.4<br>1.7<br>51.2<br>5.3<br>59<br>NA                                    | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-90-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.0066 J<br>5.3<br>NA<br>6.18<br>-12.52<br>-349<br>NA<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.27 U<br>0.0068<br>0.18<br>0.027 U<br>0.0068<br>0.18<br>0.027 U<br>0.0068<br>0.18<br>0.027 U<br>0.0064<br>0.033<br>0.024 J<br>0.0055<br>0.42<br>NA | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49<br>NA<br>NA<br>NA<br>NA<br>NA<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.34 L<br>25.8<br>17.6 L<br>11.5<br>20.3 L<br>0.061 J<br>70.9<br>3.49                             | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-99-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                      | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.0036 U<br>0.43<br>NA<br>0.51<br>0.31<br>8.8<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>5.7<br>0.0014 J<br>0.038<br>0.042<br>0.019<br>0.049<br>0.0032 U<br>0.49<br>NA<br>0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA<br>NA<br>0.062<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.9<br>56.7<br>13.3<br>19.8 K<br>12.1<br>0.41<br>57.7<br>2.6<br>NA             | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>0.2.4 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-101-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA           | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.067<br>4.2<br>NA<br>5.58<br>1.18<br>41.7<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.33 J<br>0.012<br>0.29<br>0.053<br>0.0057<br>0.035<br>0.001 J<br>0.46<br>NA<br>0.62                       |
| Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead         Nickel         Silver         Zinc         Total Organic Carbon (%)         Total SEM <sup>(3)</sup> SEM - AVS)/foc <sup>(4)</sup> Total PCBs         Surface Sediment, >30-52 inches         Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead         Nickel         Silver         Zinc         Total SEM <sup>(3)</sup> Sead         Nickel         Silver         Zinc         Total SEM <sup>(3)</sup> SEM - AVS    | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.000074<br>Surface<br>Water<br>Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA                                                                                                                                                                                                                                                                    | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.676<br>Sediment<br>Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>(1.77<br>459<br>NA                                                                  | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.555<br>NA<br>NA<br>0.0022 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.21 L<br>9.8<br>7.1 L<br>3.8<br>9.3 L<br>0.029 J<br>2.9.2 L<br>2.55                                                                                                                                                                                                                              | Conc.<br>(ug/L)<br>NA<br>1.4<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-85-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA             | SEM<br>(umol/g)<br>0.29 U<br>0.0007 J<br>0.0089 J<br>0.003<br>0.011 J<br>0.0044 J<br>0.0043 J<br>0.0045 U<br>0.35 J<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br><b>AVS or<br/>SEM</b><br>(umol/g)<br>0.0067 J<br>0.0057 J<br>0.0057 J<br>0.0057 J<br>0.0071 J<br>0.0071 J<br>0.003 J<br>0.003 J<br>0.003 J<br>0.003 J<br>0.003 J<br>0.0022 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5<br>762<br>2.87<br>NA<br>NA<br>NA<br>0.77<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>11.4<br>114<br>33.1<br>35.6 K<br>29.1<br>0.85<br>139<br>2.87<br>NA<br>NA         | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-87-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA   | SEM<br>(umol/g)<br>4.4<br>1.4<br>1.4<br>1.4<br>1.4<br>0.32<br>1<br>0.29<br>0.0048<br>9.3<br>NA<br>12.31<br>7.91<br>276<br>NA<br>4VS or<br>SEM<br>(umol/g)<br>0.38 U<br>0.035<br>0.52<br>0.26<br>0.26<br>0.2<br>0.13<br>0.0022 J<br>1.2<br>NA                                                                                                                                              | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>72.2 L<br>158<br>38.8 L<br>372 L<br>572 L<br>3.59<br>NA<br>NA<br>NA<br>0.22<br>Sediment<br>Conc.<br>(mg/kg)<br>4.9 L<br>49.5<br>31.7 L<br>31<br>0.56<br>4370<br>3.25<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.35 J<br>1.8<br>0.35 J<br>21.4<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                     | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.5<br>0.15<br>0.072<br>6<br>NA<br>7.20<br>61.4<br>NA<br>7.20<br>61.4<br>NA<br>0.072<br>6<br>1.4<br>NA<br>0.012<br>0.11<br>0.012<br>0.11<br>0.055<br>0.052<br>0.0019<br>0.48<br>NA                                                                       | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA<br>NA<br>NA<br>1.3<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>4.2 L<br>102<br>30.5 L<br>33.9<br>24.6 L<br>1.9<br>102<br>2.73                 | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                            | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>NA<br>5.66<br>4.92<br>133<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.32 U<br>0.025<br>0.48<br>0.11<br>0.087<br>0.042<br>0.0038<br>0.7<br>NA                                     | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA<br>NA<br>NA<br>0.4<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.1<br>44.7<br>15.9<br>13.7 J<br>15.4<br>1.7<br>15.2<br>3.59                                               | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-90-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.0066 J<br>5.3<br>NA<br>6.18<br>-12.52<br>-349<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.27 U<br>0.0068<br>0.18<br>0.064<br>0.033<br>0.024 J<br>0.0055<br>0.42<br>NA                                                                             | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49<br>NA<br>NA<br>NA<br>NA<br>0.0031 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.34 L<br>25.8<br>17.6 L<br>11.5<br>20.3 L<br>0.061 J<br>70.9<br>3.49<br>NA<br>NA           | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                                           | SEM<br>(umol/g)<br>0.041 U<br>0.0013 J<br>0.032<br>0.023 J<br>0.0017<br>0.039 J<br>0.00036 U<br>0.43<br>NA<br>0.51<br>0.31<br>8.8<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>5.7<br>0.0014 J<br>0.038<br>0.042<br>0.019<br>0.049<br>0.049<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA<br>NA<br>0.062<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.9<br>56.7<br>13.3<br>19.8 K<br>12.1<br>0.41<br>57.7<br>2.6<br>NA<br>NA       | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>2.4 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                   | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.067<br>4.2<br>NA<br>5.58<br>1.18<br>41.7<br>NA<br><b>AVS or</b><br>SEM<br>(umol/g)<br>0.33 J<br>0.012<br>0.29<br>0.053<br>0.0057<br>0.035<br>0.0057                                       |
| Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead         Nickel         Silver         Zinc         Total Organic Carbon (%)         Total SEM <sup>(3)</sup> SEM - AVS)/foc <sup>(4)</sup> Total PCBs         Surface Sediment, >30-52 inches         Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead         Nickel         Silver         Zinc         Total Organic Carbon (%) <sup>(6)</sup> Total SEM <sup>(3)</sup>                                                       | Criteria <sup>(1)</sup><br>(ug/L)<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA<br>NA<br>NA<br>NA<br>0.000074<br>Surface<br>Water<br>Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA                                                                                                                                                                                                                                                                                        | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>0.676<br>Sediment<br>Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA                                                                                     | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.55<br>NA<br>NA<br>NA<br>NA<br>0.0022 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.21 L<br>9.8<br>7.1 L<br>3.8<br>9.3 L<br>0.029 J<br>29.2 L<br>0.029 J<br>29.2 L<br>2.55<br>NA                                                                                                                                                                                         | Conc.<br>(ug/L)<br>NA<br>1.4<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                            | SEM<br>(umol/g)<br>0.007 J<br>0.0089 J<br>0.003<br>0.011 J<br>0.044 J<br>0.0025 U<br>0.35 J<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>0.29<br>0.0057 J<br>0.0057 J<br>0.0057 J<br>0.0057 J<br>0.0071 J<br>0.0071 J<br>0.003 J<br>0.0072 U<br>0.224 U<br>0.229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5<br>762<br>2.87<br>NA<br>NA<br>NA<br>NA<br>NA<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>11.4<br>114<br>33.1<br>35.6 K<br>2.9.1<br>0.85<br>139<br>2.87<br>NA          | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-87-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                     | SEM<br>(umol/g)<br>4.4<br>1.5<br>15.4<br>0.32<br>1<br>0.29<br>0.0048<br>9.3<br>NA<br>12.31<br>7.91<br>276<br>NA<br>276<br>NA<br>4VS or<br>SEM<br>(umol/g)<br>0.38 U<br>0.035<br>0.52<br>0.26<br>0.22<br>0.26<br>0.22<br>0.26<br>0.22<br>0.22<br>0.2                                                                                                                                       | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>158<br>38.8 L<br>33.69<br>NA<br>572 L<br>3.59<br>NA<br>NA<br>0.22<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>NA<br>0.22<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>31.7 L<br>31.7 L<br>31. | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.35 J<br>1.8<br>0.35 J<br>21.4<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                     | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.15<br>0.072<br>6<br>NA<br>7.20<br>61.4<br>NA<br>7.20<br>61.4<br>NA<br>0.12<br>0.012<br>0.012<br>0.012<br>0.012<br>0.019<br>0.11<br>0.065<br>0.052<br>0.0019 J<br>0.48<br>NA<br>0.72                                                                    | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA<br>NA<br>NA<br>NA<br>1.3<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>4.2 L<br>102<br>30.5 L<br>33.9<br>24.6 L<br>1.9<br>102<br>2.73<br>NA     | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-89-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>NA<br>5.66<br>4.92<br>133<br>NA<br><b>AVS or</b><br>SEM<br>(umol/g)<br>0.32 U<br>0.025<br>0.48<br>0.11<br>0.087<br>0.042<br>0.0038<br>0.7                                    | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA<br>NA<br>NA<br>0.4<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.1<br>44.7<br>15.9<br>13.7 J<br>15.4<br>1.7<br>51.2<br>5.3<br>59<br>NA                                    | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-90-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.0066 J<br>5.3<br>NA<br>6.18<br>-12.52<br>-349<br>NA<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.27 U<br>0.0068<br>0.18<br>0.027 U<br>0.0068<br>0.18<br>0.027 U<br>0.0068<br>0.18<br>0.027 U<br>0.0064<br>0.033<br>0.024 J<br>0.0055<br>0.42<br>NA | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49<br>NA<br>NA<br>NA<br>NA<br>NA<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.34 L<br>25.8<br>17.6 L<br>11.5<br>20.3 L<br>0.061 J<br>70.9<br>3.49                             | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-99-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                      | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.0036 U<br>0.43<br>NA<br>0.51<br>0.31<br>8.8<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>5.7<br>0.0014 J<br>0.038<br>0.042<br>0.019<br>0.049<br>0.0032 U<br>0.49<br>NA<br>0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA<br>NA<br>0.062<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.9<br>56.7<br>13.3<br>19.8 K<br>12.1<br>0.41<br>57.7<br>2.6<br>NA             | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>0.2.4 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-101-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA           | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.43<br>0.47<br>0.21<br>0.0067<br>4.2<br>NA<br>5.58<br>1.18<br>41.7<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.33 J<br>0.012<br>0.29<br>0.035<br>0.0057<br>0.035<br>0.001 J<br>0.46<br>NA<br>0.62              |
| Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead         Nickel         Silver         Zinc         Total Organic Carbon (%)         Total SEM <sup>(3)</sup> SEM - AVS)/foc <sup>(4)</sup> Total PCBs         Surface Sediment, >30-52 inches         Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead         Nickel         Silver         Zinc         Total SEM <sup>(3)</sup> Sead         Nickel         Silver         Zinc         Total SEM <sup>(3)</sup> SEM - AVS    | Criteria <sup>(1)</sup><br>(ug/L)<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA<br>NA<br>NA<br>NA<br>0.000074<br>Surface<br>Water<br>Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                                                                                                                                            | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>NA<br>NA<br>0.676<br>Sediment<br>Criteria <sup>(2)</sup><br>(mg/kg)<br>MA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                           | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.55<br>NA<br>NA<br>NA<br>0.0022 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.21 L<br>9.8<br>7.1 L<br>3.8<br>9.3 L<br>0.029 J<br>29.2 L<br>2.55<br>NA                                                                                                                                                                                                                    | Conc.<br>(ug/L)<br>NA<br>1.4<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-85-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | SEM<br>(umol/g)<br>0.007 J<br>0.0089 J<br>0.003<br>0.011 J<br>0.044 J<br>0.0025 U<br>0.35 J<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>0.29<br>0.11 J<br>0.0062 J<br>0.0057 J<br>0.0057 J<br>0.003 J<br>0.00071 J<br>0.00072 U<br>0.026 U<br>0.00072 J<br>0.003 J<br>0.00022 U<br>0.24 J<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5<br>762<br>2.87<br>NA<br>NA<br>NA<br>0.77<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>11.4<br>114<br>33.1<br>35.6 K<br>29.1<br>0.85<br>139<br>2.87<br>NA<br>NA         | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-87-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA   | SEM<br>(umol/g)<br>4.4<br>15.4<br>0.32<br>0.32<br>0.0048<br>9.3<br>NA<br>12.31<br>7.91<br>276<br>NA<br>276<br>NA<br>0.38 U<br>0.035<br>0.52<br>0.26<br>0.26<br>0.22<br>0.13<br>0.0022 J<br>1.2<br>NA<br>1.83<br>1.64                                                                                                                                                                      | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>72.2 L<br>158<br>38.8 L<br>372 L<br>572 L<br>3.59<br>NA<br>NA<br>NA<br>0.22<br>Sediment<br>Conc.<br>(mg/kg)<br>4.9 L<br>49.5<br>31.7 L<br>31<br>0.56<br>4370<br>3.25<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.35 J<br>1.8<br>0.35 J<br>21.4<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                     | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.15<br>0.072<br>6<br>NA<br>7.20<br>2.20<br>61.4<br>NA<br>0.48<br>0.31 U<br>0.012<br>0.19<br>0.11<br>0.065<br>0.052<br>0.0019 J<br>0.48<br>NA<br>0.72<br>0.56                                                                                            | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA<br>NA<br>NA<br>NA<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>4.2 L<br>102<br>30.5 L<br>33.9<br>24.6 L<br>1.9<br>102<br>2.73<br>NA<br>NA      | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                            | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>NA<br>5.66<br>4.92<br>133<br>NA<br><b>AVS or</b><br>SEM<br>(umol/g)<br>0.32 U<br>0.025<br>0.48<br>0.11<br>0.087<br>0.042<br>0.0038<br>0.7<br>0.042<br>0.0038                 | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA<br>NA<br>NA<br>NA<br>0.4<br>Sediment<br>Conc.<br>(mg/kg)<br>13.7 J<br>15.4<br>1.7<br>51.2<br>3.59<br>NA<br>NA                                                          | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-90-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.0066 J<br>5.3<br>NA<br>6.18<br>-12.52<br>-349<br>NA<br>NA<br><b>AVS or</b><br>SEM<br>(umol/g)<br>0.27 U<br>0.0068<br>0.18<br>0.024 J<br>0.0055<br>0.42<br>NA                                                                                  | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49<br>NA<br>NA<br>NA<br>NA<br>0.0031 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.34 L<br>25.8<br>17.6 L<br>11.5<br>20.3 L<br>0.061 J<br>70.9<br>3.49<br>NA<br>NA           | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br><b>NA</b><br><b>SD-99-04</b><br><b>Pore Water</b><br><b>Conc.</b><br>(ug/L)<br><b>NA</b><br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.0036 U<br>0.43<br>NA<br>0.51<br>0.31<br>8.8<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>5.7<br>0.0014 J<br>0.038<br>0.042<br>0.019<br>0.0032 U<br>0.0032 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA<br>NA<br>0.062<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.9<br>56.7<br>13.3<br>19.8 K<br>12.1<br>0.41<br>57.7<br>2.6<br>NA<br>NA       | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>2.4 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-101-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.0067<br>4.2<br>NA<br>5.58<br>1.18<br>41.7<br>NA<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.33 J<br>0.012<br>0.29<br>0.053<br>0.0057<br>0.035<br>0.001 J<br>0.46<br>NA<br>0.62<br>0.29        |
| Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead         Nickel         Silver         Zinc         Total Organic Carbon (%)         Total SEM <sup>(3)</sup> SEM - AVS)/foc <sup>(4)</sup> Total PCBs         Surface Sediment, >30-52 inches         Parameter         Acid Volatile Sulfide         Cadmium         Chromium         Copper         Lead         Nickel         Silver         Zinc         Total Organic Carbon (%) <sup>(6)</sup> Total SEM <sup>(3)</sup> SEM - AVS         (SEM - AVS)/foc <sup>(4)</sup>      | Criteria <sup>(1)</sup><br>(ug/L)<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA<br>NA<br>NA<br>NA<br>0.000074<br>Surface<br>Water<br>Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                                                                                                                                | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>NA<br>0.676<br>Sediment<br>Criteria <sup>(2)</sup><br>(mg/kg)<br>MA<br>4.98<br>111<br>128<br>48.6<br>1.77<br>459<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                          | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.55<br>NA<br>NA<br>NA<br>0.0022 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.21 L<br>9.8<br>7.1 L<br>9.7 L<br>9.7 L<br>0.029 J<br>2.9.2 L<br>2.55<br>NA | Conc.<br>(ug/L)<br>NA<br>1.4<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-85-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | SEM<br>(umol/g)<br>0.007 J<br>0.0089 J<br>0.003<br>0.011 J<br>0.0044 J<br>0.0025 U<br>0.35 J<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>0.29<br>0.11 J<br>0.0062 J<br>0.0057 J<br>0.0057 J<br>0.003 J<br>0.00071 J<br>0.00072 U<br>0.00072 U<br>0.0007 J<br>0.003 J<br>0.00022 U<br>0.024 J<br>0.029<br>0.24 J<br>0.025 U<br>0.025 U | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5<br>762<br>2.87<br>NA<br>NA<br>NA<br>NA<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>11.4<br>114<br>33.1<br>35.6 K<br>2.87<br>NA<br>NA<br>139<br>2.87<br>NA<br>NA<br>NA | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-87-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA   | SEM<br>(umol/g)<br>4.4<br>15.4<br>0.32<br>0.32<br>0.0048<br>9.3<br>NA<br>12.31<br>7.91<br>276<br>NA<br>276<br>NA<br>0.38 U<br>0.035<br>0.52<br>0.26<br>0.26<br>0.26<br>0.22<br>0.13<br>0.0022 J<br>1.2<br>0.28<br>0.22<br>0.13<br>0.0022 J<br>1.2<br>0.26<br>0.26<br>0.26<br>0.26<br>0.26<br>0.26<br>0.27<br>0.27<br>0.27<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28 | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>158<br>38.8 L<br>33.69<br>NA<br>3.59<br>NA<br>NA<br>NA<br>0.22<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>31.7 L<br>3.17<br>NA<br>0.22<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>31.7 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.35 J<br>1.8<br>0.35 J<br>21.4<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                     | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.15<br>0.072<br>6<br>NA<br>7.20<br>2.20<br>61.4<br>NA<br>0.48<br>0.31 U<br>0.012<br>0.19<br>0.11<br>0.065<br>0.052<br>0.0019 J<br>0.48<br>NA<br>0.72<br>0.56<br>17.4                                                                                    | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA<br>NA<br>NA<br>NA<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>4.2 L<br>102<br>30.5 L<br>33.9<br>24.6 L<br>19<br>22.73<br>NA<br>NA<br>NA<br>NA | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                            | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>NA<br>5.66<br>4.92<br>133<br>NA<br><b>AVS or</b><br>SEM<br>(umol/g)<br>0.32 U<br>0.025<br>0.48<br>0.11<br>0.087<br>0.042<br>0.0038<br>0.7<br>0.042<br>0.0038<br>0.7<br>0.042 | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA<br>NA<br>NA<br>0.4<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.1<br>44.7<br>15.9<br>NA<br>1.1<br>44.7<br>5.4<br>1.7<br>51.2<br>3.59<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-90-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.0066 J<br>5.3<br>NA<br>6.18<br>-12.52<br>-349<br>NA<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.27 U<br>0.0068<br>0.18<br>0.024 J<br>0.0055<br>0.42<br>NA<br>0.55<br>0.42<br>11.6                                                                 | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49<br>NA<br>NA<br>NA<br>NA<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.34 L<br>25.8<br>17.6 L<br>25.8<br>17.6 L<br>20.3 L<br>0.061 J<br>70.9<br>3.49<br>NA<br>NA<br>NA<br>NA | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br><b>NA</b><br><b>SD-99-04</b><br><b>Pore Water</b><br><b>Conc.</b><br>(ug/L)<br><b>NA</b><br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.0036 U<br>0.43<br>NA<br>0.51<br>0.31<br>8.8<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>5.7<br>0.0014 J<br>0.038<br>0.042<br>0.019<br>0.049<br>0.049<br>0.0032 U<br>0.019<br>0.049<br>0.049<br>0.0032 U<br>0.019<br>0.049<br>0.049<br>0.0032 U<br>0.019<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.0400<br>0.0400000000 | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA<br>NA<br>0.062<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.9<br>56.7<br>13.3<br>19.8 K<br>12.1<br>0.41<br>57.7<br>2.6<br>NA<br>NA<br>NA | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>2.4 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-101-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA       | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.0067<br>4.2<br>NA<br>5.58<br>1.18<br>41.7<br>NA<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.33 J<br>0.012<br>0.29<br>0.053<br>0.057<br>0.035<br>0.001 J<br>0.46<br>NA<br>0.62<br>0.29<br>11.1 |
| Parameter<br>Acid Volatile Sulfide<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Nickel<br>Silver<br>Zinc<br>Total Organic Carbon (%)<br>Total SEM <sup>(3)</sup><br>SEM - AVS<br>(SEM - AVS)/foc <sup>(4)</sup><br>Total PCBs<br>Surface Sediment, >30-52 inches<br>Parameter<br>Acid Volatile Sulfide<br>Cadmium<br>Chromium<br>Copper<br>Lead<br>Nickel<br>Silver<br>Zinc<br>Total Organic Carbon (%) <sup>(5)</sup><br>Total SEM <sup>(3)</sup><br>SEM - AVS<br>(SEM - AVS)/foc <sup>(4)</sup><br>Total SEM <sup>(3)</sup><br>SEM - AVS<br>(SEM - AVS)/foc <sup>(4)</sup><br>Total PCBs | Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.23<br>81<br>NA<br>NA<br>NA<br>NA<br>0.000074<br>Surface<br>Water<br>Criteria <sup>(1)</sup><br>(ug/L)<br>NA<br>0.12<br>57.5<br>3.1<br>2.5<br>8.2<br>0.12<br>57.5<br>3.1<br>0.12<br>57.5<br>3.1<br>NA<br>0.12<br>57.5<br>3.1<br>NA<br>0.12<br>57.5<br>8.2<br>0.12<br>57.5<br>3.1<br>NA<br>0.12<br>57.5<br>3.1<br>0.12<br>57.5<br>8.2<br>0.12<br>57.5<br>8.2<br>0.12<br>57.5<br>8.2<br>0.23<br>0.23<br>8.1<br>NA<br>NA<br>NA<br>0.12<br>0.00074 | Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>Criteria <sup>(2)</sup><br>(mg/kg)<br>NA<br>NA<br>4.98<br>111<br>149<br>128<br>48.6<br>1.77<br>459<br>NA<br>A<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>N | Conc.<br>(mg/kg)<br>NA<br>0.19 L<br>12.8<br>9.7 L<br>4.9<br>11.2 L<br>0.038 J<br>35.4 L<br>2.55<br>NA<br>NA<br>0.0022 U<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.21 L<br>9.8<br>7.1 L<br>3.8<br>9.3 L<br>0.029 J<br>29.2 L<br>2.55<br>NA<br>NA<br>0.022 J                                                                                                                                                                                                         | Conc.<br>(ug/L)<br>NA<br>18.7<br>1.4 J<br>2.2<br>2.2<br>0.041 B<br>8.7<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-85-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA        | SEM<br>(umol/g)<br>0.0007 J<br>0.0089 J<br>0.003 J<br>0.011 J<br>0.0044 J<br>0.0025 U<br>0.035 J<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br>0.44<br>0.29<br>11.4<br>NA<br><b>AVS or</b><br>SEM<br>(umol/g)<br>0.0062 J<br>0.0067 J<br>0.0071 J<br>0.0007 J<br>0.0007 J<br>0.0007 J<br>0.0007 J<br>0.0007 J<br>0.0007 J<br>0.0007 J<br>0.0007 J<br>0.0007 J<br>0.0002 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conc.<br>(mg/kg)<br>NA<br>207<br>1530<br>112<br>288 K<br>43.8<br>8.5<br>762<br>2.87<br>NA<br>NA<br>NA<br>0.77<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>11.4<br>114<br>33.1<br>35.6 K<br>29.1<br>0.85<br>139<br>2.87<br>NA<br>NA<br>0.77 | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>17.5<br>0.77 J<br>0.25 J<br>2.2<br>0.036 U<br>1.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-87-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | SEM<br>(umol/g)<br>4.4<br>15.4<br>0.32<br>0.32<br>0.0048<br>9.3<br>NA<br>12.31<br>7.91<br>276<br>NA<br>276<br>NA<br>0.38 U<br>0.035<br>0.52<br>0.26<br>0.26<br>0.26<br>0.22<br>0.13<br>0.0022 J<br>1.2<br>0.28<br>0.22<br>0.13<br>0.0022 J<br>1.2<br>0.26<br>0.26<br>0.26<br>0.26<br>0.26<br>0.26<br>0.27<br>0.27<br>0.27<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28 | Conc.<br>(mg/kg)<br>NA<br>35.5 J<br>727 L<br>172.2 L<br>13.6 L<br>3.59<br>NA<br>NA<br>NA<br>0.22<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>4.9 L<br>49.5<br>31.7 L<br>31<br>0.56<br>4370<br>3.25<br>NA<br>NA<br>NA<br>NA<br>NA<br>A<br>D.56<br>4370<br>3.25<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.8<br>4.8<br>0.35 J<br>1.8<br>0.35 J<br>1.8<br>0.35 J<br>21.4<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                     | SEM<br>(umol/g)<br>5<br>0.25<br>5.6<br>0.3<br>0.15<br>0.0072<br>6<br>NA<br>7.20<br>2.20<br>61.4<br>NA<br>0.3<br>U<br>2.20<br>61.4<br>NA<br>0.3<br>U<br>0.12<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.012<br>0.19<br>0.11<br>0.065<br>0.052<br>0.0019<br>0.48<br>NA<br>NA<br>NA<br>NA | Conc.<br>(mg/kg)<br>NA<br>30.2 L<br>569<br>121 L<br>226<br>54.6 L<br>23<br>492<br>3.71<br>NA<br>NA<br>NA<br>NA<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>4.2 L<br>102<br>30.5 L<br>33.9<br>24.6 L<br>19<br>22.73<br>NA<br>NA<br>NA<br>NA | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>15.5<br>0.82 J<br>0.24 B<br>1.4<br>0.036 U<br>3.2 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                            | SEM<br>(umol/g)<br>0.74 J<br>0.19<br>3.9<br>0.48<br>0.68<br>0.2<br>0.014<br>4.1<br>NA<br>5.66<br>4.92<br>133<br>NA<br><b>AVS or</b><br>SEM<br>(umol/g)<br>0.32 U<br>0.025<br>0.48<br>0.11<br>0.087<br>0.042<br>0.0038<br>0.7<br>0.042<br>0.0038<br>0.7<br>0.042 | Conc.<br>(mg/kg)<br>NA<br>38.7<br>690<br>82.7<br>195 J<br>46.1<br>29.3<br>524<br>3.59<br>NA<br>NA<br>NA<br>0.4<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.1<br>44.7<br>15.9<br>NA<br>1.1<br>44.7<br>5.4<br>1.7<br>51.2<br>3.59<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>9.3<br>2.7<br>0.56 J<br>1.3<br>0.071 B<br>4.3 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-90-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | SEM<br>(umol/g)<br>18.7<br>0.22<br>5.9<br>0.0021 U<br>0.47<br>0.19<br>0.0066 J<br>5.3<br>NA<br>6.18<br>-12.52<br>-349<br>NA<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.27 U<br>0.0068<br>0.18<br>0.024 J<br>0.0055<br>0.42<br>NA<br>0.55<br>0.42<br>11.6                                                                 | Conc.<br>(mg/kg)<br>NA<br>0.4 L<br>29.6<br>19.7 L<br>12.8<br>22.3 L<br>0.066 J<br>74.8<br>3.49<br>NA<br>NA<br>NA<br>NA<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>0.34 L<br>25.8<br>17.6 L<br>25.8<br>17.6 L<br>20.3 L<br>0.061 J<br>70.9<br>3.49<br>NA<br>NA<br>NA<br>NA | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>14.6<br>2.1<br>0.33 J<br>4.4<br>0.036 U<br>2.9 J<br>NA<br>NA<br>NA<br>NA<br>NA<br><b>NA</b><br><b>SD-99-04</b><br><b>Pore Water</b><br><b>Conc.</b><br>(ug/L)<br><b>NA</b><br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | SEM<br>(umol/g)<br>0.013 J<br>0.032<br>0.023 J<br>0.017<br>0.039 J<br>0.0036 U<br>0.43<br>NA<br>0.51<br>0.31<br>8.8<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>5.7<br>0.0014 J<br>0.038<br>0.042<br>0.019<br>0.049<br>0.049<br>0.0032 U<br>0.019<br>0.049<br>0.049<br>0.0032 U<br>0.019<br>0.049<br>0.049<br>0.0032 U<br>0.019<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.049<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.040<br>0.0400<br>0.0400000000 | Conc.<br>(mg/kg)<br>NA<br>44.7<br>719<br>83.3<br>169 K<br>46.6<br>12.8<br>479<br>2.84<br>NA<br>NA<br>0.062<br>Sediment<br>Conc.<br>(mg/kg)<br>NA<br>1.9<br>56.7<br>13.3<br>19.8 K<br>12.1<br>0.41<br>57.7<br>2.6<br>NA<br>NA<br>NA | Conc.<br>(ug/L)<br>NA<br>0.11 U<br>13.6<br>1.6 J<br>0.19 B<br>1.1<br>0.036 U<br>2.4 J<br>NA<br>NA<br>NA<br>NA<br>NA<br>SD-101-04<br>Pore Water<br>Conc.<br>(ug/L)<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA       | SEM<br>(umol/g)<br>4.4<br>0.27<br>4.9<br>0.43<br>0.47<br>0.21<br>0.0067<br>4.2<br>NA<br>5.58<br>1.18<br>41.7<br>NA<br>AVS or<br>SEM<br>(umol/g)<br>0.33 J<br>0.012<br>0.29<br>0.053<br>0.057<br>0.035<br>0.001 J<br>0.46<br>NA<br>0.62<br>0.29<br>11.1       |

cological screening levels from USEPA Region except for cadmium (see discussion in text for cadmium).

Sediment criteria are probable effects concentrations (PECs) for freshwater sediment from MacDonald et al (2000) except that a PEC has not been established for silver. The sediment criteria shown for silver is the probable effects

except that a PEC has not been established for silver. The sediment criteria shown for silver is the probable effects level (PEL) for coastal sediment from MacDonald et al., (1996).
3 - One-half the detection limit for nondetected results was used in the calculation of total SEM. B-qualified data were treated as non-detects; i.e., one-half the value was used in the calculation of total SEM.
4 - Toxicity is not likely when the (ΣSEM-AVS)/f<sub>oc</sub> is less than 130 µmol/g (USEPA, 2005); cells above are shaded where (SEM - AVS)/foc value is greater than 130 µmol/g.
5 - TOC not available for 30-52 inch interval, so the lowest TOC value from depths of 6-18 inches and 18-30 inches where used for ensuring.

was used for each sample location.

 SEM - Simultaneously extracted metals (sum of SEM values for cadmium, copper, lead, nickel, silver, and zinc).
 In accordance with USEPA (2005), chromium was not included in the calculation total SEM and the molar concentration of silver was divided by 2 before summing. TOC - Total organic carbon

PCBs - Polychlorinated biphenyls B - Blank contamination

J - Estimated

 $f_{oc}$  - Fraction of organic carbon in sediment = %TOC / 100

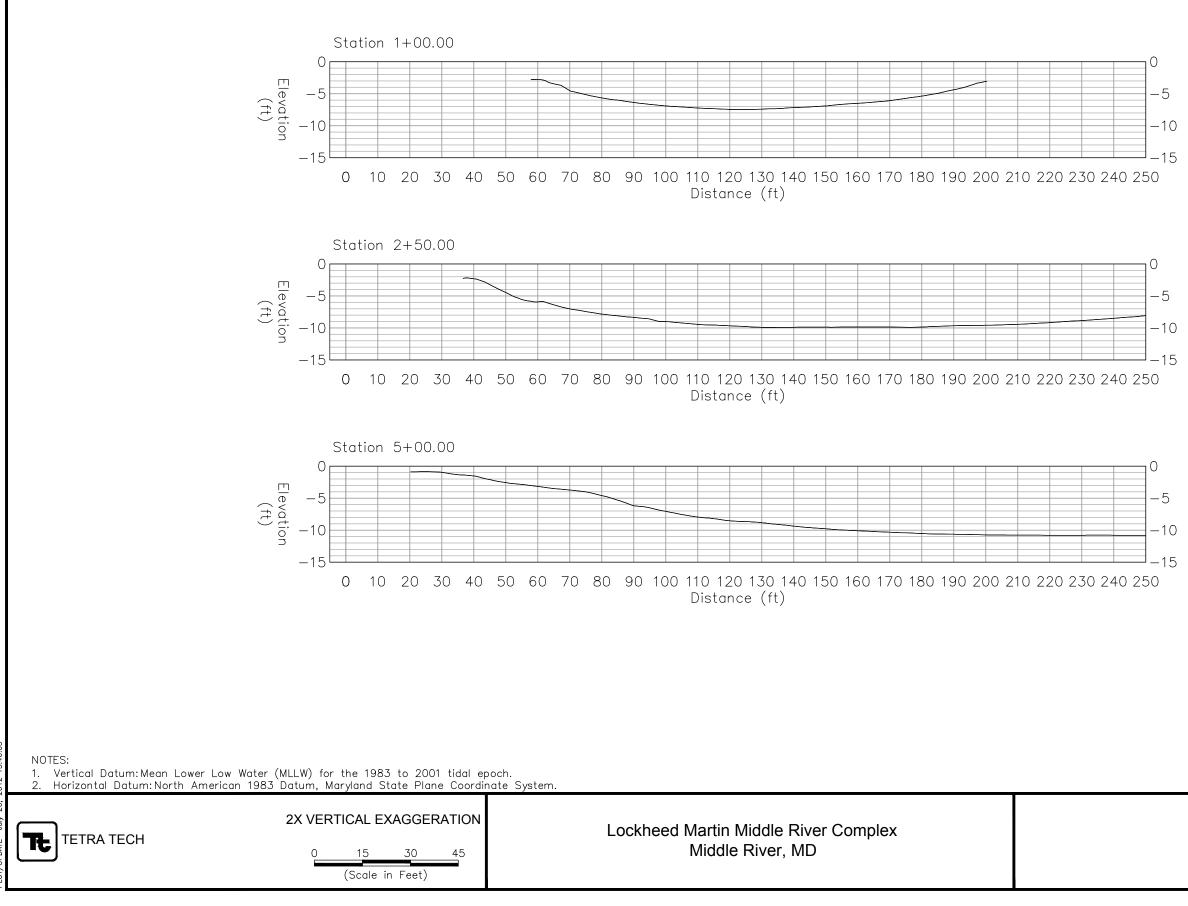
# Table B-3 Selected Preliminary Remediation Goals for Benthic Macroinvertebrates Lockheed Martin, Middle River Complex Middle River, Maryland

| Parameter  | Preliminary<br>Remediation<br>Goals<br>(mg/kg) | Basis of the<br>Selected Preliminary<br>Remediation Goals<br>(mg/kg) |
|------------|------------------------------------------------|----------------------------------------------------------------------|
| Cadmium    | 9.96                                           | 2 times the PEC <sup>(1)</sup>                                       |
| Copper     | 298                                            | 2 times the PEC <sup>(1)</sup>                                       |
| Lead       | 128                                            | PEC <sup>(1)</sup>                                                   |
| Mercury    | 1.06                                           | PEC <sup>(1)</sup>                                                   |
| Zinc       | 459                                            | PEC <sup>(1)</sup>                                                   |
| Total PCBs | 0.676                                          | PEC <sup>(1)</sup>                                                   |

1 - Consensus based Probable Effects Concentration (PEC) for freshwater systems (MacDonald et al., 2000)

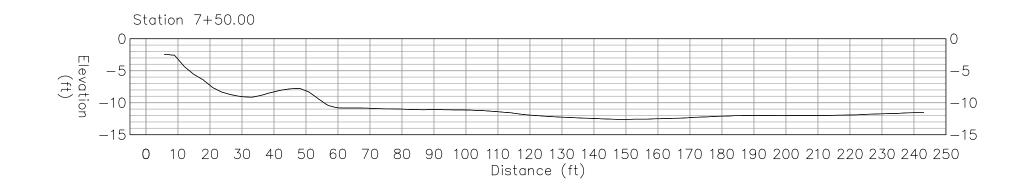
## **APPENDIX C—SEDIMENT BATHYMETRY PROFILES**

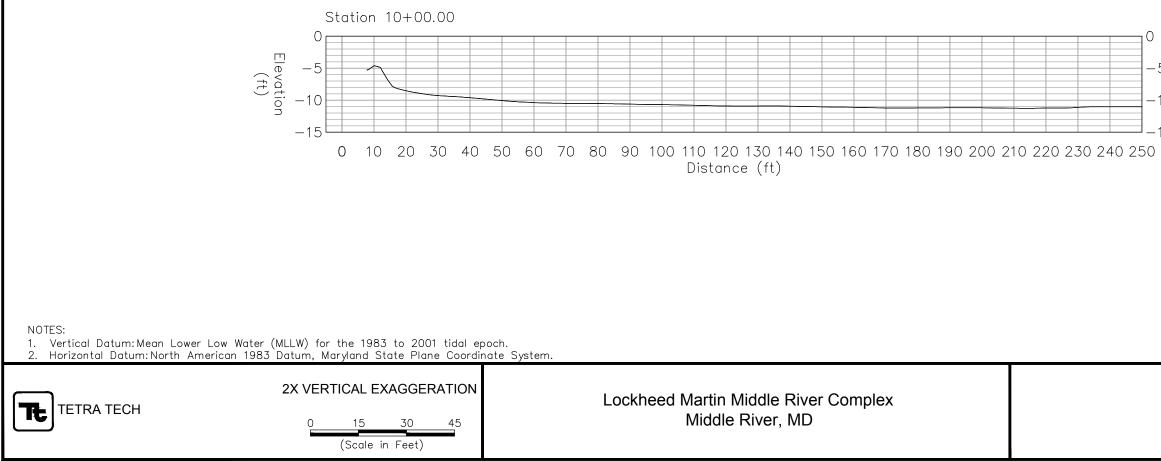
# APPENDIX C Sediment Bathymetry Profiles


This appendix includes existing sediment bathymetry profiles of Dark Head Cove and Cow Pen Creek. The profiles were generated using AutoCAD/Civil3D engineering design software based on the bathymetric survey completed in 2010. The bathymetric survey was performed in Dark Head Cove, in accessible portions of Cow Pen Creek, and at the confluence of the two water bodies. These profiles are included in this appendix for future reference and utilization purpose during the design of the remedial action to refine the FS-level removal estimates and perform a dredging design.



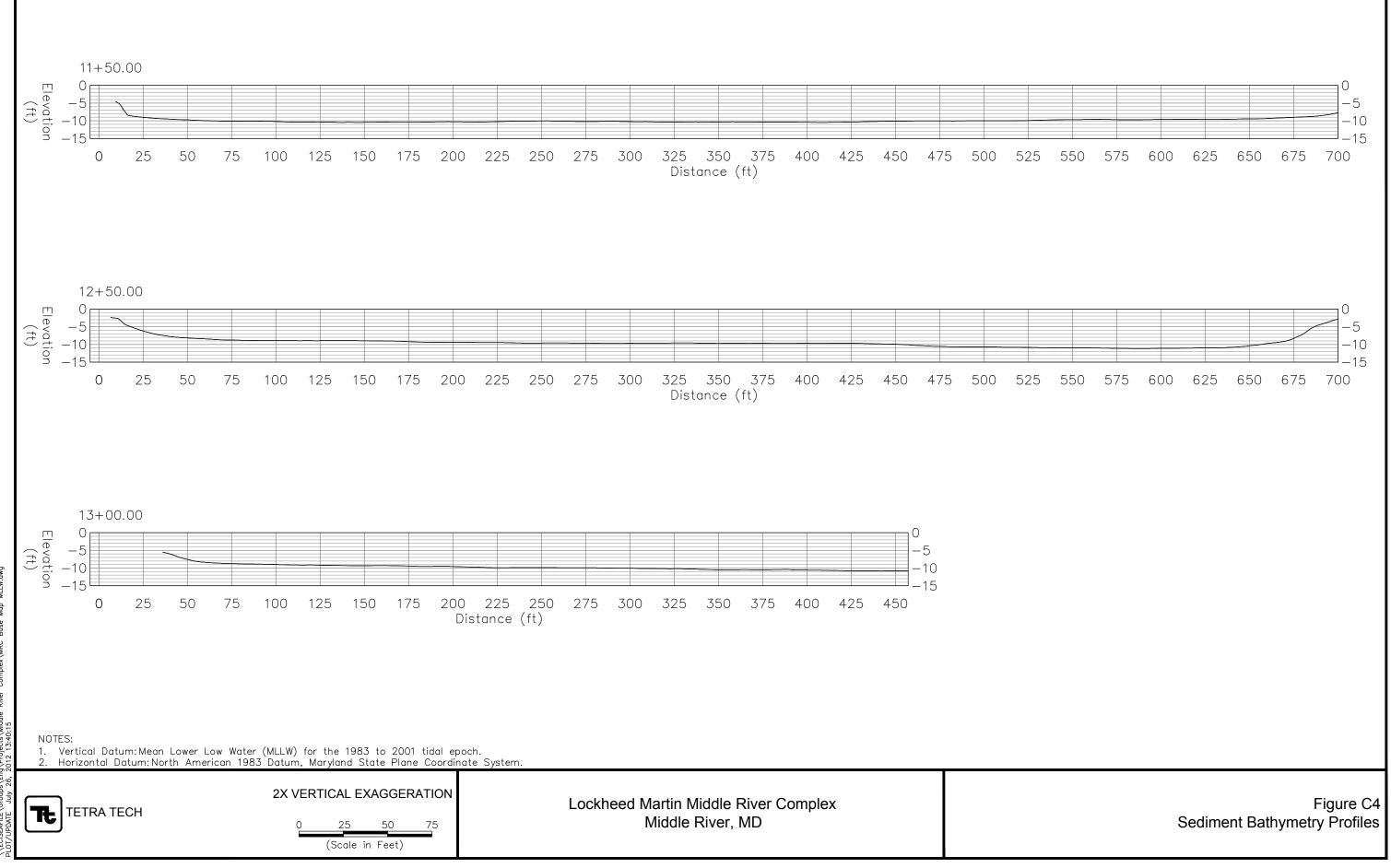
450 150 300 (Scale in Feet)


Middle River, MD

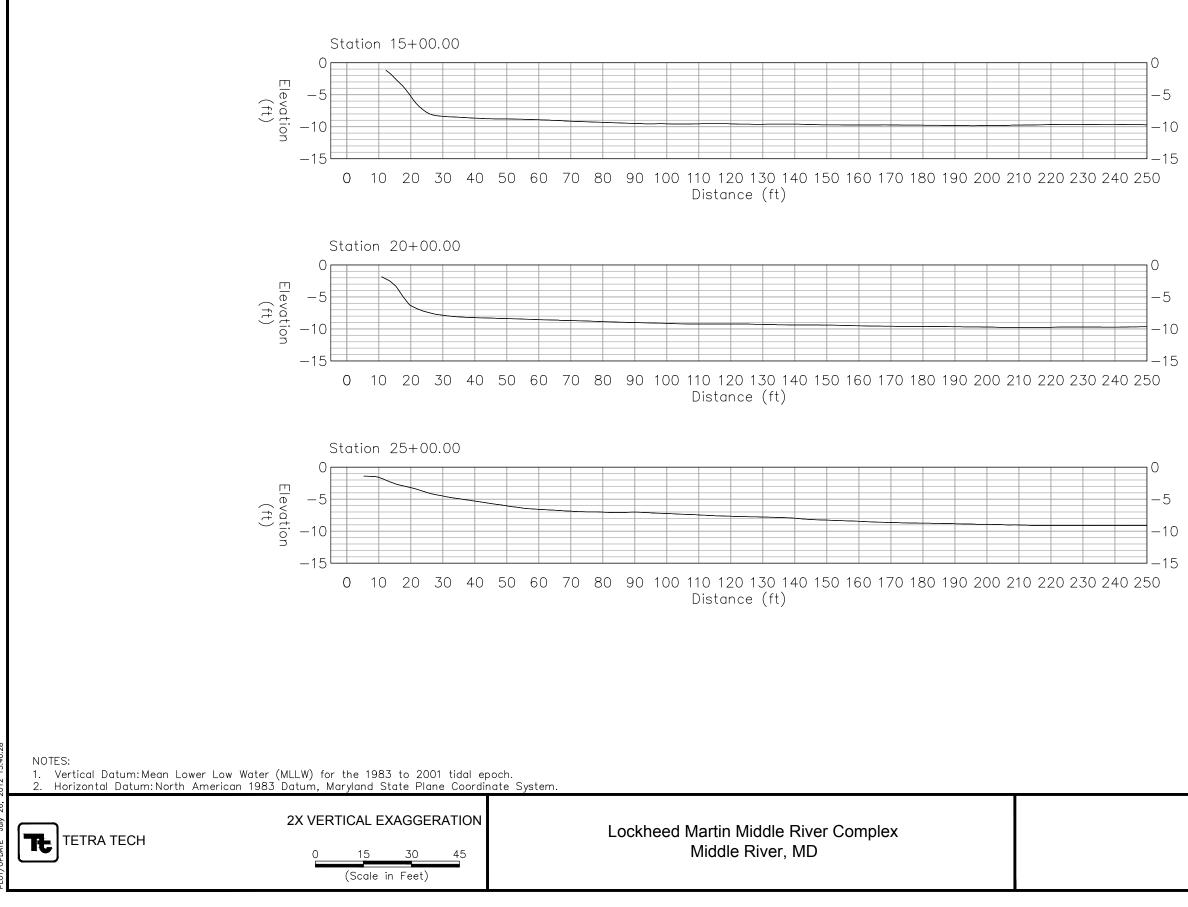

Figure C1 Site Map



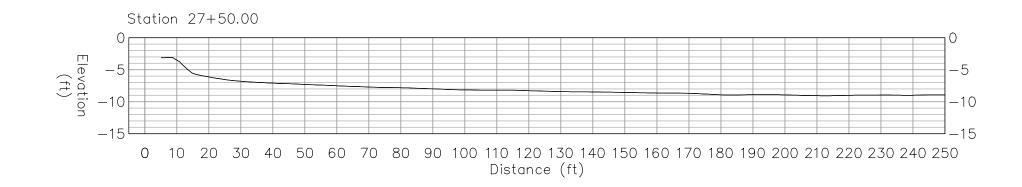

SISEAFILE\Groups\Eng\Projects\Middle River Complex\MRC Base Map MLLW.dwg \Inbhatt 1...1. 26 2013 13-40-05

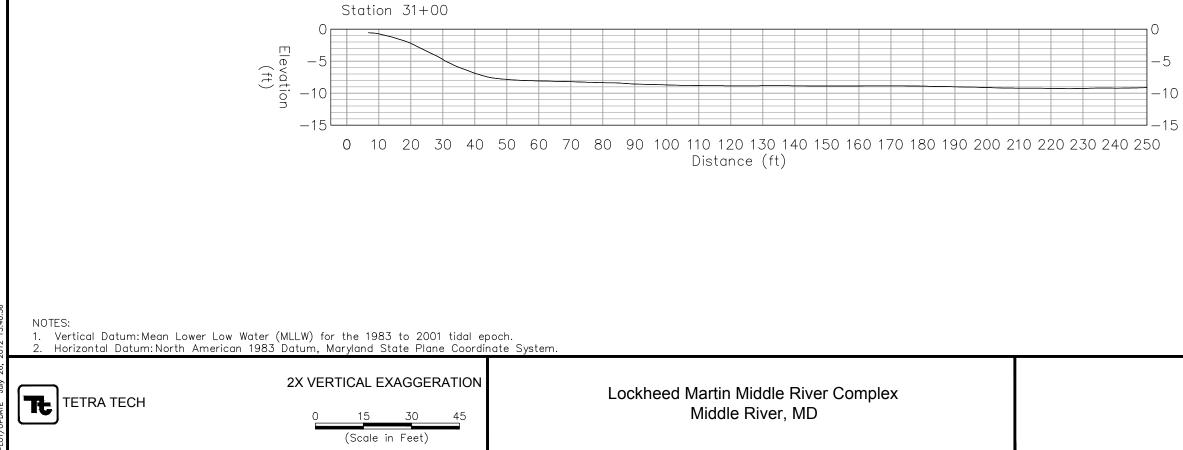

#### Figure C2 Sediment Bathymetry Profiles









#### Figure C3 Sediment Bathymetry Profiles




Base Map MLLW.dwg plex/MRC Com River jects\Middle



#### Figure C5 Sediment Bathymetry Profiles







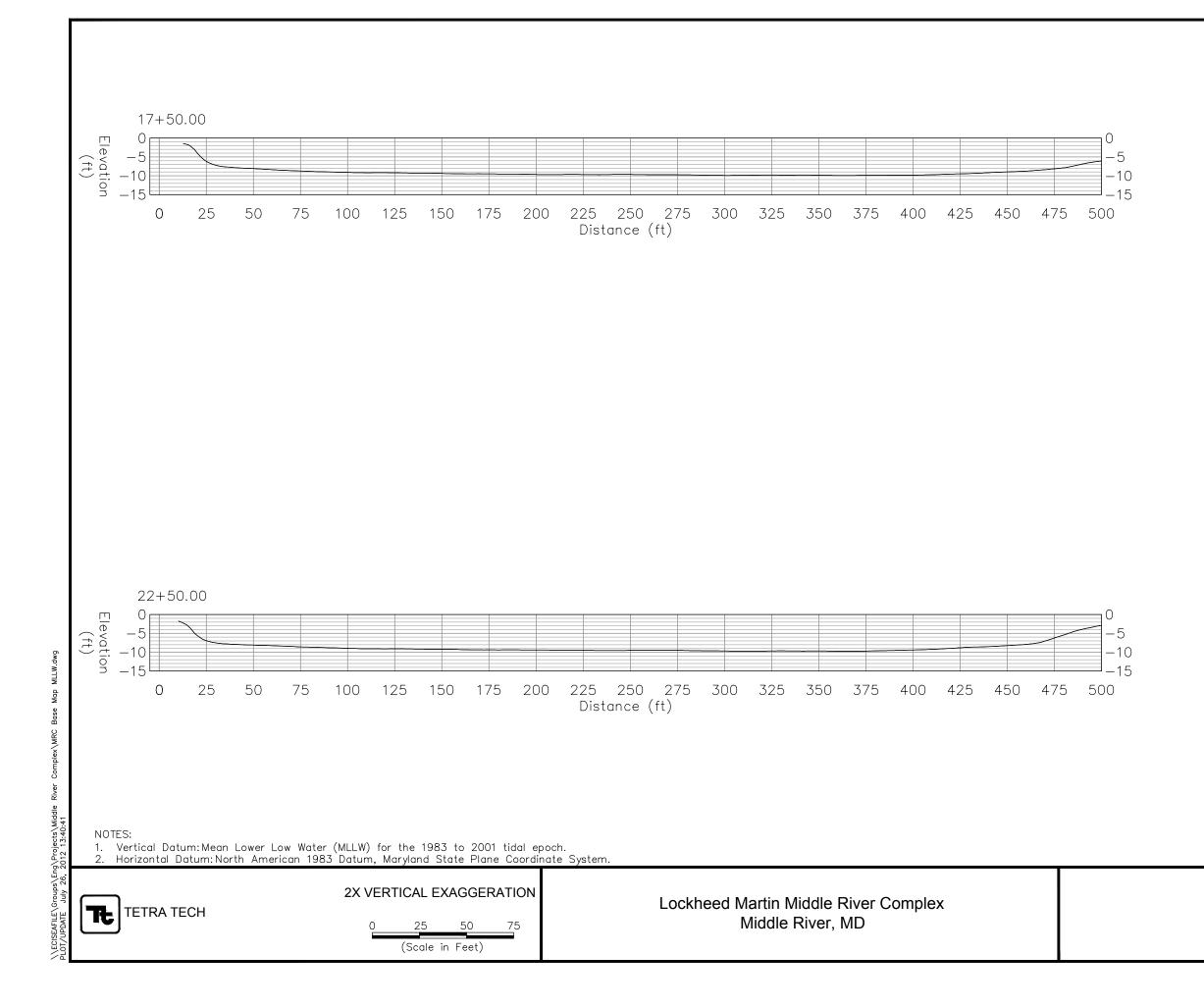



Figure C7 Sediment Bathymetry Profiles

## APPENDIX D—COMMUNITY INPUT TO REMEDIAL ALTERNATIVES

# APPENDIX D Community Input to Remedial Alternatives

Lockheed Martin has established a community outreach process for the MRC site for upland remediation work. Regarding to the Cow Pen Creek and Dark Head Cove sediment cleanup work, Lockheed Martin organized a public information session and three follow-up working group meetings to keep the community informed. The public information session was held on January 18, 2012. The Citizens' Guide to understand Lockheed Martin's path forward for the cleanup of sediments near the MRC was presented to the community. Following the information session, three monthly education and involvement working group meetings were held on February 23, March 21, and April 26, 2012. Sediment characterization and risk assessment, remedial technologies and approaches, and remedial alternatives and evaluations were reviewed during these meetings.

Community outreach process also provided input on evaluation of the alternatives. Summary of input and comment matrix from the community is included in Table D-1. Regarding complete removal alternatives, working group members noted that the cost may be excessive compared to the benefits, even though a total cleanup is considered ideal. Long construction period and short-term disruption to the community were among the other concerns related to the complete removal remedy. Alternatives with partial removal and with components of *in situ* treatment and MNR have got supportive comments from the public due to their less cost, less construction time, and less disruption to the environment and the community while meeting all RAOs. The community also noted their concerns on the length of recovery in certain areas through MNR, introduction of activated carbon to the water, and the effectiveness of activated carbon treatment. All the remedial alternatives reviewed by the public were retained in the short list of alternatives and carried forward for detailed evaluation.

|                                                                               |                                                                |                                                                                 |                                                                                                                                                                                                                                                                                                                                          |                                                     |                        | Community Inc                                                                                                                                                                                                                                         | Table D-1<br>ut to Remedial A | pproaches                                                                                                                              |                                                                                              |                                                                                                     |                         |                                                                  |                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Remedial Approache                                                            | es                                                             | Community Member<br>#1                                                          | Community Member Community<br>#2 Member #3                                                                                                                                                                                                                                                                                               | Community Member #4                                 | Community<br>Member #5 | Community Member<br>#6                                                                                                                                                                                                                                | Community<br>Member #7        |                                                                                                                                        |                                                                                              | Community Member<br>#10                                                                             | Community Member<br>#11 | Community Member<br>#12                                          | Community Member TOTALS #13                                                                                                                                                                                           |
| No Action<br>Complete Removal                                                 | 1<br>2 (3A)                                                    | Ideal for total clean up,<br>but too many issues; ex.<br>Time, cost, disruption | This always seems like<br>the best solution but<br>can cause many<br>problems and take too<br>long with the limited<br>working season.                                                                                                                                                                                                   |                                                     |                        | The cost is eventually<br>passed on to us as tax-<br>payers since this is paid<br>for through gov.<br>programs and higher<br>costs of produce<br>(planes) that the gov.<br>buys.                                                                      |                               |                                                                                                                                        |                                                                                              | Cost may be excessive<br>compared to benefit<br>derived                                             |                         | Too expensive.                                                   |                                                                                                                                                                                                                       |
| Removal at Dark Head<br>Cove (DHC) and Cow<br>Pen Creek (CPC)                 | 3 (3B) - CPC remo<br>DHC removal (inclu<br>acre at the conflue | ding 1.5 disruptive to community                                                |                                                                                                                                                                                                                                                                                                                                          |                                                     |                        |                                                                                                                                                                                                                                                       |                               |                                                                                                                                        |                                                                                              | Complete clean up<br>desirable but<br>cost/benefit? Obtain<br>most cleanup for dollars<br>expended. | This is too long.       | Too expensive.                                                   |                                                                                                                                                                                                                       |
| Combined Action                                                               | 4 (4H) - Removal a<br>CPC + MNR                                |                                                                                 |                                                                                                                                                                                                                                                                                                                                          |                                                     |                        |                                                                                                                                                                                                                                                       |                               |                                                                                                                                        |                                                                                              |                                                                                                     | This is the Best        | Length of time too long.                                         |                                                                                                                                                                                                                       |
| Combined Action                                                               | 5 (4I) - Alt. 4+4<br>removal + MN                              |                                                                                 |                                                                                                                                                                                                                                                                                                                                          |                                                     |                        |                                                                                                                                                                                                                                                       |                               |                                                                                                                                        |                                                                                              |                                                                                                     | This is the Best        | Length of time<br>acceptable. Preferred<br>due to less dredging. |                                                                                                                                                                                                                       |
| Combined Action                                                               | 6 (4G) - Alt. 4 + I<br>Treatment + Mi                          |                                                                                 | Achieves the goal of<br>all the above; no<br>unnessary expense;<br>less community<br>impact; best balance                                                                                                                                                                                                                                | This would be my choice<br>under the circumstances. | The Best<br>Compromise | I like this option the bes<br>at this time. It seems to<br>be the best combination<br>of processes and will<br>achieve the stated goals                                                                                                               |                               |                                                                                                                                        |                                                                                              |                                                                                                     |                         | Length of time<br>acceptable. Preferred<br>due to less dredging. | This option seems the<br>most reasonable with<br>regard to cost and lesser<br>truck greenhouse<br>emissions. I believe the<br>immediate neighbors<br>would opt for work to be<br>limited to 8 hrs/day & 5<br>days/wk. |
| Comments                                                                      |                                                                |                                                                                 | 12 hr/day & 7 day/wk       Introducing carbon         would involve massive       into the water is         lighting and early       introducing another         starting days.       10 hr/6         days/week seems       There are already         might provide the best       too many non-nativ         balance.       substances! | process extremely                                   |                        | Excellent job<br>throughout the entire<br>process. Very<br>informative, very well<br>presented. Everybody<br>was extremely well<br>prepared. Thank you fo<br>including the<br>community along the<br>way and keeping the<br>civic associations in the | r                             | all of your efforts in explaining<br>the options to us. I feel confident<br>you will make a judgement that<br>is in our best interest. | to 2017; Session answered a<br>lot of questions about specific<br>ways each approach will be | complete cleanup<br>proposed in 3. Emission<br>by product of the                                    |                         |                                                                  |                                                                                                                                                                                                                       |
| Question 1 (no polling)                                                       | )                                                              |                                                                                 |                                                                                                                                                                                                                                                                                                                                          |                                                     |                        |                                                                                                                                                                                                                                                       |                               |                                                                                                                                        |                                                                                              |                                                                                                     |                         |                                                                  |                                                                                                                                                                                                                       |
| 7 days/week<br>6 days/week                                                    |                                                                |                                                                                 | 1                                                                                                                                                                                                                                                                                                                                        | 1 1                                                 | 1                      |                                                                                                                                                                                                                                                       | 1                             |                                                                                                                                        | 1                                                                                            | 1                                                                                                   | 1                       | l                                                                | 1 5                                                                                                                                                                                                                   |
| 5 days/week                                                                   |                                                                | 1                                                                               |                                                                                                                                                                                                                                                                                                                                          | 1                                                   | 1                      |                                                                                                                                                                                                                                                       |                               | 1                                                                                                                                      |                                                                                              |                                                                                                     |                         | ]                                                                |                                                                                                                                                                                                                       |
| No opinion<br>Question 2 (with pollin<br>12 hours/day 14%<br>10 hours/day 57% | ng)                                                            |                                                                                 |                                                                                                                                                                                                                                                                                                                                          |                                                     |                        |                                                                                                                                                                                                                                                       | 1                             |                                                                                                                                        |                                                                                              |                                                                                                     | 1                       |                                                                  |                                                                                                                                                                                                                       |
| 8 hours/day 29%                                                               |                                                                |                                                                                 |                                                                                                                                                                                                                                                                                                                                          | 1                                                   | 1                      | 1                                                                                                                                                                                                                                                     | -<br>-                        |                                                                                                                                        | 1                                                                                            |                                                                                                     |                         | 1                                                                |                                                                                                                                                                                                                       |
| No opinion                                                                    |                                                                |                                                                                 |                                                                                                                                                                                                                                                                                                                                          |                                                     |                        |                                                                                                                                                                                                                                                       |                               |                                                                                                                                        |                                                                                              |                                                                                                     |                         |                                                                  |                                                                                                                                                                                                                       |
| Question 3: Working G                                                         | Group process (no p                                            | olling)                                                                         |                                                                                                                                                                                                                                                                                                                                          | 1                                                   |                        |                                                                                                                                                                                                                                                       |                               |                                                                                                                                        |                                                                                              |                                                                                                     |                         |                                                                  |                                                                                                                                                                                                                       |
| Adequately<br>Inadequately<br>No opinion                                      |                                                                |                                                                                 |                                                                                                                                                                                                                                                                                                                                          |                                                     |                        |                                                                                                                                                                                                                                                       |                               |                                                                                                                                        |                                                                                              |                                                                                                     |                         |                                                                  |                                                                                                                                                                                                                       |
| Question 4: Working G                                                         | Group process (with                                            | polling)                                                                        |                                                                                                                                                                                                                                                                                                                                          | 1                                                   |                        |                                                                                                                                                                                                                                                       |                               |                                                                                                                                        |                                                                                              |                                                                                                     |                         |                                                                  |                                                                                                                                                                                                                       |
| Educational – 99%<br>Not worth my time                                        |                                                                |                                                                                 |                                                                                                                                                                                                                                                                                                                                          | 1                                                   | 1                      |                                                                                                                                                                                                                                                       | 1                             |                                                                                                                                        | 1                                                                                            | 1                                                                                                   | 1                       |                                                                  | 8                                                                                                                                                                                                                     |
| Could have been improv                                                        | ved – 7%                                                       |                                                                                 |                                                                                                                                                                                                                                                                                                                                          |                                                     |                        |                                                                                                                                                                                                                                                       |                               |                                                                                                                                        |                                                                                              |                                                                                                     |                         | 1                                                                |                                                                                                                                                                                                                       |
| No opinion                                                                    |                                                                |                                                                                 |                                                                                                                                                                                                                                                                                                                                          |                                                     |                        |                                                                                                                                                                                                                                                       |                               |                                                                                                                                        |                                                                                              |                                                                                                     | +                       | Sessions too long.                                               |                                                                                                                                                                                                                       |
| Comment:                                                                      |                                                                |                                                                                 |                                                                                                                                                                                                                                                                                                                                          |                                                     |                        |                                                                                                                                                                                                                                                       |                               |                                                                                                                                        |                                                                                              |                                                                                                     |                         | Sessions too long.                                               |                                                                                                                                                                                                                       |

### APPENDIX E—DETAILED COST ESTIMATES

#### TABLE OF CONTENTS

| APPEND | IX E DETAILED COST ESTIMATES           | 1 |
|--------|----------------------------------------|---|
| E.1    | INTRODUCTION                           | 1 |
| E.2    | COST ESTIMATING METHODOLOGY FOR THE FS | 1 |
|        | E.2.1 Volume Estimates                 | 2 |
| E.3    | FS LEVEL COST ESTIMATES SUMMARY        | 6 |
| E.4    | REFERENCES                             | 6 |

#### LIST OF TABLES

| Table E-1   | Basis for Cost Estimates                                                                          | .3 |
|-------------|---------------------------------------------------------------------------------------------------|----|
| Table E-2.  | Construction QA/QC                                                                                | .7 |
| Table E-3.  | Long-Term Operations and Maintenance Monitoring for MNR, In Situ<br>Treatment, Reactive ENR Areas | .7 |
| Table E-4.  | Institutional Controls                                                                            | .7 |
| Table E-5.  | ALTERNATIVE: 3A. Complete Removal                                                                 | .7 |
| Table E-6.  | ALTERNATIVE: 3B. Complete Removal and CPC and DHC                                                 | .7 |
| Table E-7.  | ALTERNATIVE: 4F. Partial Removal, Reactive ENR                                                    | .7 |
| Table E-8.  | ALTERNATIVE: 4G. Partial Removal, In situ Treatment, MNR                                          | .7 |
| Table E-9.  | ALTERNATIVE: 4H. Partial Removal, MNR                                                             | .7 |
| Table E-10. | ALTERNATIVE: 4I. Partial Removal, MNR                                                             | .7 |
| Table E-11. | ALTERNATIVE: 4J. Partial Removal, In situ Treatment, MNR                                          | .7 |

# APPENDIX E **Detailed Cost Estimates**

#### E.1 INTRODUCTION

This appendix provides detailed cost estimates for the remedial alternatives developed in this FS for remediation of contaminated sediment in the Middle River Complex (MRC) Site. The cost estimates are developed in accordance with the United States Environmental Protection Agency's (USEPA) guidance document Guide to Developing and Documenting Cost Estimates during the Feasibility Study (USEPA, 2000). In this appendix, the basis for cost estimates, the cost estimating methodology, and the detailed cost estimates for each alternative are provided. Information provided includes:

- Assumptions common to all remedial alternatives for each task and sub-task (Table E-1);
- Estimates for construction QA/QC and verification sampling, long-term operations and maintenance monitoring for MNR, in situ treatment and reactive ENR areas, and institutional controls (Tables E-2, E-3, E-4); and
- Detailed cost estimates for Alternatives 3A, 3B, 4F, 4G, 4H, 4I, and 4J (Tables E-5 to E-11).

#### E.2 COST ESTIMATING METHODOLOGY FOR THE FS

The cost of each alternative includes capital costs (engineering, construction, and supplies) and annual or periodic costs (O&M costs, monitoring, and ongoing administration) incurred over the life of the remedial action. Capital costs are incurred during implementation and startup of the remedy. Annual costs are those costs required to maintain the operation of the remedy over time. According to CERCLA guidance (USEPA, 1988), cost estimates for remedial alternatives were developed with an expected accuracy range of -30 to +50 percent.

The costs of remedial alternatives are compared using the estimated net present value of the alternative. The net present value allows costs for remedial alternatives to be compared by discounting all costs to the year that the alternative is implemented. In the *Guide to Developing and Documenting Cost Estimates During the Feasibility Study* suggests that the period of

analysis for the present value analysis should be equivalent to the project duration, to provide a complete life cycle cost estimate of the remedial alternative (USEPA, 2000). Combined action alternatives developed for the MRC sediments (Alternatives 4F, 4G, 4H, 4I, and 4J) require long-term activities, institutional controls and sitewide performance monitoring of the constructed remedy. The discount factor is assumed to be 7 percent for institutional controls and long-term operation and maintenance costs. The FS cost estimates of all alternatives were calculated for a 10-year to 50-year duration based on the expected effectiveness of each alternative. Duration of the long-term monitoring and institutional controls were determined based on the estimated performance and number of years to reach the remedial action objectives of each alternative. Complete removal alternatives do not require any long-term monitoring.

#### E.2.1 Volume Estimates

Variation in the scope of each remedial alternative is a significant contributing factor to cost uncertainty. Changes in the volume of sediment dredged and disposed of has a much greater influence on cost than changes of a proportionately similar magnitude in an area remediated using containment technologies (e.g., capping and ENR).

Removal volume estimates were completed based on the distribution of the horizontal and vertical extent of chemical concentrations in MRC sediments determined at four depth intervals (i.e., 0-6 inches, 6-18 inches, 18-30 inches, and >30-52 inches) and presented in Thiessen polygons. The areas of these polygons and the depth intervals are used for volume calculations of contaminated sediments for removal alternatives. Removal volumes computed by the areas of the polygons and the depth intervals are increased by 50% to account for constructible dredge prisms (i.e., over-dredge, side slopes, box cuts), and additional characterization). Residual management and reactive ENR volume estimates are based on the assumption of 9-inches of backfill material to achieve a goal of a minimum 6-inch backfill layer, and 12 inches of reactive material to achieve a 6-in reactive ENR layer. The amount of activated carbon (AC) required to remediate the site for in situ treatment and reactive ENR alternatives was estimated as 5% in the top 10 cm of bioactive sediments corresponding 35,000 kg/ha (Ghosh *et al.* 2011).

|                       |                                              |                                                                                        | s for Cost Estimates                      |                                                                                                                                                                                                                                                                               |
|-----------------------|----------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Element               | Task                                         | Sub-Task                                                                               | Unit Cost                                 | Notes/Assumptions                                                                                                                                                                                                                                                             |
| Remedial Design       | Bench/Pilot Testing                          | In situ amendments testing for applicable alternatives                                 | \$40,000 LOE                              | Quote given by U. Ghosh, University of M<br>alternatives with <i>in situ</i> treatment (Alt. 4G                                                                                                                                                                               |
|                       | Field Investigation                          | Additional data collection, pre-design survey                                          | 1% of Remedy Implementation<br>Lump Sum   | Estimate for additional field investigation,                                                                                                                                                                                                                                  |
|                       | Modeling                                     | MNR modeling for applicable alternatives                                               | \$10,000 LOE                              | Estimate for MNR modeling                                                                                                                                                                                                                                                     |
|                       | Reporting/Deliverables                       | Remedial design submittal                                                              | 6% of Remedy Implementation<br>Lump Sum   | 6% for remedial design submittal based on                                                                                                                                                                                                                                     |
| Remedy Implementation | Mobilization                                 | Mobilization/demobilization, site preparation, environmental controls                  | 5% of Remedy Implementation<br>Lump Sum   | Estimate for mobilize, demobilize equipme<br>articulated bucket, assist tug, temporary si<br>staging, environmental controls, oil absorb                                                                                                                                      |
|                       | Contractor Submittals<br>and Permits         | Contractor work plans, construction permits                                            | 1.5% of Remedy Implementation<br>Lump Sum | Estimate for Contractor Work Plan (Qualit<br>Environmental Protection Plan, Site Health<br>construction as-built plans.                                                                                                                                                       |
|                       | Dredging, Disposal                           | Dredging                                                                               | \$20 Per CY                               | Estimate based on completed remediation p<br>Neat dredge volumes were estimated by ut<br>purpose, neat dredge volume was increased<br>volume creep following the guidance by Pa                                                                                               |
|                       |                                              | Material Barge, Assist Tug, Transport Sediments to<br>Transloading/dewatering Facility | \$10 Per Ton                              | Estimate based on completed remediation j                                                                                                                                                                                                                                     |
|                       |                                              | Water Management                                                                       | \$10,000 Per Day                          | Estimate for dredged water storage, sampli<br>back. Cost includes contingency for pumpi<br>system, capital cost, and operation cost of<br>1,000 gpm. Number of dredge days is calcu<br>816 cy/day for mechanical dredging estima<br>document.                                 |
|                       |                                              | Dewatering/Transloading Area Setup                                                     | \$500,000                                 | Estimate for dewatering/transloading area s<br>impermeable liner, gravel pad, berm, and w                                                                                                                                                                                     |
|                       |                                              | Handling, Transport to Subtitle D Landfill                                             | \$40 Per Ton                              | Material transfer cost from dewatering area<br>(20 ton minimum) and \$75 demurrage fee a<br>Waste Management Inc. April 14, 2011. V<br>incorporate loads greater than 20 tons for a<br>loading cost.                                                                          |
|                       |                                              | Disposal at Subtitle D Landfill                                                        | \$36 Per Ton                              | Material disposal at the Subtitle D landfill<br>dredged materials are: Grows North Landfil<br>King George, VA (pass filter test - \$31-35<br>fuel surcharge), and Middle Peninsula Lan<br>environmental fee & 7.6% fuel surcharge).<br>Quote from Waste Management Inc. April |
|                       |                                              | Handling, Transport to Hazardous Waste Landfill                                        | \$90 Per Ton                              | Material transfer cost from dewatering area<br>phone from Chemical Waste Management<br>Model City, NY 14107, (716) 754-8231 on<br>surcharge.                                                                                                                                  |
|                       |                                              | Disposal at Hazardous Waste Landfill                                                   | \$87 Per Ton                              | Material disposal at hazardous waste landf<br>Management Chemical Services, 1550 Bal<br>8231 on Nov 29, 2011. \$75 per ton plus 7.5                                                                                                                                           |
|                       | Backfill, Reactive ENR,<br>In situ Treatment | Backfill                                                                               | \$30 Per CY                               | Estimate based on completed remediation p<br>management by backfill quantities were est<br>area to reach a minimum 6 inches of cover                                                                                                                                          |
|                       |                                              | Reactive ENR Material Procurement, Delivery,<br>Placement                              | \$120 Per CY                              | ENR material quantities were estimated us<br>reach minimum 6 inches of coverage. Esti                                                                                                                                                                                         |

Table E-1

Maryland on January 24, 2012 applicable to G and 4J)

n, pre-design field work

#### on USEPA 540-R-00-002 (2000)

ment, derrick barge with enclosed bucket or site facilities, utilities, lease for operations, rbent booms, debris booms.

lity Control Plan, Waste Management Plan, lth and Safety Plan), construction permits, post-

n projects nationwide including debris removal. utilizing Thiessen polygons. For FS costing sed by 50% to account for the various causes of Palermo and Gustavson (2009).

n projects nationwide.

pling. Assumed the water would be released ping and disposal to sewer or water treatment of water treatment system with a capacity of lculated assuming daily dredge production of mated per ERDC/EL TR-08-29 (2008) guidance

a setup for a 2 to 5 acre area including l water collection sump.

rea to landfill by aluminum trailers. \$800/load ee after 1<sup>st</sup> hour of free loading – Quote from Value averaged for an estimate of \$40/ton to r a smaller fee and demurrage fees for additional

ll (\$40/ton). Subtitle D facility that accepts wet dfill, Morrisville, PA, King George Landfill, 35 per ton plus 7.5% environmental fee & 7.6% andfill, Glens, VA (\$75 per ton plus 7.5% e). Assume disposal to Grows North Landfill. ril 14, 2011.

rea to landfill by aluminum trailers. Quote by nt Chemical Services, 1550 Balmer Road, on Nov 29, 2011. \$70/ton + 25-30% fuel

dfill. Quote by phone from Chemical Waste almer Road, Model City, NY 14107, (716) 754-7.5% environmental fee & 7.6% fuel surcharge. n projects nationwide. Dredge residual estimated using 9 inches of sand over dredge erage.

using 1-ft layer of sand over ENR footprint to stimate based on AC cost of approximately

| Element                             | Task                                                                     | Sub-Task                                                                                                                               | Unit Cost                                                                                     | Notes/Assumptions                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                                                                          |                                                                                                                                        |                                                                                               | \$2.2/kg converted to LB. The amount of A<br>5% in the ENR sand layer corresponding t<br>\$75,000/ha at a bulk cost of AC of about \$<br>for delivery, mixing, and placement (Ghos<br>cost of \$30/cy added for reactive ENR, tot<br>6-inch placement.                                                                                                            |
|                                     |                                                                          | In Situ Treatment Procurement, Delivery, Placement                                                                                     | \$2 Per LB                                                                                    | Estimate based on AC cost of approximate<br>increased to account for delivery and place<br>remediate the site estimated as 5% in the t<br>35,000 kg/ha equal to 31,232 lb/acre (Gho                                                                                                                                                                               |
|                                     | Construction QA/QC                                                       | Verification sampling, bathymetric surveys, water quality monitoring                                                                   | \$2,200/sample \$8,000 /day for<br>sampling<br>\$7,000/day for WQ monitoring,<br>bathy survey | Assume 4 samples/acre for verification sa<br>\$8,000 labor/day including equipment, ma<br>survey and water quality monitoring inclu<br>reporting during construction.                                                                                                                                                                                             |
|                                     | Shoreline Restoration                                                    | Shoreline Stabilization                                                                                                                | \$50 Per Ton                                                                                  | Riprap procurement and placement. Estim<br>nationwide. Assume 2 feet thickness ripra<br>during dredging.                                                                                                                                                                                                                                                          |
|                                     | Sales Tax                                                                | Habitat Enhancement and Riparian PlantingMaryland sales tax (6%) applied to RemedyImplementation excluding transport and disposal cost | \$150,000 Per AC<br>6% of Implementation cost                                                 | Estimate for habitat improvements in Cow<br>Maryland sales tax applied to materials an<br>cost which the quotes include the sales tax                                                                                                                                                                                                                             |
|                                     | Bonds                                                                    | Contractor's performance and payment bonds                                                                                             | 1% of Implementation cost                                                                     | Cost for contractor bonds                                                                                                                                                                                                                                                                                                                                         |
| Operation, Monitoring & Maintenance | Maintenance                                                              | Reactive ENR Repair                                                                                                                    | \$180 Per CY                                                                                  | Assume 10% of ENR material placed will only.                                                                                                                                                                                                                                                                                                                      |
|                                     |                                                                          | In situ Treatment Repair                                                                                                               | \$4 Per LB                                                                                    | Assume 10% of AC placed will be repaired<br>another half of the repair will be needed a                                                                                                                                                                                                                                                                           |
|                                     | Laboratory, Field<br>Activities –MNR, In situ<br>treatment, reactive ENR | LTM sampling                                                                                                                           | Estimated for each alternative                                                                | Surface and subsurface sediment monitori<br>40, 45, 50; Bathymetry, SPI camera surve<br>50; Tissue sampling at Years 5, 10, 20, 30<br>cost of \$2,200/sample; \$8,000 labor/day in<br>bathymetry survey/SPI camera survey.<br>LTM duration: Alternative 3A, 3B – no L'<br>4G, 4I – 20 years; Alternatives 4J, 4F – 10<br><i>situ</i> treatment and MNR estimates. |
|                                     | Institutional Controls                                                   | Public outreach, support seafood consumption advisories, reporting, agency review                                                      | \$100,000 initial + \$20,000 corresponding monitoring years                                   | Estimate applied at corresponding years to                                                                                                                                                                                                                                                                                                                        |
|                                     | Reporting/Deliverables                                                   | Reporting OM&M                                                                                                                         | 5% of OM&M                                                                                    | 5% of total LTM sampling activities                                                                                                                                                                                                                                                                                                                               |
|                                     | Modeling                                                                 | MNR modeling                                                                                                                           | \$5,000 LOE                                                                                   | Estimate for modeling verification/remode<br>years for Alternative 4H; at Years 2, 5, 10<br>for Alternatives 4F and 4J.                                                                                                                                                                                                                                           |
| Project Closure                     | Assessments                                                              | Remedial construction assessments                                                                                                      | 1% of Subtotal                                                                                | Estimate                                                                                                                                                                                                                                                                                                                                                          |
|                                     | Decommission                                                             | Project decommission                                                                                                                   | 1% of Subtotal                                                                                | Estimate                                                                                                                                                                                                                                                                                                                                                          |
| Project Management                  | During Implementation                                                    | General PM, construction management, agency oversight                                                                                  | 12% of Design + Implementation                                                                | Estimate for general PM, QA support, cor<br>540-R-00-002 (EPA, 2000)                                                                                                                                                                                                                                                                                              |
|                                     | During OM&M                                                              | General PM during OM&M activities                                                                                                      | 12% of OM&M                                                                                   | Estimate                                                                                                                                                                                                                                                                                                                                                          |
|                                     | During Closure                                                           | General PM during closure                                                                                                              | 12% of Closure                                                                                | Estimate                                                                                                                                                                                                                                                                                                                                                          |
| Contingencies                       | Scope                                                                    | Scope contingency                                                                                                                      | 10<br>-25%                                                                                    | Scope Contingency (12.2% Implementation<br>Closure Subtotal)                                                                                                                                                                                                                                                                                                      |
|                                     | Bid                                                                      | Bid contingency                                                                                                                        | 10-20%                                                                                        | Bid Contingency (10% Implementation &                                                                                                                                                                                                                                                                                                                             |

Notes:

1. Cost is net present value in 2012 Dollars

2. Assume average sediment bulk density is 1.3 tons/cy for dredged sediments. Average bulk unit weight of MRC sediments is 100 pcf or 1.23 ton/cy.

3. Assume average sediment bulk density is 1.5 tons/cy for backfill, reactive ENR material.

4. Present value analysis was performed assuming 7% discount by following USEPA 540-R-00-002 (USEPA, 2000).

f AC required to remediate the site estimated as g to 35,000 kg/ha which amounts to about it \$2.2/kg, increased to \$60,703/acre to account nosh et al 2011). Then, regular ENR placement totaling unit rate of \$84,903/acre or \$120/cy for a

ately \$2.2/kg converted to pound (lb) and acement. The amount of AC required to e top 10 cm of bioactive sediments corresponding hosh et al 2011).

sampling. Analytical cost of \$2,200/sample. naterial. Estimate \$7,000/day for bathymetry luding equipment, crew, data processing,

imate based on completed remediation projects rap placed along shoreline slopes disturbed

ow Pen Creek

and services excluding transport and disposal ax

ill be repaired at Year 5. Applicable to Alt. 4F

ired at Year 2 (Alternative 4G and 4J) and at Year 10 for Alternative 4G only.

pring at Years 1, 2, 3, 5, 7,10, 15, 20, 25, 30, 35, veys at Years 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 30, 40, 50 at \$50,000; 2 sample/acre; Analytical v including equipment, material; \$7,000/day for

LTM; Alternative 4H - 50 years; Alternative 10 years determined based on effectiveness of *in* 

to the LTM duration of each alternative.

bdeling at 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 10, 15, 20 for Alt. 4G and 4I; at Years 2, 5, 10

onstruction management based on based on EPA

tion Subtotal, 15% OM&M Subtotal, 25%

& OM&M, 20% Closure)

#### E.3 FS LEVEL COST ESTIMATES SUMMARY

The cost estimates of remedial alternatives are summarized here. Detailed cost estimates are provided in Tables E-5 to E-11.

| Element        | FS Level Cost Estimate Summary |              |              |              |              |              |              |  |  |  |  |
|----------------|--------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--|--|--|--|
| Liement        | Alt.3A                         | Alt.3B       | Alt.4F       | Alt.4G       | Alt.4H       | Alt.4I       | Alt.4J       |  |  |  |  |
| Capital Cost = | \$41,655,293                   | \$30,234,859 | \$20,456,124 | \$18,364,124 | \$17,174,621 | \$21,090,719 | \$21,466,151 |  |  |  |  |
| OM&M Cost =    | \$0                            | \$0          | \$1,014,163  | \$1,056,347  | \$945,793    | \$624,256    | \$593,014    |  |  |  |  |
| Total Cost =   | \$41,655,293                   | \$30,234,859 | \$21,470,287 | \$19,420,471 | \$18,120,414 | \$21,714,974 | \$22,059,164 |  |  |  |  |

#### E.4 REFERENCES

- Ghosh, Upal, Richard G. Luthy, Gerard Cornelissen, David Werner, Charles A. Menzie. In situ Sorbent Amendments: A New Direction in Contaminated Sediment Management. Environ. Sci. Technol., 2011, 45 (4), pp 1163–1168 DOI: 10.1021/es102694h. Publication Date (Web): January 19, 2011 <u>http://pubs.acs.org/doi/abs/10.1021/es102694h</u>
- Palermo, M.R. and Gustavson, K. 2009. "In Situ Volume Creep for Environmental Dredging Remedies," Fifth International Conference on Remediation of Contaminated Sediments, Jacksonville, FL. 2009.
- Palermo, M.R., Schroeder, P.R., Estes, T.J., and N.R. Francingues. 2008. Technical Guidelines for Environmental Dredging of Contaminated Sediments. ERDC/EL TR-08-29 September.
- U.S. Environmental Protection Agency (EPA) 2000. A Guide to Developing and Documenting Cost Estimates during the Feasibility Study. EPA 540-R-00-002, OSWER 9355.0-75. July 2000.
- U.S. EPA. 1988. Interim Final Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA. EPA/540/G-89/004. US Environmental Protection Agency, Washington, D.C. October.

#### TABLE E-2. CONSTRUCTION QA/QC

| Verification Sampling                                                    | ALT-3A      | ALT-3B      | ALT-4F    | ALT-4G    | ALT-4H    | ALT-4I    | ALT-4J    |
|--------------------------------------------------------------------------|-------------|-------------|-----------|-----------|-----------|-----------|-----------|
| Analytical Cost/Sample                                                   | \$2,200     | \$2,200     | \$2,200   | \$2,200   | \$2,200   | \$2,200   | \$2,200   |
| Remediation Area                                                         | 28          | 22          | 22        | 22        | 22        | 22        | 22        |
| Number of Samples per acre                                               | 4           | 4           | 4         | 4         | 4         | 4         | 4         |
| Number of Days (5 samples/day -dredge, 10 samples/day in situ treatment) | 23          | 18          | 18        | 18        | 18        | 18        | 18        |
| Daily Labor, Equipment, Materials                                        | \$8,000     | \$8,000     | \$8,000   | \$8,000   | \$8,000   | \$8,000   | \$8,000   |
| QC, Data management, Reporting                                           | 5%          | 5%          | 5%        | 5%        | 5%        | 5%        | 5%        |
| Subtotal Analytical:                                                     | \$246,400   | \$193,600   | \$193,600 | \$193,600 | \$193,600 | \$193,600 | \$193,600 |
| Subtotal Labor:                                                          | \$184,000   | \$144,000   | \$144,000 | \$144,000 | \$144,000 | \$144,000 | \$144,000 |
| TOTAL COST                                                               | \$451,920   | \$354,480   | \$354,480 | \$354,480 | \$354,480 | \$354,480 | \$354,480 |
| Bathymetric Surveys/ Water Quality Monitoring                            |             |             |           |           |           |           |           |
| Days of Construction                                                     | 230         | 170         | 100       | 110       | 90        | 110       | 120       |
| Daily Labor, Equipment, Materials                                        | \$7,000     | \$7,000     | \$7,000   | \$7,000   | \$7,000   | \$7,000   | \$7,000   |
| TOTAL COST                                                               | \$1,610,000 | \$1,190,000 | \$700,000 | \$770,000 | \$630,000 | \$770,000 | \$840,000 |

TABLE E-3. LONG-TERM OPERATIONS AND MAINTENANCE MONITORING FOR MNR, IN SITU TREATMENT AND REACTIVE ENR AREAS

| TASK                                                        | QUANTITY                                          | UNIT              | UNIT COST          | TOTAL COST     |             |              |              |
|-------------------------------------------------------------|---------------------------------------------------|-------------------|--------------------|----------------|-------------|--------------|--------------|
| Sediment Chemistry (Surface and subsurface)                 |                                                   |                   |                    |                |             |              |              |
| Analytical Cost (2 sample/acre)                             | 56                                                | EA                | \$2,200            | \$123,200      |             |              |              |
| Daily Labor, Equipment, Materials (10 samples/day)          | 6                                                 | EA                | \$8,000            | \$48,000       |             |              |              |
| Subtotal:                                                   |                                                   |                   |                    | \$171,200      |             |              |              |
| Tissue                                                      |                                                   |                   |                    |                |             |              |              |
| Subtotal:                                                   |                                                   |                   |                    | \$50,000       |             |              |              |
| Bathymetry and SPI Camera Surveys (3 days/monitoring event) | 6                                                 | EA                | \$7,000            | \$42,000       |             |              |              |
|                                                             |                                                   |                   |                    |                | Total OM&M  | ALT- 4F, 4G, | ALT- 4I, 4J  |
| QC, Data management, Reporting                              | 10%                                               |                   |                    |                | Cost        | 4H           | AL 1- 41, 4J |
|                                                             | Total C                                           | ost of Sampling   | g at Years 1, 3, 7 | \$188,320      | \$564,960   |              |              |
|                                                             | Total Cost of Sampling at Years 2, 15, 25, 35, 45 |                   |                    |                |             |              |              |
| Tota                                                        | I Cost of Sampl                                   | ing at Years 5, 7 | 10, 20, 30, 40, 50 | \$289,520      | \$1,737,120 |              |              |
| Notes:                                                      |                                                   |                   |                    | Yearly Average | \$250,000   | \$77,000     | \$46,000     |

 Notes.

 1. Surface and subsurface sediment monitoring at Years 1, 2, 3, 5, 7,10, 15, 20, 25, 30, 35, 40, 45, 50

 2. Bathymetry, SPI camera surveys at Years 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50

 3. Tissue sampling at Years 5, 10, 20, 30, 40, 50

 4. LTM duration for Alt. 4H is 50 years, for Alt. 4G, 4I - 20 years; Alt. 4J, 4F - 10 years

#### TABLE E-4. INSTITUTIONAL CONTROLS FOR MNR, IN SITU TREATMENT AND REACTIVE ENR AREAS

| TASK                                      |            |           |          |  |
|-------------------------------------------|------------|-----------|----------|--|
| Community Information, Education Programs |            |           |          |  |
| Public Outreach and Education             |            | \$30,000  | \$5,000  |  |
| Seafood Consumption Advisories            |            | \$50,000  | \$5,000  |  |
| Reporting to EPA, Ecology                 |            | \$10,000  | \$5,000  |  |
| Agency Review                             |            | \$10,000  | \$5,000  |  |
|                                           | TOTAL COST | \$100,000 | \$20,000 |  |

Notes:

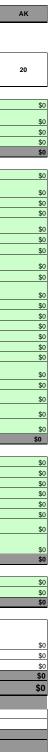
1. ICs applied at years corresponding to LTM duration of each alternative

#### TABLE E-5 **COST ESTIMATES FOR ALTERNATIVE 3A**

| ITE: Lockheed Martin - Middle River Comp                                                                                                      | blex                                                              | TAD                                 | BLE E-5.                       |                  | ATIVE: 3A Complete Rom                    | oval                         |                               |                                                                                 |                   |                                                      |                            |                                            |                   |                        | г                                 | DATE: Novembe            | r. 2012           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------|--------------------------------|------------------|-------------------------------------------|------------------------------|-------------------------------|---------------------------------------------------------------------------------|-------------------|------------------------------------------------------|----------------------------|--------------------------------------------|-------------------|------------------------|-----------------------------------|--------------------------|-------------------|--|
| LEVEL OF ESTIMATE: Screening 	 or Detailed X                                                                                                  |                                                                   |                                     | LL L-3.                        |                  | ALTERNATIVE: 3A <u>, Complete Removal</u> |                              |                               |                                                                                 |                   |                                                      |                            |                                            |                   |                        | BACKUP REFERENCE <sup>2</sup> :   |                          |                   |  |
|                                                                                                                                               |                                                                   |                                     | _                              | DISCOUNT         |                                           | 7%                           |                               | ESCALATION RATE                                                                 |                   |                                                      |                            | -                                          | _                 |                        |                                   | SACKUP REFER             |                   |  |
| В                                                                                                                                             | С                                                                 | D                                   | E                              | F                | G                                         | Н                            |                               | J K                                                                             | L                 | М                                                    | N                          | 0                                          | Р                 | Q                      | R                                 | S                        | Т                 |  |
| Element                                                                                                                                       | Description<br>(Explain Element as necessary)                     |                                     |                                | Qty              | Units                                     | ) \$/Unit                    | Cost Extension \$<br>( F x H) | Cost in Current Dollars<br>(Add costs that have been distributed over 50 years) |                   | Cost in NPV Doll<br>(NPV costs that have been distri |                            |                                            |                   | Years                  |                                   |                          |                   |  |
|                                                                                                                                               |                                                                   |                                     | )                              |                  | (Select as appropriate)                   |                              |                               | Implementation                                                                  | OM&M              | Closure                                              | TOTAL<br>(O+P+Q)           | Implementation                             | OM&M              | Closure                | 1                                 | 2                        | 3                 |  |
| Remedial Design                                                                                                                               |                                                                   |                                     |                                | -                |                                           |                              |                               |                                                                                 |                   |                                                      |                            |                                            |                   |                        | Note: Make sure th                | here are no blank        | s in these cells  |  |
| Bench/Pilot Testing                                                                                                                           | n/a                                                               |                                     |                                |                  | LS or V                                   |                              | \$0                           | \$0                                                                             |                   |                                                      | \$0                        | \$0                                        |                   |                        | \$0                               | \$0                      | \$0               |  |
| Field Investigation                                                                                                                           | Additional data collection, pre-<br>Implementation                | -design survey - 1%                 | of Remedy                      | 1                | LS or UC and LOE                          | \$285,720                    | \$285,720                     | \$285,720                                                                       |                   |                                                      | \$285,720                  | \$285,720                                  |                   |                        | \$285,720                         | \$0                      | so                |  |
| Modeling                                                                                                                                      | n/a                                                               |                                     |                                | 0                | LS                                        | \$10,000                     | \$0                           | \$0                                                                             |                   |                                                      | \$0                        | \$0                                        |                   |                        | \$0                               | \$0                      | \$0               |  |
| Reporting/Deliverables                                                                                                                        | Remedial Design submittal - 6                                     | 3% of Remedy Impler                 | mentation                      | 1                | LS                                        | \$1,714,322                  | \$1,714,322                   | \$1,714,322                                                                     |                   |                                                      | \$1,714,322                | \$1,714,322                                |                   |                        | \$1,714,322                       | \$0<br>\$0               |                   |  |
| Remedy Implementation                                                                                                                         |                                                                   |                                     |                                | T                |                                           |                              | \$2,000,042                   | \$2,000,042                                                                     |                   |                                                      | \$2,000,042                | \$2,000,042                                |                   |                        | \$2,000,042<br>Note: Make sure th |                          |                   |  |
| Mobilization                                                                                                                                  |                                                                   |                                     |                                | 1                | LS or %                                   | \$1,291,566                  | \$1,291,566                   | \$1,291,566                                                                     |                   |                                                      | \$1,249,318                | \$1,249,318                                |                   |                        | \$645,783                         | \$645,783                | \$0               |  |
| Contractor Submittals and Permits                                                                                                             | Contractor submittals, construe<br>applied to Remedy Implementa   |                                     | ilts (1.5%)                    | 1                | LS or %                                   | \$387,470                    | \$387,470                     | \$387,470                                                                       |                   |                                                      | \$374,795                  | \$374,795                                  |                   |                        | \$193,735                         | \$193,735                | \$0               |  |
| Implementation                                                                                                                                | applied to Remedy implementa                                      | ation                               |                                |                  | V or UC                                   |                              | \$0                           | \$0                                                                             |                   |                                                      | \$0                        | \$0                                        | -                 |                        | \$193,735                         | \$193,735                | \$0               |  |
| Dredging                                                                                                                                      | Cost of material removal by me                                    | nechanical dredging                 |                                | 143,128          | CY                                        | \$20                         | \$2,862,557                   | \$2,862,557                                                                     |                   |                                                      | \$2,768,922                | \$2,768,922                                |                   |                        | \$1,431,279                       | \$1,431,279              |                   |  |
| Material Barge, Assist Tug, Transport<br>Sediments                                                                                            | Cost of material transport                                        |                                     |                                | 186,066          | TN                                        | \$10                         | \$1,860,662                   | \$1,860,662                                                                     |                   |                                                      | \$1,799,799                | \$1,799,799                                |                   |                        | \$930,331                         | \$930,331                | \$0               |  |
| Water Management                                                                                                                              | Estimate per day                                                  |                                     |                                | 180              | DAY                                       | \$10,000                     | \$1,800,000                   | \$1,800,000                                                                     | Į                 |                                                      | \$1,741,121                | \$1,741,121                                |                   |                        | \$900,000                         | \$900,000                | \$0               |  |
| Dewatering/Transloading Area Setup<br>Handling and Transport to Subtitle D                                                                    | Estimate to setup dewatering/t                                    |                                     |                                | 1                | LS                                        | \$500,000                    | \$500,000                     | \$500,000                                                                       | ł                 |                                                      | \$500,000                  | \$500,000                                  | -                 |                        | \$500,000                         | \$0                      | \$0               |  |
| Landfill                                                                                                                                      | Assume 1.3 tn/cy - quote by W                                     |                                     |                                | 186,066          | TN                                        | \$40                         | \$7,442,648                   | \$7,442,648                                                                     | ļ                 |                                                      | \$7,199,197                | \$7,199,197                                | _                 |                        | \$3,721,324                       | \$3,721,324              | \$0               |  |
| Subtitle D Landfill Disposal<br>TSCA Waste Handling and Transport to                                                                          | Assume 1.3 tn/cy -quote by W                                      |                                     |                                | 186,066          | TN                                        | \$36                         | \$6,698,384                   | \$6,698,384                                                                     | ł                 |                                                      | \$6,479,278                | \$6,479,278                                | -                 |                        | \$3,349,192                       | \$3,349,192              | \$0               |  |
| Hazardous Waste Landfill                                                                                                                      | Assumes 1.3 tn/cy -quote by p                                     | phone                               |                                | 2,200            | TN                                        | \$90                         | \$198,000                     | \$198,000                                                                       |                   |                                                      | \$198,000                  | \$198,000                                  |                   |                        | \$198,000                         | \$0                      | \$0               |  |
| Hazardous Waste Landfill Disposal                                                                                                             | Assume 1.3 tn/cy -quote by ph                                     |                                     |                                | 2,200            | TN                                        | \$87                         | \$191,400                     | \$191,400                                                                       | ÷                 |                                                      | \$191,400                  | \$191,400                                  | _                 |                        | \$191,400                         | \$0                      |                   |  |
| Backfill<br>Material Barge & Tug                                                                                                              | Cost of backfill material purcha<br>Transport from quarry to site | ase, delivery and pla               | icement at site                | 33,300<br>49,950 | CY<br>TN                                  | \$30<br>\$10                 | \$999,000<br>\$499,500        | \$999,000<br>\$499,500                                                          | -                 |                                                      | \$966,322<br>\$483,161     | \$966,322<br>\$483,161                     | -                 |                        | \$499,500<br>\$249,750            | \$499,500<br>\$249,750   |                   |  |
| In situ GAC treatment                                                                                                                         | Procurement, delivery, placem                                     | nent                                |                                | 0                | LB                                        | \$2                          | \$0                           | \$0                                                                             | -                 |                                                      | \$0                        | \$0                                        |                   |                        | \$0                               | \$0                      |                   |  |
| Reactive ENR                                                                                                                                  | Procurement, delivery, placem                                     | nent                                |                                | 0                | CY                                        | \$120                        | \$0                           | \$0                                                                             |                   |                                                      | \$0                        | \$0                                        |                   |                        | \$0                               | \$0                      |                   |  |
| Material Barge & Tug                                                                                                                          | Transport to site                                                 |                                     |                                | 0                | TN                                        | \$10                         | \$0                           | \$0                                                                             |                   |                                                      | \$0                        | \$0                                        | -                 |                        | \$0                               | \$0                      | \$0               |  |
| Construction QA/QC                                                                                                                            | Verification sampling, bathyme                                    | etric surveys, water o              | quality monitoring             | g 1              | LS                                        | \$2,061,920                  | \$2,061,920                   | \$2,061,920                                                                     |                   |                                                      | \$2,061,920                | \$2,061,920                                |                   |                        | \$2,061,920                       | \$0                      | \$0               |  |
| Shoreline Stabilization                                                                                                                       | Procurement, delivery, placem                                     |                                     |                                | 5,345            | TN                                        | \$50                         | \$267,241                     | \$267,241                                                                       | ÷                 |                                                      | \$267,241                  | \$267,241                                  | _                 |                        | \$267,241                         | \$0                      | \$0               |  |
| Habitat Enhancement & Riparian Planting                                                                                                       | Procurement, delivery, placem<br>Maryland sales tax (6%) applie   |                                     |                                | 3                | AC                                        | \$150,000                    | \$450,000                     | \$450,000                                                                       | ÷                 |                                                      | \$450,000                  | \$450,000                                  | _                 |                        | \$450,000                         | \$0                      | \$0               |  |
| Sales Tax                                                                                                                                     | excluding disposal cost                                           |                                     |                                | 1                | LS or %                                   | \$778,795                    | \$778,795                     | \$778,795                                                                       | -                 |                                                      | \$753,320                  | \$753,320                                  | _                 |                        | \$389,397                         | \$389,397                | \$0               |  |
| Bonds                                                                                                                                         | Contractor's performance and<br>Remedy Implementation             | payment bonds (1%                   | <ul> <li>applied to</li> </ul> | 1                | LS or %                                   | \$282,891                    | \$282,891                     | \$282,891                                                                       |                   |                                                      | \$273,638                  | \$273,638                                  |                   |                        | \$141,446                         | \$141,446                | \$0               |  |
| ubtotal                                                                                                                                       |                                                                   |                                     |                                |                  |                                           |                              | \$28,572,034                  | \$28,572,034                                                                    |                   |                                                      | \$27,757,435               | \$27,757,435                               |                   |                        | \$16,120,298                      | \$12,451,736             | \$0               |  |
| OM&M<br>Maintenance                                                                                                                           | No OM&M                                                           |                                     |                                |                  | Annual<br>%, V, or LOE                    |                              | \$0                           |                                                                                 | \$0               |                                                      | \$0                        |                                            | \$0               |                        | Note: Make sure th                | here are no blank<br>\$0 |                   |  |
| Laboratory                                                                                                                                    |                                                                   |                                     |                                |                  | UC                                        |                              | \$0                           |                                                                                 | \$0               | -                                                    | \$0                        |                                            | \$0               | _                      | \$0                               | \$0                      |                   |  |
| Field Activities                                                                                                                              |                                                                   |                                     |                                |                  | UC and LOE                                |                              | \$0                           |                                                                                 | \$0               | _                                                    | \$0                        | -                                          | \$0               |                        | \$0                               | \$0                      |                   |  |
| Materials, Fuels and Treatment Media                                                                                                          |                                                                   |                                     |                                |                  | UC or V                                   |                              | \$0                           |                                                                                 | \$0               | _                                                    | \$0                        | _                                          | \$0               | _                      | \$0                               | \$0                      |                   |  |
| Reporting/Deliverables<br>Modeling                                                                                                            |                                                                   |                                     |                                | <u> </u>         | LS or LOE<br>LOE                          |                              | \$0<br>\$0                    |                                                                                 | \$0<br>\$0        | _                                                    | \$0<br>\$0                 | _                                          | \$0<br>\$0        | _                      | \$0                               | \$0<br>\$0               |                   |  |
| Institutional Controls                                                                                                                        | No Institutional Controls                                         |                                     |                                |                  | LOE                                       |                              | \$0                           |                                                                                 | \$0               | -                                                    | \$0                        |                                            | \$0               | -                      | \$0<br>\$0                        | \$0<br>\$0               | 00<br>80          |  |
| Total OM&M Costs (Alternative to above sub-                                                                                                   | -(                                                                |                                     |                                |                  | LOE                                       |                              |                               |                                                                                 | \$0               | -                                                    | \$0                        | -                                          | \$0               | _                      |                                   | ψυ                       | 40                |  |
| topics)                                                                                                                                       |                                                                   |                                     |                                |                  | Attached Work She                         | et                           |                               |                                                                                 |                   |                                                      |                            |                                            |                   |                        | \$0                               | \$0                      | \$0               |  |
| ubtotal<br>Project Closure                                                                                                                    |                                                                   |                                     |                                |                  |                                           |                              |                               |                                                                                 | \$0               |                                                      | \$0                        |                                            | \$0               |                        | \$0<br>Note: Make sure th         | \$0                      | φU                |  |
| Assessments                                                                                                                                   | Assume 1% of Design+Implem                                        | mentation+OM&M                      |                                | 1                | V or UC and LOE                           | \$305,721                    | \$305,721                     |                                                                                 |                   | \$305,721                                            | \$285,720                  |                                            |                   | \$285,720              | Note. Make Sure ti                | \$305,721                | so so             |  |
| Decommissioning - Remedy Completion                                                                                                           | Assume 1% of Design+Implem                                        |                                     |                                | 1                | LS, % or V                                | \$305,721                    | \$305,721                     |                                                                                 |                   | \$305,721                                            | \$285,720                  |                                            |                   | \$285,720              | \$0                               | \$305,721                | \$0               |  |
| ubtotal                                                                                                                                       |                                                                   |                                     |                                |                  |                                           |                              | \$611,442                     |                                                                                 |                   | \$611,442                                            | \$571,441                  |                                            |                   | \$571,441              | \$0                               | \$611,442                | \$0               |  |
| roject Management <sup>3</sup>                                                                                                                |                                                                   |                                     |                                |                  |                                           |                              | 2                             |                                                                                 |                   |                                                      |                            |                                            |                   |                        |                                   |                          |                   |  |
| During Implementation                                                                                                                         | Assume 12% of Design+Imple                                        | ementation                          |                                | 12%              | %                                         | Of Remedial Design<br>Remedy | \$3,668,649                   | \$3,668,649                                                                     |                   |                                                      | \$3,570,897                | \$3,570,897                                |                   |                        |                                   |                          |                   |  |
| During OM&M                                                                                                                                   | 4.004 4.004                                                       |                                     |                                |                  |                                           | Implementation               | A                             |                                                                                 |                   | 7                                                    |                            |                                            |                   |                        | \$2,174,440.83                    | \$1,494,208.38           | \$0               |  |
|                                                                                                                                               | Assume 12% of OM&M<br>Assume 12% of Closure                       |                                     |                                | 12%<br>12%       | %                                         | Of OM&M<br>Of Closure        | \$0.00<br>\$73,373            |                                                                                 | \$0               | \$73,373                                             | \$0<br>\$68,573            | 4                                          | \$0               | \$68,573               | \$0<br>\$0                        | \$0<br>\$73,373          |                   |  |
|                                                                                                                                               | 210 21000010                                                      |                                     |                                |                  | ~~~~                                      | 5. 6.630/6                   | çı o,oro                      | \$3,668,649                                                                     | \$0               | \$73,373                                             | \$3,639,470                | \$3,570,897                                | \$0               | \$68,573               | \$0                               | \$1,567,581              | \$0<br><b>\$0</b> |  |
| During Closure ubtotal                                                                                                                        |                                                                   |                                     |                                |                  |                                           |                              |                               | \$34,240,726                                                                    | \$0               | \$684,815                                            | \$33,968,388               | \$33,328,374                               | \$0               | \$640,014              | \$20,294,781                      | \$14,630,759             | \$0               |  |
| During Closure                                                                                                                                | ESTIMATES                                                         |                                     | Closure                        |                  |                                           |                              |                               |                                                                                 |                   |                                                      |                            |                                            |                   |                        |                                   |                          |                   |  |
| During Closure                                                                                                                                |                                                                   | OM&M                                | Closure                        |                  |                                           |                              |                               |                                                                                 |                   |                                                      | \$4,226,065                | \$4,066,062                                | \$0               |                        | 1                                 |                          |                   |  |
| During Closure<br>ubtotal<br>SUBTOTAL COST OF ELEMENT<br>Contingencies<br>Scope (10 to 25%)                                                   | Implementation 0                                                  | 15%                                 | 25%                            | _                |                                           |                              |                               | \$4,177,369                                                                     | \$0               | \$171,204                                            |                            |                                            |                   | \$160,003              |                                   |                          |                   |  |
| During Closure<br>ubtotal<br>SUBTOTAL COST OF ELEMENT<br>Contingencies<br>Scope (10 to 25%)<br>Bid (10 to 20%)                                | Implementation 0                                                  |                                     |                                |                  |                                           |                              |                               | \$3,424,073                                                                     | \$0               | \$136,963                                            | \$3,460,840                | \$3,332,837                                | \$0               | \$128,003              |                                   |                          |                   |  |
| During Closure<br>ubtotal<br>SUBTOTAL COST OF ELEMENT<br>Contingencies<br>Scope (10 to 25%)<br>Bid (10 to 20%)<br>ubtotal                     | Implementation 0                                                  | 15%                                 | 25%                            |                  |                                           |                              |                               | \$3,424,073<br><b>\$7,601,441</b>                                               | \$0<br><b>\$0</b> | \$136,963<br>\$308,167                               |                            | \$3,332,837<br><b>\$7,398,899</b>          | \$0<br><b>\$0</b> | \$128,003<br>\$288,006 |                                   |                          |                   |  |
| During Closure<br>ubtotal<br>SUBTOTAL COST OF ELEMENT<br>Contingencies<br>Scope (10 to 25%)<br>Bid (10 to 20%)                                | Implementation 0                                                  | 15%                                 | 25%                            |                  |                                           |                              |                               | \$3,424,073<br>\$7,601,441<br><b>\$41,842,167</b>                               | \$0<br>\$0<br>\$0 | \$136,963                                            | \$3,460,840<br>\$7,686,905 | \$3,332,837                                | \$0               | \$128,003              |                                   |                          |                   |  |
| During Closure<br>ubtotal<br>SUBTOTAL COST OF ELEMENT<br>Contingencies<br>Scope (10 to 25%)<br>Bid (10 to 20%)<br>ubtotal<br>SRAND TOTAL COST | Implementation     C       12.2%     10%                          | 15%<br>10%                          | 25%<br>20%                     |                  |                                           |                              |                               | \$3,424,073<br>\$7,601,441<br><b>\$41,842,167</b>                               | \$0<br><b>\$0</b> | \$136,963<br>\$308,167                               | \$3,460,840                | \$3,332,837<br>\$7,398,899<br>\$40,727,274 | \$0<br>\$0<br>\$0 | \$128,003<br>\$288,006 |                                   |                          |                   |  |
| During Closure<br>ubtotal<br>SUBTOTAL COST OF ELEMENT<br>Contingencies<br>Scope (10 to 25%)<br>Bid (10 to 20%)<br>ubtotal                     | Implementation     C       12.2%     10%                          | 15%<br>10%<br>tional, Maintenance & | 25%<br>20%                     |                  | NOTES:                                    |                              |                               | \$3,424,073<br>\$7,601,441<br><b>\$41,842,167</b>                               | \$0<br>\$0<br>\$0 | \$136,963<br>\$308,167                               | \$3,460,840<br>\$7,686,905 | \$3,332,837<br><b>\$7,398,899</b>          | \$0<br>\$0<br>\$0 | \$128,003<br>\$288,006 |                                   |                          |                   |  |

3 Formulas are set up to calculate project management costs during implementation and OM&M as a percentage of these latter costs. In the event annual costs vary and have been separately estimated, they should be entered directly into the appropriate cells for each year.

#### Lockheed Martin Corporation


# TABLE E-5COST ESTIMATES FOR ALTERNATIVE 3A

|          | SITE: Lockheed Martin - Middle River Comple                      | 2X                                             |                                       | TABLE E-5.              |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |               |              |                  |            |                   |     |       |            |     |     |                                               |
|----------|------------------------------------------------------------------|------------------------------------------------|---------------------------------------|-------------------------|-----------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|---------------|--------------|------------------|------------|-------------------|-----|-------|------------|-----|-----|-----------------------------------------------|
|          | LEVEL OF ESTIMATE: Screening  or                                 | Detailed X                                     |                                       |                         |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |               |              |                  |            |                   |     |       |            |     |     |                                               |
| A        | В                                                                | с                                              | D                                     | E                       | v                     | w            | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y              | z            | AA            | AB           | AC               | AD         | AE                | AF  | AG    | AH         | AI  | AJ  |                                               |
| A        |                                                                  |                                                |                                       |                         |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |               |              |                  |            |                   |     |       |            |     |     |                                               |
| -        | -                                                                |                                                | Description                           |                         |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |               |              |                  |            |                   |     |       |            |     |     |                                               |
| -        | Element                                                          | (Exp                                           | plain Element as nece                 | ssary)                  |                       |              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |              | 40            |              |                  | 10         |                   | 15  |       | 47         | 40  | 10  |                                               |
| 5        |                                                                  |                                                |                                       |                         | 5                     | 6            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8              | 9            | 10            | 11           | 12               | 13         | 14                | 15  | 16    | 17         | 18  | 19  |                                               |
| 6        | Remedial Design                                                  |                                                |                                       |                         | d be filled wi        | th equations | linking to, an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d distributing | the appropri | ate total cos | ts in column | I, or with zeros | s          |                   |     |       |            |     |     |                                               |
| 7        | Bench/Pilot Testing                                              | n/a<br>Additional data collect                 | ction, pre-design survey              | - 1% of Remedy          | \$0                   | \$0          | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0            | \$0          | \$0           | D \$         | 0 \$0            | \$0        | \$0               | \$0 | \$0   | \$0        | \$0 | \$0 | 2                                             |
| 8        | Field Investigation<br>Modeling                                  | Implementation<br>n/a                          |                                       |                         | \$0                   |              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |              |               |              |                  | \$0        | \$0               | **  |       | \$0        |     |     | _                                             |
| 9<br>10  | Reporting/Deliverables                                           |                                                | omittal - 6% of Remedy                | Implementation          | \$0<br>\$0            |              | \$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |              |               |              |                  |            | \$0<br>\$0        |     |       |            |     |     |                                               |
| 12       | Subtotal                                                         |                                                |                                       |                         | \$0                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              | -             |              |                  |            | \$0               | \$0 | \$0   | \$0        | \$0 | \$0 | 5                                             |
| 13<br>14 | Remedy Implementation<br>Mobilization                            |                                                |                                       |                         | a be filled wi        | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |               |              | I, or with zeros |            | \$0               | \$0 | \$0   | \$0        | \$0 | \$0 | 0                                             |
|          | Contractor Submittals and Permits                                | Contractor submittals<br>applied to Remedy In  | s, construction permits,              | as-builts (1.5%)        |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |               |              |                  | \$0        | \$0               |     |       |            |     |     |                                               |
| 15       | Implementation                                                   | applied to Remedy in                           | npiementation                         |                         | \$0<br>\$0            |              | \$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |              |               |              | -                |            | \$0               |     |       | \$0<br>\$0 |     |     |                                               |
|          | Dredging<br>Material Barge, Assist Tug, Transport                |                                                | oval by mechanical dree               | dging                   | \$0                   | \$0          | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0            | \$0          | \$0           | D \$         | 0 \$0            | \$0        | \$0               | \$0 | \$0   | \$0        | \$0 | \$0 | 2                                             |
|          | Sediments                                                        | Cost of material trans                         | sport                                 |                         | \$0                   |              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |              | \$0           |              |                  | \$0        | \$0               |     |       | \$0        |     |     | -                                             |
|          | Water Management<br>Dewatering/Transloading Area Setup           | Estimate per day<br>Estimate to setup dev      | watering/transloading a               | rea                     | \$0<br>\$0            |              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |              |               |              |                  |            | \$0<br>\$0        |     |       |            |     |     |                                               |
|          | Handling and Transport to Subtitle D<br>Landfill                 | Assume 1.3 tn/cy - qu                          |                                       |                         | \$0                   |              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |              |               |              |                  |            | \$0<br>\$0        |     |       |            |     |     |                                               |
|          | Subtitle D Landfill Disposal                                     | Assume 1.3 tn/cy -qu                           | iote by WM                            |                         | \$0                   |              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |              |               |              |                  |            | \$0<br>\$0        |     |       |            | -   |     |                                               |
|          | TSCA Waste Handling and Transport to<br>Hazardous Waste Landfill | Assumes 1.3 tn/cy -q                           | uote by phone                         |                         | \$0                   | \$0          | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0            | \$0          | \$0           | ) s          | 0 \$0            | \$0        | \$0               | \$0 | ) \$0 | \$0        | \$0 | \$0 | 0                                             |
|          | Hazardous Waste Landfill Disposal                                | Assume 1.3 tn/cy -qu                           |                                       |                         | \$0                   | \$0          | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0            | \$0          | \$0           | D \$         |                  | \$0        | \$0               | \$0 | \$0   | \$0        | \$0 | \$0 |                                               |
|          | Backfill<br>Material Barge & Tug                                 | Cost of backfill mater<br>Transport from quarr | ial purchase, delivery a<br>v to site | ind placement at site   | \$0<br>\$0            |              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |              |               |              |                  |            | \$0<br>\$0        |     |       |            |     |     |                                               |
|          | In situ GAC treatment                                            | Procurement, deliver                           | y, placement                          |                         | \$0                   | \$0          | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0            | \$0          | \$(           | D \$         | 0 \$0            | \$0        | \$0               | \$0 | \$0   | \$0        | \$0 | \$0 | 0                                             |
|          | Reactive ENR<br>Material Barge & Tug                             | Procurement, delivery<br>Transport to site     | y, placement                          |                         | \$0<br>\$0            |              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |              |               |              |                  |            | \$0<br>\$0        |     |       |            |     |     |                                               |
|          | Construction QA/QC                                               |                                                | , bathymetric surveys, v              | water quality monitorin | a                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |               |              |                  |            |                   |     |       |            |     |     |                                               |
|          | Shoreline Stabilization                                          |                                                | y, placement (2' T x 380              |                         | 9 \$0<br>\$0          |              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |              | \$(<br>\$(    |              | -                | \$0<br>\$0 | \$0<br>\$0        | \$0 |       | \$0<br>\$0 |     |     |                                               |
|          |                                                                  | Procurement, deliver                           | y, placement (25' each                | bank x 2100' bank)      | \$0                   |              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |              |               |              |                  | \$0        | \$0               |     |       | \$0        |     |     |                                               |
|          | Sales Tax                                                        | Maryland sales tax (6<br>excluding disposal co | 6%) applied to Remedy<br>ost          | Implementation          | \$0                   | \$0          | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0            | \$0          | \$0           | o \$         | 0 \$0            | \$0        | \$0               | \$0 | \$0   | \$0        | \$0 | \$0 | 0                                             |
|          | Bonds                                                            | Contractor's performa<br>Remedy Implementat    | ance and payment bone<br>tion         | ds (1%) applied to      | \$0                   | \$0          | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0            | \$0          | \$0           | D \$         | 0 \$0            | \$0        | \$0               | \$0 | \$0   | \$0        | \$0 | \$0 | 0                                             |
| 19       | Subtotal                                                         |                                                |                                       |                         | \$0                   | \$0          | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | \$0          | \$0           | \$0          | \$0              | \$0        | \$0               | \$0 | \$0   | \$0        | \$0 | \$0 |                                               |
| 20<br>21 | OM&M<br>Maintenance                                              | No OM&M                                        |                                       |                         | d be filled wi        |              | bers or equations of solutions of the solution |                | \$0          | \$0           | D \$         | 0 \$0            | \$0        | \$0               | \$0 | \$0   | \$0        | \$0 | \$0 | 0                                             |
| 22       | Laboratory                                                       |                                                |                                       |                         | \$0                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) \$C          | \$0          | \$0           | D \$         | 0 \$0            | \$0        | \$0<br>\$0        |     |       | \$0        | \$0 | \$0 |                                               |
| 23<br>24 | Field Activities<br>Materials, Fuels and Treatment Media         |                                                |                                       |                         | \$0<br>\$0            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |               |              |                  |            | \$0<br>\$0        |     |       |            |     |     |                                               |
| 24       | Reporting/Deliverables                                           |                                                |                                       |                         | \$0                   |              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1              |              |               |              |                  |            | \$0               |     |       |            | -   |     | _                                             |
| 26       | Modeling                                                         |                                                |                                       |                         | \$0                   | \$0          | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0            | \$0          | \$0           | \$           | 0 \$0            | \$0        | \$0               | \$0 | \$0   | \$0        | \$0 | \$0 | 2                                             |
|          | Institutional Controls                                           | No Institutional Contr                         | ols                                   |                         | \$0                   | \$0          | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0            | \$0          | \$0           | D \$         | 0 \$0            | \$0        | \$0               | \$0 | \$0   | \$0        | \$0 | \$0 | 2                                             |
| 27       | Total OM&M Costs (Alternative to above sub-<br>topics)           |                                                |                                       |                         | \$0                   |              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |              |               |              |                  | \$0        | \$0               | \$0 |       | \$0        |     |     |                                               |
| 28<br>29 | Subtotal<br>Project Closure                                      |                                                |                                       |                         | \$0<br>d be filled wi |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | \$0          | \$0           | 5            | 0 \$0            | \$0        | \$0               | \$0 | \$0   | \$0        | \$0 | \$0 | )                                             |
| 30       | Assessments                                                      | Assume 1% of Desig                             | n+Implementation+OM                   | &M                      | a be filled wi        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | \$0          | \$(           | D \$         | 0 \$0            | \$0        | \$0               | \$0 | \$0   | \$0        | \$0 | \$0 | 0                                             |
| 31       | Decommissioning - Remedy Completion                              | Assume 1% of Desig                             | n+Implementation+OM                   | &M                      | \$0                   | \$0          | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0            | \$0          | \$0           | D \$         | 0 \$0            | \$0        | \$0               | \$0 | \$0   | \$0        | \$0 | \$0 | 0                                             |
| 32<br>33 | Subtotal<br>Project Management <sup>3</sup>                      |                                                |                                       |                         | \$0                   | \$0          | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0            | \$0          | \$0           | \$<br>ار     | 0 \$0            | \$0        | \$0               | \$0 | \$0   | \$0        | \$0 | \$0 | <u>,                                     </u> |
|          |                                                                  |                                                |                                       |                         |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |               |              |                  |            |                   |     |       |            |     |     |                                               |
| 34       | During Implementation                                            | Assume 12% of Desi                             | gn+Implementation                     |                         | \$0                   | \$0          | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0            | \$0          | \$0           | ) \$         | 0 \$0            | \$0        | \$0               | \$0 | \$0   | \$0        | \$0 | \$0 | 0                                             |
|          | During OM&M                                                      | Assume 12% of OM8                              |                                       |                         | \$0                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |               |              | 0 \$0            | \$0        | \$0<br>\$0        |     |       |            |     |     |                                               |
| 35       | During Closure Subtotal                                          | Assume 12% of Clos                             | ure                                   | _                       | \$0<br><b>\$0</b>     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |               |              |                  |            | \$0<br><b>\$0</b> |     |       |            |     |     |                                               |
| 36       | SUBTOTAL COST OF ELEMENT I                                       | ESTIMATES                                      |                                       |                         | \$0<br>\$0            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |               |              |                  | 1          | \$0<br>\$0        |     |       |            |     |     |                                               |
| 37       | Contingencies                                                    | Implementation                                 | OM&M                                  | Closure                 |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |               |              |                  |            |                   |     |       |            |     |     |                                               |
| 38       | Scope (10 to 25%)                                                | 12.2%                                          | 15%                                   | 25%                     |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |               |              |                  |            |                   |     |       |            |     |     |                                               |
| 39<br>40 | Bid (10 to 20%)<br>Subtotal                                      | 10%                                            | 10%                                   | 20%                     |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |               |              |                  |            |                   |     |       |            |     |     |                                               |
| 41       | GRAND TOTAL COST                                                 |                                                |                                       |                         |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |               |              |                  |            |                   |     |       |            |     |     |                                               |
| 42       |                                                                  |                                                |                                       |                         |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |               |              |                  |            |                   |     |       |            |     |     |                                               |
| LOE      | Level Of Effort                                                  | OM&M                                           | Operational, Maintena                 | ance & Monitoring       |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |               |              |                  |            |                   |     |       |            |     |     |                                               |
| LS       | Lump Sum                                                         | UC                                             | Unit Cost                             |                         |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |               |              |                  |            |                   |     |       |            |     |     |                                               |

 LS
 Lump Sum
 UC

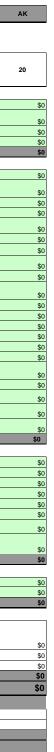
 NPV
 Net Present Value
 V

Unit Cost Vendor Lockheed Martin Corporation



Version G April 2012

# TABLE E-6 **COST ESTIMATES FOR ALTERNATIVE 3B**


| EVEL OF ESTIMATE: Screening 🗆 c                                             | or Detailed X                                                                                       | DISCOUN          | RATE:                                     | 7%                             |                            | ESCALATION RATE                        |                 |                       |                            |                                      |            |                       | E                         | BACKUP REFEREN              |                   |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------|-------------------------------------------|--------------------------------|----------------------------|----------------------------------------|-----------------|-----------------------|----------------------------|--------------------------------------|------------|-----------------------|---------------------------|-----------------------------|-------------------|
| В                                                                           | C D E                                                                                               | F                | G                                         | н                              | I                          | JK                                     | L               | м                     | N                          | 0                                    | Р          | Q                     | R                         | S                           | т                 |
|                                                                             |                                                                                                     |                  |                                           |                                |                            | Cost in                                | Current Dollars |                       |                            | Cost in NPV De                       | ollars     |                       |                           |                             | I                 |
|                                                                             | Description                                                                                         |                  | Units                                     |                                | Cost Extension \$          | (Add costs that have I                 |                 | over 50 years)        | (NPV                       | costs that have been dist            |            | ars)                  | Yea                       | .rs                         |                   |
| Element                                                                     | (Explain Element as necessary)                                                                      | Qty              | (Select as appropriate)                   | \$/Unit                        | (F x H)                    | Implementation                         | OM&M            | Closure               | TOTAL<br>(O+P+Q)           | Implementation                       | OM&M       | Closure               | 1                         | 2                           | 3                 |
| Remedial Design                                                             |                                                                                                     | -                |                                           |                                |                            |                                        |                 |                       | (- y                       |                                      |            |                       | Note: Make sure th        | oro aro no blanks           | in these colle    |
| Bench/Pilot Testing                                                         | n/a                                                                                                 |                  | LS or V                                   |                                | \$0                        | \$0                                    |                 |                       | \$0                        | \$0                                  |            |                       | Note. Make Sule ti        | so                          | so                |
| Field Investigation                                                         | Additional data collection, pre-design survey - 1% of Remedy                                        | 1                | LS or UC and LOE                          | \$207,235                      | \$207,235                  | \$207,235                              | 1               |                       | \$207,235                  | \$207,235                            |            |                       | 0007.005                  |                             |                   |
| Modeling                                                                    | Implementation<br>n/a                                                                               | 0                | LS                                        | \$10,000                       | \$0                        | \$0                                    | -               |                       | \$0                        | \$0                                  | -          |                       | \$207,235<br>\$0          | \$0                         | \$0               |
| Reporting/Deliverables                                                      | Remedial Design submittal - 6% of Remedy Implementation                                             | 1                | LS                                        | \$1,243,411                    | \$1,243,411                | \$1,243,411                            | 1               |                       | \$1,243,411                | \$1,243,411                          | _          |                       | \$1,243,411               | \$0                         | \$0               |
| ıbtotal                                                                     |                                                                                                     | -                |                                           |                                | \$1,450,646                | \$1,450,646                            |                 |                       | \$1,450,646                | \$1,450,646                          |            |                       | \$1,450,646               | \$0                         | \$0               |
| Remedy Implementation                                                       |                                                                                                     |                  | 10 11                                     |                                |                            |                                        |                 |                       |                            |                                      | 1          |                       | Note: Make sure th        |                             |                   |
| Mobilization                                                                | Contractor submittals, construction permits, as-builts (1.5%)                                       | 1                | LS or %                                   | \$935,947                      | \$935,947                  | \$935,947                              | -               |                       | \$905,332                  | \$905,332                            | _          |                       | \$467,974                 | \$467,974                   | \$0               |
| Contractor Submittals and Permits                                           | applied to Remedy Implementation                                                                    | 1                | LS or %                                   | \$280,784                      | \$280,784                  | \$280,784                              |                 |                       | \$271,600                  | \$271,600                            |            |                       | \$140,392                 | \$140,392                   | \$0               |
| Implementation                                                              |                                                                                                     |                  | V or UC                                   |                                | \$0                        | \$0                                    | -               |                       | \$0                        | \$0                                  | _          |                       | \$0                       | \$0                         | \$0               |
| Dredging<br>Material Barge, Assist Tug, Transport                           | Cost of material removal by mechanical dredging                                                     | 99,547           | CY                                        | \$20                           | \$1,990,944                | \$1,990,944                            | +               |                       | \$1,925,820                | \$1,925,820                          | -          |                       | \$995,472                 | \$995,472                   | \$0               |
| Sediments                                                                   | Cost of material transport                                                                          | 129,411          | TN                                        | \$10                           | \$1,294,114                | \$1,294,114                            | 4               |                       | \$1,251,783                | \$1,251,783                          | _          |                       | \$647,057                 | \$647,057                   | \$0               |
| Water Management<br>Dewatering/Transloading Area Setup                      | Estimate per day Estimate to setup dewatering/transloading area                                     | 130              | DAY<br>LS                                 | \$10,000<br>\$500,000          | \$1,300,000<br>\$500,000   | \$1,300,000<br>\$500,000               | +               |                       | \$1,257,477<br>\$500,000   | \$1,257,477<br>\$500,000             | -          |                       | \$650,000<br>\$500,000    | \$650,000<br>\$0            | \$0<br>\$0        |
| Handling and Transport to Subtitle D                                        | Assume 1.3 tn/cy - quote by WM                                                                      | 129,411          | TN                                        | \$500,000                      | \$5,176,455                | \$5,176,455                            | +               |                       | \$5,007,132                | \$5,007,132                          | -          |                       |                           |                             |                   |
| Landfill<br>Subtitle D Landfill Disposal                                    | Assume 1.3 tn/cy - quote by WM<br>Assume 1.3 tn/cy -quote by WM                                     | 129,411          | TN                                        | \$40                           | \$5,176,455<br>\$4,658,810 | \$5,176,455                            | +               |                       | \$5,007,132<br>\$4,506,419 | \$5,007,132<br>\$4,506,419           | -          |                       | \$2,588,228               | \$2,588,228                 | \$0               |
| TSCA Waste Handling and Transport to                                        |                                                                                                     | -                |                                           |                                |                            |                                        | +               |                       |                            |                                      | -          |                       | \$2,329,405               | \$2,329,405                 | \$0               |
| Hazardous Waste Landfill                                                    | Assumes 1.3 tn/cy -quote by phone                                                                   | 2,200            | TN                                        | \$90                           | \$198,000                  | \$198,000                              | _               |                       | \$198,000                  | \$198,000                            |            |                       | \$198,000                 | \$0                         | \$0               |
| Hazardous Waste Landfill Disposal                                           | Assume 1.3 tn/cy -quote by phone                                                                    | 2,200            | TN                                        | \$87                           | \$191,400                  | \$191,400                              | 4               |                       | \$191,400                  | \$191,400<br>\$739,977               | _          |                       | \$191,400                 | \$0                         | \$0               |
| Backfill<br>Material Barge & Tug                                            | Cost of backfill material purchase, delivery and placement at site<br>Transport from quarry to site | 25,500<br>38,250 | CY<br>TN                                  | \$30<br>\$10                   | \$765,000<br>\$382,500     | \$765,000<br>\$382,500                 | -               |                       | \$739,977<br>\$369,988     | \$369,988                            | -          |                       | \$382,500<br>\$191,250    | \$382,500<br>\$191,250      | \$0<br>\$0        |
| In situ GAC treatment                                                       | Procurement, delivery, placement                                                                    | 0                | LB                                        | \$2                            | \$0                        | \$0                                    | 1               |                       | \$0                        | \$0                                  | -          |                       | \$0                       | \$0                         | \$0               |
| Reactive ENR                                                                | Procurement, delivery, placement                                                                    | 0                | CY                                        | \$120                          | \$0                        | \$0                                    |                 |                       | \$0                        | \$0                                  |            |                       | \$0                       | \$0                         | \$0               |
| Material Barge & Tug                                                        | Transport to site                                                                                   | 0                | TN                                        | \$10                           | \$0                        | \$0                                    | _               |                       | \$0                        | \$0                                  | _          |                       | \$0                       | \$0                         | \$0               |
| Construction QA/QC                                                          | Verification sampling, bathymetric surveys, water quality monitoring                                | ig 1             | LS                                        | \$1,544,480                    | \$1,544,480                | \$1,544,480                            |                 |                       | \$1,544,480                | \$1,544,480                          |            |                       | \$1,544,480               | \$0                         | \$0               |
| Shoreline Stabilization                                                     | Procurement, delivery, placement (2' T x 3800' L x 10' W)                                           | 5,345            | TN                                        | \$50                           | \$267,241                  | \$267,241                              |                 |                       | \$267,241                  | \$267,241                            |            |                       | \$267,241                 | \$0                         | \$0               |
| Habitat Enhancement & Riparian Planting                                     |                                                                                                     | 3                | AC                                        | \$150,000                      | \$450,000                  | \$450,000                              |                 |                       | \$450,000                  | \$450,000                            |            |                       | \$450,000                 | \$0                         | \$0               |
| Sales Tax                                                                   | Maryland sales tax (6%) applied to Remedy Implementation<br>excluding disposal cost                 | 1                | LS or %                                   | \$582,661                      | \$582,661                  | \$582,661                              |                 |                       | \$563,602                  | \$563,602                            |            |                       | \$291.330                 | \$291,330                   | \$0               |
| Bonds                                                                       | Contractor's performance and payment bonds (1%) applied to                                          | 1                | LS or %                                   | \$205,183                      | \$205,183                  | \$205,183                              | 1               |                       | \$198,472                  | \$198,472                            | _          |                       | \$102,592                 | \$102,592                   | ¢0                |
| ubtotal                                                                     | Remedy Implementation                                                                               | -                |                                           |                                | \$20,723,520               | \$20,723,520                           |                 |                       | \$20,148,722               | \$20,148,722                         |            |                       | \$102,592                 | \$102,592                   | \$0<br>\$0        |
| OM&M                                                                        |                                                                                                     |                  | Annual                                    |                                |                            |                                        |                 |                       | •                          |                                      |            |                       | Note: Make sure th        | here are no blanks          | in these cells    |
| Maintenance                                                                 | No OM&M                                                                                             |                  | %, V, or LOE                              |                                | \$0                        |                                        | \$0             |                       | \$0                        |                                      | \$0        |                       | \$0                       | \$0                         | \$0               |
| Laboratory                                                                  |                                                                                                     |                  | UC                                        |                                | \$0                        |                                        | \$0             | _                     | \$0                        | _                                    | \$0        | _                     | \$0                       | \$0                         | \$0               |
| Field Activities<br>Materials, Fuels and Treatment Media                    |                                                                                                     |                  | UC and LOE<br>UC or V                     |                                | \$0<br>\$0                 |                                        | \$0<br>\$0      | _                     | \$0<br>\$0                 | -                                    | \$0<br>\$0 | _                     | \$0                       | \$0<br>\$0                  | \$0<br>\$0        |
| Reporting/Deliverables                                                      |                                                                                                     |                  | LS or LOE                                 |                                | \$0                        |                                        | \$0             | -                     | \$0                        | -                                    | \$0        | _                     | \$0                       | \$0                         | \$0               |
| Modeling                                                                    |                                                                                                     |                  | LOE                                       |                                | \$0                        |                                        | \$0             |                       | \$0                        |                                      | \$0        |                       | \$0                       | \$0                         | \$0               |
| Institutional Controls                                                      | No Institutional Controls                                                                           |                  | LOE                                       |                                | \$0                        |                                        | \$0             |                       | \$0                        |                                      | \$0        |                       | \$0                       | \$0                         | \$0               |
| Total OM&M Costs (Alternative to above sub                                  | -                                                                                                   |                  | LOE                                       | · I                            |                            |                                        | \$0             | 1                     | \$0                        | 1                                    | \$0        | 1                     |                           |                             |                   |
| topics)                                                                     |                                                                                                     |                  | Attached Work She                         | et I                           |                            |                                        |                 |                       |                            |                                      |            |                       | \$0<br>\$0                | \$0                         | \$0               |
| ubtotal<br>Project Closure                                                  |                                                                                                     | 1                |                                           |                                |                            |                                        | \$0             |                       | \$0                        |                                      | \$0        |                       | 30                        | \$0<br>here are no blanks   | φU                |
| Assessments                                                                 | Assume 1% of Design+Implementation+OM&M                                                             | 1                | V or UC and LOE                           | \$221,742                      | \$221,742                  |                                        |                 | \$221,742             | \$207,235                  | 1                                    |            | \$207,235             | Note: Make Sule ti        | \$221,742                   | \$0               |
| Decommissioning - Remedy Completion                                         | Assume 1% of Design+Implementation+OM&M                                                             | 1                | LS, % or V                                | \$221,742                      | \$221,742                  |                                        |                 | \$221,742             | \$207,235                  | 1                                    |            | \$207,235             | \$0                       | \$221,742                   | \$0               |
| ubtotal                                                                     |                                                                                                     |                  |                                           |                                | \$443,483                  |                                        |                 | \$443,483             | \$414,470                  |                                      |            | \$414,470             | \$0                       | \$443,483                   | \$0               |
| roject Management <sup>3</sup>                                              |                                                                                                     |                  |                                           | []                             |                            |                                        |                 |                       | 1                          | 1                                    |            |                       | 1                         |                             |                   |
| During Implementation                                                       | Assume 12% of Design+Implementation                                                                 | 12%              | %                                         | Of Remedial Design &<br>Remedy | \$2,660,900                | \$2,660,900                            |                 |                       | \$2,591,924                | \$2,591,924                          |            |                       |                           |                             |                   |
|                                                                             |                                                                                                     |                  |                                           | Implementation                 | +=,000,000                 | ψ2,000,000                             |                 | _                     | ÷=,001,024                 | \$2,001,024                          |            | _                     | \$1,606,556.03            | \$1,054,343.90              | \$0               |
| During OM&M                                                                 | Assume 12% of OM&M                                                                                  | 12%              | %                                         | Of OM&M                        | \$0.00                     |                                        | \$0             |                       | \$0                        | 1                                    | \$0        |                       | \$0                       | \$0                         | \$0               |
| During Closure                                                              | Assume 12% of Closure                                                                               | 12%              | %                                         | Of Closure                     | \$53,218                   | \$2,660,000                            | \$0             | \$53,218              | \$49,736<br>\$2,641,661    | \$2,504,004                          | \$0        | \$49,736              | \$0<br><b>\$1,606,556</b> | \$53,218                    | \$0<br><b>\$0</b> |
| SUBTOTAL COST OF ELEMENT                                                    | ESTIMATES                                                                                           |                  |                                           |                                |                            | \$2,660,900<br>\$24,835,066            | \$0<br>\$0      | \$53,218<br>\$496,701 | \$2,641,661                | \$2,591,924<br>\$24,191,292          | \$0        | \$49,736<br>\$464,207 | \$1,606,556               | \$1,107,562<br>\$10,337,244 | \$0<br>\$0        |
|                                                                             |                                                                                                     |                  |                                           |                                |                            | φ24,033,000                            | ψŪ              | ψ-30,701              | φ24,000,400                | Ψ <b>2</b> 4,131,232                 | ψυ         | \$104,207             | ψ1 <del>4,334,323</del>   | \$10,331,244                | φU                |
| Scope (10 to 25%)                                                           | Implementation         OM&M         Closure           12.2%         15%         25%                 |                  |                                           |                                |                            | \$3,029,878                            | \$0             | \$124,175             | \$3,067,389                | \$2,951,338                          | \$0        | \$116,052             | 1                         |                             |                   |
| 000000 (10 10 20 /0)                                                        | 12.2% 15% 25%<br>10% 10% 20%                                                                        | 1                |                                           |                                |                            | \$2,483,507                            | \$0<br>\$0      | \$124,175<br>\$99,340 | \$2,511,971                | \$2,951,338<br>\$2,419,129           | \$0        | \$116,052             | + +                       |                             |                   |
| Bid (10 to 20%)                                                             |                                                                                                     |                  |                                           |                                |                            | \$5,513,385                            | \$0<br>\$0      | \$223,516             | \$5,579,360                | \$5,370,467                          | \$0        | \$208,893             |                           |                             |                   |
|                                                                             |                                                                                                     |                  |                                           |                                |                            | \$30,348,451                           | \$0             | \$720,217             |                            | \$29,561,759                         | \$0        | \$673,100             |                           |                             |                   |
| ubtotal                                                                     |                                                                                                     |                  |                                           |                                |                            |                                        |                 |                       | 1                          |                                      |            |                       |                           |                             |                   |
| ubtotal                                                                     |                                                                                                     |                  |                                           |                                |                            | \$3                                    | 1.068.668       |                       | \$30,234,859               |                                      |            |                       |                           |                             |                   |
| ubtotal<br>RAND TOTAL COST                                                  | OM&M Operation 1991 1991                                                                            |                  | NOTES                                     |                                |                            | \$3                                    | 1,068,668       |                       | \$30,234,859               | For use in the CDI                   | Panalysia  |                       |                           |                             |                   |
| Bid (10 to 20%)<br>ubtotal<br>BRAND TOTAL COST<br>avel Of Effort<br>ump Sum | OM&M Operational, Maintenance & Monitoring<br>UC Unit Cost                                          |                  | NOTES:<br>1 Fill in costs in years that t | hey will occur. costs pot      | required for all 50 years  | \$3<br>if remedy is completed earlier. | 1,068,668       |                       | \$30,234,859               | For use in the CDI<br>Capital Cost = | P analysis | \$30,234,859          | ) NPV                     |                             |                   |

3 Formulas are set up to calculate project management costs during implementation and OM&M as a percentage of these latter costs. In the event annual costs vary and have been separately estimated, they should be entered directly into the appropriate cells for each year.

# TABLE E-6 **COST ESTIMATES FOR ALTERNATIVE 3B**

| В                                                        | с                                          | D                                         | E                          | v                    | w             | x                          | Y                       | z                 | AA              | AB                | AC                | AD         | AE         | AF   | AG                    | АН                | AI  |            |
|----------------------------------------------------------|--------------------------------------------|-------------------------------------------|----------------------------|----------------------|---------------|----------------------------|-------------------------|-------------------|-----------------|-------------------|-------------------|------------|------------|------|-----------------------|-------------------|-----|------------|
|                                                          |                                            |                                           |                            |                      |               | - L L                      |                         |                   | L.              |                   | l                 |            |            | I    | 1                     |                   |     |            |
|                                                          |                                            | Description                               |                            |                      |               |                            |                         |                   |                 |                   |                   |            |            |      |                       |                   |     |            |
| Element                                                  | (E                                         | xplain Element as neo                     | cessary)                   |                      |               |                            |                         |                   |                 |                   |                   |            |            |      |                       |                   |     |            |
|                                                          |                                            |                                           |                            | 5                    | 6             | 7                          | 8                       | 9                 | 10              | 11                | 12                | 13         | 14         | 15   | 16                    | 17                | 18  |            |
| Remedial Design                                          |                                            |                                           |                            | d be filled w        | ith equations | linking to, and            | distributing the        | appropria         | ate total costs | in column I, c    | or with zeros     | ;          |            |      |                       |                   |     |            |
| Bench/Pilot Testing                                      | n/a<br>Additional data colli               | lection, pre-design surve                 | ev - 1% of Remedy          | \$0                  | \$            | 0 \$0                      | \$0                     | \$0               | \$0             | \$0               | \$0               | \$0        | \$0        | ) \$ | 60 \$C                | \$0               | \$  | \$0        |
| Field Investigation                                      | Implementation                             | cetton, pre design surve                  | by The of Reflictly        | \$0                  |               |                            | \$0                     | \$0               | \$0             | \$0               | \$0               | \$0        | \$0        |      |                       |                   |     | \$0        |
| Modeling<br>Reporting/Deliverables                       | n/a<br>Remedial Design si                  | ubmittal - 6% of Remed                    | ly Implementation          | \$0                  |               |                            | \$0<br>\$0              | \$0<br>\$0        | \$0<br>\$0      | \$0<br>\$0        | \$0<br>\$0        | \$0<br>\$0 | \$0<br>\$0 |      | io \$0<br>io \$0      |                   |     | \$0<br>\$0 |
| Subtotal                                                 |                                            |                                           |                            | \$(                  |               | 0 \$0                      | \$0                     | \$0               |                 | \$0               | \$0               |            | \$0        | \$   | iO \$0                | \$0               | \$  | \$0        |
| Remedy Implementation<br>Mobilization                    |                                            |                                           |                            | d be filled w        |               | o linking to, and          | distributing the<br>\$0 | appropria<br>\$0  | ate total costs | in column I, c    | or with zeros     | \$0        | \$0        |      | io \$0                | \$0               | •   | \$0        |
| Contractor Submittals and Permits                        |                                            | als, construction permits                 | s, as-builts (1.5%)        |                      |               |                            |                         |                   |                 |                   |                   |            |            |      |                       |                   |     |            |
| Implementation                                           | applied to Remedy                          | Implementation                            |                            | \$0                  |               |                            | \$0<br>\$0              | \$0<br>\$0        | \$0<br>\$0      | \$0<br>\$0        | \$0<br>\$0        | \$0<br>\$0 | \$0<br>\$0 |      | io \$0<br>io \$0      |                   |     | \$0<br>\$0 |
| Dredging<br>Material Barga, Assist Tug, Tran             |                                            | moval by mechanical dr                    | edging                     | \$0                  |               |                            | \$0                     | \$0               |                 | \$0               | \$0               | \$0        | \$0        |      |                       |                   |     | \$0        |
| Material Barge, Assist Tug, Tran<br>Sediments            | Cost of material tra                       | insport                                   |                            | \$0                  |               |                            | \$0                     | \$0               |                 | \$0               | \$0               | \$0        | \$0        | -    |                       | \$0               |     | \$0        |
| Water Management<br>Dewatering/Transloading Area S       | Estimate per day<br>Estimate to setup d    | dewatering/transloading                   | area                       | \$0                  |               |                            | \$0<br>\$0              | \$0<br>\$0        |                 | \$0<br>\$0        | \$0<br>\$0        | \$0<br>\$0 | \$0<br>\$0 |      | io \$0<br>io \$0      |                   |     | \$0<br>\$0 |
| Handling and Transport to Subti                          |                                            |                                           |                            | \$0                  |               |                            | \$0                     | \$0               | \$0             | \$0               | \$0               | \$0<br>\$0 | \$0        |      |                       | \$0               |     | \$0        |
| Subtitle D Landfill Disposal                             | Assume 1.3 tn/cy -                         | quote by WM                               |                            | \$                   |               |                            | \$0<br>\$0              | \$0<br>\$0        | \$0             | \$0<br>\$0        | \$0<br>\$0        | \$0<br>\$0 | \$0<br>\$0 | -    |                       |                   |     | \$0        |
| TSCA Waste Handling and Tran<br>Hazardous Waste Landfill | Assumes 1.3 tn/cy                          | -quote by phone                           |                            | \$0                  | ) \$          | 0 \$0                      | \$0                     | \$0               | \$0             | \$0               | \$0               | \$0        | \$0        | ) s  | io \$0                | \$0               | s   | \$0        |
| Hazardous Waste Landfill Dispo                           |                                            |                                           |                            | \$0                  | ) \$          | 0 \$0                      | \$0                     | \$0               | \$0             | \$0               | \$0               | \$0        | \$0        | ) \$ | i0 \$0                | \$0               | \$  | \$0        |
| Backfill<br>Material Barge & Tug                         | Cost of backfill mat<br>Transport from qua | terial purchase, delivery<br>arry to site | and placement at site      | \$0                  | 1             |                            | \$0<br>\$0              | \$0<br>\$0        |                 | \$0<br>\$0        | \$0<br>\$0        | \$0<br>\$0 | \$0<br>\$0 |      | io \$0<br>io \$0      |                   |     | \$0<br>\$0 |
| In situ GAC treatment                                    | Procurement, delive                        |                                           |                            | \$0                  | \$            | 0 \$0                      | \$0                     | \$0               | \$0             | \$0               | \$0               | \$0        | \$0        | ) \$ | i0 \$0                | \$0               | \$  | \$0        |
| Reactive ENR<br>Material Barge & Tug                     | Procurement, delive<br>Transport to site   | ery, placement                            |                            | \$0                  |               |                            | \$0<br>\$0              | \$0<br>\$0        | \$0<br>\$0      | \$0<br>\$0        | \$0<br>\$0        | \$0<br>\$0 | \$0<br>\$0 |      | io \$0<br>io \$0      |                   |     | \$0<br>\$0 |
| Construction QA/QC                                       |                                            | ng, bathymetric surveys                   | , water quality monitoring | n                    |               |                            |                         |                   |                 |                   |                   |            |            |      |                       |                   |     |            |
| Shoreline Stabilization                                  | Procurement, delive                        | ery, placement (2' T x 3                  | 800' L x 10' W)            | s<br>\$(             |               |                            | \$0<br>\$0              | \$0<br>\$0        | \$0<br>\$0      | \$0<br>\$0        | \$0<br>\$0        | \$0<br>\$0 | \$0<br>\$0 |      | i0 \$0<br>i0 \$0      | \$0<br>\$0<br>\$0 |     | \$0<br>\$0 |
| Habitat Enhancement & Riparia                            |                                            | ery, placement (25' eac                   |                            | \$0                  | ) \$          | 0 \$0                      | \$0                     | \$0               | \$0             | \$0               | \$0               | \$0        | \$0        | ) \$ | i0 \$0                | \$0               | \$  | \$0        |
| Sales Tax                                                | excluding disposal                         | (6%) applied to Remed                     |                            | \$0                  | o \$          | 0 \$0                      | \$0                     | \$0               | \$0             | \$0               | \$0               | \$0        | \$0        | ) \$ | io \$0                | \$0               | \$  | \$0        |
| Bonds                                                    | Contractor's perform<br>Remedy Implement   | mance and payment bo<br>tation            | nds (1%) applied to        | \$0                  |               |                            | \$0                     | \$0               | \$0             | \$0               | \$0               | \$0        | \$0        |      |                       | \$0               |     | \$0        |
| Subtotal<br>OM&M                                         |                                            |                                           |                            | \$0<br>d be filled w |               | \$0<br>hbers or equation   | \$0                     | \$0               | \$0             | \$0               | \$0               | \$0        | \$0        | \$0  | \$0                   | \$0               | \$0 | _ ر        |
| Maintenance                                              | No OM&M                                    |                                           |                            | \$                   |               |                            | \$0                     | \$0               | \$0             | \$0               | \$0               | \$0        | \$0        | ) \$ | i0 \$0                | \$0               | \$  | \$0        |
| Laboratory<br>Field Activities                           |                                            |                                           |                            | \$0                  |               |                            | \$0                     | \$0               |                 | \$0               | \$0               |            |            |      |                       |                   |     | \$0        |
| Materials, Fuels and Treatment Me                        | dia                                        |                                           |                            | \$0                  |               |                            | \$0<br>\$0              | \$0<br>\$0        |                 | \$0<br>\$0        | \$0<br>\$0        | \$0<br>\$0 | \$0<br>\$0 |      | io \$0<br>io \$0      |                   |     | \$0<br>\$0 |
| Reporting/Deliverables                                   |                                            |                                           |                            | \$0                  |               |                            | \$0                     | \$0               | \$0             | \$0               | \$0               | \$0        | \$0        |      |                       |                   |     | \$0        |
| Modeling<br>Institutional Controls                       | No Institutional Cor                       | ntrols                                    |                            | \$0                  |               |                            | \$0                     | \$0               |                 | \$0               | \$0               | \$0        |            |      | io \$0                |                   |     | \$0        |
| Total OM&M Costs (Alternative to a                       |                                            |                                           |                            | \$0                  | ) \$          | 0 \$0                      | \$0                     | \$0               | \$0             | \$0               | \$0               | \$0        | \$0        | \$   | io \$0                | \$0               | \$  | \$0        |
| topics)                                                  |                                            |                                           |                            | \$0                  |               |                            | \$0                     | \$0               | \$0             | \$0               | \$0               | \$0        | \$0        |      |                       |                   |     | \$0        |
| Subtotal<br>Project Closure                              |                                            |                                           |                            | \$<br>d be filled w  |               | 0 \$0<br>nbers or equation | \$0<br>ns.              | \$0               | \$0             | \$0               | \$0               | \$0        | \$0        | /  3 | io \$0                | \$0               | \$  | \$0        |
| Assessments                                              |                                            | sign+Implementation+O                     |                            | \$0                  | 5             | 0 \$0                      | \$0                     | \$0               |                 | \$0               | \$0               |            |            |      | i0 \$0                |                   |     | \$0        |
| Decommissioning - Remedy Comp<br>Subtotal                | letion Assume 1% of Des                    | sign+Implementation+O                     | М&М                        | \$0                  |               | 0 \$0<br>0 \$0             | \$0<br><b>\$0</b>       | \$0<br><b>\$0</b> |                 | \$0<br><b>\$0</b> | \$0<br><b>\$0</b> |            |            |      | 0 \$0<br>0 <b>\$0</b> |                   |     | \$0<br>\$0 |
| Project Management <sup>3</sup>                          |                                            |                                           |                            |                      |               |                            |                         |                   |                 |                   |                   |            |            |      |                       |                   |     |            |
| During Implementation                                    | Assume 12% of De                           | esign+Implementation                      |                            |                      |               |                            |                         |                   |                 |                   |                   |            |            |      |                       |                   |     |            |
|                                                          |                                            |                                           |                            | \$0                  |               |                            | \$0                     | \$0               | \$0             | \$0               | \$0               | \$0        | \$0        |      |                       |                   |     | \$0        |
| During OM&M<br>During Closure                            | Assume 12% of ON<br>Assume 12% of Clo      |                                           |                            | \$0                  |               |                            | \$0<br>\$0              | \$0<br>\$0        |                 | \$0<br>\$0        | \$0<br>\$0        |            |            |      | 60 \$0<br>60 \$0      |                   |     | \$0<br>\$0 |
| Subtotal                                                 |                                            |                                           |                            | \$0                  | ) \$          | 0 \$0                      | \$0                     | \$0               | \$0             | \$0               | \$0               | \$0        | \$0        | \$   | 0 \$0                 | \$0               | \$1 | \$0        |
| SUBTOTAL COST OF EL                                      |                                            |                                           |                            | \$0                  | ) \$(         | D \$0                      | \$0                     | \$0               | \$0             | \$0               | \$0               | \$0        | \$0        | \$   | 0 \$0                 | \$0               | \$( | 60         |
| Contingencies                                            | Implementatio                              |                                           | Closure                    | _                    | -             |                            |                         |                   |                 |                   |                   |            |            | 1    | -                     | -                 |     | 4          |
| Scope (10 to 25%)<br>Bid (10 to 20%)                     | 12.2%<br>10%                               | 15%<br>10%                                | 25%<br>20%                 | 1                    |               |                            |                         |                   |                 |                   |                   |            |            |      | -                     |                   |     | +          |
| Subtotal                                                 |                                            | ·                                         | ·                          |                      |               |                            |                         |                   |                 |                   |                   |            |            |      |                       |                   |     |            |
| GRAND TOTAL COST                                         |                                            |                                           |                            |                      |               |                            |                         |                   |                 |                   |                   |            |            |      |                       |                   |     |            |
|                                                          |                                            |                                           |                            |                      |               |                            |                         |                   |                 |                   |                   |            |            |      |                       |                   |     |            |
| 1                                                        | OM&M                                       |                                           |                            |                      |               |                            |                         |                   |                 |                   |                   |            |            |      |                       |                   |     |            |

Lockheed Martin Corporation



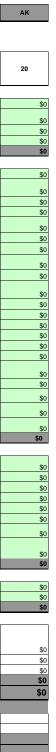
Version G April 2012

# TABLE E-7 **COST ESTIMATES FOR ALTERNATIVE 4F**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TIMATE: Screening 🗆 or                                                                                                                                                                                                                 | Detailed X                                                                                                                                                                                                                                                                                                                                                                                                    | DISCOUNT        | ATIVE: 4F <u>. Partial Removal</u>                                               | 7%                                                                                                  |                                                                                               | ESCALATION RATE                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              |                                                                                                                                                                                                                                     |                                                                                          |                                                                                                                                      |                                                                                                  | RA                                                                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EL OF ESTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                        | C D E                                                                                                                                                                                                                                                                                                                                                                                                         | DISCOUNT        | G G                                                                              | Н                                                                                                   |                                                                                               | ESCALATION RATE                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | м                                                                                                            | N                                                                                                                                                                                                                                   | 0                                                                                        |                                                                                                                                      | Q                                                                                                | R                                                                                                                                                                                       |                                                                                                                                                                                          | т                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | В                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                               | F               | G                                                                                |                                                                                                     | •                                                                                             | JK                                                                                             | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IVI                                                                                                          | N                                                                                                                                                                                                                                   | 0                                                                                        | ۲                                                                                                                                    | Q                                                                                                | ĸ                                                                                                                                                                                       | 3                                                                                                                                                                                        | ł                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                                                                  |                                                                                                     |                                                                                               | Cost (<br>Add costs that have                                                                  | n Current Dollars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er 50 vears)                                                                                                 | (NPV                                                                                                                                                                                                                                | Cost in NPV D<br>costs that have been dis                                                |                                                                                                                                      | ars)                                                                                             | Years                                                                                                                                                                                   | ł                                                                                                                                                                                        |                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Element                                                                                                                                                                                                                                | Description<br>(Explain Element as necessary)                                                                                                                                                                                                                                                                                                                                                                 | Qty             | Units<br>(Select as appropriate)                                                 | \$/Unit                                                                                             | Cost Extension \$<br>( F x H)                                                                 | •                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , ,                                                                                                          |                                                                                                                                                                                                                                     |                                                                                          | 1                                                                                                                                    | ,<br>                                                                                            |                                                                                                                                                                                         |                                                                                                                                                                                          |                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        | (Explain Element as necessary)                                                                                                                                                                                                                                                                                                                                                                                |                 | (ociect as appropriate)                                                          |                                                                                                     | (1 × 1)                                                                                       | Implementation                                                                                 | OM&M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Closure                                                                                                      | TOTAL<br>(O+P+Q)                                                                                                                                                                                                                    | Implementation                                                                           | OM&M                                                                                                                                 | Closure                                                                                          | 1                                                                                                                                                                                       | 2                                                                                                                                                                                        | 3                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                                                                  |                                                                                                     |                                                                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              | (0+r+Q)                                                                                                                                                                                                                             |                                                                                          |                                                                                                                                      |                                                                                                  |                                                                                                                                                                                         |                                                                                                                                                                                          |                                                                                                                                                              |
| emedial De<br>ench/Pilot Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                                                                                                                                                                                                                      | n/a                                                                                                                                                                                                                                                                                                                                                                                                           |                 | LS or V                                                                          |                                                                                                     | \$0                                                                                           | \$0                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              | \$0                                                                                                                                                                                                                                 | \$0                                                                                      |                                                                                                                                      |                                                                                                  | Note: Make sure the                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                                                                                              |
| ield Investiga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                                                                                                                      | Additional data collection, pre-design survey - 1% of Remedy                                                                                                                                                                                                                                                                                                                                                  | 1               | LS or V<br>LS or UC and LOE                                                      | \$136,376                                                                                           | \$136,376                                                                                     | \$136,376                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              | \$136,376                                                                                                                                                                                                                           | \$136,376                                                                                | _                                                                                                                                    |                                                                                                  | \$0                                                                                                                                                                                     | \$0                                                                                                                                                                                      | \$0                                                                                                                                                          |
| feid investiga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gallon                                                                                                                                                                                                                                 | Implementation<br>MNR modeling                                                                                                                                                                                                                                                                                                                                                                                | 1               | LS                                                                               | \$10,000                                                                                            | \$138,378                                                                                     | \$136,376                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              | \$10,000                                                                                                                                                                                                                            | \$136,376                                                                                | _                                                                                                                                    |                                                                                                  | \$136,376                                                                                                                                                                               | \$0<br>\$0                                                                                                                                                                               | \$0<br>\$0                                                                                                                                                   |
| eporting/Deli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eliverables                                                                                                                                                                                                                            | Remedial Design submittal - 6% of Remedy Implementation                                                                                                                                                                                                                                                                                                                                                       | 1               | LS                                                                               | \$818,258                                                                                           | \$818,258                                                                                     | \$818,258                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              | \$818,258                                                                                                                                                                                                                           | \$818,258                                                                                | _                                                                                                                                    |                                                                                                  | \$10,000<br>\$818,258                                                                                                                                                                   | \$0                                                                                                                                                                                      |                                                                                                                                                              |
| ototal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                               |                 | * * *                                                                            |                                                                                                     | \$964,634                                                                                     | \$964,634                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              | \$964,634                                                                                                                                                                                                                           | \$964,634                                                                                |                                                                                                                                      |                                                                                                  | \$964,634                                                                                                                                                                               | \$0                                                                                                                                                                                      |                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | plementation                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 10 %                                                                             |                                                                                                     | 0011.000                                                                                      | <b>6</b> 044,000                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              | <b>\$011.000</b>                                                                                                                                                                                                                    | 0011.000                                                                                 |                                                                                                                                      |                                                                                                  | Note: Make sure the                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                                                                                              |
| Mobilization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                        | Contractor submittals, construction permits, as-builts (1.5%)                                                                                                                                                                                                                                                                                                                                                 | 1               | LS or %                                                                          | \$611,886                                                                                           | \$611,886                                                                                     | \$611,886                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              | \$611,886                                                                                                                                                                                                                           | \$611,886                                                                                | _                                                                                                                                    |                                                                                                  | \$611,886                                                                                                                                                                               | \$0                                                                                                                                                                                      | \$0                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Submittals and Permits                                                                                                                                                                                                                 | applied to Remedy Implementation                                                                                                                                                                                                                                                                                                                                                                              | 1               | LS or %                                                                          | \$183,566                                                                                           | \$183,566                                                                                     | \$183,566                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              | \$183,566                                                                                                                                                                                                                           | \$183,566                                                                                | _                                                                                                                                    |                                                                                                  | \$183,566                                                                                                                                                                               | \$0                                                                                                                                                                                      | \$0                                                                                                                                                          |
| mplementatio<br>Dredging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                        | Cost of material removal by mechanical dredging                                                                                                                                                                                                                                                                                                                                                               | 48,783          | V or UC<br>CY                                                                    | \$20                                                                                                | \$0<br>\$975,659                                                                              | \$0<br>\$975,659                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              | \$0<br>\$975,659                                                                                                                                                                                                                    | \$0<br>\$975,659                                                                         | _                                                                                                                                    |                                                                                                  | \$0<br>\$975,659                                                                                                                                                                        | \$0<br>\$0                                                                                                                                                                               |                                                                                                                                                              |
| Material Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Barge, Assist Tug, Transport                                                                                                                                                                                                           | Cost of material transport                                                                                                                                                                                                                                                                                                                                                                                    | 63,418          | TN                                                                               | \$10                                                                                                | \$634,178                                                                                     | \$634,178                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              | \$634,178                                                                                                                                                                                                                           | \$634,178                                                                                | 1                                                                                                                                    |                                                                                                  |                                                                                                                                                                                         |                                                                                                                                                                                          |                                                                                                                                                              |
| Sediments<br>Water Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                        | Estimate per day                                                                                                                                                                                                                                                                                                                                                                                              | 60              | DAY                                                                              | \$10,000                                                                                            | \$600,000                                                                                     | \$600,000                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              | \$600,000                                                                                                                                                                                                                           | \$600,000                                                                                | -                                                                                                                                    |                                                                                                  | \$634,178<br>\$600,000                                                                                                                                                                  | \$0<br>\$0                                                                                                                                                                               | \$0<br>\$0                                                                                                                                                   |
| Dewatering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ng/Transloading Area Setup                                                                                                                                                                                                             | Estimate to setup dewatering/transloading area                                                                                                                                                                                                                                                                                                                                                                | 1               | LS                                                                               | \$500,000                                                                                           | \$500,000                                                                                     | \$500,000                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              | \$500,000                                                                                                                                                                                                                           | \$500,000                                                                                |                                                                                                                                      |                                                                                                  | \$500,000                                                                                                                                                                               | \$0                                                                                                                                                                                      |                                                                                                                                                              |
| Handling ar<br>Landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and Transport to Subtitle D                                                                                                                                                                                                            | Assume 1.3 tn/cy - quote by WM                                                                                                                                                                                                                                                                                                                                                                                | 63,418          | TN                                                                               | \$40                                                                                                | \$2,536,714                                                                                   | \$2,536,714                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              | \$2,536,714                                                                                                                                                                                                                         | \$2,536,714                                                                              |                                                                                                                                      |                                                                                                  | \$2,536,714                                                                                                                                                                             | \$0                                                                                                                                                                                      | \$0                                                                                                                                                          |
| Subtitle D L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ) Landfill Disposal                                                                                                                                                                                                                    | Assume 1.3 tn/cy -quote by WM                                                                                                                                                                                                                                                                                                                                                                                 | 63,418          | TN                                                                               | \$36                                                                                                | \$2,283,042                                                                                   | \$2,283,042                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              | \$2,283,042                                                                                                                                                                                                                         | \$2,283,042                                                                              |                                                                                                                                      |                                                                                                  | \$2,283,042                                                                                                                                                                             | \$0                                                                                                                                                                                      | \$0                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | aste Handling and Transport to<br>us Waste Landfill                                                                                                                                                                                    | Assumes 1.3 tn/cy -quote by phone                                                                                                                                                                                                                                                                                                                                                                             | 2,200           | TN                                                                               | \$90                                                                                                | \$198,000                                                                                     | \$198,000                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              | \$198,000                                                                                                                                                                                                                           | \$198,000                                                                                |                                                                                                                                      |                                                                                                  | \$198,000                                                                                                                                                                               | \$0                                                                                                                                                                                      | \$0                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        | Assume 1.3 tn/cy -quote by phone                                                                                                                                                                                                                                                                                                                                                                              | 2,200           | TN                                                                               | \$87                                                                                                | \$191,400                                                                                     | \$191,400                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              | \$191,400                                                                                                                                                                                                                           | \$191,400                                                                                | _                                                                                                                                    |                                                                                                  | \$191,400                                                                                                                                                                               | \$0<br>\$0                                                                                                                                                                               | ÷-                                                                                                                                                           |
| Backfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                        | Cost of backfill material purchase, delivery and placement at site                                                                                                                                                                                                                                                                                                                                            | 15,200          | CY                                                                               | \$30                                                                                                | \$456,000                                                                                     | \$456,000                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              | \$456,000                                                                                                                                                                                                                           | \$456,000                                                                                | _                                                                                                                                    |                                                                                                  | \$456,000                                                                                                                                                                               | \$0                                                                                                                                                                                      |                                                                                                                                                              |
| In situ GAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Barge & Tug                                                                                                                                                                                                                            | Transport from quarry to site Procurement, delivery, placement                                                                                                                                                                                                                                                                                                                                                | 22,800<br>0     | TN<br>LB                                                                         | \$10<br>\$2                                                                                         | \$228,000<br>\$0                                                                              | \$228,000<br>\$0                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              | \$228,000<br>\$0                                                                                                                                                                                                                    | \$228,000<br>\$0                                                                         | _                                                                                                                                    |                                                                                                  | \$228,000                                                                                                                                                                               | \$0<br>\$0                                                                                                                                                                               |                                                                                                                                                              |
| Reactive E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                        | Procurement, delivery, placement                                                                                                                                                                                                                                                                                                                                                                              | 13,800          | CY                                                                               | \$120                                                                                               | \$1,656,000                                                                                   | \$1,656,000                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              | \$1,656,000                                                                                                                                                                                                                         | \$1,656,000                                                                              | _                                                                                                                                    |                                                                                                  | \$1,656,000                                                                                                                                                                             | \$0                                                                                                                                                                                      |                                                                                                                                                              |
| Material Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Barge & Tug                                                                                                                                                                                                                            | Transport to site                                                                                                                                                                                                                                                                                                                                                                                             | 20,700          | TN                                                                               | \$10                                                                                                | \$207,000                                                                                     | \$207,000                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              | \$207,000                                                                                                                                                                                                                           | \$207,000                                                                                | _                                                                                                                                    |                                                                                                  | \$207,000                                                                                                                                                                               | \$0                                                                                                                                                                                      | \$0                                                                                                                                                          |
| Constructio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tion QA/QC                                                                                                                                                                                                                             | Verification sampling, bathymetric surveys, water quality monitoring                                                                                                                                                                                                                                                                                                                                          | 1               | LS                                                                               | \$1,054,480                                                                                         | \$1,054,480                                                                                   | \$1,054,480                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              | \$1,054,480                                                                                                                                                                                                                         | \$1,054,480                                                                              |                                                                                                                                      |                                                                                                  | \$1,054,480                                                                                                                                                                             | \$0                                                                                                                                                                                      | \$0                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stabilization                                                                                                                                                                                                                          | Procurement, delivery, placement (2' T x 3800' L x 10' W)                                                                                                                                                                                                                                                                                                                                                     | 5,345           | TN                                                                               | \$50                                                                                                | \$267,241                                                                                     | \$267,241                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              | \$267,241                                                                                                                                                                                                                           | \$267,241                                                                                | _                                                                                                                                    |                                                                                                  | \$267,241                                                                                                                                                                               | \$0                                                                                                                                                                                      | \$0                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nhancement & Riparian Planting                                                                                                                                                                                                         | Procurement, delivery, placement (25' each bank x 2100' bank)<br>Maryland sales tax (6%) applied to Remedy Implementation                                                                                                                                                                                                                                                                                     | 3               | AC                                                                               | \$150,000                                                                                           | \$450,000                                                                                     | \$450,000                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              | \$450,000                                                                                                                                                                                                                           | \$450,000                                                                                | _                                                                                                                                    |                                                                                                  | \$450,000                                                                                                                                                                               | \$0                                                                                                                                                                                      | \$0                                                                                                                                                          |
| Sales Tax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                        | excluding disposal cost                                                                                                                                                                                                                                                                                                                                                                                       | 1               | LS or %                                                                          | \$469,441                                                                                           | \$469,441                                                                                     | \$469,441                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              | \$469,441                                                                                                                                                                                                                           | \$469,441                                                                                | _                                                                                                                                    |                                                                                                  | \$469,441                                                                                                                                                                               | \$0                                                                                                                                                                                      | \$0                                                                                                                                                          |
| Bonds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                        | Contractor's performance and payment bonds (1%) applied to<br>Remedy Implementation                                                                                                                                                                                                                                                                                                                           | 1               | LS or %                                                                          | \$135,026                                                                                           | \$135,026                                                                                     | \$135,026                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              | \$135,026                                                                                                                                                                                                                           | \$135,026                                                                                |                                                                                                                                      |                                                                                                  | \$135,026                                                                                                                                                                               | \$0                                                                                                                                                                                      | \$0                                                                                                                                                          |
| ototal<br>M&M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                               | 1               | Annual                                                                           |                                                                                                     | \$13,637,633                                                                                  | \$13,637,633                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              | \$13,637,633                                                                                                                                                                                                                        | \$13,637,633                                                                             |                                                                                                                                      |                                                                                                  | \$13,637,633<br>Note: Make sure ther                                                                                                                                                    | \$0                                                                                                                                                                                      | \$0                                                                                                                                                          |
| Maintenance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                        | Assume 10% of Reactive ENR repair at Year 5                                                                                                                                                                                                                                                                                                                                                                   | 1,380           | CY                                                                               | \$180                                                                                               | \$248,400                                                                                     |                                                                                                | \$248,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                              | \$189.198                                                                                                                                                                                                                           |                                                                                          | \$189,198                                                                                                                            |                                                                                                  | Note. Make Sure the                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                                                                                              |
| aboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                               | 1,380           | UC                                                                               | \$100                                                                                               | \$0                                                                                           |                                                                                                | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                              | \$0                                                                                                                                                                                                                                 | -                                                                                        | \$0                                                                                                                                  | -                                                                                                | \$0                                                                                                                                                                                     | \$0<br>\$0                                                                                                                                                                               | \$0<br>\$0                                                                                                                                                   |
| ield Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                               |                 | UC and LOE                                                                       |                                                                                                     | \$0                                                                                           |                                                                                                | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                              | \$0                                                                                                                                                                                                                                 | -                                                                                        | \$0                                                                                                                                  | -                                                                                                | \$0                                                                                                                                                                                     | \$0                                                                                                                                                                                      |                                                                                                                                                              |
| -ield Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                               |                 | UC or V                                                                          |                                                                                                     | \$0                                                                                           |                                                                                                | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                              | \$0                                                                                                                                                                                                                                 | -                                                                                        | \$0                                                                                                                                  |                                                                                                  | \$0                                                                                                                                                                                     | \$0                                                                                                                                                                                      | \$0                                                                                                                                                          |
| Materials, Fue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uels and Treatment Media                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                                                                  |                                                                                                     |                                                                                               |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              | \$0                                                                                                                                                                                                                                 |                                                                                          |                                                                                                                                      |                                                                                                  |                                                                                                                                                                                         |                                                                                                                                                                                          |                                                                                                                                                              |
| Materials, Fue<br>Reporting/Deli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uels and Treatment Media                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                               |                 | LS or LOE                                                                        |                                                                                                     | \$0                                                                                           |                                                                                                | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                              |                                                                                                                                                                                                                                     | -                                                                                        | \$0                                                                                                                                  | -                                                                                                | \$0                                                                                                                                                                                     | \$0                                                                                                                                                                                      | \$0                                                                                                                                                          |
| Materials, Fue<br>Reporting/Deli<br>Modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | uels and Treatment Media<br>eliverables                                                                                                                                                                                                | Public outreach, support seafood consumption advisories,                                                                                                                                                                                                                                                                                                                                                      |                 | LOE                                                                              |                                                                                                     | \$0                                                                                           |                                                                                                | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                              | \$0                                                                                                                                                                                                                                 | -                                                                                        | \$0                                                                                                                                  |                                                                                                  | \$0                                                                                                                                                                                     | \$0<br>\$0                                                                                                                                                                               | \$0<br>\$0                                                                                                                                                   |
| Materials, Fue<br>Reporting/Deli<br>Modeling<br>nstitutional Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | uels and Treatment Media<br>eliverables<br>Controls                                                                                                                                                                                    | reporting, agency review                                                                                                                                                                                                                                                                                                                                                                                      |                 | LOE<br>LOE                                                                       |                                                                                                     |                                                                                               |                                                                                                | \$0<br>\$200,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              | \$0<br>\$175,624                                                                                                                                                                                                                    | -                                                                                        | \$0<br>\$175,624                                                                                                                     | -                                                                                                | ¢0                                                                                                                                                                                      | \$0                                                                                                                                                                                      | \$0                                                                                                                                                          |
| Aaterials, Fue<br>Reporting/Deli<br>Aodeling<br>Institutional Co<br>Total OM&M C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uels and Treatment Media<br>eliverables                                                                                                                                                                                                | reporting, agency review                                                                                                                                                                                                                                                                                                                                                                                      |                 | LOE                                                                              | t                                                                                                   | \$0                                                                                           |                                                                                                | \$0<br>\$200,000<br>\$462,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              | \$0<br>\$175,624<br>\$368,152                                                                                                                                                                                                       | -                                                                                        | \$0<br>\$175,624<br>\$368,152                                                                                                        | -                                                                                                | \$0<br>\$100,000<br>\$77,000                                                                                                                                                            | \$0<br>\$0<br>\$20,000<br>\$77,000                                                                                                                                                       | \$0<br>\$0<br>\$20,000<br>\$77,000                                                                                                                           |
| Materials, Fue<br>Reporting/Deli<br>Modeling<br>Institutional Co<br>Fotal OM&M Co<br>opics)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | uels and Treatment Media<br>eliverables<br>Controls<br>I Costs (Alternative to above sub-                                                                                                                                              | reporting, agency review                                                                                                                                                                                                                                                                                                                                                                                      |                 | LOE<br>LOE<br>LOE                                                                | t                                                                                                   | \$0                                                                                           |                                                                                                | \$0<br>\$200,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              | \$0<br>\$175,624                                                                                                                                                                                                                    | -                                                                                        | \$0<br>\$175,624                                                                                                                     |                                                                                                  | \$0<br>\$100,000<br>\$77,000<br>\$177,000                                                                                                                                               | \$0<br>\$0<br>\$20,000<br>\$77,000<br><b>\$97,000</b>                                                                                                                                    | \$0<br>\$0<br>\$20,000<br>\$77,000<br><b>\$97,000</b>                                                                                                        |
| Materials, Fue<br>Reporting/Deli<br>Modeling<br>Institutional Co<br>Total OM&M Co<br>poics)<br>Motal<br>roject Clos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | uels and Treatment Media<br>eliverables<br>Controls<br>I Costs (Alternative to above sub-                                                                                                                                              | reporting, agency review<br>Laboratory + Field Activities + Reporting/Deliverables                                                                                                                                                                                                                                                                                                                            | 1               | LOE<br>LOE<br>LOE<br>Attached Work Shee                                          |                                                                                                     | \$0<br>\$0                                                                                    |                                                                                                | \$0<br>\$200,000<br>\$462,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$155.123                                                                                                    | \$0<br>\$175,624<br>\$368,152<br><b>\$732,973</b>                                                                                                                                                                                   | -                                                                                        | \$0<br>\$175,624<br>\$368,152                                                                                                        | \$144 974                                                                                        | \$0<br>\$100,000<br>\$77,000                                                                                                                                                            | \$0<br>\$0<br>\$20,000<br>\$77,000<br><b>\$97,000</b><br>re are no blank                                                                                                                 | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$s in these cel                                                                                           |
| Aterials, Fue<br>Reporting/Deli<br>Addeling<br>Institutional Co<br>otal OM&M Co<br>opics)<br>Instal<br>Coject Clos<br>Assessments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uels and Treatment Media<br>eliverables<br>Controls<br>I Costs (Alternative to above sub-<br>sure<br>Is                                                                                                                                | reporting, agency review                                                                                                                                                                                                                                                                                                                                                                                      | 1               | LOE<br>LOE<br>LOE                                                                | et<br>\$155,123<br>\$155,123                                                                        | \$0                                                                                           |                                                                                                | \$0<br>\$200,000<br>\$462,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$155,123<br>\$155,123                                                                                       | \$0<br>\$175,624<br>\$368,152                                                                                                                                                                                                       | -                                                                                        | \$0<br>\$175,624<br>\$368,152                                                                                                        | \$144,974<br>\$144,974                                                                           | 00         \$0           \$100,000         \$77,000           \$177,000         \$0           Note: Make sure then         \$0           \$0         \$0                                | \$0<br>\$0<br>\$20,000<br>\$77,000<br><b>\$97,000</b>                                                                                                                                    | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$50<br>\$0<br>\$0<br>\$0                                                                                  |
| Atterials, Fue<br>Reporting/Deli<br>Addeling<br>Institutional Co<br>Total OM&M Co<br>popics)<br>Intotal<br>Project Clos<br>Assessments<br>Decommission<br>Intotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uels and Treatment Media<br>eliverables<br>Controls<br>I Costs (Alternative to above sub-<br>sure<br>is<br>oning - Remedy Completion                                                                                                   | reporting, agency review<br>Laboratory + Field Activities + Reporting/Deliverables<br>Assume 1% of Design+Implementation+OM&M                                                                                                                                                                                                                                                                                 | -               | LOE<br>LOE<br>Attached Work Shee                                                 | \$155,123                                                                                           | \$0<br>\$0<br>\$155,123                                                                       |                                                                                                | \$0<br>\$200,000<br>\$462,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                              | \$0<br>\$175,624<br>\$368,152<br><b>\$732,973</b><br>\$144,974                                                                                                                                                                      |                                                                                          | \$0<br>\$175,624<br>\$368,152                                                                                                        |                                                                                                  | \$0           \$100,000           \$77,000           \$177,000           Note: Make sure ther           \$0                                                                             | \$0<br>\$0<br>\$20,000<br>\$77,000<br><b>\$97,000</b><br>re are no blank<br>\$155,123                                                                                                    | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$50<br>\$0<br>\$0<br>\$0<br>\$0                                                                           |
| Atterials, Fue<br>Reporting/Deli<br>Addeling<br>Institutional Co<br>Total OM&M Co<br>popics)<br>Intotal<br>Project Clos<br>Assessments<br>Decommission<br>Intotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | uels and Treatment Media<br>eliverables<br>Controls<br>I Costs (Alternative to above sub-<br>sure<br>is<br>oning - Remedy Completion                                                                                                   | reporting, agency review<br>Laboratory + Field Activities + Reporting/Deliverables<br>Assume 1% of Design+Implementation+OM&M                                                                                                                                                                                                                                                                                 | -               | LOE<br>LOE<br>Attached Work Shee<br>V or UC and LOE<br>LS, % or V                | \$155,123<br>\$155,123                                                                              | \$0<br>\$0<br>\$155,123<br>\$155,123<br>\$155,123<br>\$310,245                                |                                                                                                | \$0<br>\$200,000<br>\$462,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$155,123                                                                                                    | \$0<br>\$175,624<br>\$368,152<br><b>\$732,973</b><br>\$144,974<br>\$144,974                                                                                                                                                         |                                                                                          | \$0<br>\$175,624<br>\$368,152                                                                                                        | \$144,974                                                                                        | 00         \$0           \$100,000         \$77,000           \$177,000         \$0           Note: Make sure then         \$0           \$0         \$0                                | \$0<br>\$20,000<br>\$77,000<br><b>\$97,000</b><br>re are no blank<br>\$155,123<br>\$155,123                                                                                              | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$97,000<br>\$5 in these cel<br>\$0<br>\$0<br>\$0                                                          |
| taterials, Fue<br>teporting/Deli<br>todeling<br>total OM&M (<br>otal OM&M (<br>opics)<br>total<br>oject Clos<br>ussessments<br>lecommission<br>total<br>ject Manag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | uels and Treatment Media<br>eliverables<br>Controls<br>1 Costs (Alternative to above sub-<br>sure<br>is<br>oning - Remedy Completion<br>agement <sup>3</sup>                                                                           | reporting, agency review<br>Laboratory + Field Activities + Reporting/Deliverables<br>Assume 1% of Design+Implementation+OM&M                                                                                                                                                                                                                                                                                 | -               | LOE<br>LOE<br>Attached Work Shee<br>V or UC and LOE<br>LS, % or V                | \$155,123<br>\$155,123<br>Of Remedial Design &<br>Remedy                                            | \$0<br>\$0<br>\$155,123<br>\$155,123<br>\$155,123<br>\$310,245                                | \$1,752,272                                                                                    | \$0<br>\$200,000<br>\$462,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$155,123                                                                                                    | \$0<br>\$175,624<br>\$368,152<br><b>\$732,973</b><br>\$144,974<br>\$144,974                                                                                                                                                         | \$1,752,272                                                                              | \$0<br>\$175,624<br>\$368,152                                                                                                        | \$144,974                                                                                        | 0         \$0           \$100,000         \$77,000           \$177,000         \$177,000           Note: Make sure then         \$0           \$0         \$0           \$0         \$0 | \$0<br>\$20,000<br>\$77,000<br><b>\$97,000</b><br>re are no blank<br>\$155,123<br>\$155,123                                                                                              | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$50<br>\$0<br>\$0<br>\$0<br>\$0                                                                           |
| taterials, Fue<br>teporting/Deli<br>todeling<br>stitutional Cc<br>total OM&M (oppics)<br>total<br>oject Clos<br>ssessments<br>tecommission<br>total<br>ject Manag<br>uuring Implem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | uels and Treatment Media<br>eliverables<br>Controls<br>I Costs (Alternative to above sub-<br>sure<br>is<br>is<br>is<br>is<br>is<br>is<br>is<br>agement <sup>3</sup><br>amentation                                                      | reporting, agency review Laboratory + Field Activities + Reporting/Deliverables Assume 1% of Design+Implementation+OM&M Assume 1% of Design+Implementation+OM&M Assume 12% of Design+Implementation                                                                                                                                                                                                           | 1               | LOE<br>LOE<br>Attached Work Shee                                                 | \$155,123<br>\$155,123<br>Of Remedial Design &<br>Remedy<br>Implementation                          | \$0<br>\$0<br>\$155,123<br>\$155,123<br>\$155,123<br>\$310,245<br>\$1,752,272                 | \$1,752,272                                                                                    | \$0<br>\$200,000<br>\$462,000<br>\$910,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$155,123                                                                                                    | \$0<br>\$175,624<br>\$368,152<br><b>\$732,973</b><br>\$144,974<br>\$144,974<br><b>\$289,949</b><br>\$1,752,272                                                                                                                      | \$1,752,272                                                                              | \$0<br>\$175,624<br>\$368,152<br>\$732,973                                                                                           | \$144,974                                                                                        | \$0<br>\$100,000<br>\$77,000<br>\$177,000<br>Note: Make sure then<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,752,272.08                        | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>re are no blank<br>\$155,123<br>\$1155,123<br>\$310,245<br>\$3                                                                         | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$97,000<br>\$ \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                        |
| Atterials, Fue<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli<br>Laporting/Deli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | uels and Treatment Media<br>eliverables<br>Controls<br>I Costs (Alternative to above sub-<br>sure<br>s<br>oning - Remedy Completion<br>agement <sup>3</sup><br>ementation<br>M                                                         | reporting, agency review<br>Laboratory + Field Activities + Reporting/Deliverables<br>Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M                                                                                                                                                                                                                                      | 1               | LOE<br>LOE<br>Attached Work Shee                                                 | \$155,123<br>\$155,123<br>Of Remedial Design &<br>Remedy                                            | \$0<br>\$0<br>\$155,123<br>\$155,123<br>\$310,245                                             | \$1,752,272                                                                                    | \$0<br>\$200,000<br>\$462,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$155,123                                                                                                    | \$0<br>\$175,624<br>\$368,152<br><b>\$732,973</b><br>\$144,974<br>\$144,974<br>\$289,949                                                                                                                                            | \$1,752,272                                                                              | \$0<br>\$175,624<br>\$368,152                                                                                                        | \$144,974                                                                                        | 0         \$0           \$100,000         \$77,000           \$177,000         \$177,000           Note: Make sure then         \$0           \$0         \$0           \$0         \$0 | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>re are no blank<br>\$155,123<br>\$1155,123<br>\$310,245<br>\$310,245<br>\$0<br>\$11,640                                                | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$97,000<br>\$ \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                        |
| taterials, Fue<br>leporting/Deli<br>lodeling<br>institutional Cr.<br>otal OM&M Co<br>otal OM&M Co<br>oject Clos<br>ssessments<br>leecommission<br>total<br>ject Manag<br>huring Implem<br>ing Closure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uels and Treatment Media<br>eliverables<br>Controls<br>I Costs (Alternative to above sub-<br>sure<br>s<br>oning - Remedy Completion<br>agement <sup>3</sup><br>ementation<br>M                                                         | Assume 12% of Design+Implementation<br>Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M                                                                                                                                                                                                                                                                                     | 1<br>12%<br>12% | LOE<br>LOE<br>Attached Work Shee<br>V or UC and LOE<br>LS, % or V<br>%           | \$155,123<br>\$155,123<br>Of Remedial Design &<br>Remedy<br>Implementation<br>Of OM&M               | \$0<br>\$0<br>\$155,123<br>\$155,123<br>\$310,245<br>\$310,245<br>\$1,752,272<br>\$109,200.00 | \$1,752,272<br>\$1,752,272                                                                     | \$0<br>\$200,000<br>\$462,000<br>\$910,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$155,123<br>\$310,245                                                                                       | \$0<br>\$175,624<br>\$368,152<br>\$732,973<br>\$144,974<br>\$144,974<br>\$289,949<br>\$1,752,272<br>\$78,357                                                                                                                        | \$1,752,272<br>\$1,752,272                                                               | \$0<br>\$175,624<br>\$368,152<br>\$732,973                                                                                           | \$144,974<br>\$289,949                                                                           | \$0<br>\$100,000<br>\$77,000<br>\$177,000<br>Note: Make sure then<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,752,272.08                        | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>re are no blank<br>\$155,123<br>\$1155,123<br>\$310,245<br>\$3                                                                         | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$5 in these ce<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 |
| haterials, Fue<br>teporting/Deli<br>lodeling<br>stitutional Cr<br>otal OM&M C<br>opics)<br>total<br>oject Clos<br>ussessments<br>total<br>becommission<br>total<br>pject Manage<br>buring Implem<br>buring OM&M<br>buring Closure<br>total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | uels and Treatment Media<br>eliverables<br>Controls<br>I Costs (Alternative to above sub-<br>sure<br>s<br>oning - Remedy Completion<br>agement <sup>3</sup><br>ementation<br>M                                                         | reporting, agency review Laboratory + Field Activities + Reporting/Deliverables Assume 1% of Design+Implementation+OM&M Assume 1% of Design+Implementation Assume 12% of Design+Implementation Assume 12% of OM&M Assume 12% of Closure                                                                                                                                                                       | 1<br>12%<br>12% | LOE<br>LOE<br>Attached Work Shee<br>V or UC and LOE<br>LS, % or V<br>%           | \$155,123<br>\$155,123<br>Of Remedial Design &<br>Remedy<br>Implementation<br>Of OM&M               | \$0<br>\$0<br>\$155,123<br>\$155,123<br>\$310,245<br>\$310,245<br>\$1,752,272<br>\$109,200.00 |                                                                                                | \$0<br>\$200,000<br>\$462,000<br>\$910,000<br>\$910,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$155,123<br>\$310,245<br>\$37,229                                                                           | \$0<br>\$175,624<br>\$368,152<br><b>\$732,973</b><br>\$144,974<br>\$144,974<br>\$144,974<br>\$144,974<br>\$14,974<br>\$14,974<br>\$1,752,272<br>\$78,357<br>\$34,794                                                                |                                                                                          | \$0<br>\$175,624<br>\$368,152<br>\$732,973<br>\$78,357                                                                               | \$144,974<br>\$289,949<br>\$34,794                                                               | \$0<br>\$100,000<br>\$77,000<br>\$177,000<br>Note: Make sure ther<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                            | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$77,000<br>\$7,000<br>re are no blank<br>\$155,123<br>\$155,123<br>\$1155,123<br>\$1155,123<br>\$1155,123<br>\$115,123<br>\$11,640<br>\$37,229    | \$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$5 in these ce<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$11,640<br>\$0<br>\$11,640                          |
| taterials, Fue<br>leporting/Deli<br>lodeling<br>mstitutional Cr<br>otal OM&M Co<br>otal OM&M Co<br>oject Clos<br>oject Clos<br>useessments<br>lecommission<br>total<br>figet Manage<br>muring Implem<br>muring Closur<br>otal<br>JBTOTAL<br>Dontingenci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uels and Treatment Media<br>eliverables<br>Controls<br>1 Costs (Alternative to above sub-<br>sure<br>s<br>oning - Remedy Completion<br>agement <sup>3</sup><br>amentation<br>M<br>ure<br>AL COST OF ELEMENT E<br>cies                  | reporting, agency review Laboratory + Field Activities + Reporting/Deliverables Assume 1% of Design+Implementation+OM&M Assume 1% of Design+Implementation Assume 12% of Design+Implementation Assume 12% of Closure ESTIMATES Implementation OM&M Closure                                                                                                                                                    | 1<br>12%<br>12% | LOE<br>LOE<br>Attached Work Shee<br>V or UC and LOE<br>LS, % or V<br>%           | \$155,123<br>\$155,123<br>Of Remedial Design &<br>Remedy<br>Implementation<br>Of OM&M               | \$0<br>\$0<br>\$155,123<br>\$155,123<br>\$310,245<br>\$310,245<br>\$1,752,272<br>\$109,200.00 | \$1,752,272<br>\$16,354,539                                                                    | \$0<br>\$200,000<br>\$462,000<br>\$910,000<br>\$109,200<br>\$109,200<br>\$1,019,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$155,123<br>\$310,245<br>\$37,229<br>\$37,229<br>\$37,229<br>\$347,475                                      | \$0<br>\$175,624<br>\$368,152<br>\$732,973<br>\$144,974<br>\$144,974<br>\$144,974<br>\$144,974<br>\$144,974<br>\$144,974<br>\$144,974<br>\$14,974<br>\$14,974<br>\$1,752,272<br>\$78,357<br>\$34,794<br>\$1,865,423<br>\$17,490,612 | \$1,752,272<br>\$16,354,539                                                              | \$0<br>\$175,624<br>\$368,152<br>\$732,973<br>\$78,357<br>\$78,357<br>\$811,330                                                      | \$144,974<br>\$289,949<br>\$34,794<br>\$34,794<br>\$324,743                                      | \$0<br>\$100,000<br>\$77,000<br>\$177,000<br>Note: Make sure ther<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,752,272.08<br>\$1,752,272.08<br>\$21,240<br>\$0<br>\$1,773,512              | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$77,000<br>\$7,000<br>re are no blank<br>\$155,123<br>\$155,123<br>\$155,123<br>\$1155,123<br>\$10,245<br>\$0<br>\$11,640<br>\$37,229<br>\$48,869 | \$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$5 in these ce<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$11,640<br>\$0<br>\$11,640                          |
| htterials, Fue<br>teporting/Deli<br>dodeling<br>stitutional C4<br>objects)<br>total OM&M C5<br>opics)<br>total<br>opict Closs<br>ussessments<br>becommission<br>total<br>opict Manage<br>buring Chast<br>uning Chast<br>uni                                                                                                                                                                                                                                                                                                                      | uels and Treatment Media<br>eliverables<br>Controls<br>I Costs (Alternative to above sub-<br>sure<br>is<br>coning - Remedy Completion<br>agement <sup>3</sup><br>amentation<br>M<br>AL COST OF ELEMENT E<br>Cies<br>0 25%)             | reporting, agency review Laboratory + Field Activities + Reporting/Deliverables Assume 1% of Design+Implementation+OM&M Assume 1% of Design+Implementation Assume 12% of Design+Implementation Assume 12% of OM&M Assume 12% of Closure ESTIMATES Implementation 12.2% 15% 25%                                                                                                                                | 1<br>12%<br>12% | LOE<br>LOE<br>Attached Work Shee<br>V or UC and LOE<br>LS, % or V<br>%           | \$155,123<br>\$155,123<br>Of Remedial Design &<br>Remedy<br>Implementation<br>Of OM&M               | \$0<br>\$0<br>\$155,123<br>\$155,123<br>\$310,245<br>\$310,245<br>\$1,752,272<br>\$109,200.00 | \$1,752,272<br>\$16,354,539<br>\$2,106,274                                                     | \$0<br>\$200,000<br>\$462,000<br>\$910,000<br>\$109,200<br>\$109,200<br>\$109,200<br>\$11,019,200<br>\$152,880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$155,123<br>\$310,245<br>\$37,229<br>\$37,229<br>\$37,229<br>\$347,475<br>\$86,869                          | \$0<br>\$175,624<br>\$368,152<br>\$732,973<br>\$144,974<br>\$144,974<br>\$144,974<br>\$289,949<br>\$1,752,272<br>\$78,357<br>\$34,794<br>\$1,865,423<br>\$17,490,612<br>\$2,198,139                                                 | \$1,752,272<br>\$16,354,539<br>\$1,995,254                                               | \$0<br>\$175,624<br>\$368,152<br>\$732,973<br>\$78,357<br>\$78,357<br>\$811,330<br>\$121,700                                         | \$144,974<br>\$289,949<br>\$34,794<br>\$34,794<br>\$34,794<br>\$324,743<br>\$81,186              | \$0<br>\$100,000<br>\$77,000<br>\$177,000<br>Note: Make sure ther<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,752,272.08<br>\$1,752,272.08<br>\$21,240<br>\$0<br>\$1,773,512              | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$77,000<br>\$7,000<br>re are no blank<br>\$155,123<br>\$155,123<br>\$155,123<br>\$1155,123<br>\$10,245<br>\$0<br>\$11,640<br>\$37,229<br>\$48,869 | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$11,640<br>\$0<br>\$11,640                        |
| Atterials, Fue<br>Reporting/Deli<br>Adeling<br>Institutional Cr<br>Fotal OM&M Copics)<br>Institutional Cr<br>Copics (Closs<br>Institutional Cr<br>Secommission<br>Institutional Communication<br>Institution Communication<br>Institution Communication<br>Institution<br>Institution Communication<br>Institution<br>Institution Communication<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Ins                                                                                                                                                                                                                                                                                                                                                 | uels and Treatment Media<br>eliverables<br>Controls<br>I Costs (Alternative to above sub-<br>sure<br>is<br>coning - Remedy Completion<br>agement <sup>3</sup><br>amentation<br>M<br>AL COST OF ELEMENT E<br>Cies<br>0 25%)             | reporting, agency review Laboratory + Field Activities + Reporting/Deliverables Assume 1% of Design+Implementation+OM&M Assume 1% of Design+Implementation Assume 12% of Design+Implementation Assume 12% of Closure ESTIMATES Implementation OM&M Closure                                                                                                                                                    | 1<br>12%<br>12% | LOE<br>LOE<br>Attached Work Shee<br>V or UC and LOE<br>LS, % or V<br>%           | \$155,123<br>\$155,123<br>Of Remedial Design &<br>Remedy<br>Implementation<br>Of OM&M               | \$0<br>\$0<br>\$155,123<br>\$155,123<br>\$310,245<br>\$310,245<br>\$1,752,272<br>\$109,200.00 | \$1,752,272<br>\$16,354,539<br>\$2,106,274<br>\$1,726,454                                      | \$0<br>\$200,000<br>\$462,000<br>\$910,000<br>\$109,200<br>\$109,200<br>\$109,200<br>\$1,019,200<br>\$152,880<br>\$1152,880<br>\$101,920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$155,123<br>\$310,245<br>\$37,229<br>\$37,229<br>\$37,229<br>\$347,475<br>\$86,869<br>\$69,495              | \$0<br>\$175,624<br>\$368,152<br>\$732,973<br>\$144,974<br>\$144,974<br>\$144,974<br>\$289,949<br>\$1,752,272<br>\$78,357<br>\$34,794<br>\$1,865,423<br>\$17,490,612<br>\$2,198,139<br>\$1,781,536                                  | \$1,752,272<br>\$16,354,539<br>\$1,995,254<br>\$1,635,454                                | \$0<br>\$175,624<br>\$368,152<br>\$732,973<br>\$78,357<br>\$78,357<br>\$811,330                                                      | \$144,974<br>\$289,949<br>\$34,794<br>\$34,794<br>\$324,743<br>\$324,743<br>\$81,186<br>\$64,949 | \$0<br>\$100,000<br>\$77,000<br>\$177,000<br>Note: Make sure ther<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,752,272.08<br>\$1,752,272.08<br>\$21,240<br>\$0<br>\$1,773,512              | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$77,000<br>\$7,000<br>re are no blank<br>\$155,123<br>\$155,123<br>\$155,123<br>\$1155,123<br>\$10,245<br>\$0<br>\$11,640<br>\$37,229<br>\$48,869 | \$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$11,640<br>\$0<br>\$11,640                        |
| Materials, Fue<br>Reporting/Deli<br>Aodeling<br>Institutional Cr<br>Total OM&M Copics)<br>Instal<br>Poject Clos<br>United<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>I                                                                                                                                                                                                                                                                                                                         | uels and Treatment Media<br>eliverables<br>Controls<br>I Costs (Alternative to above sub-<br>sure<br>is<br>coning - Remedy Completion<br>agement <sup>3</sup><br>amentation<br>M<br>AL COST OF ELEMENT E<br>Cies<br>0 25%)             | reporting, agency review Laboratory + Field Activities + Reporting/Deliverables Assume 1% of Design+Implementation+OM&M Assume 1% of Design+Implementation Assume 12% of Design+Implementation Assume 12% of OM&M Assume 12% of Closure ESTIMATES Implementation 12.2% 15% 25%                                                                                                                                | 1<br>12%<br>12% | LOE<br>LOE<br>Attached Work Shee<br>V or UC and LOE<br>LS, % or V<br>%           | \$155,123<br>\$155,123<br>Of Remedial Design &<br>Remedy<br>Implementation<br>Of OM&M               | \$0<br>\$0<br>\$155,123<br>\$155,123<br>\$310,245<br>\$310,245<br>\$1,752,272<br>\$109,200.00 | \$1,752,272<br>\$16,354,539<br>\$2,106,274                                                     | \$0<br>\$200,000<br>\$462,000<br>\$910,000<br>\$109,200<br>\$109,200<br>\$109,200<br>\$11,019,200<br>\$152,880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$155,123<br>\$310,245<br>\$37,229<br>\$37,229<br>\$37,229<br>\$347,475<br>\$86,869                          | \$0<br>\$175,624<br>\$368,152<br>\$732,973<br>\$144,974<br>\$144,974<br>\$144,974<br>\$289,949<br>\$1,752,272<br>\$78,357<br>\$34,794<br>\$1,865,423<br>\$17,490,612<br>\$2,198,139                                                 | \$1,752,272<br>\$16,354,539<br>\$1,995,254                                               | \$0<br>\$175,624<br>\$368,152<br>\$732,973<br>\$78,357<br>\$78,357<br>\$78,357<br>\$811,330<br>\$121,700<br>\$81,133                 | \$144,974<br>\$289,949<br>\$34,794<br>\$34,794<br>\$34,794<br>\$324,743<br>\$81,186              | \$0<br>\$100,000<br>\$77,000<br>\$177,000<br>Note: Make sure ther<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,752,272.08<br>\$1,752,272.08<br>\$21,240<br>\$0<br>\$1,773,512              | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$77,000<br>\$7,000<br>re are no blank<br>\$155,123<br>\$155,123<br>\$155,123<br>\$1155,123<br>\$10,245<br>\$0<br>\$11,640<br>\$37,229<br>\$48,869 | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$11,640<br>\$0<br>\$11,640                        |
| Materials, Fue<br>Reporting/Deli<br>Modeling<br>Institutional Cr<br>Fotal OM&M Copics)<br>Institutional Cr<br>Close<br>Close<br>Institutional Cr<br>Institutional Cr<br>Institutional Cr<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institu                                                                                                                                                                                                                                                                                                                               | uels and Treatment Media<br>eliverables<br>Controls<br>I Costs (Alternative to above sub-<br>sure<br>s<br>oning - Remedy Completion<br>agement <sup>3</sup><br>ementation<br>M<br>ure<br>AL COST OF ELEMENT E<br>cies<br>o 25%)<br>0%) | reporting, agency review Laboratory + Field Activities + Reporting/Deliverables Assume 1% of Design+Implementation+OM&M Assume 1% of Design+Implementation Assume 12% of Design+Implementation Assume 12% of OM&M Assume 12% of Closure ESTIMATES Implementation 12.2% 15% 25%                                                                                                                                | 1<br>12%<br>12% | LOE<br>LOE<br>Attached Work Shee<br>V or UC and LOE<br>LS, % or V<br>%           | \$155,123<br>\$155,123<br>Of Remedial Design &<br>Remedy<br>Implementation<br>Of OM&M               | \$0<br>\$0<br>\$155,123<br>\$155,123<br>\$310,245<br>\$310,245<br>\$1,752,272<br>\$109,200.00 | \$1,752,272<br>\$16,354,539<br>\$2,106,274<br>\$1,726,454<br>\$3,832,728<br>\$20,187,267       | \$0<br>\$200,000<br>\$462,000<br>\$910,000<br>\$109,200<br>\$109,200<br>\$109,200<br>\$11,019,200<br>\$152,880<br>\$101,920<br>\$152,880<br>\$101,920<br>\$152,880<br>\$101,920<br>\$152,880<br>\$101,920<br>\$152,880<br>\$101,920<br>\$152,880<br>\$101,920<br>\$152,880<br>\$101,920<br>\$152,880<br>\$101,920<br>\$152,880<br>\$101,920<br>\$152,880<br>\$101,920<br>\$152,880<br>\$101,920<br>\$152,880<br>\$101,920<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$102,900<br>\$100,900<br>\$100,900<br>\$100,900<br>\$100,900<br>\$100,9 | \$155,123<br>\$310,245<br>\$37,229<br>\$37,229<br>\$37,229<br>\$347,475<br>\$86,869<br>\$69,495<br>\$156,364 | \$0<br>\$175,624<br>\$368,152<br>\$732,973<br>\$144,974<br>\$144,974<br>\$289,949<br>\$1,752,272<br>\$78,357<br>\$34,794<br>\$1,865,423<br>\$17,490,612<br>\$2,198,139<br>\$1,781,536<br>\$3,979,675                                | \$1,752,272<br>\$16,354,539<br>\$1,995,254<br>\$1,635,454<br>\$3,630,708                 | \$0<br>\$175,624<br>\$368,152<br>\$732,973<br>\$78,357<br>\$78,357<br>\$811,330<br>\$121,700<br>\$81,133<br>\$202,833                | \$144,974<br>\$289,949<br>\$34,794<br>\$34,794<br>\$324,743<br>\$81,186<br>\$64,949<br>\$146,134 | \$0<br>\$100,000<br>\$77,000<br>\$177,000<br>Note: Make sure ther<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,752,272.08<br>\$1,752,272.08<br>\$21,240<br>\$0<br>\$1,773,512              | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$77,000<br>\$7,000<br>re are no blank<br>\$155,123<br>\$155,123<br>\$155,123<br>\$1155,123<br>\$10,245<br>\$0<br>\$11,640<br>\$37,229<br>\$48,869 | \$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$5 in these ce<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$11,640<br>\$0<br>\$11,640                          |
| Atterials, Fue<br>Reporting/Deli<br>Adeling<br>Institutional C4<br>Fotal OM&M C<br>opics)<br>Instal<br>Popics<br>Instal<br>Decommission<br>Instal<br>During Closure<br>During Chast<br>During Chast<br>During Chast<br>During Chast<br>During Chast<br>During Chast<br>During Chast<br>During Chast<br>During Closure<br>Distal<br>UBTOTAL<br>Instal<br>Contingenci<br>Scope (10 to 20%<br>Distal<br>Chast<br>During Chast<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Distal<br>Dist | uels and Treatment Media<br>eliverables<br>Controls<br>I Costs (Alternative to above sub-<br>sure<br>s<br>oning - Remedy Completion<br>agement <sup>3</sup><br>ementation<br>M<br>ure<br>AL COST OF ELEMENT E<br>cies<br>o 25%)<br>0%) | reporting, agency review         Laboratory + Field Activities + Reporting/Deliverables         Assume 1% of Design+Implementation+OM&M         Assume 1% of Design+Implementation         Assume 12% of Design+Implementation         Assume 12% of OM&M         Assume 12% of Closure         ESTIMATES         Implementation       OM&M         12.2%       15%       25%         10%       10%       20% | 1<br>12%<br>12% | LOE<br>LOE<br>Attached Work Shee<br>V or UC and LOE<br>LS, % or V<br>%<br>%<br>% | \$155,123<br>\$155,123<br>Of Remedial Design &<br>Remedy<br>Implementation<br>Of OM&M               | \$0<br>\$0<br>\$155,123<br>\$155,123<br>\$310,245<br>\$310,245<br>\$1,752,272<br>\$109,200.00 | \$1,752,272<br>\$16,354,539<br>\$2,106,274<br>\$1,726,454<br>\$3,832,728<br>\$20,187,267       | \$0<br>\$200,000<br>\$462,000<br>\$910,000<br>\$109,200<br>\$109,200<br>\$109,200<br>\$1,019,200<br>\$152,880<br>\$152,880<br>\$101,920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$155,123<br>\$310,245<br>\$37,229<br>\$37,229<br>\$37,229<br>\$347,475<br>\$86,869<br>\$69,495<br>\$156,364 | \$0<br>\$175,624<br>\$368,152<br>\$732,973<br>\$144,974<br>\$144,974<br>\$144,974<br>\$289,949<br>\$1,752,272<br>\$78,357<br>\$34,794<br>\$1,865,423<br>\$17,490,612<br>\$2,198,139<br>\$1,781,536                                  | \$1,752,272<br>\$16,354,539<br>\$1,995,254<br>\$1,635,454<br>\$3,630,708<br>\$19,985,247 | \$0<br>\$175,624<br>\$368,152<br>\$732,973<br>\$78,357<br>\$78,357<br>\$811,330<br>\$121,700<br>\$81,133<br>\$202,833<br>\$1,014,163 | \$144,974<br>\$289,949<br>\$34,794<br>\$34,794<br>\$324,743<br>\$81,186<br>\$64,949<br>\$146,134 | \$0<br>\$100,000<br>\$77,000<br>\$177,000<br>Note: Make sure ther<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,752,272.08<br>\$1,752,272.08<br>\$21,240<br>\$0<br>\$1,773,512                     | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$77,000<br>\$7,000<br>re are no blank<br>\$155,123<br>\$155,123<br>\$155,123<br>\$1155,123<br>\$10,245<br>\$0<br>\$11,640<br>\$37,229<br>\$48,869 | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$77,000<br>\$77,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$11,640<br>\$0<br>\$11,640            |
| Materials, Fue<br>Reporting/Deli<br>Modeling<br>Institutional Cr<br>Fotal OM&M Copics)<br>Institutional Cr<br>Close<br>Close<br>Institutional Cr<br>Institutional Cr<br>Institutional Cr<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institution<br>Institu                                                                                                                                                                                                                                                                                                                               | uels and Treatment Media<br>eliverables<br>Controls<br>I Costs (Alternative to above sub-<br>sure<br>s<br>oning - Remedy Completion<br>agement <sup>3</sup><br>amentation<br>M<br>ure<br>AL COST OF ELEMENT E<br>cies<br>2 25%)<br>3%) | reporting, agency review Laboratory + Field Activities + Reporting/Deliverables Assume 1% of Design+Implementation+OM&M Assume 1% of Design+Implementation Assume 12% of Design+Implementation Assume 12% of OM&M Assume 12% of Closure ESTIMATES Implementation 12.2% 15% 25%                                                                                                                                | 1<br>12%<br>12% | LOE<br>LOE<br>Attached Work Shee<br>V or UC and LOE<br>LS, % or V<br>%           | \$155,123<br>\$155,123<br>Of Remedial Design &<br>Remedy<br>Implementation<br>Of OM&M<br>Of Closure | \$0<br>\$0<br>\$155,123<br>\$155,123<br>\$310,245<br>\$1,752,272<br>\$109,200.00<br>\$37,229  | \$1,752,272<br>\$16,354,539<br>\$2,106,274<br>\$1,726,454<br>\$3,832,728<br>\$20,187,267<br>\$ | \$0<br>\$200,000<br>\$462,000<br>\$910,000<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$109,200<br>\$100,200<br>\$100,200<br>\$100,200<br>\$100,200<br>\$100,200<br>\$100,200<br>\$100,200<br>\$1                                                                                                                                                                                                                                                                                                      | \$155,123<br>\$310,245<br>\$37,229<br>\$37,229<br>\$37,229<br>\$347,475<br>\$86,869<br>\$69,495<br>\$156,364 | \$0<br>\$175,624<br>\$368,152<br>\$732,973<br>\$144,974<br>\$144,974<br>\$289,949<br>\$1,752,272<br>\$78,357<br>\$34,794<br>\$1,865,423<br>\$17,490,612<br>\$2,198,139<br>\$1,781,536<br>\$3,979,675                                | \$1,752,272<br>\$16,354,539<br>\$1,995,254<br>\$1,635,454<br>\$3,630,708                 | \$0<br>\$175,624<br>\$368,152<br>\$732,973<br>\$78,357<br>\$78,357<br>\$811,330<br>\$121,700<br>\$81,133<br>\$202,833<br>\$1,014,163 | \$144,974<br>\$289,949<br>\$34,794<br>\$34,794<br>\$324,743<br>\$81,186<br>\$64,949<br>\$146,134 | \$0<br>\$100,000<br>\$77,000<br>\$177,000<br>Note: Make sure ther<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,773,512<br>\$16,552,779                                                            | \$0<br>\$0<br>\$20,000<br>\$77,000<br>\$77,000<br>\$7,000<br>re are no blank<br>\$155,123<br>\$155,123<br>\$155,123<br>\$1155,123<br>\$10,245<br>\$0<br>\$11,640<br>\$37,229<br>\$48,869 | \$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$5 in these cel<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$11,640<br>\$0<br>\$11,640                                |

1

# TABLE E-7 **COST ESTIMATES FOR ALTERNATIVE 4F**


|          | SITE: Lockheed Martin - Middle River Compl                       |                                                                                     |                       |            |              |             |       |                       |      |                |            |     |     |            |            |     |     |
|----------|------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------|------------|--------------|-------------|-------|-----------------------|------|----------------|------------|-----|-----|------------|------------|-----|-----|
| А        | B                                                                | C D E                                                                               | v                     | W          | x            | Y           | z     | AA                    | AB   | AC             | AD         | AE  | AF  | AG         | АН         | AI  | AJ  |
| 4        | Element                                                          | Description<br>(Explain Element as necessary)                                       |                       |            |              |             |       |                       |      |                |            |     |     |            |            |     |     |
| 5        |                                                                  |                                                                                     | 5                     | 6          | 7            | 8           | 9     | 10                    | 11   | 12             | 13         | 14  | 15  | 16         | 17         | 18  | 19  |
| 6        | Remedial Design Bench/Pilot Testing                              |                                                                                     | d be filled with e    |            | -            | 1           |       |                       |      |                |            |     |     |            |            |     |     |
| 7 8      | ÿ                                                                | n/a<br>Additional data collection, pre-design survey - 1% of Remedy                 | \$0                   | \$0        | \$0          | \$          | 0 \$0 | \$                    | 0 \$ | 0 \$0          | \$0        | \$0 | \$0 | \$0        | \$0        | \$0 | \$0 |
| 9        | Field Investigation<br>Modeling                                  | Implementation<br>MNR modeling                                                      | \$0                   | \$0        | \$0          | 1           |       | \$                    |      |                | \$0        |     |     |            | \$0        |     |     |
| 9<br>10  | Reporting/Deliverables                                           | Remedial Design submittal - 6% of Remedy Implementation                             | \$0<br>\$0            | \$0<br>\$0 | \$0<br>\$0   |             |       | \$ <br>\$             |      |                | \$0<br>\$0 |     |     |            | \$0<br>\$0 |     |     |
| 12       | Subtotal                                                         |                                                                                     | \$0                   | \$0        | \$0          |             |       | \$                    |      | 0 \$0          | \$0        |     |     |            |            |     |     |
| 13       | Remedy Implementation                                            |                                                                                     | d be filled with e    | -          | -            |             |       |                       |      |                |            |     |     | 1          |            |     |     |
| 14       | Mobilization                                                     | Contractor submittals, construction permits, as-builts (1.5%)                       | \$0                   | \$0        | \$0          | \$          | \$0   | \$                    | 0 \$ | 0 \$0          | \$0        | \$0 | \$0 | \$0        | \$0        | \$0 | \$0 |
|          | Contractor Submittals and Permits                                | applied to Remedy Implementation                                                    | \$0                   | \$0        | \$0          |             |       | \$                    |      |                | \$0        |     | \$0 |            | \$0        |     | \$0 |
| 15       | Implementation<br>Dredging                                       | Cost of material removal by mechanical dredging                                     | \$0<br>\$0            | \$0<br>\$0 | \$0<br>\$0   |             |       | \$ <br>\$             |      |                | \$0<br>\$0 |     |     |            | \$0<br>\$0 |     |     |
|          | Material Barge, Assist Tug, Transport                            | Cost of material transport                                                          |                       |            |              |             |       |                       |      |                |            |     |     |            |            |     |     |
|          | Sediments<br>Water Management                                    | Estimate per day                                                                    | \$0<br>\$0            | \$0<br>\$0 | \$0<br>\$0   |             |       | \$1<br>\$1            |      |                | \$0<br>\$0 |     |     |            | \$0<br>\$0 |     |     |
|          | Dewatering/Transloading Area Setup                               | Estimate to setup dewatering/transloading area                                      | \$0                   | \$0        | \$0<br>\$0   | 1           |       | \$                    |      |                | \$0        |     |     |            | \$0<br>\$0 |     |     |
|          | Handling and Transport to Subtitle D<br>Landfill                 | Assume 1.3 tn/cy - quote by WM                                                      | \$0                   | \$0        | \$0          | \$          | \$0   | \$                    | 0 \$ | 0 \$0          | \$0        | \$0 | \$0 | \$0        | \$0        | \$0 | \$0 |
|          | Subtitle D Landfill Disposal                                     | Assume 1.3 tn/cy -quote by WM                                                       | \$0                   | \$0        | \$0          |             |       | \$                    |      |                | \$0        |     |     |            | \$0        |     |     |
|          | TSCA Waste Handling and Transport to<br>Hazardous Waste Landfill | Assumes 1.3 tn/cy -quote by phone                                                   | \$0                   | \$0        | \$0          | \$          | \$0   | S                     | 0 \$ | 0 \$0          | \$0        | \$0 | \$0 | \$0        | \$0        | \$0 | \$0 |
|          | Hazardous Waste Landfill Disposal                                | Assume 1.3 tn/cy -quote by phone                                                    | \$0                   | \$0<br>\$0 | \$0          |             |       | \$                    |      |                | \$0<br>\$0 |     |     |            | \$0<br>\$0 |     |     |
|          | Backfill                                                         | Cost of backfill material purchase, delivery and placement at site                  | \$0                   | \$0        | \$0          |             |       | \$                    |      |                | \$0        |     |     |            | \$0        |     |     |
|          | Material Barge & Tug<br>In situ GAC treatment                    | Transport from quarry to site Procurement, delivery, placement                      | \$0<br>\$0            | \$0<br>\$0 | \$0<br>\$0   |             |       | \$<br>\$              |      | 0 \$0<br>0 \$0 | \$0<br>\$0 |     |     |            | \$0<br>\$0 |     |     |
|          | Reactive ENR                                                     | Procurement, delivery, placement                                                    | \$0                   | \$0        | \$0          | 1           |       | \$/                   | -    |                | \$0<br>\$0 |     |     |            | \$0<br>\$0 |     |     |
|          | Material Barge & Tug                                             | Transport to site                                                                   | \$0                   | \$0        | \$0          | \$          | \$0   | \$                    | 0 \$ | 0 \$0          | \$0        | \$0 | \$0 | \$0        | \$0        | \$0 | \$0 |
|          | Construction QA/QC                                               | Verification sampling, bathymetric surveys, water quality monitoring                | \$0                   | \$0        | \$0          | \$0         | \$0   | \$                    | 0 \$ | o so           | \$0        | \$0 | \$0 | \$0        | \$0        | \$0 | \$0 |
|          | Shoreline Stabilization                                          | Procurement, delivery, placement (2' T x 3800' L x 10' W)                           | \$0                   | \$0        | \$0          | ) \$(       | \$0   | \$                    |      | 0 \$0          | \$0        | \$0 |     |            | \$0        | \$0 | \$0 |
|          | Habitat Enhancement & Riparian Planting                          |                                                                                     | \$0                   | \$0        | \$0          | \$          | \$0   | \$                    | 0 \$ | 0 \$0          | \$0        | \$0 | \$0 | \$0        | \$0        | \$0 | \$0 |
|          | Sales Tax                                                        | Maryland sales tax (6%) applied to Remedy Implementation<br>excluding disposal cost | \$0                   | \$0        | \$0          | \$0         | \$0   | \$                    | 0 \$ | o \$0          | \$0        | \$0 | \$0 | \$0        | \$0        | \$0 | \$0 |
|          | Bonds                                                            | Contractor's performance and payment bonds (1%) applied to<br>Remedy Implementation | \$0                   | \$0        | \$0          | \$          | ) \$0 | S                     | 0 \$ | 0 \$0          | \$0        | \$0 | \$0 | \$0        | \$0        | \$0 | \$0 |
| 19       | Subtotal                                                         |                                                                                     | \$0                   | \$0        | \$0          | \$0         | \$0   | \$0                   | \$0  | \$0            | \$0        | \$0 | \$0 | \$0        | \$0        | \$0 | \$0 |
| 20       | OM&M                                                             |                                                                                     | d be filled with \$   | 0's, numbe | ers or equat | ions.       | 1     |                       |      |                |            |     |     | TT         |            |     |     |
| 21       | Maintenance                                                      | Assume 10% of Reactive ENR repair at Year 5                                         | \$248,000             | \$0        | \$0          | \$          | \$0   | \$                    | 0 \$ |                | \$0        | \$0 | \$0 | \$0        | \$0        |     |     |
| 22       | Laboratory                                                       |                                                                                     | \$0                   | \$0        | \$0          |             |       | \$                    |      |                | \$0        |     |     |            | \$0        |     |     |
| 23<br>24 | Field Activities<br>Materials, Fuels and Treatment Media         |                                                                                     | \$0<br>\$0            | \$0<br>\$0 | \$0<br>\$0   |             |       | \$ <br>\$             |      |                | \$0<br>\$0 |     |     |            | \$0<br>\$0 |     |     |
| 25       | Reporting/Deliverables                                           |                                                                                     | \$0                   | \$0        | \$0          |             |       | \$                    |      |                | \$0        |     |     |            | \$0        |     |     |
| 26       | Modeling                                                         | Public outreach, support seafood consumption advisories,                            | \$0                   | \$0        | \$0          | \$          | 0 \$0 | \$                    | 0 \$ | 0 \$0          | \$0        | \$0 | \$0 | \$0        | \$0        | \$0 | \$0 |
|          | Institutional Controls                                           | reporting, agency review                                                            | \$20,000              | \$0        | \$20,000     | \$          | \$0   | \$20,00               | 0 \$ | 0 \$0          | \$0        | \$0 | \$0 | \$0        | \$0        | \$0 | \$0 |
| 27       | Total OM&M Costs (Alternative to above sub-<br>topics)           | Laboratory + Field Activities + Reporting/Deliverables                              | \$77.000              | \$0        | \$77,000     | \$          | so    | \$77,00               | 0 \$ | 0 \$0          | \$0        | \$0 | \$0 | \$0        | \$0        | \$0 | \$0 |
| 28       | Subtotal                                                         |                                                                                     | \$345,000             | 00         | \$97,000     |             |       | 007.00                |      | 0 \$0          | \$0        | \$0 | \$0 | \$0        | \$0        | \$0 | \$0 |
| 29       | Project Closure                                                  |                                                                                     | d be filled with \$   |            | -            |             |       |                       |      |                |            |     |     |            |            |     |     |
| 30<br>31 | Assessments<br>Decommissioning - Remedy Completion               | Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M  | \$0<br>\$0            | \$0<br>\$0 | \$0<br>\$0   |             |       | <u>\$</u>             |      | 0 \$0<br>0 \$0 | \$0<br>\$0 |     |     |            | \$0<br>\$0 |     |     |
| 32       | Subtotal                                                         | Assume 176 of Design Implementation Official                                        | \$0<br>\$0            | \$0<br>\$0 | \$0<br>\$0   |             |       | \$                    |      | 0 \$0          | \$0<br>\$0 |     |     |            |            |     |     |
| 33       | Project Management <sup>3</sup>                                  |                                                                                     |                       |            |              |             |       |                       |      |                |            |     |     |            |            |     |     |
| 34       | During Implementation                                            | Assume 12% of Design+Implementation                                                 | \$0                   | \$0        | \$0          | ) \$(       | \$0   | \$I                   | 0 \$ | 0 \$0          | \$0        | \$0 | \$0 | ) \$0      | \$0        | \$0 | \$0 |
|          | During OM&M                                                      | Assume 12% of OM&M                                                                  | \$41,400              | \$0<br>\$0 | \$11,640     |             |       | \$11,64               |      | 0 \$0          | \$0<br>\$0 |     |     |            | \$0        | \$0 |     |
|          | During Closure                                                   | Assume 12% of Closure                                                               | \$0                   | \$0        | \$0          |             |       | \$                    |      | 0 \$0          | \$0        |     |     |            | \$0        |     |     |
| 35<br>36 | Subtotal<br>SUBTOTAL COST OF ELEMENT                             | ESTIMATES                                                                           | \$41,400<br>\$386,400 | \$0<br>\$0 | \$11,640     |             | 1 1   | \$11,640<br>\$108,640 |      |                | \$0<br>\$0 |     |     | 1          |            |     |     |
|          |                                                                  |                                                                                     | \$300,400             | φU         | \$108,640    | <b>\$</b> ( | ¢ (   | φ100,04l              | , ¢( | 20 DC          | φU         | \$U | \$U | <u>م</u> و | \$U        | \$0 | φU  |
| 37<br>38 | Contingencies<br>Scope (10 to 25%)                               | Implementation         OM&M         Closure           12.2%         15%         25% |                       |            |              |             |       |                       |      |                |            |     |     | 1          |            |     |     |
| 39       | Bid (10 to 20%)                                                  | 10%         10%         20%                                                         |                       |            |              |             |       |                       |      |                |            |     |     |            |            |     |     |
| 40       | Subtotal                                                         |                                                                                     |                       |            |              |             |       |                       |      |                |            |     |     |            |            |     |     |
| 41       | GRAND TOTAL COST                                                 |                                                                                     |                       |            |              |             |       |                       |      |                |            |     |     |            |            |     |     |
| 42       |                                                                  |                                                                                     |                       |            |              |             |       |                       |      |                |            |     |     |            |            |     |     |
|          | Level Of Effort                                                  | OM&M Operational, Maintenance & Monitoring                                          |                       |            |              |             |       |                       |      |                |            |     |     |            |            |     |     |
| s        | Lump Sum                                                         | UC Unit Cost                                                                        |                       |            |              |             |       |                       |      |                |            |     |     |            |            |     |     |

LS Lump Sum
NPV Net Present Value

Unit Cost Vendor

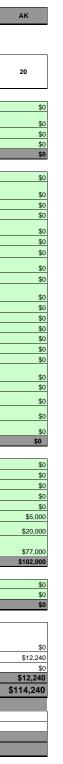
UC V

# Lockheed Martin Corporation



Version G April 2012

# TABLE E-8 **COST ESTIMATES FOR ALTERNATIVE 4G**


| EVEL OF ESTIMATE: Screening  Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ex TABLE E-8.                                                                                                                                                                                                                                                                                                                   | ALIENN              | ATIVE: 4G. Partial Remov                                                                                    | ar + in oilu realment                                                                        | TIMINIS                                                                                       |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                                                                                                                                                                                |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATE:November,                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r Detailed X                                                                                                                                                                                                                                                                                                                    | DISCOUN             | T RATE:                                                                                                     | 7%                                                                                           |                                                                                               | ESCALATION RATE                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                                                                                                                                                                                |                                                                                                              | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ACKUP REFERE                                                                                                                                                                                  | NCE <sup>2</sup> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C D E                                                                                                                                                                                                                                                                                                                           | F                   | G                                                                                                           | н                                                                                            | I.                                                                                            | JК                                                                                       | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                        | Р                                                                                                                                                                                              | Q                                                                                                            | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S                                                                                                                                                                                             | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                 |                     |                                                                                                             |                                                                                              |                                                                                               | Cost i<br>(Add costs that have                                                           | n Current Dollars<br>been distributed o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ver 50 years)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (NPV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cost in NPV D<br>costs that have been dis                                |                                                                                                                                                                                                | ars)                                                                                                         | Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ન                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Description<br>(Explain Element as necessary)                                                                                                                                                                                                                                                                                   | Qty                 | Units<br>(Select as appropriate)                                                                            | \$/Unit                                                                                      | Cost Extension \$<br>( F x H)                                                                 | Implementation                                                                           | OM&M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Closure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOTAL<br>(O+P+Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Implementation                                                           | OM&M                                                                                                                                                                                           | Closure                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Remedial Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                 |                     |                                                                                                             |                                                                                              |                                                                                               |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                                                                                                                                                                                |                                                                                                              | Note: Make sure the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ere are no blanks                                                                                                                                                                             | in these cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bench/Pilot Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | In situ amendments testing                                                                                                                                                                                                                                                                                                      | 1                   | LS or V                                                                                                     | \$40,000                                                                                     | \$40,000                                                                                      | \$40,000                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$40,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$40,000                                                                 |                                                                                                                                                                                                |                                                                                                              | \$40,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0                                                                                                                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Field Investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Additional data collection, pre-design survey - 1% of Remect<br>Implementation                                                                                                                                                                                                                                                  | / 1                 | LS or UC and LOE                                                                                            | \$122,001                                                                                    | \$122,001                                                                                     | \$122,001                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$122,001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$122,001                                                                |                                                                                                                                                                                                |                                                                                                              | \$122,001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                                                                           | ¢0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MNR modeling                                                                                                                                                                                                                                                                                                                    | 1                   | LS                                                                                                          | \$10,000                                                                                     | \$10,000                                                                                      | \$10,000                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$10,000                                                                 | -                                                                                                                                                                                              |                                                                                                              | \$122,001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                                                                           | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Reporting/Deliverables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Remedial Design submittal - 6% of Remedy Implementation                                                                                                                                                                                                                                                                         | 1                   | LS                                                                                                          | \$732,004                                                                                    | \$732,004                                                                                     | \$732,004                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$732,004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$732,004                                                                |                                                                                                                                                                                                |                                                                                                              | \$732,004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ubtotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                 |                     |                                                                                                             |                                                                                              | \$904,005                                                                                     | \$904,005                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$904,005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$904,005                                                                |                                                                                                                                                                                                |                                                                                                              | \$904,005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Remedy Implementation Mobilization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                 | 1                   | LS or %                                                                                                     | \$548,845                                                                                    | \$548,845                                                                                     | \$548,845                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$548,845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$548,845                                                                |                                                                                                                                                                                                |                                                                                                              | Note: Make sure the<br>\$548,845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ere are no blanks                                                                                                                                                                             | s in these cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Contractor Submittals and Permits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Contractor submittals, construction permits, as-builts (1.5%)                                                                                                                                                                                                                                                                   | 1                   | LS or %                                                                                                     | \$164,654                                                                                    | \$164,654                                                                                     | \$164,654                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$164,654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$164,654                                                                | -                                                                                                                                                                                              |                                                                                                              | \$548,845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$U                                                                                                                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | applied to Remedy Implementation                                                                                                                                                                                                                                                                                                |                     |                                                                                                             | \$164,654                                                                                    |                                                                                               |                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          | _                                                                                                                                                                                              |                                                                                                              | \$164,654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Implementation<br>Dredging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cost of material removal by mechanical dredging                                                                                                                                                                                                                                                                                 | 48,783              | V or UC<br>CY                                                                                               | \$20                                                                                         | \$0<br>\$975,659                                                                              | \$0<br>\$975,659                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0<br>\$975,659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0<br>\$975,659                                                         | -                                                                                                                                                                                              |                                                                                                              | \$0<br>\$975,659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0<br>\$0                                                                                                                                                                                    | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Material Barge, Assist Tug, Transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cost of material transport                                                                                                                                                                                                                                                                                                      | 63,418              | TN                                                                                                          | \$10                                                                                         | \$634,178                                                                                     | \$634,178                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$634,178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$634,178                                                                | -                                                                                                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sediments<br>Water Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Estimate per day                                                                                                                                                                                                                                                                                                                | 60                  | DAY                                                                                                         | \$10,000                                                                                     | \$600,000                                                                                     | \$600,000                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$600,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$600,000                                                                | -                                                                                                                                                                                              |                                                                                                              | \$634,178<br>\$600,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$0<br>\$0                                                                                                                                                                                    | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Dewatering/Transloading Area Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Estimate to setup dewatering/transloading area                                                                                                                                                                                                                                                                                  | 1                   | LS                                                                                                          | \$500,000                                                                                    | \$500,000                                                                                     | \$500,000                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$500,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$500,000                                                                | ]                                                                                                                                                                                              |                                                                                                              | \$500,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                                                                           | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Handling and Transport to Subtitle D<br>Landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Assume 1.3 tn/cy - quote by WM                                                                                                                                                                                                                                                                                                  | 63,418              | TN                                                                                                          | \$40                                                                                         | \$2,536,714                                                                                   | \$2,536,714                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$2,536,714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$2,536,714                                                              |                                                                                                                                                                                                |                                                                                                              | \$2,536,714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0                                                                                                                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Subtitle D Landfill Disposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Assume 1.3 tn/cy -quote by WM                                                                                                                                                                                                                                                                                                   | 63,418              | TN                                                                                                          | \$36                                                                                         | \$2,283,042                                                                                   | \$2,283,042                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$2,283,042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$2,283,042                                                              |                                                                                                                                                                                                |                                                                                                              | \$2,283,042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0                                                                                                                                                                                           | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TSCA Waste Handling and Transport to<br>Hazardous Waste Landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Assumes 1.3 tn/cy -quote by phone                                                                                                                                                                                                                                                                                               | 2,200               | TN                                                                                                          | \$90                                                                                         | \$198,000                                                                                     | \$198,000                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$198,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$198,000                                                                | 1                                                                                                                                                                                              |                                                                                                              | \$198,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Hazardous Waste Landfill Disposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Assume 1.3 tn/cy -quote by phone                                                                                                                                                                                                                                                                                                | 2,200               | TN                                                                                                          | \$87                                                                                         | \$191,400                                                                                     | \$191,400                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$191,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$191,400                                                                | -                                                                                                                                                                                              |                                                                                                              | \$193,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Backfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cost of backfill material purchase, delivery and placement a                                                                                                                                                                                                                                                                    |                     | CY                                                                                                          | \$30                                                                                         | \$456,000                                                                                     | \$456,000                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$456,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$456,000                                                                |                                                                                                                                                                                                |                                                                                                              | \$456,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Material Barge & Tug<br>In situ GAC treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Transport from quarry to site Procurement, delivery, placement                                                                                                                                                                                                                                                                  | 22,800<br>266,094   | TN<br>LB                                                                                                    | \$10<br>\$2                                                                                  | \$228,000<br>\$532,188                                                                        | \$228,000<br>\$532,188                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$228,000<br>\$532,188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$228,000<br>\$532,188                                                   | _                                                                                                                                                                                              |                                                                                                              | \$228,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0<br>\$0                                                                                                                                                                                    | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Reactive ENR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Procurement, delivery, placement                                                                                                                                                                                                                                                                                                | 0                   | CY                                                                                                          | \$120                                                                                        | \$0                                                                                           | \$032,188                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0                                                                      | -                                                                                                                                                                                              |                                                                                                              | \$532,188<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0<br>\$0                                                                                                                                                                                    | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Material Barge & Tug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Transport to site                                                                                                                                                                                                                                                                                                               | 0                   | TN                                                                                                          | \$10                                                                                         | \$0                                                                                           | \$0                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0                                                                      |                                                                                                                                                                                                |                                                                                                              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$0                                                                                                                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Construction QA/QC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Verification sampling, bathymetric surveys, water quality mo                                                                                                                                                                                                                                                                    | nitoring 1          | LS                                                                                                          | \$1,124,480                                                                                  | \$1,124,480                                                                                   | \$1,124,480                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$1,124,480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$1,124,480                                                              |                                                                                                                                                                                                |                                                                                                              | \$1,124,480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0                                                                                                                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Shoreline Stabilization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Procurement, delivery, placement (2' T x 3800' L x 10' W)                                                                                                                                                                                                                                                                       | 5,345               | TN                                                                                                          | \$50                                                                                         | \$267,241                                                                                     | \$267,241                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$267,241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$267,241                                                                | -                                                                                                                                                                                              |                                                                                                              | \$267,241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Habitat Enhancement & Riparian Planting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                 |                     | AC                                                                                                          | \$150,000                                                                                    | \$450,000                                                                                     | \$450,000                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$450,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$450,000                                                                |                                                                                                                                                                                                |                                                                                                              | \$450,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sales Tax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maryland sales tax (6%) applied to Remedy Implementation<br>excluding disposal cost                                                                                                                                                                                                                                             | 1                   | LS or %                                                                                                     | \$388,875                                                                                    | \$388,875                                                                                     | \$388,875                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$388,875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$388,875                                                                |                                                                                                                                                                                                |                                                                                                              | \$388,875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bonds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Contractor's performance and payment bonds (1%) applied<br>Remedy Implementation                                                                                                                                                                                                                                                | 0 1                 | LS or %                                                                                                     | \$120,793                                                                                    | \$120,793                                                                                     | \$120,793                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$120,793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$120,793                                                                |                                                                                                                                                                                                |                                                                                                              | \$120,793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ubtotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Kenedy implementation                                                                                                                                                                                                                                                                                                           |                     |                                                                                                             |                                                                                              | \$12,200,069                                                                                  | \$12,200,069                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$12,200,069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$12,200,069                                                             |                                                                                                                                                                                                |                                                                                                              | \$12,200,069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0                                                                                                                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| OM&M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                 |                     | Annual                                                                                                      |                                                                                              |                                                                                               |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                        |                                                                                                                                                                                                |                                                                                                              | Note: Make sure the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ere are no blanks                                                                                                                                                                             | in these cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                 | 1001                | Annual                                                                                                      |                                                                                              |                                                                                               |                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                                                                                                                                                                                |                                                                                                              | Hotor mane ouro un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Maintenance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Assume 10% of AC repair at rear 2, and 5% of AC repair at 10                                                                                                                                                                                                                                                                    | 26,609              | LB                                                                                                          | \$4                                                                                          | \$106,438                                                                                     |                                                                                          | \$159,656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$128,422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                        | \$128,422                                                                                                                                                                                      |                                                                                                              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$106,438                                                                                                                                                                                     | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Assume 10% of AC repair at Year 2, and 5% of AC repair at 10                                                                                                                                                                                                                                                                    | 26,609              | LB<br>UC                                                                                                    | \$4                                                                                          | \$0                                                                                           |                                                                                          | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                        | \$0                                                                                                                                                                                            | -                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$106,438<br>\$0                                                                                                                                                                              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Laboratory<br>Field Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Assume 10% of AC repair at rear 2, and 5% of AC repair at 10                                                                                                                                                                                                                                                                    | 26,609              | LB                                                                                                          | \$4                                                                                          |                                                                                               |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                        |                                                                                                                                                                                                |                                                                                                              | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$106,438                                                                                                                                                                                     | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Laboratory<br>Field Activities<br>Materials, Fuels and Treatment Media<br>Reporting/Deliverables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                              | 26,609              | LB<br>UC<br>UC and LOE<br>UC or V<br>LS or LOE                                                              | \$4                                                                                          | \$0<br>\$0<br>\$0<br>\$0<br>\$0                                                               |                                                                                          | \$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                        | \$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                       | -                                                                                                            | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$106,438<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                         | \$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Laboratory<br>Field Activities<br>Materials, Fuels and Treatment Media<br>Reporting/Deliverables<br>Modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Assume 10% of AC repair at rear 2, and 5% of AC repair at 10<br>MNR modeling<br>Public outreach, support seafood consumption advisories,                                                                                                                                                                                        | 7 ear 26,609        | LB<br>UC<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE                                                       | \$4                                                                                          | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                        |                                                                                          | \$0<br>\$0<br>\$0<br>\$0<br>\$25,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0<br>\$0<br>\$0<br>\$0<br>\$14,529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          | \$0<br>\$0<br>\$0<br>\$0<br>\$14,529                                                                                                                                                           |                                                                                                              | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$106,438<br>\$0<br>\$0<br>\$0<br>\$0<br>\$5,000                                                                                                                                              | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Laboratory<br>Field Activities<br>Materials, Fuels and Treatment Media<br>Reporting/Deliverables<br>Modeling<br>Institutional Controls                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.<br>MNR modeling<br>Public outreach, support seafood consumption advisories,<br>reporting, agency review                                                                                                                                                                                                                     | 26,609              | LB<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE                                                      | \$4                                                                                          | \$0<br>\$0<br>\$0<br>\$0<br>\$0                                                               |                                                                                          | \$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          | \$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                       |                                                                                                              | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$106,438<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                         | \$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Laboratory<br>Field Activities<br>Materials, Fuels and Treatment Media<br>Reporting/Deliverables<br>Modeling<br>Institutional Controls<br>Total OM&M Costs (Alternative to above sub-                                                                                                                                                                                                                                                                                                                                                                                               | 10.<br>MNR modeling<br>Public outreach, support seafood consumption advisories,<br>reporting, agency review                                                                                                                                                                                                                     | 26,609              | LB<br>UC<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE                                                       |                                                                                              | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                        |                                                                                          | \$0<br>\$0<br>\$0<br>\$0<br>\$25,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0<br>\$0<br>\$0<br>\$0<br>\$14,529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          | \$0<br>\$0<br>\$0<br>\$0<br>\$14,529                                                                                                                                                           |                                                                                                              | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$106,438<br>\$0<br>\$0<br>\$0<br>\$0<br>\$5,000                                                                                                                                              | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Laboratory<br>Field Activities<br>Materials, Fuels and Treatment Media<br>Reporting/Deliverables<br>Modeling<br>Institutional Controls<br>Total OM&M Costs (Alternative to above sub-<br>topics)<br>ubtotal                                                                                                                                                                                                                                                                                                                                                                         | 10<br>MNR modeling<br>Public outreach, support seafood consumption advisories,<br>reporting, agency review                                                                                                                                                                                                                      | Tear 26,609         | LB<br>UC<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE                                                |                                                                                              | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                        |                                                                                          | \$0<br>\$0<br>\$0<br>\$25,000<br>\$240,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910                                                                                                                                                     |                                                                                                              | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$77,000<br>\$177,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$106,438<br>\$0<br>\$0<br>\$0<br>\$0<br>\$5,000<br>\$20,000<br>\$77,000<br>\$208,438                                                                                                         | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$20,000<br>\$77,000<br><b>\$97,000</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Laboratory<br>Field Activities<br>Materials, Fuels and Treatment Media<br>Reporting/Deliverables<br>Modeling<br>Institutional Controls<br>Total OM&M Costs (Alternative to above sub-<br>topics)<br>ubtotal<br>Project Closure                                                                                                                                                                                                                                                                                                                                                      | 10<br>MNR modeling<br>Public outreach, support seafood consumption advisories,<br>reporting, agency review<br>Laboratory + Field Activities + Reporting/Deliverables                                                                                                                                                            | 20,009              | LB<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>Attached Work Sh                                  | eet                                                                                          | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                        |                                                                                          | \$0<br>\$0<br>\$0<br>\$25,000<br>\$240,000<br>\$616,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br><b>\$751,165</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305                                                                                                                                        |                                                                                                              | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$77,000<br>\$177,000<br>\$177,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$106,438<br>\$0<br>\$0<br>\$0<br>\$0<br>\$5,000<br>\$20,000<br>\$77,000<br>\$208,438<br>ere are no blanks                                                                                    | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$ in these cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Laboratory<br>Field Activities<br>Materials, Fuels and Treatment Media<br>Reporting/Deliverables<br>Modeling<br>Institutional Controls<br>Total OM&M Costs (Alternative to above sub-<br>topics)<br>ubtotal<br>Project Closure<br>Assessments                                                                                                                                                                                                                                                                                                                                       | IN<br>MNR modeling<br>Public outreach, support seafood consumption advisories,<br>reporting, agency review<br>Laboratory + Field Activities + Reporting/Deliverables<br>Assume 1% of Design+Implementation+OM&M                                                                                                                 | Teal 26,609         | LB<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>Attached Work Sh                                  | eet<br>\$141,447                                                                             | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                            |                                                                                          | \$0<br>\$0<br>\$0<br>\$25,000<br>\$240,000<br>\$616,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$141,447<br>\$141,447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br><b>\$751,165</b><br>\$132,194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305                                                                                                                                        | \$132,194<br>\$132,194                                                                                       | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$777,000<br>\$177,000<br>Note: Make sure the<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$106,438<br>\$0<br>\$0<br>\$0<br>\$5,000<br>\$20,000<br>\$77,000<br>\$208,438<br>ere are no blanks<br>\$141,447                                                                              | \$0<br>\$0<br>\$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$1 in these cells<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Laboratory<br>Field Activities<br>Materials, Fuels and Treatment Media<br>Reporting/Deliverables<br>Modeling<br>Institutional Controls<br>Total OM&M Costs (Alternative to above sub-<br>topics)<br>ubtotal<br>Project Closure<br>Assessments<br>Decommissioning - Remedy Completion<br>ubtotal                                                                                                                                                                                                                                                                                     | 10<br>MNR modeling<br>Public outreach, support seafood consumption advisories,<br>reporting, agency review<br>Laboratory + Field Activities + Reporting/Deliverables                                                                                                                                                            | 26,009              | LB<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>Attached Work Sh                                  | eet                                                                                          | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                        |                                                                                          | \$0<br>\$0<br>\$0<br>\$25,000<br>\$240,000<br>\$616,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$141,447<br>\$141,447<br>\$282,895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br><b>\$751,165</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305                                                                                                                                        | \$132,194<br>\$132,194<br>\$132,194<br>\$264,387                                                             | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$77,000<br>\$177,000<br>\$177,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$106,438<br>\$0<br>\$0<br>\$0<br>\$0<br>\$5,000<br>\$20,000<br>\$77,000<br>\$208,438<br>ere are no blanks                                                                                    | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$ in these cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Laboratory<br>Field Activities<br>Materials, Fuels and Treatment Media<br>Reporting/Deliverables<br>Modeling<br>Institutional Controls<br>Total OM&M Costs (Alternative to above sub-<br>topics)<br>bitotal<br>Project Closure<br>Assessments<br>Decommissioning - Remedy Completion<br>bitotal                                                                                                                                                                                                                                                                                     | IN<br>MNR modeling<br>Public outreach, support seafood consumption advisories,<br>reporting, agency review<br>Laboratory + Field Activities + Reporting/Deliverables<br>Assume 1% of Design+Implementation+OM&M                                                                                                                 | 26,009              | LB<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>Attached Work Sh                                  | eet<br>\$141,447<br>\$141,447                                                                | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ |                                                                                          | \$0<br>\$0<br>\$0<br>\$25,000<br>\$240,000<br>\$616,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$141,447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br><b>\$751,165</b><br>\$132,194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305                                                                                                                                        | \$132,194                                                                                                    | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$77,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$00,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,0000\$100,0000\$100,0000\$100,0000\$100,0000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$10000\$10000\$1000\$1000\$1000\$1000\$10000\$1000\$1000\$1000\$100\$                                                  | \$106,438<br>\$0<br>\$0<br>\$0<br>\$5,000<br>\$20,000<br>\$77,000<br>\$208,438<br>ere are no blanks<br>\$141,447<br>\$141,447                                                                 | \$0<br>\$0<br>\$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,00000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,00 |
| Laboratory<br>Field Activities<br>Materials, Fuels and Treatment Media<br>Reporting/Deliverables<br>Modeling<br>Institutional Controls<br>Total OM&M Costs (Alternative to above sub-<br>topics)<br><b>Jobtal</b><br>Project Closure<br>Assessments<br>Decommissioning - Remedy Completion<br>Jobtal<br>roject Management <sup>3</sup>                                                                                                                                                                                                                                              | 10<br>MNR modeling<br>Public outreach, support seafood consumption advisories,<br>reporting, agency review<br>Laboratory + Field Activities + Reporting/Deliverables<br>Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M                                                                      | 26,009              | LB<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>Attached Work Sh<br>V or UC and LOE<br>LS, % or V | eet<br>\$141,447<br>\$141,447<br>Of Remedial Design 8                                        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                            | \$1 572 489                                                                              | \$0<br>\$0<br>\$0<br>\$25,000<br>\$240,000<br>\$616,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$141,447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br><b>\$751,165</b><br>\$132,194<br>\$132,194<br><b>\$264,387</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$1 572 480                                                              | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305                                                                                                                                        | \$132,194                                                                                                    | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$77,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$00,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,0000\$100,0000\$100,0000\$100,0000\$100,0000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$10000\$10000\$1000\$1000\$1000\$1000\$10000\$1000\$1000\$1000\$100\$                                                  | \$106,438<br>\$0<br>\$0<br>\$0<br>\$5,000<br>\$20,000<br>\$77,000<br>\$208,438<br>ere are no blanks<br>\$141,447<br>\$141,447                                                                 | \$0<br>\$0<br>\$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,00000<br>\$0,00000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,00 |
| Laboratory<br>Field Activities<br>Materials, Fuels and Treatment Media<br>Reporting/Deliverables<br>Modeling<br>Institutional Controls<br>Total OM&M Costs (Alternative to above sub-<br>topics)<br><b>Jobtal</b><br>Project Closure<br>Assessments<br>Decommissioning - Remedy Completion<br>Jobtal<br>roject Management <sup>3</sup>                                                                                                                                                                                                                                              | IN<br>MNR modeling<br>Public outreach, support seafood consumption advisories,<br>reporting, agency review<br>Laboratory + Field Activities + Reporting/Deliverables<br>Assume 1% of Design+Implementation+OM&M                                                                                                                 | 26,009              | LB<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>Attached Work Sh                                  | eet<br>\$141,447<br>\$141,447                                                                | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$1,572,489                                                                              | \$0<br>\$0<br>\$0<br>\$25,000<br>\$240,000<br>\$616,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$141,447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br><b>\$751,165</b><br>\$132,194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$1,572,489                                                              | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305                                                                                                                                        | \$132,194                                                                                                    | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$77,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$00,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,0000\$100,0000\$100,0000\$100,0000\$100,0000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$1000\$10000\$10000\$1000\$1000\$1000\$1000\$10000\$1000\$1000\$1000\$100\$                                                  | \$106,438<br>\$0<br>\$0<br>\$0<br>\$5,000<br>\$20,000<br>\$77,000<br>\$208,438<br>ere are no blanks<br>\$141,447<br>\$141,447                                                                 | \$0<br>\$0<br>\$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$9,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,00000<br>\$0,00000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,0000<br>\$0,00 |
| Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above sub- topics) biotal Project Closure Assessments Decommissioning - Remedy Completion biotal Toject Management <sup>3</sup> During Implementation During OM&M                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                 | 1<br>1<br>1<br>12%  | LB<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>Attached Work Sh<br>V or UC and LOE<br>LS, % or V | eet<br>\$141,447<br>\$141,447<br>Of Remedial Design &<br>Remedy<br>Implementation<br>Of OM&M | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$1,572,489                                                                              | \$0<br>\$0<br>\$0<br>\$25,000<br>\$240,000<br>\$616,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$141,447<br>\$282,895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br><b>\$751,165</b><br><b>\$132,194</b><br>\$132,194<br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$155</b><br><b>\$155</b><br><b>\$155</b><br><b>\$1</b> | \$1,572,489                                                              | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305                                                                                                                                        | \$132,194<br>\$264,387                                                                                       | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$77,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$100,000<br>\$177,000<br>\$100,000<br>\$177,000<br>\$100,000<br>\$100,000<br>\$177,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,0000<br>\$100,0000<br>\$100,0000<br>\$100,0000<br>\$100,0000<br>\$100,0000<br>\$100,00 | \$106,438<br>\$0<br>\$0<br>\$0<br>\$5,000<br>\$20,000<br>\$208,438<br>ere are no blanks<br>\$141,447<br>\$141,447<br>\$282,895<br>\$0<br>\$0<br>\$20,013                                      | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$90<br>\$90<br>\$90<br>\$90<br>\$90<br>\$90<br>\$90<br>\$90<br>\$90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above sub- topics) Jubital Project Closure Assessments Decommissioning - Remedy Completion Jubital Troject Management <sup>3</sup> During Implementation During OM&M During Closure                                                                                                                                                                                                                                        | Assume 1% of Design+Implementation+OM&M Assume 12% of Design+Implementation                                                                                                                                                                                                                                                     | 25,009              | LB<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>Attached Work Sh<br>V or UC and LOE<br>LS, % or V | eet<br>\$141,447<br>\$141,447<br>Of Remedial Design 8<br>Remedy<br>Implementation            | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ |                                                                                          | \$0<br>\$0<br>\$0<br>\$25,000<br>\$240,000<br>\$616,000<br>\$1,040,656<br>\$1,040,656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$141,447<br>\$282,895<br>\$33,947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br><b>\$751,165</b><br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194\$134,194<br>\$134,194\$144,194<br>\$154,194\$1555\$1255\$1255\$1255\$1255\$1255\$1255\$125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                        | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br>\$751,165<br>\$751,165                                                                                                              | \$132,194<br>\$264,387<br>\$31,726                                                                           | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$77,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$1,572,488,80<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$106,438<br>\$0<br>\$0<br>\$0<br>\$5,000<br>\$20,000<br>\$20,000<br>\$208,438<br>ere are no blanks<br>\$141,447<br>\$141,447<br>\$141,447<br>\$282,895<br>\$0<br>\$0<br>\$25,013<br>\$33,947 | \$0<br>\$0<br>\$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$97,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above sub- topics) Institutional Project Closure Assessments Decommissioning - Remedy Completion Institution During Implementation During OM&M During Closure Ubtotal                                                                                                                                                                                                                                                      | IN MNR modeling Public outreach, support seafood consumption advisories, reporting, agency review Laboratory + Field Activities + Reporting/Deliverables Assume 1% of Design+Implementation+OM&M Assume 1% of Design+Implementation Assume 12% of Design+Implementation Assume 12% of OM&M Assume 12% of OM&M                   | 1<br>1<br>1<br>12%  | LB<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>Attached Work Sh<br>V or UC and LOE<br>LS, % or V | eet<br>\$141,447<br>\$141,447<br>Of Remedial Design &<br>Remedy<br>Implementation<br>Of OM&M | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$1,572,489                                                                              | \$0<br>\$0<br>\$0<br>\$25,000<br>\$240,000<br>\$616,000<br>\$1,040,656<br>\$124,879<br>\$124,879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$141,447<br>\$282,895<br>\$33,947<br><b>\$33,947</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$0<br>\$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br><b>\$751,165</b><br><b>\$132,194</b><br>\$132,194<br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,195</b><br><b>\$132,195</b><br><b>\$132,196</b><br><b>\$132,196</b><br><b>\$132,196</b><br><b>\$132,126</b><br><b>\$133,126</b><br><b>\$14,698,128</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$1,572,489                                                              | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br><b>\$751,165</b><br>\$751,165<br>\$93,912                                                                                           | \$132,194<br>\$264,387<br>\$31,726<br>\$31,726                                                               | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$77,000<br>\$177,000<br>\$177,000<br>Note: Make sure the<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,572,488.80<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,572,488.80<br>\$0<br>\$0<br>\$0<br>\$1,572,488.80<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$106,438<br>\$0<br>\$0<br>\$0<br>\$5,000<br>\$20,000<br>\$208,438<br>ere are no blanks<br>\$141,447<br>\$141,447<br>\$141,447<br>\$282,895<br>\$0<br>\$25,013<br>\$33,947<br>\$58,960        | \$0<br>\$0<br>\$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$11,640<br>\$0<br>\$11,640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above sub- topics) Jubital Project Closure Assessments Decommissioning - Remedy Completion Jubital Troject Management <sup>3</sup> During Implementation During OM&M During Closure Ubbotal SUBTOTAL COST OF ELEMENT E                                                                                                                                                                                                     | IN MNR modeling Public outreach, support seafood consumption advisories, reporting, agency review Laboratory + Field Activities + Reporting/Deliverables Assume 1% of Design+Implementation+OM&M Assume 1% of Design+Implementation+OM&M Assume 12% of Design+Implementation Assume 12% of OM&M Assume 12% of Closure ESTIMATES | 1 1 1 1 1 1 2% 1 2% | LB<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>Attached Work Sh<br>V or UC and LOE<br>LS, % or V | eet<br>\$141,447<br>\$141,447<br>Of Remedial Design &<br>Remedy<br>Implementation<br>Of OM&M | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ |                                                                                          | \$0<br>\$0<br>\$0<br>\$25,000<br>\$240,000<br>\$616,000<br>\$1,040,656<br>\$1,040,656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$141,447<br>\$282,895<br>\$33,947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br><b>\$751,165</b><br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194<br>\$132,194\$145,194<br>\$132,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,194<br>\$125,195<br>\$125,195<br>\$125,195<br>\$125,195<br>\$125,195<br>\$125,195\$155,195<br>\$125,195<br>\$125,195\$1                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                        | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br>\$751,165<br>\$751,165                                                                                                              | \$132,194<br>\$264,387<br>\$31,726                                                                           | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$77,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$1,572,488,80<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$106,438<br>\$0<br>\$0<br>\$0<br>\$5,000<br>\$20,000<br>\$208,438<br>ere are no blanks<br>\$141,447<br>\$141,447<br>\$141,447<br>\$282,895<br>\$0<br>\$25,013<br>\$33,947<br>\$58,960        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$20,000<br>\$77,000<br>\$77,000<br>\$97,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above sub- topics) ubtotal Project Closure Assessments Decommissioning - Remedy Completion ubtotal roject Management <sup>3</sup> During Implementation During OM&M During Closure ubtotal SUBTOTAL COST OF ELEMENT E Contingencies                                                                                                                                                                                        | IN MNR modeling Public outreach, support seafood consumption advisories, reporting, agency review Laboratory + Field Activities + Reporting/Deliverables Assume 1% of Design+Implementation+OM&M Assume 1% of Design+Implementation Assume 12% of Design+Implementation Assume 12% of OM&M Assume 12% of OM&M                   | 1 1 1 1 1 1 2% 1 2% | LB<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>Attached Work Sh<br>V or UC and LOE<br>LS, % or V | eet<br>\$141,447<br>\$141,447<br>Of Remedial Design &<br>Remedy<br>Implementation<br>Of OM&M | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$1,572,489                                                                              | \$0<br>\$0<br>\$0<br>\$25,000<br>\$240,000<br>\$616,000<br>\$1,040,656<br>\$124,879<br>\$124,879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$141,447<br>\$282,895<br>\$33,947<br><b>\$33,947</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$0<br>\$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br><b>\$751,165</b><br><b>\$132,194</b><br>\$132,194<br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,195</b><br><b>\$132,195</b><br><b>\$132,196</b><br><b>\$132,196</b><br><b>\$132,196</b><br><b>\$132,126</b><br><b>\$133,126</b><br><b>\$14,698,128</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$1,572,489                                                              | \$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br><b>\$751,165</b><br>\$751,165<br>\$93,912                                                                                           | \$132,194<br>\$264,387<br>\$31,726<br>\$31,726                                                               | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$77,000<br>\$177,000<br>\$177,000<br>Note: Make sure the<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,572,488.80<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,572,488.80<br>\$0<br>\$0<br>\$0<br>\$1,572,488.80<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$106,438<br>\$0<br>\$0<br>\$0<br>\$5,000<br>\$20,000<br>\$208,438<br>ere are no blanks<br>\$141,447<br>\$141,447<br>\$141,447<br>\$282,895<br>\$0<br>\$25,013<br>\$33,947<br>\$58,960        | \$0<br>\$0<br>\$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$97,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above sub- topics) ubtotal Project Closure Assessments Decommissioning - Remedy Completion ubtotal During Implementation During OM&M During Closure ubtotal SUBTOTAL COST OF ELEMENT E Contingencies Scope (10 to 25%) Bid (10 to 20%)                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                 | 1 1 1 1 1 1 2% 1 2% | LB<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>Attached Work Sh<br>V or UC and LOE<br>LS, % or V | eet<br>\$141,447<br>\$141,447<br>Of Remedial Design &<br>Remedy<br>Implementation<br>Of OM&M | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$1,572,489<br>\$14,676,562<br>\$1,917,501<br>\$1,571,722                                | \$0<br>\$0<br>\$0<br>\$25,000<br>\$240,000<br>\$616,000<br>\$1,040,656<br>\$124,879<br>\$124,879<br>\$124,879<br>\$124,879<br>\$116,5535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$141,447<br>\$282,895<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947 | \$0<br>\$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br><b>\$751,165</b><br><b>\$132,194</b><br>\$132,194<br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$14,572,489</b><br><b>\$1,572,489</b><br><b>\$1,572,489</b><br><b>\$31,726</b><br><b>\$1,698,128</b><br><b>\$15,817,754</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$1,572,489<br>\$14,676,562<br>\$1,790,541<br>\$1,467,656                | \$0<br>\$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br>\$751,165<br>\$751,165<br>\$93,912<br>\$93,912<br>\$93,912<br>\$845,078                                                      | \$132,194<br>\$264,387<br>\$31,726<br>\$31,726<br>\$31,726<br>\$296,114<br>\$74,028<br>\$59,223              | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$77,000<br>\$177,000<br>\$177,000<br>Note: Make sure the<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,572,488.80<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,572,488.80<br>\$0<br>\$0<br>\$0<br>\$1,572,488.80<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$106,438<br>\$0<br>\$0<br>\$0<br>\$5,000<br>\$20,000<br>\$208,438<br>ere are no blanks<br>\$141,447<br>\$141,447<br>\$141,447<br>\$282,895<br>\$0<br>\$25,013<br>\$33,947<br>\$58,960        | \$0<br>\$0<br>\$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$11,640<br>\$0<br>\$11,640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above sub- topics) Jubitat Project Closure Assessments Decommissioning - Remedy Completion Jubitat Troject Management <sup>3</sup> During Implementation During OM&M During Closure Ubitat SUBTOTAL COST OF ELEMENT E Contingencies Scope (10 to 25%) Bid (10 to 25%) Bid (10 to 20%) Ubitat                                                                                                                               |                                                                                                                                                                                                                                                                                                                                 | 1 1 1 1 1 1 2% 1 2% | LB<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>Attached Work Sh<br>V or UC and LOE<br>LS, % or V | eet<br>\$141,447<br>\$141,447<br>Of Remedial Design &<br>Remedy<br>Implementation<br>Of OM&M | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$1,572,489<br>\$14,676,562<br>\$1,917,501<br>\$1,571,722<br>\$3,489,222                 | \$0<br>\$0<br>\$0<br>\$25,000<br>\$240,000<br>\$16,000<br>\$1,040,656<br>\$124,879<br>\$124,879<br>\$124,879<br>\$124,879<br>\$116,553<br>\$174,830<br>\$116,554<br>\$291,384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$141,447<br>\$282,895<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947                                                                                                                                                                                                                                                                                                                         | \$0<br>\$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br><b>\$751,165</b><br><b>\$132,194</b><br>\$132,194<br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$133,1726</b><br><b>\$1,698,128</b><br><b>\$15,817,754</b><br><b>\$1,991,331</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$1,572,489<br>\$14,676,562<br>\$1,790,541<br>\$1,467,656<br>\$3,258,197 | \$0<br>\$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br>\$751,165<br>\$751,165<br>\$93,912<br>\$93,912<br>\$93,912<br>\$126,762<br>\$84,508<br>\$211,269                             | \$132,194<br>\$264,387<br>\$31,726<br>\$31,726<br>\$31,726<br>\$296,114<br>\$74,028<br>\$59,223<br>\$133,251 | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$77,000<br>\$177,000<br>\$177,000<br>Note: Make sure the<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,572,488.80<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,572,488.80<br>\$0<br>\$0<br>\$0<br>\$1,572,488.80<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$106,438<br>\$0<br>\$0<br>\$0<br>\$5,000<br>\$20,000<br>\$208,438<br>ere are no blanks<br>\$141,447<br>\$141,447<br>\$141,447<br>\$282,895<br>\$0<br>\$25,013<br>\$33,947<br>\$58,960        | \$0<br>\$0<br>\$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$97,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above sub- topics) ubtotal Project Closure Assessments Decommissioning - Remedy Completion ubtotal During Implementation During OM&M During Closure ubtotal SUBTOTAL COST OF ELEMENT E Contingencies Scope (10 to 25%) Bid (10 to 25%) Bid (10 to 20%) ubtotal                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                 | 1 1 1 1 1 1 2% 1 2% | LB<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>Attached Work Sh<br>V or UC and LOE<br>LS, % or V | eet<br>\$141,447<br>\$141,447<br>Of Remedial Design &<br>Remedy<br>Implementation<br>Of OM&M | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$1,572,489<br>\$14,676,562<br>\$1,917,501<br>\$1,571,722                                | \$0<br>\$0<br>\$0<br>\$25,000<br>\$240,000<br>\$616,000<br>\$1,040,656<br>\$124,879<br>\$124,879<br>\$124,879<br>\$124,879<br>\$116,5535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$141,447<br>\$282,895<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947                                                                                                                                                                                                                                                                                                                         | \$0<br>\$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br><b>\$751,165</b><br><b>\$132,194</b><br>\$132,194<br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$14,572,489</b><br><b>\$1,572,489</b><br><b>\$1,572,489</b><br><b>\$31,726</b><br><b>\$1,698,128</b><br><b>\$15,817,754</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$1,572,489<br>\$14,676,562<br>\$1,790,541<br>\$1,467,656                | \$0<br>\$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br>\$751,165<br>\$751,165<br>\$93,912<br>\$93,912<br>\$93,912<br>\$845,078                                                      | \$132,194<br>\$264,387<br>\$31,726<br>\$31,726<br>\$31,726<br>\$296,114<br>\$74,028<br>\$59,223              | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$77,000<br>\$177,000<br>\$177,000<br>Note: Make sure the<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,572,488.80<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,572,488.80<br>\$0<br>\$0<br>\$0<br>\$1,572,488.80<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$106,438<br>\$0<br>\$0<br>\$0<br>\$5,000<br>\$20,000<br>\$208,438<br>ere are no blanks<br>\$141,447<br>\$141,447<br>\$141,447<br>\$282,895<br>\$0<br>\$25,013<br>\$33,947<br>\$58,960        | \$0<br>\$0<br>\$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$97,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above sub- topics) ubtotal Project Closure Assessments Decommissioning - Remedy Completion ubtotal Troject Management <sup>3</sup> During Implementation During OM&M During Closure Ubtotal SUBTOTAL COST OF ELEMENT E Contingencies Scope (10 to 25%) Bid (10 to 25%) Bid (10 to 20%) Ubtotal                                                                                                                             |                                                                                                                                                                                                                                                                                                                                 | 1 1 1 1 1 1 2% 1 2% | LB<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>Attached Work Sh<br>V or UC and LOE<br>LS, % or V | eet<br>\$141,447<br>\$141,447<br>Of Remedial Design &<br>Remedy<br>Implementation<br>Of OM&M | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$1,572,489<br>\$14,676,562<br>\$1,917,501<br>\$1,571,722<br>\$3,489,222<br>\$18,165,785 | \$0<br>\$0<br>\$0<br>\$25,000<br>\$240,000<br>\$16,000<br>\$1,040,656<br>\$124,879<br>\$124,879<br>\$124,879<br>\$124,879<br>\$116,553<br>\$174,830<br>\$116,554<br>\$291,384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$141,447<br>\$282,895<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947                                                                                                                                                                                                                                                                                                                         | \$0<br>\$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br><b>\$751,165</b><br><b>\$132,194</b><br>\$132,194<br><b>\$132,194</b><br><b>\$132,194</b><br><b>\$14,572,489</b><br><b>\$1,572,489</b><br><b>\$1,572,489</b><br><b>\$31,726</b><br><b>\$1,698,128</b><br><b>\$15,817,754</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$1,572,489<br>\$14,676,562<br>\$1,790,541<br>\$1,467,656<br>\$3,258,197 | \$0<br>\$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br>\$751,165<br>\$751,165<br>\$93,912<br>\$93,912<br>\$93,912<br>\$126,762<br>\$84,508<br>\$211,269                             | \$132,194<br>\$264,387<br>\$31,726<br>\$31,726<br>\$31,726<br>\$296,114<br>\$74,028<br>\$59,223<br>\$133,251 | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$77,000<br>\$177,000<br>\$177,000<br>Note: Make sure the<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,572,488.80<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,572,488.80<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$106,438<br>\$0<br>\$0<br>\$0<br>\$5,000<br>\$20,000<br>\$208,438<br>ere are no blanks<br>\$141,447<br>\$141,447<br>\$141,447<br>\$282,895<br>\$0<br>\$25,013<br>\$33,947<br>\$58,960        | \$0<br>\$0<br>\$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$97,000<br>\$1 these cells<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above sub- topics) ubtotal Project Closure Assessments Decommissioning - Remedy Completion ubtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Ubtotal SUBTOTAL COST OF ELEMENT E Contingencies Scope (10 to 25%) Bid (10 to 25%) Bid (10 to 25%) Bid (10 to 25%) State Cost |                                                                                                                                                                                                                                                                                                                                 | 2,5,009             | LB<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>Attached Work Sh<br>V or UC and LOE<br>LS, % or V | eet<br>\$141,447<br>\$141,447<br>Of Remedial Design &<br>Remedy<br>Implementation<br>Of OM&M | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$1,572,489<br>\$14,676,562<br>\$1,917,501<br>\$1,571,722<br>\$3,489,222<br>\$18,165,785 | \$0<br>\$0<br>\$0<br>\$0<br>\$25,000<br>\$240,000<br>\$616,000<br>\$1,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656<br>\$11,040,656 | \$141,447<br>\$282,895<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947<br>\$33,947                                                                                                                                                                                                                                                                                                                         | \$0<br>\$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br><b>\$751,165</b><br><b>\$132,194</b><br>\$132,194<br><b>\$132,194</b><br><b>\$14,572,489</b><br><b>\$1,572,489</b><br><b>\$1,572,489</b><br><b>\$31,726</b><br><b>\$1,698,128</b><br><b>\$15,817,754</b><br><b>\$1,611,387</b><br><b>\$3,602,718</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$1,572,489<br>\$14,676,562<br>\$1,790,541<br>\$1,467,656<br>\$3,258,197 | \$0<br>\$0<br>\$0<br>\$0<br>\$14,529<br>\$188,910<br>\$419,305<br>\$751,165<br>\$751,165<br>\$93,912<br>\$93,912<br>\$93,912<br>\$845,078<br>\$126,762<br>\$84,508<br>\$211,269<br>\$1,056,347 | \$132,194<br>\$264,387<br>\$31,726<br>\$31,726<br>\$31,726<br>\$296,114<br>\$74,028<br>\$59,223<br>\$133,251 | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$77,000<br>\$177,000<br>\$177,000<br>Note: Make sure the<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,572,488.80<br>\$0<br>\$0<br>\$0<br>\$0<br>\$1,572,488.80<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$106,438<br>\$0<br>\$0<br>\$0<br>\$5,000<br>\$20,000<br>\$208,438<br>ere are no blanks<br>\$141,447<br>\$141,447<br>\$141,447<br>\$282,895<br>\$0<br>\$25,013<br>\$33,947<br>\$58,960        | \$0<br>\$0<br>\$0<br>\$0<br>\$20,000<br>\$77,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$97,000<br>\$90<br>\$90<br>\$90<br>\$90<br>\$90<br>\$90<br>\$90<br>\$90<br>\$90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

3 Formulas are set up to calculate project management costs during implementation and OM&M as a percentage of these latter costs. In the event annual costs vary and have been separately estimated, they should be entered directly into the appropriate cells for each year.

# TABLE E-8 **COST ESTIMATES FOR ALTERNATIVE 4G**

|   | В                                                                                                                                                                           | C D E                                                                                                                                                                | v                                              | w                              | x                                  | Y                              | Z                        | AA                                 | AB                       | AC                                                | AD                       | AE                       | AF                                     | AG                | AH                | AI                | AJ |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------|------------------------------------|--------------------------------|--------------------------|------------------------------------|--------------------------|---------------------------------------------------|--------------------------|--------------------------|----------------------------------------|-------------------|-------------------|-------------------|----|
|   |                                                                                                                                                                             |                                                                                                                                                                      |                                                |                                |                                    |                                | · · ·                    |                                    |                          | · · ·                                             |                          |                          |                                        |                   |                   |                   |    |
|   | Element                                                                                                                                                                     | Description                                                                                                                                                          |                                                |                                |                                    | 1                              | 1                        |                                    |                          | 1                                                 |                          |                          | T                                      | 1                 |                   |                   | 1  |
|   |                                                                                                                                                                             | (Explain Element as necessary)                                                                                                                                       | 5                                              | 6                              | 7                                  | 8                              | 9                        | 10                                 | 11                       | 12                                                | 13                       | 14                       | 15                                     | 16                | 17                | 18                | 19 |
|   | Remedial Design                                                                                                                                                             |                                                                                                                                                                      | d ha fillad w                                  | ith aquationa                  | linking to or                      | d diotributing                 | the entropric            | to total and                       | in column                | I, or with zeros                                  |                          |                          |                                        |                   |                   |                   |    |
|   | Bench/Pilot Testing                                                                                                                                                         | In situ amendments testing                                                                                                                                           | subernied w                                    | -                              |                                    |                                |                          | \$0                                |                          |                                                   | \$0                      | \$0                      | \$0                                    | \$0               | \$0               | \$0               |    |
|   | Field Investigation                                                                                                                                                         | Additional data collection, pre-design survey - 1% of Remec<br>Implementation                                                                                        | y<br>\$0                                       | ) \$0                          | s S                                | ) \$0                          | \$0                      | \$0                                | \$                       | \$0                                               | \$0                      | \$0                      | \$0                                    | \$0               | \$0               | \$0               |    |
| _ | Modeling                                                                                                                                                                    | MNR modeling                                                                                                                                                         | \$0                                            |                                |                                    |                                | ÷-                       | \$0<br>\$0                         |                          |                                                   | \$0                      | \$0<br>\$0               |                                        |                   | \$0<br>\$0        |                   |    |
| _ | Reporting/Deliverables<br>Subtotal                                                                                                                                          | Remedial Design submittal - 6% of Remedy Implementation                                                                                                              | \$(<br>\$(                                     |                                |                                    |                                |                          | \$0<br>\$0                         |                          |                                                   | \$0<br><b>\$0</b>        | \$0<br>\$0               |                                        |                   |                   |                   |    |
|   | Remedy Implementation                                                                                                                                                       |                                                                                                                                                                      |                                                |                                |                                    |                                |                          | -                                  |                          | l, or with zeros                                  | <b>۵</b> ۵               | φυ                       | ې<br>۱ کړ                              | ຸ<br>ຈັບ          | <b>ა</b> ი        | Şυ                |    |
|   | Mobilization                                                                                                                                                                |                                                                                                                                                                      | \$0                                            |                                | <u> </u>                           |                                |                          | \$0                                |                          |                                                   | \$0                      | \$0                      | \$0                                    | \$0               | \$0               | \$0               | 5  |
|   | Contractor Submittals and Permits                                                                                                                                           | Contractor submittals, construction permits, as-builts (1.5%)<br>applied to Remedy Implementation                                                                    | \$0                                            | sc \$0                         | ) \$(                              | o \$0                          | \$0                      | \$0                                | \$0                      | so so                                             | \$0                      | \$0                      | \$0                                    | \$0               | \$0               | \$0               | 5  |
|   | Implementation                                                                                                                                                              |                                                                                                                                                                      | \$0                                            | ) \$C                          | \$                                 | D \$0                          | \$0                      | \$0                                | \$                       | \$0                                               | \$0                      | \$0                      | \$0                                    | \$0               | \$0               | \$0               | 5  |
| _ | Dredging<br>Material Barge, Assist Tug, Transport                                                                                                                           | Cost of material removal by mechanical dredging                                                                                                                      | \$0                                            | p \$0                          | \$                                 | D \$0                          | \$0                      | \$0                                | \$                       | \$0                                               | \$0                      | \$0                      | \$0                                    | \$0               | \$0               | \$0               | 5  |
| _ | Sediments                                                                                                                                                                   | Cost of material transport                                                                                                                                           | \$0                                            |                                | \$                                 |                                | \$0                      | \$0                                |                          |                                                   | \$0                      | \$0                      |                                        |                   | \$0               |                   |    |
| - | Water Management<br>Dewatering/Transloading Area Setup                                                                                                                      | Estimate per day<br>Estimate to setup dewatering/transloading area                                                                                                   | \$0                                            |                                |                                    |                                |                          | \$0<br>\$0                         | 1                        |                                                   | \$0<br>\$0               | \$0<br>\$0               |                                        |                   | \$0<br>\$0        |                   |    |
|   | Handling and Transport to Subtitle D                                                                                                                                        | Assume 1.3 tn/cy - quote by WM                                                                                                                                       |                                                |                                |                                    |                                |                          |                                    |                          |                                                   |                          |                          |                                        |                   |                   |                   |    |
| - | Landfill<br>Subtitle D Landfill Disposal                                                                                                                                    | Assume 1.3 tn/cy -quote by WM                                                                                                                                        | \$0                                            |                                | ) \$(<br>) \$(                     |                                | \$0<br>\$0               | \$0<br>\$0                         |                          |                                                   | \$0<br>\$0               | \$0<br>\$0               |                                        |                   | \$0<br>\$0        |                   |    |
|   | TSCA Waste Handling and Transport to                                                                                                                                        | Assumes 1.3 tn/cy -quote by phone                                                                                                                                    |                                                |                                |                                    |                                | ψυ                       |                                    |                          | 5                                                 |                          | ψυ                       |                                        |                   | ψυ                |                   |    |
|   | Hazardous Waste Landfill<br>Hazardous Waste Landfill Disposal                                                                                                               | Assume 1.3 tn/cy -quote by phone                                                                                                                                     | \$0                                            |                                | ) \$(<br>) \$(                     |                                | \$0<br>\$0               | \$0<br>\$0                         |                          |                                                   | \$0<br>\$0               | \$0<br>\$0               |                                        |                   | \$0<br>\$0        |                   |    |
|   | Backfill                                                                                                                                                                    | Cost of backfill material purchase, delivery and placement a                                                                                                         |                                                |                                | -                                  |                                |                          | \$0                                |                          | -                                                 | \$0<br>\$0               | \$U<br>\$0               |                                        |                   | \$0               |                   |    |
|   | Material Barge & Tug                                                                                                                                                        | Transport from quarry to site                                                                                                                                        | \$0                                            | D \$0                          | \$                                 | D \$0                          | \$0                      | \$0                                | \$                       | \$0                                               | \$0                      | \$0                      | \$0                                    | \$0               | \$0               | \$0               |    |
| _ | In situ GAC treatment<br>Reactive ENR                                                                                                                                       | Procurement, delivery, placement Procurement, delivery, placement                                                                                                    | \$0                                            |                                | -                                  |                                |                          | \$0<br>\$0                         |                          | -                                                 | \$0<br>\$0               | \$0<br>\$0               |                                        |                   | \$0<br>\$0        |                   |    |
|   | Material Barge & Tug                                                                                                                                                        | Transport to site                                                                                                                                                    | \$0                                            |                                |                                    |                                |                          | \$0<br>\$0                         |                          |                                                   | \$0<br>\$0               | \$U<br>\$0               |                                        |                   |                   |                   |    |
|   | Construction QA/QC                                                                                                                                                          | Verification sampling, bathymetric surveys, water quality mo                                                                                                         | nitoring                                       |                                |                                    |                                |                          |                                    |                          |                                                   |                          |                          |                                        |                   |                   |                   |    |
|   | Shoreline Stabilization                                                                                                                                                     | Procurement, delivery, placement (2' T x 3800' L x 10' W)                                                                                                            | \$0                                            |                                | ) \$(<br>) \$(                     |                                | \$0<br>\$0               | \$0<br>\$0                         |                          | 0 \$0<br>0 \$0                                    | \$0<br>\$0               | \$0<br>\$0               |                                        |                   | \$0<br>\$0        | \$0<br>\$0        |    |
|   | Habitat Enhancement & Riparian Planting                                                                                                                                     |                                                                                                                                                                      |                                                |                                | s S                                |                                | \$0                      | \$0                                |                          |                                                   | \$0                      | \$0                      |                                        |                   | \$0               |                   |    |
|   | Sales Tax                                                                                                                                                                   | Maryland sales tax (6%) applied to Remedy Implementation<br>excluding disposal cost                                                                                  |                                                |                                | s s                                |                                | \$0                      | \$0                                |                          | ) \$0                                             | \$0                      | \$0                      |                                        |                   | \$0               | \$0               |    |
|   | Bonds                                                                                                                                                                       | Contractor's performance and payment bonds (1%) applied                                                                                                              |                                                |                                | s s                                |                                | \$0                      | \$0                                | s s                      | , <del>, , , , , , , , , , , , , , , , , , </del> | \$0                      | \$0                      |                                        | φ0<br>¢0          | φ0<br>¢0          | \$0               |    |
|   | Subtotal                                                                                                                                                                    | Remedy Implementation                                                                                                                                                | \$0                                            |                                | \$0                                |                                | \$0<br>\$0               | \$0<br>\$0                         | \$0                      | \$0<br>\$0                                        | \$0<br><b>\$0</b>        | \$0<br>\$0               | ÷.                                     | \$0<br>\$0        | \$0<br>\$0        |                   |    |
|   | OM&M                                                                                                                                                                        |                                                                                                                                                                      |                                                | ith \$ 0's, num                | bers or equa                       |                                |                          |                                    |                          |                                                   |                          |                          |                                        | 1                 |                   |                   |    |
|   | Maintenance                                                                                                                                                                 | Assume 10% of AC repair at Year 2, and 5% of AC repair at 10                                                                                                         | \$0                                            |                                |                                    |                                |                          | \$53,219                           |                          |                                                   | \$0                      | \$0                      |                                        |                   |                   |                   |    |
| - | Laboratory<br>Field Activities                                                                                                                                              |                                                                                                                                                                      | \$0                                            |                                |                                    |                                |                          | \$0<br>\$0                         |                          |                                                   | \$0<br>\$0               | \$0<br>\$0               |                                        |                   |                   |                   |    |
|   | Materials, Fuels and Treatment Media                                                                                                                                        |                                                                                                                                                                      | \$0                                            |                                |                                    |                                |                          | \$0                                |                          |                                                   | \$0                      | \$0<br>\$0               |                                        |                   |                   |                   |    |
|   | Reporting/Deliverables                                                                                                                                                      | MNR modeling                                                                                                                                                         | \$0                                            |                                |                                    |                                |                          | \$0                                |                          |                                                   | \$0                      | \$0                      |                                        |                   | \$0               |                   |    |
|   | Modeling<br>Institutional Controls                                                                                                                                          | Public outreach, support seafood consumption advisories,                                                                                                             | \$5,000                                        |                                |                                    |                                |                          | \$5,000                            |                          |                                                   | \$0                      | \$0                      |                                        |                   |                   |                   |    |
| - | Total OM&M Costs (Alternative to above sub-                                                                                                                                 | reporting, agency review                                                                                                                                             | \$20,000                                       | \$0                            | \$20,000                           | D \$0                          | \$0                      | \$20,000                           | \$                       | D \$0                                             | \$0                      | \$0                      | \$20,000                               | \$0               | \$0               | \$0               | 5  |
|   | topics)                                                                                                                                                                     | Laboratory + Field Activities + Reporting/Deliverables                                                                                                               | \$77,000                                       | o \$0                          | \$77,000                           | o \$0                          | \$0                      | \$77,000                           | \$                       | \$0                                               | \$0                      | \$C                      | \$77,000                               | \$0               | \$0               | \$0               |    |
|   | Subtotal                                                                                                                                                                    |                                                                                                                                                                      | \$102,000                                      |                                | +                                  |                                | \$0                      | \$155,219                          | \$                       | \$0                                               | \$0                      | \$0                      | \$102,000                              | \$0               | \$0               | \$0               |    |
|   | Project Closure Assessments                                                                                                                                                 | Assume 1% of Design+Implementation+OM&M                                                                                                                              |                                                | ith \$ 0's, num                |                                    |                                | ¢0                       | ¢0                                 |                          |                                                   | ¢0                       | ¢0                       |                                        | ¢0                | ¢0                | <b>60</b>         |    |
|   | Decommissioning - Remedy Completion                                                                                                                                         | Assume 1% of Design+Implementation+OM&M                                                                                                                              | \$0                                            |                                |                                    |                                |                          | \$0<br>\$0                         |                          |                                                   | \$0<br>\$0               | \$0<br>\$0               |                                        |                   |                   |                   |    |
|   | Subtotal                                                                                                                                                                    |                                                                                                                                                                      | \$(                                            |                                |                                    |                                |                          | \$0                                |                          |                                                   | \$0                      |                          |                                        |                   |                   |                   |    |
|   | Castolai                                                                                                                                                                    |                                                                                                                                                                      |                                                |                                | r                                  | 1                              |                          |                                    | 1                        | 1                                                 |                          |                          | 1                                      | 1                 |                   |                   | 1  |
|   | Project Management <sup>3</sup>                                                                                                                                             |                                                                                                                                                                      |                                                |                                |                                    |                                |                          |                                    |                          |                                                   |                          |                          |                                        |                   |                   |                   |    |
|   |                                                                                                                                                                             | Assume 12% of Design+Implementation                                                                                                                                  |                                                |                                |                                    |                                |                          |                                    |                          |                                                   |                          | \$0                      | \$0                                    | \$0               | \$0               |                   |    |
|   | Project Management <sup>3</sup><br>During Implementation                                                                                                                    |                                                                                                                                                                      | \$0                                            |                                | S(                                 |                                | \$0                      | \$0                                |                          |                                                   | \$0                      |                          |                                        |                   |                   |                   |    |
|   | Project Management <sup>3</sup><br>During Implementation<br>During OM&M                                                                                                     | Assume 12% of OM&M                                                                                                                                                   | \$12,240                                       | \$0                            | \$11,640                           | D \$0                          | \$0                      | \$18,626                           | ; \$C                    | \$0                                               | \$0                      | \$0                      | \$12,240                               |                   |                   |                   |    |
|   | Project Management <sup>3</sup><br>During Implementation                                                                                                                    |                                                                                                                                                                      |                                                | D \$0<br>D \$0                 | \$11,640                           | D \$0<br>D \$0                 | \$0<br>\$0               |                                    | ; \$0<br>) \$0           | 0 \$0<br>0 \$0                                    |                          | \$0<br>\$0               | ) \$12,240<br>) \$0                    | \$0               | \$0               | \$0               | 5  |
|   | Project Management <sup>3</sup><br>During Implementation<br>During OM&M<br>During Closure                                                                                   | Assume 12% of OM&M<br>Assume 12% of Closure                                                                                                                          | \$12,240                                       | ) \$0<br>) \$0<br><b>) \$0</b> | \$11,640                           | 0 \$0<br>0 \$0<br><b>0 \$0</b> | \$0<br>\$0<br><b>\$0</b> | \$18,626<br>\$0                    | \$0<br>\$0<br>\$0<br>\$0 | 0 \$0<br>0 \$0<br><b>0 \$0</b>                    | \$0<br>\$0               | \$0<br>\$0<br><b>\$0</b> | ) \$12,240<br>) \$0                    | \$0<br><b>\$0</b> | \$0<br><b>\$0</b> | \$0<br><b>\$0</b> | \$ |
|   | Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT Contingencies                                            | Assume 12% of OM&M<br>Assume 12% of Closure<br>ESTIMATES<br>Implementation OM&M Closure                                                                              | \$12,240<br>\$(<br>\$12,240<br>\$114,240       | ) \$0<br>) \$0<br><b>) \$0</b> | \$11,640<br>\$(<br><b>\$11,640</b> | 0 \$0<br>0 \$0<br><b>0 \$0</b> | \$0<br>\$0<br><b>\$0</b> | \$18,626<br>\$0<br><b>\$18,626</b> | \$0<br>\$0<br>\$0<br>\$0 | 0 \$0<br>0 \$0<br><b>0 \$0</b>                    | \$0<br>\$0<br><b>\$0</b> | \$0<br>\$0<br><b>\$0</b> | ) \$12,240<br>) \$0<br><b>\$12,240</b> | \$0<br><b>\$0</b> | \$0<br><b>\$0</b> | \$0<br><b>\$0</b> | \$ |
|   | Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT Contingencies Scope (10 to 25%)                          | Assume 12% of OM&M           Assume 12% of Closure           ESTIMATES           Implementation         OM&M         Closure           12.2%         15%         25% | \$12,240<br>\$(<br>\$12,240<br>\$114,240       | ) \$0<br>) \$0<br><b>) \$0</b> | \$11,640<br>\$(<br><b>\$11,640</b> | 0 \$0<br>0 \$0<br><b>0 \$0</b> | \$0<br>\$0<br><b>\$0</b> | \$18,626<br>\$0<br><b>\$18,626</b> | \$0<br>\$0<br>\$0<br>\$0 | 0 \$0<br>0 \$0<br><b>0 \$0</b>                    | \$0<br>\$0<br><b>\$0</b> | \$0<br>\$0<br><b>\$0</b> | ) \$12,240<br>) \$0<br><b>\$12,240</b> | \$0<br><b>\$0</b> | \$0<br><b>\$0</b> | \$0<br><b>\$0</b> |    |
|   | Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT Contingencies Scope (10 to 25%) Bid (10 to 20%)          | Assume 12% of OM&M<br>Assume 12% of Closure<br>ESTIMATES<br>Implementation OM&M Closure                                                                              | \$12,240<br>\$(<br>\$12,240<br>\$114,240       | ) \$0<br>) \$0<br><b>) \$0</b> | \$11,640<br>\$(<br><b>\$11,640</b> | 0 \$0<br>0 \$0<br><b>0 \$0</b> | \$0<br>\$0<br><b>\$0</b> | \$18,626<br>\$0<br><b>\$18,626</b> | \$0<br>\$0<br>\$0<br>\$0 | 0 \$0<br>0 \$0<br><b>0 \$0</b>                    | \$0<br>\$0<br><b>\$0</b> | \$0<br>\$0<br><b>\$0</b> | ) \$12,240<br>) \$0<br><b>\$12,240</b> | \$0<br><b>\$0</b> | \$0<br><b>\$0</b> | \$0<br><b>\$0</b> |    |
|   | Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT Contingencies Scope (10 to 25%)                          | Assume 12% of OM&M           Assume 12% of Closure           ESTIMATES           Implementation         OM&M         Closure           12.2%         15%         25% | \$12,240<br>\$(<br>\$12,240<br>\$114,240       | ) \$0<br>) \$0<br><b>) \$0</b> | \$11,640<br>\$(<br><b>\$11,640</b> | 0 \$0<br>0 \$0<br><b>0 \$0</b> | \$0<br>\$0<br><b>\$0</b> | \$18,626<br>\$0<br><b>\$18,626</b> | \$0<br>\$0<br>\$0<br>\$0 | 0 \$0<br>0 \$0<br><b>0 \$0</b>                    | \$0<br>\$0<br><b>\$0</b> | \$0<br>\$0<br><b>\$0</b> | ) \$12,240<br>) \$0<br><b>\$12,240</b> | \$0<br><b>\$0</b> | \$0<br><b>\$0</b> | \$0<br><b>\$0</b> |    |
|   | Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT Contingencies Scope (10 to 25%) Bid (10 to 25%) Subtotal | Assume 12% of OM&M           Assume 12% of Closure           ESTIMATES           Implementation         OM&M         Closure           12.2%         15%         25% | \$12,240<br>\$(<br>\$12,240<br>\$114,240       | ) \$0<br>) \$0<br><b>) \$0</b> | \$11,640<br>\$(<br><b>\$11,640</b> | 0 \$0<br>0 \$0<br><b>0 \$0</b> | \$0<br>\$0<br><b>\$0</b> | \$18,626<br>\$0<br><b>\$18,626</b> | \$0<br>\$0<br>\$0<br>\$0 | 0 \$0<br>0 \$0<br><b>0 \$0</b>                    | \$0<br>\$0<br><b>\$0</b> | \$0<br>\$0<br><b>\$0</b> | ) \$12,240<br>) \$0<br><b>\$12,240</b> | \$0<br><b>\$0</b> | \$0<br><b>\$0</b> | \$0<br><b>\$0</b> |    |
|   | Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT Contingencies Scope (10 to 25%) Bid (10 to 25%) Subtotal | Assume 12% of OM&M           Assume 12% of Closure           ESTIMATES           Implementation         OM&M         Closure           12.2%         15%         25% | \$12,24(<br>\$(<br>\$12,24(<br>\$114,240)<br>e | ) \$0<br>) \$0<br><b>) \$0</b> | \$11,640<br>\$(<br><b>\$11,640</b> | 0 \$0<br>0 \$0<br><b>0 \$0</b> | \$0<br>\$0<br><b>\$0</b> | \$18,626<br>\$0<br><b>\$18,626</b> | \$0<br>\$0<br>\$0<br>\$0 | 0 \$0<br>0 \$0<br><b>0 \$0</b>                    | \$0<br>\$0<br><b>\$0</b> | \$0<br>\$0<br><b>\$0</b> | ) \$12,240<br>) \$0<br><b>\$12,240</b> | \$0<br><b>\$0</b> | \$0<br><b>\$0</b> | \$0<br><b>\$0</b> | 4  |

# Lockheed Martin Corporation



Version G April 2012

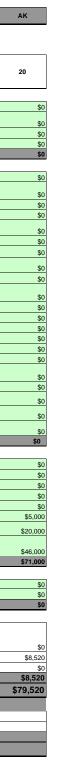
# TABLE E-9COST ESTIMATES FOR ALTERNATIVE 4H

| SITE: Lockheed Martin - Middle River Com                                                                                                                                                                                                                                                                                                                                                                                                                                                 | plex TABL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BLE E-9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALTERNA                                                          | TIVE: 4H. Partial Remov                                                                                                                                      | val + MNR                                                                                                                                                                                  |                                                                                                                                          |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                               | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATE:November,                                                                                                                      | , 2012                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LEVEL OF ESTIMATE: Screening                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DISCOUNT                                                         |                                                                                                                                                              | 7%                                                                                                                                                                                         |                                                                                                                                          | ESCALATION RATE                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                               | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ACKUP REFERE                                                                                                                       | NCE <sup>2</sup> :                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F                                                                | G G                                                                                                                                                          | н                                                                                                                                                                                          |                                                                                                                                          | J K                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | м                                                                                                             | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                        | Р                                                                                                                                                                       | 0                                                                                                             | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s                                                                                                                                  | т                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  | Ū                                                                                                                                                            |                                                                                                                                                                                            |                                                                                                                                          | -                                                                                                                                                                                | n Current Dollars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               | (NPV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cost in NPV Decosts that have been dis                                                                                                                                                   |                                                                                                                                                                         |                                                                                                               | Yea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rs <sup>1</sup>                                                                                                                    |                                                                                                                                                                                                                                                                                                                       |
| Element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Description<br>(Explain Element as necessary)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Qty                                                              | Units<br>(Select as appropriate)                                                                                                                             | \$/Unit                                                                                                                                                                                    | Cost Extension \$<br>( F x H)                                                                                                            | Implementation                                                                                                                                                                   | OM&M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Closure                                                                                                       | TOTAL<br>(O+P+Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Implementation                                                                                                                                                                           | OM&M                                                                                                                                                                    | Closure                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                     |
| Remedial Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                                                                              |                                                                                                                                                                                            |                                                                                                                                          |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                               | Note: Make sure th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oro aro no blank                                                                                                                   | rs in those calls                                                                                                                                                                                                                                                                                                     |
| Bench/Pilot Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | LS or V                                                                                                                                                      |                                                                                                                                                                                            | \$0                                                                                                                                      | \$0                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                                                                      |                                                                                                                                                                         |                                                                                                               | Note: Make sure th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | so                                                                                                                                 | s in these cells                                                                                                                                                                                                                                                                                                      |
| Field Investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Additional data collection, pre-design survey - 1%<br>Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | % of Remedy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                | LS or UC and LOE                                                                                                                                             | \$114,336                                                                                                                                                                                  | \$114,336                                                                                                                                | \$114,336                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               | \$114,336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$114,336                                                                                                                                                                                | -                                                                                                                                                                       |                                                                                                               | \$114,336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                                                                                | \$0                                                                                                                                                                                                                                                                                                                   |
| Modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MNR modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                | LS                                                                                                                                                           | \$10,000                                                                                                                                                                                   | \$10,000                                                                                                                                 | \$10,000                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               | \$10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$10,000                                                                                                                                                                                 | -                                                                                                                                                                       |                                                                                                               | \$10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$0                                                                                                                                | \$0                                                                                                                                                                                                                                                                                                                   |
| Reporting/Deliverables                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Remedial Design submittal - 6% of Remedy Imple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                | LS                                                                                                                                                           | \$686,019                                                                                                                                                                                  | \$686,019                                                                                                                                | \$686,019                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               | \$686,019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$686,019                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                               | \$686,019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                                                                                | \$0                                                                                                                                                                                                                                                                                                                   |
| Subtotal<br>Remedy Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  |                                                                                                                                                              |                                                                                                                                                                                            | \$810,355                                                                                                                                | \$810,355                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               | \$810,355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$810,355                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                               | \$810,355<br>Note: Make sure th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0<br>ere are no blank                                                                                                            | \$0<br>s in these cells                                                                                                                                                                                                                                                                                               |
| Mobilization                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                | LS or %                                                                                                                                                      | \$515,236                                                                                                                                                                                  | \$515,236                                                                                                                                | \$515,236                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               | \$515,236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$515,236                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                               | \$515,236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | so                                                                                                                                 | \$0                                                                                                                                                                                                                                                                                                                   |
| Contractor Submittals and Permits                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Contractor submittals, construction permits, as-bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ouilts (1.5%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                | LS or %                                                                                                                                                      | \$154,571                                                                                                                                                                                  | \$154,571                                                                                                                                | \$154,571                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               | \$154,571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$154,571                                                                                                                                                                                | 1                                                                                                                                                                       |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                       |
| Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | applied to Remedy Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | V or UC                                                                                                                                                      | ,                                                                                                                                                                                          | \$0                                                                                                                                      | \$0                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                                                                      | +                                                                                                                                                                       |                                                                                                               | \$154,571<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0<br>\$0                                                                                                                         | \$0<br>\$0                                                                                                                                                                                                                                                                                                            |
| Dredging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cost of material removal by mechanical dredging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48,783                                                           | CY                                                                                                                                                           | \$20                                                                                                                                                                                       | \$975,659                                                                                                                                | \$975,659                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               | \$975,659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$975,659                                                                                                                                                                                | 1                                                                                                                                                                       |                                                                                                               | \$975,659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                                                                                | \$0                                                                                                                                                                                                                                                                                                                   |
| Material Barge, Assist Tug, Transport<br>Sediments                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cost of material transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63,418                                                           | TN                                                                                                                                                           | \$10                                                                                                                                                                                       | \$634,178                                                                                                                                | \$634,178                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               | \$634,178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$634,178                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                               | \$634,178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                                                                                | \$0                                                                                                                                                                                                                                                                                                                   |
| Water Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Estimate per day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                               | DAY                                                                                                                                                          | \$10,000                                                                                                                                                                                   | \$600,000                                                                                                                                | \$600,000                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               | \$600,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$600,000                                                                                                                                                                                | ]                                                                                                                                                                       |                                                                                                               | \$600,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                                                                                | \$0                                                                                                                                                                                                                                                                                                                   |
| Dewatering/Transloading Area Setup<br>Handling and Transport to Subtitle D                                                                                                                                                                                                                                                                                                                                                                                                               | Estimate to setup dewatering/transloading area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                | LS                                                                                                                                                           | \$500,000                                                                                                                                                                                  | \$500,000                                                                                                                                | \$500,000                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               | \$500,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$500,000                                                                                                                                                                                | +                                                                                                                                                                       |                                                                                                               | \$500,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                                                                                | \$0                                                                                                                                                                                                                                                                                                                   |
| Landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Assume 1.3 tn/cy - quote by WM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63,418                                                           | TN                                                                                                                                                           | \$40                                                                                                                                                                                       | \$2,536,714                                                                                                                              | \$2,536,714                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               | \$2,536,714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$2,536,714                                                                                                                                                                              | -                                                                                                                                                                       |                                                                                                               | \$2,536,714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                | \$0                                                                                                                                                                                                                                                                                                                   |
| Subtitle D Landfill Disposal<br>TSCA Waste Handling and Transport to                                                                                                                                                                                                                                                                                                                                                                                                                     | Assume 1.3 tn/cy -quote by WM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63,418                                                           | TN                                                                                                                                                           | \$36                                                                                                                                                                                       | \$2,283,042                                                                                                                              | \$2,283,042                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               | \$2,283,042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$2,283,042                                                                                                                                                                              | +                                                                                                                                                                       |                                                                                                               | \$2,283,042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                | \$0                                                                                                                                                                                                                                                                                                                   |
| Hazardous Waste Landfill                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Assumes 1.3 trivcy -quote by phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,200                                                            | TN                                                                                                                                                           | \$90                                                                                                                                                                                       | \$198,000                                                                                                                                | \$198,000                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               | \$198,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$198,000                                                                                                                                                                                | _                                                                                                                                                                       |                                                                                                               | \$198,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                                                                                | \$0                                                                                                                                                                                                                                                                                                                   |
| Hazardous Waste Landfill Disposal                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Assume 1.3 tn/cy -quote by phone<br>Cost of backfill material purchase, delivery and pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | locoment et eite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,200                                                            | TN                                                                                                                                                           | \$87                                                                                                                                                                                       | \$191,400                                                                                                                                | \$191,400                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               | \$191,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$191,400                                                                                                                                                                                | -                                                                                                                                                                       |                                                                                                               | \$191,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                                                                                | \$0                                                                                                                                                                                                                                                                                                                   |
| Backfill<br>Material Barge & Tug                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Transport from guarry to site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | blacement at site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15,200<br>22,800                                                 | CY                                                                                                                                                           | \$30<br>\$10                                                                                                                                                                               | \$456,000<br>\$228,000                                                                                                                   | \$456,000<br>\$228,000                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               | \$456,000<br>\$228,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$456,000<br>\$228,000                                                                                                                                                                   | +                                                                                                                                                                       |                                                                                                               | \$456,000<br>\$228,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$0<br>\$0                                                                                                                         | \$0<br>\$0                                                                                                                                                                                                                                                                                                            |
| In situ GAC treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Procurement, delivery, placement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                | LB                                                                                                                                                           | \$2                                                                                                                                                                                        | \$0                                                                                                                                      | \$0                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                                                                      | 1                                                                                                                                                                       |                                                                                                               | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0                                                                                                                                | \$0                                                                                                                                                                                                                                                                                                                   |
| Reactive ENR                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Procurement, delivery, placement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                | CY                                                                                                                                                           | \$120                                                                                                                                                                                      | \$0                                                                                                                                      | \$0                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                                                                      | +                                                                                                                                                                       |                                                                                                               | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0                                                                                                                                | \$0                                                                                                                                                                                                                                                                                                                   |
| Material Barge & Tug                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Transport to site<br>Verification sampling, bathymetric surveys, water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                | TN                                                                                                                                                           | \$10                                                                                                                                                                                       | \$0                                                                                                                                      | \$0                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                                                                      | +                                                                                                                                                                       |                                                                                                               | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0                                                                                                                                | \$0                                                                                                                                                                                                                                                                                                                   |
| Construction QA/QC                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                | LS                                                                                                                                                           | \$984,480                                                                                                                                                                                  | \$984,480                                                                                                                                | \$984,480                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               | \$984,480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$984,480                                                                                                                                                                                | -                                                                                                                                                                       |                                                                                                               | \$984,480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                                                                                | \$0                                                                                                                                                                                                                                                                                                                   |
| Shoreline Stabilization                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Procurement, delivery, placement (2' T x 3800' L x<br>Procurement, delivery, placement (25' each bank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5,345<br>3                                                       | TN AC                                                                                                                                                        | \$50<br>\$150,000                                                                                                                                                                          | \$267,241<br>\$450,000                                                                                                                   | \$267,241                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               | \$267,241<br>\$450,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$267,241                                                                                                                                                                                | -                                                                                                                                                                       |                                                                                                               | \$267,241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                                                                                | \$0                                                                                                                                                                                                                                                                                                                   |
| Habitat Ennancement & Riparian Plantin                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g Procurement, delivery, placement (25 each bank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                                                                              |                                                                                                                                                                                            |                                                                                                                                          |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                       |
| 0 J T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Maryland sales tax (6%) applied to Remedy Imple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                                                                                                                              |                                                                                                                                                                                            |                                                                                                                                          | \$450,000                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$450,000                                                                                                                                                                                | -                                                                                                                                                                       |                                                                                                               | \$450,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                                                                                | \$0                                                                                                                                                                                                                                                                                                                   |
| Sales Tax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maryland sales tax (6%) applied to Remedy Imple<br>excluding disposal cost<br>Contractor's performance and payment bonds (19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lementatior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                | LS or %                                                                                                                                                      | \$345,922                                                                                                                                                                                  | \$345,922                                                                                                                                | \$345,922                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               | \$345,922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$345,922                                                                                                                                                                                | +                                                                                                                                                                       |                                                                                                               | \$450,000<br>\$345,922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$0<br>\$0                                                                                                                         | \$0<br>\$0                                                                                                                                                                                                                                                                                                            |
| Bonds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lementatior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  |                                                                                                                                                              |                                                                                                                                                                                            | \$345,922<br>\$113,204                                                                                                                   | \$345,922<br>\$113,204                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               | \$345,922<br>\$113,204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$345,922<br>\$113,204                                                                                                                                                                   | -                                                                                                                                                                       |                                                                                                               | \$345,922<br>\$113,204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$0<br>\$0                                                                                                                         | \$0                                                                                                                                                                                                                                                                                                                   |
| Bonds<br>Subtotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | excluding disposal cost<br>Contractor's performance and payment bonds (19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lementatior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                | LS or %<br>LS or %                                                                                                                                           | \$345,922                                                                                                                                                                                  | \$345,922                                                                                                                                | \$345,922                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               | \$345,922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$345,922                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                               | \$345,922<br>\$113,204<br><b>\$11,433,648</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0<br>\$0<br><b>\$0</b>                                                                                                           | \$0<br><b>\$0</b>                                                                                                                                                                                                                                                                                                     |
| Bonds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | excluding disposal cost<br>Contractor's performance and payment bonds (19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lementatior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                | LS or %                                                                                                                                                      | \$345,922                                                                                                                                                                                  | \$345,922<br>\$113,204                                                                                                                   | \$345,922<br>\$113,204                                                                                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                               | \$345,922<br>\$113,204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$345,922<br>\$113,204                                                                                                                                                                   | \$0                                                                                                                                                                     |                                                                                                               | \$345,922<br>\$113,204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$0<br>\$0<br><b>\$0</b>                                                                                                           | \$0<br><b>\$0</b>                                                                                                                                                                                                                                                                                                     |
| Bonds<br>Subtotal<br>OM&M<br>Maintenance<br>Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                   | excluding disposal cost<br>Contractor's performance and payment bonds (19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lementatior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC                                                                                                           | \$345,922                                                                                                                                                                                  | \$345,922<br>\$113,204<br><b>\$11,433,648</b><br>\$0<br>\$0                                                                              | \$345,922<br>\$113,204                                                                                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                               | \$345,922<br>\$113,204<br><b>\$11,433,648</b><br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$345,922<br>\$113,204                                                                                                                                                                   | \$0                                                                                                                                                                     |                                                                                                               | \$345,922<br>\$113,204<br>\$11,433,648<br>Note: Make sure th<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0<br>\$0<br>ere are no blank<br>\$0<br>\$0                                                                                       | \$0<br><b>\$0</b><br>(s in these cells<br>\$0<br>\$0                                                                                                                                                                                                                                                                  |
| Bonds<br>Subtotal<br>OM&M<br>Maintenance<br>Laboratory<br>Field Activities                                                                                                                                                                                                                                                                                                                                                                                                               | excluding disposal cost<br>Contractor's performance and payment bonds (19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lementatior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC<br>UC and LOE                                                                                             | \$345,922                                                                                                                                                                                  | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0                                                                       | \$345,922<br>\$113,204                                                                                                                                                           | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                             | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$345,922<br>\$113,204                                                                                                                                                                   | \$0<br>\$0                                                                                                                                                              |                                                                                                               | \$345,922<br>\$113,204<br>\$11,433,648<br>Note: Make sure th<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0<br>\$0<br>\$0<br>ere are no blank<br>\$0<br>\$0<br>\$0                                                                         | \$0<br>\$0<br>\$0<br>(s in these cells<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                    |
| Bonds<br>Subtotal<br>OM&M<br>Maintenance<br>Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                   | excluding disposal cost<br>Contractor's performance and payment bonds (19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lementatior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC                                                                                                           | \$345,922                                                                                                                                                                                  | \$345,922<br>\$113,204<br><b>\$11,433,648</b><br>\$0<br>\$0                                                                              | \$345,922<br>\$113,204                                                                                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                             | \$345,922<br>\$113,204<br><b>\$11,433,648</b><br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$345,922<br>\$113,204                                                                                                                                                                   | \$0                                                                                                                                                                     |                                                                                                               | \$345,922<br>\$113,204<br>\$11,433,648<br>Note: Make sure th<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0<br>\$0<br>ere are no blank<br>\$0<br>\$0                                                                                       | \$0<br><b>\$0</b><br>(s in these cells<br>\$0<br>\$0                                                                                                                                                                                                                                                                  |
| Bonds<br>Subtotal<br>OM&M<br>Maintenance<br>Laboratory<br>Field Activities<br>Materials, Fuels and Treatment Media                                                                                                                                                                                                                                                                                                                                                                       | excluding disposal cost<br>Contractor's performance and payment bonds (19<br>Remedy Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lementatior<br>%) applied to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC<br>UC and LOE<br>UC or V                                                                                  | \$345,922                                                                                                                                                                                  | \$345,922<br>\$113,204<br><b>\$11,433,648</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                  | \$345,922<br>\$113,204                                                                                                                                                           | \$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               | \$345,922<br>\$113,204<br><b>\$11,433,648</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$345,922<br>\$113,204                                                                                                                                                                   | \$0<br>\$0<br>\$0                                                                                                                                                       |                                                                                                               | \$345,922<br>\$113,204<br>\$11,433,648<br>Note: Make sure th<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$0<br>\$0<br><b>\$0</b><br><b>\$0</b><br><b>\$0</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                            | \$0<br>\$0<br>\$0<br>(s in these cells<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                        |
| Bonds<br>Subtotal<br>OM&M<br>Maintenance<br>Laboratory<br>Field Activities<br>Materials, Fuels and Treatment Media<br>Reporting/Deliverables<br>Modeling<br>Institutional Controls                                                                                                                                                                                                                                                                                                       | excluding disposal cost<br>Contractor's performance and payment bonds (19<br>Remedy Implementation<br>MNR modeling<br>Public outreach, support seafood consumption ad<br>reporting, agency review                                                                                                                                                                                                                                                                                                                                                                                                                             | lementatior %) applied to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC<br>UC and LOE<br>UC or V<br>LS or LOE                                                                     | \$345,922                                                                                                                                                                                  | \$345,922<br>\$113,204<br><b>\$11,433,648</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                           | \$345,922<br>\$113,204                                                                                                                                                           | \$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$345,922<br>\$113,204                                                                                                                                                                   | \$0<br>\$0<br>\$0<br>\$0                                                                                                                                                |                                                                                                               | \$345,922<br>\$113,204<br>\$1143,648<br>Note: Make sure th<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0<br>\$0<br><b>\$0</b><br>ere are no blank<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                      | \$0<br>\$0<br>\$0<br>(s in these cells<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                        |
| Bonds Subtotal OM&M Maintenance Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above su                                                                                                                                                                                                                                                                                        | excluding disposal cost<br>Contractor's performance and payment bonds (19<br>Remedy Implementation<br>MNR modeling<br>Public outreach, support seafood consumption ad<br>reporting, agency review                                                                                                                                                                                                                                                                                                                                                                                                                             | lementatior %) applied to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE                                                       | \$345.922<br>\$113.204                                                                                                                                                                     | \$345,922<br>\$113,204<br><b>\$11,433,648</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | \$345,922<br>\$113,204                                                                                                                                                           | \$0<br>\$0<br>\$0<br>\$0<br>\$55,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$345,922<br>\$113,204                                                                                                                                                                   | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$17,512                                                                                                                             |                                                                                                               | \$345,922<br>\$113,204<br>\$113,204<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0<br>\$0<br>ere are no blank<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$20,000                                               | S0         S0           \$0         \$0           \$0         \$0           \$0         \$0           \$0         \$0           \$0         \$0           \$0         \$0           \$0         \$0           \$0         \$0           \$0         \$0           \$0         \$0           \$20,000         \$20,000 |
| Bonds<br>Subtotal<br>OM&M<br>Maintenance<br>Laboratory<br>Field Activities<br>Materials, Fuels and Treatment Media<br>Reporting/Deliverables<br>Modeling<br>Institutional Controls                                                                                                                                                                                                                                                                                                       | excluding disposal cost<br>Contractor's performance and payment bonds (19<br>Remedy Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lementatior %) applied to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE                                                       | \$345.922<br>\$113.204                                                                                                                                                                     | \$345,922<br>\$113,204<br><b>\$11,433,648</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | \$345,922<br>\$113,204                                                                                                                                                           | \$0<br>\$0<br>\$0<br>\$55,000<br>\$360,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$345,922<br>\$113,204                                                                                                                                                                   | \$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843                                                                                                                              |                                                                                                               | \$345,922<br>\$113,204<br>\$11,43,648<br>Note: Make sure th<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$0<br>\$0<br><b>\$0</b><br>ere are no blank<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0          | \$0<br>\$0<br>\$0<br>(s in these cells<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                          |
| Bonds Subtotal OM&M Maintenance Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above su topics)                                                                                                                                                                                                                                                                                | excluding disposal cost<br>Contractor's performance and payment bonds (19<br>Remedy Implementation<br>MNR modeling<br>Public outreach, support seafood consumption ad<br>reporting, agency review                                                                                                                                                                                                                                                                                                                                                                                                                             | lementatior %) applied to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE                                                       | \$345.922<br>\$113.204                                                                                                                                                                     | \$345,922<br>\$113,204<br><b>\$11,433,648</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | \$345,922<br>\$113,204                                                                                                                                                           | \$0<br>\$0<br>\$0<br>\$55,000<br>\$360,000<br>\$1,078,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                               | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$20,843<br>\$465,247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$345,922<br>\$113,204                                                                                                                                                                   | \$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247                                                                                                                 |                                                                                                               | \$345,922<br>\$113,204<br>\$1143,568<br>Note: Make sure th<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$0<br>\$0<br><b>\$0</b><br><b>ere are no blank</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$20,000<br>\$77,000<br><b>\$102,000</b> | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                    |
| Bonds Subtotal OM&M Maintenance Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above su topics) Subtotal Project Closure Assessments                                                                                                                                                                                                                                           | excluding disposal cost<br>Contractor's performance and payment bonds (1%<br>Remedy Implementation<br>MNR modeling<br>MNR modeling<br>Public outreach, support seafood consumption ad<br>reporting, agency review<br>b<br>Laboratory + Field Activities + Reporting/Deliveral<br>Assume 1% of Design+Implementation+OM&M                                                                                                                                                                                                                                                                                                      | lementatior %) applied to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>LOE<br>Attached Work She<br>V or UC and LOE              | \$345,922<br>\$113,204                                                                                                                                                                     | \$345,922<br>\$113,204<br><b>\$11,433,648</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | \$345,922<br>\$113,204                                                                                                                                                           | \$0<br>\$0<br>\$0<br>\$55,000<br>\$360,000<br>\$1,078,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$137,370                                                                                                     | \$345,922<br>\$113,204<br><b>\$11,433,648</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$345,922<br>\$113,204                                                                                                                                                                   | \$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247                                                                                                                 | \$128,383                                                                                                     | \$345,922<br>\$113,204<br>\$11,433,648<br>Note: Make sure th<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$177,000<br>\$177,000<br>Note: Make sure th<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0<br>\$0<br>ere are no blank<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                               | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                    |
| Bonds Subtotal OM&M Maintenance Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above su topics) Subtotal Project Closure                                                                                                                                                                                                                                                       | excluding disposal cost<br>Contractor's performance and payment bonds (19<br>Remedy Implementation<br>MNR modeling<br>Public outreach, support seafood consumption ad<br>reporting, agency review<br>D<br>Laboratory + Field Activities + Reporting/Deliveral                                                                                                                                                                                                                                                                                                                                                                 | lementatior %) applied to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>LOE<br>Attached Work She                           | \$345,922<br>\$113,204                                                                                                                                                                     | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0        | \$345,922<br>\$113,204                                                                                                                                                           | \$0<br>\$0<br>\$0<br>\$55,000<br>\$360,000<br>\$1,078,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$137,370<br>\$137,370                                                                                        | \$345,922<br>\$113,204<br><b>\$11,433,648</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br><b>\$683,602</b><br>\$128,383<br>\$128,383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$345,922<br>\$113,204                                                                                                                                                                   | \$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247                                                                                                                 | \$128,383                                                                                                     | \$345,922<br>\$113,204<br>\$1143,568<br>Note: Make sure th<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$0<br>\$0<br>\$0<br>ere are no blank<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                    |
| Bonds Subtotal OM&M Maintenance Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above su topics) Subtotal Project Closure Assessments                                                                                                                                                                                                                                           | excluding disposal cost<br>Contractor's performance and payment bonds (1%<br>Remedy Implementation<br>MNR modeling<br>MNR modeling<br>Public outreach, support seafood consumption ad<br>reporting, agency review<br>b<br>Laboratory + Field Activities + Reporting/Deliveral<br>Assume 1% of Design+Implementation+OM&M                                                                                                                                                                                                                                                                                                      | lementatior %) applied to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>LOE<br>Attached Work She<br>V or UC and LOE              | \$345,922<br>\$113,204                                                                                                                                                                     | \$345,922<br>\$113,204<br><b>\$11,433,648</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | \$345,922<br>\$113,204                                                                                                                                                           | \$0<br>\$0<br>\$0<br>\$55,000<br>\$360,000<br>\$1,078,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$137,370                                                                                                     | \$345,922<br>\$113,204<br><b>\$11,433,648</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$345,922<br>\$113,204                                                                                                                                                                   | \$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247                                                                                                                 |                                                                                                               | \$345,922<br>\$113,204<br>\$11,433,648<br>Note: Make sure th<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$177,000<br>\$177,000<br>Note: Make sure th<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0<br>\$0<br>ere are no blank<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                               | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                    |
| Bonds Subtotal OM&M Maintenance Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above su topics) Subtotal Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup>                                                                                                                                                              | excluding disposal cost<br>Contractor's performance and payment bonds (1%<br>Remedy Implementation<br>MNR modeling<br>Public outreach, support seafood consumption ad<br>reporting, agency review<br>b<br>Laboratory + Field Activities + Reporting/Deliveral<br>Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M                                                                                                                                                                                                                                                                           | lementatior %) applied to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>Attached Work Sho<br>V or UC and LOE<br>LS, % or V | \$345,922<br>\$113,204                                                                                                                                                                     | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0        | \$345,922<br>\$113,204<br>\$11,433,648                                                                                                                                           | \$0<br>\$0<br>\$0<br>\$55,000<br>\$360,000<br>\$1,078,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$137,370<br>\$137,370                                                                                        | \$345,922<br>\$113,204<br><b>\$11,433,648</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br><b>\$683,602</b><br>\$128,383<br>\$128,383<br><b>\$128,383</b><br><b>\$128,383</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$345,922<br>\$113,204<br>\$11,433,648                                                                                                                                                   | \$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247                                                                                                                 | \$128,383                                                                                                     | \$345,922<br>\$113,204<br>\$1143,568<br>Note: Make sure th<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$0<br>\$0<br>\$0<br>ere are no blank<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                    |
| Bonds Subtotal OM&M Maintenance Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above su topics) Subtotal Project Closure Assessments Decommissioning - Remedy Completion Subtotal                                                                                                                                                                                              | excluding disposal cost<br>Contractor's performance and payment bonds (1%<br>Remedy Implementation<br>MNR modeling<br>MNR modeling<br>Public outreach, support seafood consumption ad<br>reporting, agency review<br>b<br>Laboratory + Field Activities + Reporting/Deliveral<br>Assume 1% of Design+Implementation+OM&M                                                                                                                                                                                                                                                                                                      | lementatior %) applied to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>LOE<br>Attached Work She<br>V or UC and LOE              | \$345,922<br>\$113,204                                                                                                                                                                     | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0        | \$345,922<br>\$113,204                                                                                                                                                           | \$0<br>\$0<br>\$0<br>\$55,000<br>\$360,000<br>\$1,078,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$137,370<br>\$137,370                                                                                        | \$345,922<br>\$113,204<br><b>\$11,433,648</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br><b>\$683,602</b><br>\$128,383<br>\$128,383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$345,922<br>\$113,204                                                                                                                                                                   | \$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247                                                                                                                 | \$128,383                                                                                                     | \$345,922<br>\$113,204<br>\$114,33,648<br>Note: Make sure th<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0<br>\$0<br>\$0<br>ere are no blank<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                    |
| Bonds Subtotal OM&M Maintenance Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above su topics) Subtotal Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M                                                                                                                            | excluding disposal cost<br>Contractor's performance and payment bonds (1%<br>Remedy Implementation<br>MNR modeling<br>Public outreach, support seafood consumption ad<br>reporting, agency review<br>b<br>Laboratory + Field Activities + Reporting/Deliveral<br>Assume 1% of Design+Implementation+OM&M<br>Assume 12% of Design+Implementation<br>Assume 12% of OM&M                                                                                                                                                                                                                                                         | lementatior %) applied to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>12%                           | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>Attached Work Sho<br>V or UC and LOE<br>LS, % or V | \$345,922<br>\$113,204                                                                                                                                                                     | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0        | \$345,922<br>\$113,204<br>\$11,433,648                                                                                                                                           | \$0<br>\$0<br>\$0<br>\$55,000<br>\$360,000<br>\$1,078,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$137,370<br>\$137,370<br>\$274,740                                                                           | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br>\$683,602<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$256,766<br>\$1,469,280<br>\$73,032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$345,922<br>\$113,204<br>\$11,433,648                                                                                                                                                   | \$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247                                                                                                                 | \$128,383<br><b>\$256,766</b>                                                                                 | \$345,922<br>\$113,204<br>\$1143,568<br>Note: Make sure th<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$0<br>\$0<br>\$0<br>ere are no blank<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                    |
| Bonds Subtotal OM&M Maintenance Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above su topics) Subtotal Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure                                                                                                             | excluding disposal cost<br>Contractor's performance and payment bonds (19<br>Remedy Implementation<br>MNR modeling<br>Public outreach, support seafcod consumption ad<br>reporting, agency review<br>b<br>Laboratory + Field Activities + Reporting/Deliveral<br>Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M                                                                                                                                                                                                                                                                           | lementatior %) applied to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>12%                           | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC<br>UC and LOE<br>UC or V<br>LS or LOE<br>LOE<br>LOE<br>LOE<br>LOE<br>V or UC and LOE<br>LS, % or V        | \$345,622<br>\$113,204<br>eet<br>\$137,370<br>\$137,370<br>Of Remedial Design &<br>Remedy<br>Implementation                                                                                | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0        | \$345,922<br>\$113,204<br>\$11,433,648<br>\$11,433,648<br>\$1,469,280                                                                                                            | \$0<br>\$0<br>\$0<br>\$55,000<br>\$360,000<br>\$1,078,000<br>\$1,493,000<br>\$1,493,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$137,370<br>\$137,370<br><b>\$274,740</b><br>\$32,969                                                        | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br>\$683,602<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$1469,280<br>\$1,469,280<br>\$73,032<br>\$30,812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$345,922<br>\$113,204<br>\$11,433,648                                                                                                                                                   | \$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br>\$683,602<br>\$73,032                                                                                        | \$128,383<br>\$256,766<br>\$30,812                                                                            | \$345,922<br>\$113,204<br>\$11,433,648<br>Note: Make sure th<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$177,000<br>\$177,000<br>Note: Make sure th<br>\$0<br>\$0<br>\$10<br>\$10,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,0000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,0000<br>\$100,000<br>\$1 | \$0<br>\$0<br>\$0<br>ere are no blank<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                    |
| Bonds Subtotal OM&M Maintenance Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above su topics) Subtotal Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal                                                                                                    | excluding disposal cost<br>Contractor's performance and payment bonds (19<br>Remedy Implementation<br>MNR modeling<br>MNR modeling<br>Public outreach, support seafood consumption ad<br>reporting, agency review<br>b<br>Laboratory + Field Activities + Reporting/Deliveral<br>Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation<br>Assume 1% of Design+Implementation<br>Assume 1% of Design+Implementation<br>Assume 1% of OM&M<br>Assume 12% of OM&M<br>Assume 12% of Closure                                                                     | lementatior %) applied to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>12%                           | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC<br>UC and LOE<br>LOE<br>LOE<br>LOE<br>LOE<br>Attached Work She<br>V or UC and LOE<br>LS, % or V           | \$345,922<br>\$113,204                                                                                                                                                                     | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0        | \$345,922<br>\$113,204<br><b>\$11,433,648</b><br>\$11,469,280<br>\$1,469,280<br><b>\$1,469,280</b>                                                                               | \$0<br>\$0<br>\$0<br>\$55,000<br>\$360,000<br>\$1,078,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,79,160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$137,370<br>\$137,370<br>\$274,740<br>\$32,969<br>\$32,969                                                   | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br><b>\$683,602</b><br>\$128,383<br>\$128,383<br><b>\$128,383</b><br>\$128,383<br><b>\$256,766</b><br>\$1,469,280<br>\$73,032<br>\$30,812<br><b>\$1,573,125</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$345,922<br>\$113,204<br>\$11,433,648<br>\$11,433,648<br>\$11,469,280<br>\$1,469,280                                                                                                    | \$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br>\$683,602<br>\$73,032<br>\$73,032                                                                            | \$128,383<br>\$256,766<br>\$30,812<br>\$30,812                                                                | \$345,922<br>\$113,204<br>\$114,33,648<br>Note: Make sure th<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0<br>\$0<br>\$0<br>ere are no blank<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                    |
| Bonds Subtotal OM&M Maintenance Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above su topics) Subtotal Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT                                                                           | excluding disposal cost<br>Contractor's performance and payment bonds (19<br>Remedy Implementation<br>MNR modeling<br>Public outreach, support seafood consumption ad<br>reporting, agency review<br>b<br>Laboratory + Field Activities + Reporting/Deliveral<br>Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation<br>Assume 1% of Design+Implementation | lementatior %) applied to %) applied to %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>12%                           | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC<br>UC and LOE<br>LOE<br>LOE<br>LOE<br>LOE<br>Attached Work She<br>V or UC and LOE<br>LS, % or V           | \$345,922<br>\$113,204                                                                                                                                                                     | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0        | \$345,922<br>\$113,204<br>\$11,433,648<br>\$11,433,648<br>\$1,469,280                                                                                                            | \$0<br>\$0<br>\$0<br>\$55,000<br>\$360,000<br>\$1,078,000<br>\$1,493,000<br>\$1,493,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$137,370<br>\$137,370<br>\$274,740<br>\$32,969<br>\$32,969                                                   | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br>\$683,602<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$1469,280<br>\$1,469,280<br>\$73,032<br>\$30,812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$345,922<br>\$113,204<br>\$11,433,648                                                                                                                                                   | \$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br>\$683,602<br>\$73,032                                                                                        | \$128,383<br>\$256,766<br>\$30,812                                                                            | \$345,922<br>\$113,204<br>\$11,433,648<br>Note: Make sure th<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$177,000<br>\$177,000<br>Note: Make sure th<br>\$0<br>\$0<br>\$10,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$177,000<br>\$1     | \$0<br>\$0<br>\$0<br>ere are no blank<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                    |
| Bonds Subtotal OM&M Maintenance Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above su topics) Subtotal Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT Contingencies                                                             | excluding disposal cost       Contractor's performance and payment bonds (19       Remedy Implementation       MNR modeling       Public outreach, support seafood consumption ad reporting, agency review.       b       Laboratory + Field Activities + Reporting/Deliveral       Assume 1% of Design+Implementation+OM&M       Assume 1% of Design+Implementation+OM&M       Assume 1% of Design+Implementation       Assume 1% of Design+Implementation       Assume 1% of Design+Implementation       Assume 1% of Design+Implementation       FESTIMATES       Implementation       OM&M                                | lementation %) applied to %) applied to %) applied to % % % % % % % % % % % % % % % % % %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>12%                           | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC<br>UC and LOE<br>LOE<br>LOE<br>LOE<br>LOE<br>Attached Work She<br>V or UC and LOE<br>LS, % or V           | \$345,922<br>\$113,204                                                                                                                                                                     | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0        | \$345,922<br>\$113,204<br>\$11,433,648<br>\$11,433,648<br>\$1,469,280<br>\$1,469,280<br>\$13,713,283                                                                             | \$0<br>\$0<br>\$0<br>\$55,000<br>\$360,000<br>\$1,078,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,79,160<br>\$1,79,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$                            | \$137,370<br>\$137,370<br>\$274,740<br>\$32,969<br>\$32,969<br>\$32,969<br>\$3307,709                         | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br>\$683,602<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$256,766<br>\$1,469,280<br>\$73,032<br>\$30,812<br>\$14,757,496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$345,922<br>\$113,204<br>\$11,433,648<br>\$11,433,648<br>\$11,469,280<br>\$1,469,280<br>\$11,469,280<br>\$13,713,283                                                                    | \$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br>\$683,602<br>\$73,032<br>\$73,032<br>\$73,032<br>\$756,635                                                   | \$128,383<br>\$256,766<br>\$30,812<br>\$30,812<br>\$287,578                                                   | \$345,922<br>\$113,204<br>\$114,33,648<br>Note: Make sure th<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0<br>\$0<br>\$0<br>ere are no blank<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                    |
| Bonds Subtotal OM&M Maintenance Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above su topics) Subtotal Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT                                                                           | excluding disposal cost<br>Contractor's performance and payment bonds (19<br>Remedy Implementation<br>MNR modeling<br>Public outreach, support seafood consumption ad<br>reporting, agency review<br>b<br>Laboratory + Field Activities + Reporting/Deliveral<br>Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation<br>Assume 1% of Design+Implementation | lementatior %) applied to %) applied to %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>12%                           | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC<br>UC and LOE<br>LOE<br>LOE<br>LOE<br>LOE<br>Attached Work She<br>V or UC and LOE<br>LS, % or V           | \$345,922<br>\$113,204                                                                                                                                                                     | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0        | \$345,922<br>\$113,204<br><b>\$11,433,648</b><br>\$11,469,280<br>\$1,469,280<br><b>\$1,469,280</b>                                                                               | \$0<br>\$0<br>\$0<br>\$55,000<br>\$360,000<br>\$1,078,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,79,160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$137,370<br>\$137,370<br>\$274,740<br>\$32,969<br>\$32,969                                                   | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br><b>\$683,602</b><br>\$128,383<br>\$128,383<br><b>\$128,383</b><br>\$128,383<br><b>\$256,766</b><br>\$1,469,280<br>\$73,032<br>\$30,812<br><b>\$1,573,125</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$345,922<br>\$113,204<br>\$11,433,648<br>\$11,433,648<br>\$11,469,280<br>\$1,469,280                                                                                                    | \$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br>\$683,602<br>\$73,032<br>\$73,032                                                                            | \$128,383<br>\$256,766<br>\$30,812<br>\$30,812                                                                | \$345,922<br>\$113,204<br>\$114,33,648<br>Note: Make sure th<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0<br>\$0<br>\$0<br>ere are no blank<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                    |
| Bonds Subtotal OM&M Maintenance Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above su topics) Subtotal Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT Contingencies Scope (10 to 25%) Bid (10 to 20%) Subtotal                  | excluding disposal cost       Contractor's performance and payment bonds (19       Remedy Implementation       MNR modeling       Public outreach, support seafood consumption ad<br>reporting, agency review       b       Laboratory + Field Activities + Reporting/Deliveral       Assume 1% of Design+Implementation+OM&M       Assume 1% of Design+Implementation+OM&M       Assume 1% of Design+Implementation       Assume 1% of Design+Implementation       Assume 1% of Design+Implementation       Essume 12% of OM&M       Assume 12% of Closure                                                                   | lementation (%) applied to (%) appli | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>12%                           | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC<br>UC and LOE<br>LOE<br>LOE<br>LOE<br>LOE<br>Attached Work She<br>V or UC and LOE<br>LS, % or V           | \$345,922<br>\$113,204                                                                                                                                                                     | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0        | \$345,922<br>\$113,204<br>\$11,433,648<br>\$11,433,648<br>\$1,469,280<br>\$1,469,280<br>\$13,713,283<br>\$1,855,167<br>\$1,520,628<br>\$3,375,795                                | \$0<br>\$0<br>\$0<br>\$0<br>\$55,000<br>\$1,078,000<br>\$1,078,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,279,160<br>\$179,160<br>\$179,160<br>\$179,160<br>\$179,160<br>\$1,672,160<br>\$167,216<br>\$418,040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$137,370<br>\$137,370<br>\$274,740<br>\$32,969<br>\$32,969<br>\$307,709<br>\$76,927<br>\$61,542<br>\$138,469 | \$345,922<br>\$113,204<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$345,922<br>\$113,204<br>\$11,433,648<br>\$11,433,648<br>\$11,433,648<br>\$11,433,648<br>\$11,469,280<br>\$13,713,280<br>\$13,713,283<br>\$1,673,021<br>\$1,371,328<br>\$3,044,349      | \$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br>\$683,602<br>\$73,032<br>\$73,032<br>\$75,663<br>\$113,495<br>\$75,663<br>\$189,159                          | \$128,383<br>\$256,766<br>\$30,812<br>\$30,812<br>\$287,578<br>\$71,895<br>\$57,516<br>\$129,410              | \$345,922<br>\$113,204<br>\$114,33,648<br>Note: Make sure th<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0<br>\$0<br>\$0<br>ere are no blank<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                    |
| Bonds Subtotal OM&M Maintenance Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above su topics) Subtotal Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure SubTotal SUBTOTAL COST OF ELEMENT Contingencies Scope (10 to 25%) Bid (10 to 20%)                           | excluding disposal cost       Contractor's performance and payment bonds (19       Remedy Implementation       MNR modeling       Public outreach, support seafood consumption ad<br>reporting, agency review       b       Laboratory + Field Activities + Reporting/Deliveral       Assume 1% of Design+Implementation+OM&M       Assume 1% of Design+Implementation+OM&M       Assume 1% of Design+Implementation       Assume 1% of Design+Implementation       Assume 1% of Design+Implementation       Essume 12% of OM&M       Assume 12% of Closure                                                                   | lementation (%) applied to (%) appli | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>12%                           | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC<br>UC and LOE<br>LOE<br>LOE<br>LOE<br>LOE<br>Attached Work She<br>V or UC and LOE<br>LS, % or V           | \$345,922<br>\$113,204                                                                                                                                                                     | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0        | \$345,922<br>\$113,204<br>\$11,433,648<br>\$11,433,648<br>\$1,469,280<br>\$1,469,280<br>\$13,713,283<br>\$1,855,167<br>\$1,520,628                                               | \$0<br>\$0<br>\$0<br>\$0<br>\$55,000<br>\$1,078,000<br>\$1,078,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,225,126<br>\$1,79,160<br>\$1,672,160<br>\$2,55,000<br>\$1,672,160<br>\$2,55,000<br>\$1,672,160<br>\$1,672,160<br>\$2,55,000<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$2,55,000<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$1,672,160<br>\$2,55,000<br>\$1,672,160<br>\$1,672,160<br>\$2,55,000<br>\$1,672,160<br>\$1,672,160<br>\$2,55,000<br>\$1,672,160<br>\$2,55,000<br>\$1,672,160<br>\$2,55,000<br>\$1,672,160<br>\$2,55,000<br>\$1,672,160<br>\$2,55,000<br>\$1,672,160<br>\$2,55,000<br>\$1,672,160<br>\$2,50,000<br>\$1,672,160<br>\$2,50,000<br>\$1,672,160<br>\$2,50,000<br>\$1,672,160<br>\$2,50,000<br>\$1,672,160<br>\$2,50,000<br>\$1,672,160<br>\$2,50,000<br>\$1,672,160<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,000<br>\$2,50,0000<br>\$2,50,0000<br>\$2,50,0000<br>\$2,50,0000<br>\$2,50,0000<br>\$2,50,0000<br>\$2,50,0000<br>\$2,50,0000<br>\$2,50,0000<br>\$2,50,0000<br>\$2,50,0000<br>\$2,50,0000<br>\$2,50,0000<br>\$2,50,000 | \$137,370<br>\$137,370<br>\$274,740<br>\$32,969<br>\$32,969<br>\$307,709<br>\$76,927<br>\$61,542<br>\$138,469 | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br>\$683,602<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$138,8410<br>\$1,504,507 | \$345,922<br>\$113,204<br>\$11,433,648<br>\$11,433,648<br>\$11,433,648<br>\$11,433,648<br>\$11,469,280<br>\$13,713,280<br>\$13,713,283<br>\$11,673,021<br>\$13,71,328                    | \$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br>\$683,602<br>\$73,032<br>\$73,032<br>\$75,6635                                                               | \$128,383<br>\$256,766<br>\$30,812<br>\$30,812<br>\$287,578<br>\$71,895<br>\$57,516                           | \$345,922<br>\$113,204<br>\$114,33,648<br>Note: Make sure th<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0<br>\$0<br>\$0<br>ere are no blank<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                    |
| Bonds Subtotal OM&M Maintenance Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above su topics) Subtotal Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT Contingencies Scope (10 to 25%) Bid (10 to 25%) Subtotal                  | excluding disposal cost       Contractor's performance and payment bonds (19       Remedy Implementation       MNR modeling       Public outreach, support seafood consumption ad<br>reporting, agency review       b       Laboratory + Field Activities + Reporting/Deliveral       Assume 1% of Design+Implementation+OM&M       Assume 1% of Design+Implementation+OM&M       Assume 1% of Design+Implementation       Assume 1% of Design+Implementation       Assume 1% of Design+Implementation       Essume 12% of OM&M       Assume 12% of Closure                                                                   | lementation (%) applied to (%) appli | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>12%                           | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC<br>UC and LOE<br>LOE<br>LOE<br>LOE<br>LOE<br>Attached Work She<br>V or UC and LOE<br>LS, % or V           | \$345,922<br>\$113,204                                                                                                                                                                     | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0        | \$345,922<br>\$113,204<br>\$11,433,648<br>\$11,433,648<br>\$1,469,280<br>\$1,469,280<br>\$1,469,280<br>\$13,713,283<br>\$1,855,167<br>\$1,520,628<br>\$3,375,795<br>\$17,089,078 | \$0<br>\$0<br>\$0<br>\$0<br>\$55,000<br>\$1,078,000<br>\$1,078,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,279,160<br>\$179,160<br>\$179,160<br>\$179,160<br>\$179,160<br>\$1,672,160<br>\$167,216<br>\$418,040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$137,370<br>\$137,370<br>\$274,740<br>\$32,969<br>\$32,969<br>\$307,709<br>\$76,927<br>\$61,542<br>\$138,469 | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br>\$683,602<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$128,383<br>\$138,8410<br>\$1,504,507 | \$345,922<br>\$113,204<br>\$11,433,648<br>\$11,433,648<br>\$11,433,648<br>\$11,433,648<br>\$11,469,280<br>\$13,713,280<br>\$13,713,283<br>\$1,673,021<br>\$1,371,328<br>\$3,044,349      | \$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br>\$683,602<br>\$73,032<br>\$73,032<br>\$75,663<br>\$113,495<br>\$75,663<br>\$189,159                          | \$128,383<br>\$256,766<br>\$30,812<br>\$30,812<br>\$287,578<br>\$71,895<br>\$57,516<br>\$129,410              | \$345,922<br>\$113,204<br>\$114,33,648<br>Note: Make sure th<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0<br>\$0<br>\$0<br>ere are no blank<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                    |
| Bonds Subtotal OM&M Maintenance Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above su topics) Subtotal Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT Contingencies Scope (10 to 25%) Bid (10 to 25%) Subtotal                  | excluding disposal cost         Contractor's performance and payment bonds (19         Remedy Implementation         MNR modeling         MNR modeling         Public outreach, support seafood consumption ad reporting, acency review         b         Laboratory + Field Activities + Reporting/Deliveral         Assume 1% of Design+Implementation+OM&M         Assume 1% of Design+Implementation+OM&M         Assume 12% of Design+Implementation         Assume 12% of Closure         ESTIMATES         Implementation       OM&M         12.2%       15%         10%       10%                                     | lementation (%) applied to (%) appli | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2%<br>12% | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC<br>UC and LOE<br>LOE<br>LOE<br>LOE<br>LOE<br>Attached Work She<br>V or UC and LOE<br>LS, % or V           | \$345,922<br>\$113,204                                                                                                                                                                     | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0        | \$345,922<br>\$113,204<br>\$11,433,648<br>\$11,433,648<br>\$1,469,280<br>\$1,469,280<br>\$1,469,280<br>\$13,713,283<br>\$1,855,167<br>\$1,520,628<br>\$3,375,795<br>\$17,089,078 | \$0<br>\$0<br>\$0<br>\$0<br>\$55,000<br>\$360,000<br>\$1,078,000<br>\$1,078,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,672,160<br>\$250,824<br>\$167,216<br>\$418,040<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$                         | \$137,370<br>\$137,370<br>\$274,740<br>\$32,969<br>\$32,969<br>\$307,709<br>\$76,927<br>\$61,542<br>\$138,469 | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$345,922<br>\$113,204<br>\$11,433,648<br>\$11,433,648<br>\$11,433,648<br>\$11,459,280<br>\$13,713,283<br>\$1,673,021<br>\$1,371,328<br>\$3,044,349<br>\$16,757,632<br>For use in the CD | \$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br>\$683,602<br>\$73,032<br>\$73,032<br>\$73,032<br>\$75,663<br>\$113,495<br>\$75,663<br>\$189,159<br>\$945,793 | \$128,383<br>\$256,766<br>\$30,812<br>\$30,812<br>\$287,578<br>\$71,895<br>\$57,516<br>\$129,410<br>\$416,989 | \$345,922<br>\$113,204<br>\$11,433,648<br>Note: Make sure th<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$100,000<br>\$11,400,000<br>\$11,400,000<br>\$11,400,000<br>\$0<br>\$0<br>\$11,400,000<br>\$0<br>\$0<br>\$0<br>\$11,400,000<br>\$11,400,000<br>\$11,400,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$0<br>\$0<br>\$0<br>ere are no blank<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                    |
| Bonds Subtotal OM&M Maintenance Laboratory Field Activities Materials, Fuels and Treatment Media Reporting/Deliverables Modeling Institutional Controls Total OM&M Costs (Alternative to above su topics) Subtotal Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT Contingencies Scope (10 to 25%) Bid (10 to 20%) Subtotal GRAND TOTAL COST | excluding disposal cost         Contractor's performance and payment bonds (19         Remedy Implementation         MNR modeling         Public outreach, support seafood consumption ad reporting, agency review         b         Laboratory + Field Activities + Reporting/Deliveral         Assume 1% of Design+Implementation+OM&M         Assume 1% of Design+Implementation+OM&M         Assume 12% of Design+Implementation         Assume 12% of Closure         ESTIMATES         Implementation         OM&M         12.2%       15%         10%       10%                                                        | lementation (%) applied to (%) appli | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2%<br>12%<br>12%    | LS or %<br>LS or %<br>Annual<br>%, V, or LOE<br>UC<br>UC and LOE<br>LOE<br>LOE<br>LOE<br>V or UC and LOE<br>LS, % or V<br>%<br>%<br>%<br>NOTES:              | \$345,622<br>\$113,204<br>\$113,204<br>eet<br>\$137,370<br>\$137,370<br>\$137,370<br>Of Remedial Design &<br>Remedy<br>Implementation<br>Of OM&M<br>Of Closure<br>they will occur, costs n | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                             | \$345,922<br>\$113,204<br>\$11,433,648<br>\$11,433,648<br>\$1,469,280<br>\$1,469,280<br>\$1,469,280<br>\$13,713,283<br>\$1,855,167<br>\$1,520,628<br>\$3,375,795<br>\$17,089,078 | \$0<br>\$0<br>\$0<br>\$0<br>\$55,000<br>\$1,078,000<br>\$1,078,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,493,000<br>\$1,672,160<br>\$1,672,160<br>\$255,216<br>\$418,040<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,090,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200<br>\$2,000,200,200<br>\$2,000,200,200<br>\$2,000,200,200<br>\$2,000,200<br>\$2,000,20                               | \$137,370<br>\$137,370<br>\$274,740<br>\$32,969<br>\$32,969<br>\$307,709<br>\$76,927<br>\$61,542<br>\$138,469 | \$345,922<br>\$113,204<br>\$11,433,648<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$345,922<br>\$113,204<br>\$11,433,648<br>\$11,433,648<br>\$1,469,280<br>\$1,469,280<br>\$13,713,283<br>\$1,673,021<br>\$1,371,328<br>\$3,044,349<br>\$16,757,632                        | \$0<br>\$0<br>\$0<br>\$17,512<br>\$200,843<br>\$465,247<br>\$683,602<br>\$73,032<br>\$73,032<br>\$73,032<br>\$75,663<br>\$113,495<br>\$75,663<br>\$189,159<br>\$945,793 | \$128,383<br>\$256,766<br>\$30,812<br>\$30,812<br>\$287,578<br>\$71,895<br>\$57,516<br>\$129,410              | \$345,922           \$113,204           \$114,33,648           Note: Make sure th           \$0           \$0           \$0           \$0           \$0           \$0           \$0           \$0           \$0           \$0           \$0           \$0           \$10,000           \$10,000           \$177,000           Note: Make sure th           \$0           \$0           \$11,469,280,36           \$21,240           \$0           \$14,391,523           \$1,490,520           \$13,911,523           \$1,490,520           \$13,911,523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$0<br>\$0<br>\$0<br>ere are no blank<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                    |

3 Formulas are set up to calculate project management costs during implementation and OM&M as a percentage of these latter costs. In the event annua and have been separately estimated, they should be entered directly into the appropriate cells for each year.

# TABLE E-9 **COST ESTIMATES FOR ALTERNATIVE 4H**

|                                                                                                     | SITE: Lockheed Martin - Middle River Complex                                                                                                                                                                                                                                                  | X TABLE E-9.                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |                                                                           |                                                                                               |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                             |                                                                                               |                                                                                               |                                                                                               |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                     |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |                                                                           |                                                                                               |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                             |                                                                                               |                                                                                               |                                                                                               |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A                                                                                                   | В                                                                                                                                                                                                                                                                                             | C D E                                                                                                                                                                                                                                                                                                                                                                                                                                       | v                                                                                                                | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | x                                                                                                     | Y                                                                         | Z                                                                                             | AA                                                                                                  | AB AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AE AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AG                                                                                                                                      | AH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AJ                                                                                            | AK                                                                                                                                                          | AL                                                                                            | AM                                                                                            | AN                                                                                            | AO AP                                                                                         | AQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4                                                                                                   |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |                                                                           |                                                                                               |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                             |                                                                                               |                                                                                               |                                                                                               |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                     | Element                                                                                                                                                                                                                                                                                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                       |                                                                           |                                                                                               |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                               |                                                                                                                                                             |                                                                                               |                                                                                               |                                                                                               |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5                                                                                                   |                                                                                                                                                                                                                                                                                               | (Explain Element as necessary)                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                     | 8                                                                         | 9                                                                                             | 10                                                                                                  | 11 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                      | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19                                                                                            | 20                                                                                                                                                          | 21                                                                                            | 22                                                                                            | 23                                                                                            | 24 25                                                                                         | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ĵ                                                                                                   |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                       | , i i i i i i i i i i i i i i i i i i i                                   | 5                                                                                             | 10                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13                                                                                            | 20                                                                                                                                                          |                                                                                               |                                                                                               | 23                                                                                            | 24 23                                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6                                                                                                   | Remedial Design                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                             | uld be filled                                                                                                    | with equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s linking to,                                                                                         | and distributi                                                            | ng the approp                                                                                 | riate total cos                                                                                     | sts in column I, or wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | h zeros.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                             |                                                                                               |                                                                                               |                                                                                               |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7                                                                                                   | ۵.<br>A                                                                                                                                                                                                                                                                                       | n/a<br>Additional data collection, pre-design survey - 1% of Remedy                                                                                                                                                                                                                                                                                                                                                                         | \$0                                                                                                              | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                   | \$0                                                                       | \$0                                                                                           | \$0                                                                                                 | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0                                                                                                                                     | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0                                                                                           | \$0                                                                                                                                                         | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>s c</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                                                                                                   | Field Investigation In                                                                                                                                                                                                                                                                        | mplementation<br>/INR modeling                                                                                                                                                                                                                                                                                                                                                                                                              | \$0                                                                                                              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                                                   | \$0                                                                       | \$0                                                                                           | \$0                                                                                                 | \$0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0<br>\$0                                                                                                                              | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0                                                                                           | \$0                                                                                                                                                         | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9<br>10                                                                                             |                                                                                                                                                                                                                                                                                               | Remedial Design submittal - 6% of Remedy Implementation                                                                                                                                                                                                                                                                                                                                                                                     | \$0<br>\$0                                                                                                       | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$0<br>\$0                                                                                            | \$0<br>\$0                                                                | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                          | \$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0<br>\$0                                                                                                                              | \$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - +-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                                                                                  | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                    | \$0                                                                                           | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0 \$0<br>\$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12                                                                                                  | Subtotal                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0                                                                                                              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                                                   | \$0                                                                       | \$0                                                                                           | \$0                                                                                                 | ţ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0                                                                                                                                     | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0                                                                                           | \$0                                                                                                                                                         | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13<br>14                                                                                            | Remedy Implementation Mobilization                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                             | uld be filled                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s linking to,<br>\$0                                                                                  | and distributi                                                            | ng the approp                                                                                 | riate total cos<br>\$0                                                                              | sts in column I, or wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | h zeros.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0                                                                                                                                     | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0                                                                                           | \$0                                                                                                                                                         | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14                                                                                                  | Contractor Submittele and Permite                                                                                                                                                                                                                                                             | Contractor submittals, construction permits, as-builts (1.5%)                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ψυ                                                                                                    | 40                                                                        | 40                                                                                            |                                                                                                     | φ <b>0</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | φ0<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0                                                                                                                                     | φ <b>υ</b> φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ψυ                                                                                            | ψŪ                                                                                                                                                          | \$U                                                                                           | φU                                                                                            | φυ                                                                                            |                                                                                               | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | φ0 φ0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 15                                                                                                  | Implementation ap                                                                                                                                                                                                                                                                             | applied to Remedy Implementation                                                                                                                                                                                                                                                                                                                                                                                                            | \$0<br>\$0                                                                                                       | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$0<br>\$0                                                                                            | \$0<br>\$0                                                                | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                          | \$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0<br>\$0                                                                                                                              | \$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                                                                                  | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                     |                                                                                                                                                                                                                                                                                               | Cost of material removal by mechanical dredging                                                                                                                                                                                                                                                                                                                                                                                             | \$0                                                                                                              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                                                   | \$0                                                                       | \$0                                                                                           | \$0                                                                                                 | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0                                                                                                                                     | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0                                                                                           | \$0                                                                                                                                                         | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                     | Sediments                                                                                                                                                                                                                                                                                     | Cost of material transport                                                                                                                                                                                                                                                                                                                                                                                                                  | \$0                                                                                                              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                                                   | \$0                                                                       | \$0                                                                                           | \$0                                                                                                 | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0                                                                                                                                     | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0                                                                                           | \$0                                                                                                                                                         | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                     | -                                                                                                                                                                                                                                                                                             | Estimate per day<br>Estimate to setup dewatering/transloading area                                                                                                                                                                                                                                                                                                                                                                          | \$0<br>\$0                                                                                                       | ) \$0<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0                                                                                                   | \$0                                                                       | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                          | \$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0                                                                                                                                     | \$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0                                                                                           | \$0<br>\$0                                                                                                                                                  | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                    | \$0                                                                                           | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0 \$0<br>\$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                     | Handling and Transport to Subtitle D                                                                                                                                                                                                                                                          | Assume 1.3 tn/cy - quote by WM                                                                                                                                                                                                                                                                                                                                                                                                              | \$0                                                                                                              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                                                   | \$0                                                                       | \$0<br>\$0                                                                                    | \$0                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0                                                                                           | ψŬ                                                                                                                                                          | \$0                                                                                           | ψũ                                                                                            | \$0                                                                                           | \$0                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                     | Landfill                                                                                                                                                                                                                                                                                      | Assume 1.3 tn/cy -quote by WM                                                                                                                                                                                                                                                                                                                                                                                                               | \$0<br>\$0                                                                                                       | \$°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0<br>\$0                                                                                            | \$0<br>\$0                                                                | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                          | \$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60 \$0<br>60 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0<br>\$0                                                                                                                              | \$0 ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                                                                                  | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0 \$0<br>\$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                     | TSCA Waste Handling and Transport to<br>Hazardous Waste Landfill                                                                                                                                                                                                                              | Assumes 1.3 tn/cy -quote by phone                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ¢0                                                                                                    | ¢0                                                                        | ¢0                                                                                            | ¢0                                                                                                  | ¢0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ¢0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ¢0                                                                                                                                      | ¢0 ¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¢0                                                                                            | ¢0                                                                                                                                                          | ¢o                                                                                            | ¢0                                                                                            | ¢0                                                                                            | ¢0                                                                                            | ¢0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                     |                                                                                                                                                                                                                                                                                               | Assume 1.3 tn/cy -quote by phone                                                                                                                                                                                                                                                                                                                                                                                                            | \$0                                                                                                              | 5 \$0<br>D \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$0<br>\$0                                                                                            | \$0                                                                       | \$0                                                                                           | \$0                                                                                                 | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60 \$0<br>60 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0                                                                                                                                     | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0                                                                                           | \$0                                                                                                                                                         | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | φ0<br>Φ0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50 5<br>50 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                     |                                                                                                                                                                                                                                                                                               | Cost of backfill material purchase, delivery and placement at site                                                                                                                                                                                                                                                                                                                                                                          | \$0                                                                                                              | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                                                   | \$0                                                                       | \$0                                                                                           | \$0                                                                                                 | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0                                                                                           | \$0                                                                                                                                                         | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                     |                                                                                                                                                                                                                                                                                               | Transport from quarry to site Procurement, delivery, placement                                                                                                                                                                                                                                                                                                                                                                              | \$0<br>\$0                                                                                                       | D \$0<br>D \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$0<br>\$0                                                                                            | \$0<br>\$0                                                                | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                          | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60 \$0<br>60 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0<br>\$0                                                                                                                              | \$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                                                                                  | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0 \$0<br>\$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                     |                                                                                                                                                                                                                                                                                               | Procurement, delivery, placement                                                                                                                                                                                                                                                                                                                                                                                                            | \$0                                                                                                              | φ0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$0                                                                                                   | \$0                                                                       | \$0                                                                                           | \$0                                                                                                 | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0                                                                                           | \$0                                                                                                                                                         | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                     | Ve                                                                                                                                                                                                                                                                                            | Transport to site<br>/erification sampling, bathymetric surveys, water quality                                                                                                                                                                                                                                                                                                                                                              | \$0                                                                                                              | D \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                   | \$0                                                                       | \$0                                                                                           | \$0                                                                                                 | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0                                                                                                                                     | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0                                                                                           | \$0                                                                                                                                                         | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                     | Construction QA/QC m                                                                                                                                                                                                                                                                          | nonitoring<br>Procurement, delivery, placement (2' T x 3800' L x 10' W)                                                                                                                                                                                                                                                                                                                                                                     | \$0                                                                                                              | D \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                   | \$0                                                                       | \$0                                                                                           | \$0                                                                                                 | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0                                                                                                                                     | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | φ0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0                                                                                           | \$0<br>\$0                                                                                                                                                  | \$0                                                                                           | \$0<br>\$0                                                                                    | \$0                                                                                           | \$0                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0 \$0<br>\$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                     |                                                                                                                                                                                                                                                                                               | Procurement, delivery, placement (21 x 3000 L x 10 W)                                                                                                                                                                                                                                                                                                                                                                                       | \$0                                                                                                              | ) \$0<br>0 ¢0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0                                                                                                   | \$0                                                                       | \$0                                                                                           | \$0                                                                                                 | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0                                                                                                                                     | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                                           | \$0                                                                                                                                                         | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0 \$0<br>\$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                     | Salaa Tay                                                                                                                                                                                                                                                                                     | Maryland sales tax (6%) applied to Remedy Implementation                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  | o so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0<br>\$0                                                                                            | \$0<br>\$0                                                                | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                          | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | so so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0<br>\$0                                                                                                                              | \$0 4<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                                                                                  | \$0                                                                                           | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                    | \$0<br>                                                                                       | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0 \$0<br>\$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                     | Bonds Ci                                                                                                                                                                                                                                                                                      | excluding disposal cost<br>Contractor's performance and payment bonds (1%) applied to                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  | o so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ېن<br>د م                                                                                             | \$0                                                                       | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                          | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | so so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30<br>¢0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0<br>\$0                                                                                                                              | \$0 4<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               | \$0<br>\$0                                                                                                                                                  | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                    | \$0                                                                                           | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0 \$0<br>\$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 19                                                                                                  | Subtotal                                                                                                                                                                                                                                                                                      | Remedy Implementation                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$0<br>\$0                                                                                            |                                                                           | \$0                                                                                           | \$0                                                                                                 | \$0 \$(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0                                                                                                                                     | \$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0                                                                                           | \$0<br>\$0                                                                                                                                                  | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           |                                                                                               | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20                                                                                                  | OM&M                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                             | uld be filled                                                                                                    | with \$ 0's, nu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mbers or eq                                                                                           | uations.                                                                  |                                                                                               |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                             |                                                                                               |                                                                                               |                                                                                               |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 21<br>22                                                                                            | Maintenance<br>Laboratory                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0<br>\$0                                                                                                       | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$0<br>\$0                                                                                            | \$0<br>\$0                                                                | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                          | \$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0<br>\$0                                                                                                                              | \$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                                                                                  | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0 \$0<br>\$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 23                                                                                                  | Field Activities                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$0                                                                                                   |                                                                           | \$0                                                                                           | \$0                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                               | \$0                                                                                                                                                         | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 24<br>25                                                                                            | Materials, Fuels and Treatment Media<br>Reporting/Deliverables                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0<br>\$0                                                                                                       | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$0<br>\$0                                                                                            | \$0<br>\$0                                                                | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                          | \$0 5<br>\$0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | i0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¢0                                                                                                                                      | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                             | \$0                                                                                           | \$0                                                                                           |                                                                                               |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 26                                                                                                  | Modeling M                                                                                                                                                                                                                                                                                    | /NR modeling                                                                                                                                                                                                                                                                                                                                                                                                                                | \$5,000                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$0<br>\$0                                                                                            | \$0                                                                       |                                                                                               | ΨU                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0                                                                                                                                     | \$0 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                                                                                  | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                           | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                     | Institutional Controls                                                                                                                                                                                                                                                                        | Public outreach, support seafood consumption advisories                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       | \$0                                                                       | \$0                                                                                           | \$5,000                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i0 \$0<br>i0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0<br>\$0<br>\$5,000                                                                                                                   | \$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0<br>\$0<br>\$0                                                                             | \$0<br>\$0<br>\$5,000                                                                                                                                       | \$0<br>\$0                                                                                    | \$0<br>\$0                                                                                    | \$0<br>\$0<br>\$0                                                                             | \$0                                                                                           | \$0<br>\$0<br>5,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0 \$0<br>\$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 27                                                                                                  | Tatal OMOM Casta (Alternative to allow such                                                                                                                                                                                                                                                   | eporting, agency review                                                                                                                                                                                                                                                                                                                                                                                                                     | \$20,000                                                                                                         | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$20,000                                                                                              | \$0                                                                       | \$0<br>\$0                                                                                    | \$5,000<br>\$20,000                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>*</b> *                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                               | \$0                                                                                                                                                         | • •                                                                                           |                                                                                               | ÷-                                                                                            | \$0                                                                                           | 5,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                     | topics)                                                                                                                                                                                                                                                                                       | eporting, agency review<br>aboratory + Field Activities + Reporting/Deliverables                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       | \$0                                                                       | \$0<br>\$0<br>\$0                                                                             | \$20,000                                                                                            | \$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | io \$0<br>io \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$5,000<br>20,000                                                                                                                       | \$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               | \$0<br>\$5,000<br>\$20,000                                                                                                                                  | • •                                                                                           |                                                                                               | ÷-                                                                                            | \$0<br>\$0 \$5<br>\$0 \$20                                                                    | 5,000<br>0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0 \$0<br>\$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60 \$<br>60 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 28                                                                                                  | topics)                                                                                                                                                                                                                                                                                       | eporting, agency review<br>.aboratory + Field Activities + Reporting/Deliverables                                                                                                                                                                                                                                                                                                                                                           | \$20,000<br>\$77,000<br><b>\$102,000</b>                                                                         | D \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$20,000<br>\$77,000<br><b>\$97,000</b>                                                               | \$0<br>\$0                                                                | \$0<br>\$0<br>\$0<br><b>\$0</b>                                                               |                                                                                                     | \$0 99<br>\$0 99<br>\$0 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0 \$<br>\$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$5,000                                                                                                                                 | \$0 \$<br>\$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                               | \$0<br>\$5,000                                                                                                                                              | • •                                                                                           |                                                                                               | ÷-                                                                                            | \$0<br>\$0<br>\$0<br>\$5                                                                      | 5,000<br>0,000<br>7,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0         \$0           \$0         \$0           \$0         \$0           \$0         \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60 \$<br>60 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 28<br>29                                                                                            | Subtotal<br>Project Closure                                                                                                                                                                                                                                                                   | .aboratory + Field Activities + Reporting/Deliverables                                                                                                                                                                                                                                                                                                                                                                                      | \$77,000<br><b>\$102,000</b>                                                                                     | \$0<br>\$0<br>\$0<br>with \$ 0's, nu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$77,000<br><b>\$97,000</b><br>mbers or eq                                                            | \$0<br>\$0<br><b>\$0</b><br>uations.                                      | \$0<br>\$0<br><b>\$0</b>                                                                      | \$20,000<br>\$77,000<br><b>\$102,000</b>                                                            | \$0 \$<br>\$0 \$<br>\$0 \$<br><b>\$0</b> \$<br><b>\$0</b> \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0 \$<br>\$0 \$<br>\$0 \$<br>\$0 \$<br>\$0 \$<br><b>\$0</b> \$1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$5,000<br>20,000<br>77,000<br><b>02,000</b>                                                                                            | \$0 \$<br>\$0 \$<br>\$0 \$<br>\$0 \$<br><b>\$0</b> \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b>                                                        | \$0<br>\$5,000<br>\$20,000<br>\$77,000<br>\$102,000                                                                                                         | \$0<br>\$0<br>\$0<br><b>\$0</b>                                                               | \$0<br>\$0<br>\$0<br><b>\$0</b>                                                               | ÷-                                                                                            | \$0<br>\$0 \$20<br>\$0 \$20<br>\$0 \$77<br><b>\$0 \$10</b> 2                                  | 0,000<br>7,000<br>2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \$0 \$0<br>\$0 \$0<br>\$0 \$0<br>\$0 \$0<br>\$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 \$<br>0 \$<br>0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 28                                                                                                  | Subtotal Project Closure Assessments As                                                                                                                                                                                                                                                       | aboratory + Field Activities + Reporting/Deliverables                                                                                                                                                                                                                                                                                                                                                                                       | \$77,000<br><b>\$102,000</b>                                                                                     | 0 \$0<br>0 <b>\$0</b><br>with <b>\$ 0's, nu</b><br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$77,000<br><b>\$97,000</b>                                                                           | \$0<br>\$0<br>\$0<br>uations.<br>\$0                                      | \$0<br>\$0                                                                                    | \$20,000<br>\$77,000                                                                                | \$0 \$<br>\$0 \$0 \$<br>\$0 \$<br>\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$                                                                                                                                                                                                                                                                                                                                                                           | 0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0 \$<br>\$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$5,000<br>20,000<br>77,000                                                                                                             | \$0 \$<br>\$0 \$<br>\$0 \$<br><b>\$0 \$</b><br><b>\$0 \$</b><br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                        | \$0<br>\$5,000<br>\$20,000<br>\$77,000                                                                                                                      | \$0<br>\$0<br>\$0                                                                             | \$0<br>\$0<br>\$0                                                                             | ÷-                                                                                            | \$0<br>\$0 \$5<br>\$0 \$20<br>\$0 \$77                                                        | \$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000<br>\$000 | \$0 \$0<br>\$0 \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0\$0\$0\$0\$0\$0\$0\$0\$0\$0\$0 | 0 \$<br>0 \$<br>0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 28<br>29<br>30<br>31<br>32                                                                          | Subtotal Project Closure Assessments Decommissioning - Remedy Completion As Subtotal                                                                                                                                                                                                          | aboratory + Field Activities + Reporting/Deliverables                                                                                                                                                                                                                                                                                                                                                                                       | \$77,000<br><b>\$102,000</b><br>uld be filled<br>\$0                                                             | 0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$77,000<br><b>\$97,000</b><br>mbers or eq<br>\$0<br>\$0                                              | \$0<br>\$0<br>\$0<br>uations.<br>\$0<br>\$0                               | \$0<br>\$0<br><b>\$0</b><br>\$0                                                               | \$20,000<br>\$77,000<br><b>\$102,000</b><br>\$0                                                     | \$0 \$<br>\$0 \$0 \$<br>\$0 \$<br>\$0 \$<br>\$0 \$0 \$0 \$<br>\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$                                                                                                                                                                                                                                                                                                                                               | 0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0 \$<br>\$0 \$<br>\$0 \$<br>\$0 \$<br>\$0 \$10<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$5,000<br>20,000<br>77,000<br><b>02,000</b><br>\$0                                                                                     | \$0 \$<br>\$0 \$<br>\$0 \$<br><b>\$0 \$</b><br><b>\$0 \$</b><br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                          | \$0<br>\$5,000<br>\$20,000<br>\$77,000<br>\$102,000<br>\$0<br>\$0                                                                                           | \$0<br>\$0<br>\$0<br><b>\$0</b><br>\$0                                                        | \$0<br>\$0<br>\$0<br><b>\$0</b><br>\$0                                                        | \$0<br>\$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0                                          | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$102<br>\$0<br>\$0                                 | \$000<br>\$000<br>\$000<br>\$00<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$0         \$c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 28<br>29<br>30<br>31<br>32                                                                          | Subtotal Project Closure Assessments Decommissioning - Remedy Completion Assessments                                                                                                                                                                                                          | aboratory + Field Activities + Reporting/Deliverables                                                                                                                                                                                                                                                                                                                                                                                       | \$77,000<br><b>\$102,000</b><br>uld be filled<br>\$0<br>\$0                                                      | 0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$77,000<br><b>\$97,000</b><br>mbers or eq<br>\$0<br>\$0                                              | \$0<br>\$0<br>\$0<br>uations.<br>\$0<br>\$0                               | \$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0                                                 | \$20,000<br>\$77,000<br><b>\$102,000</b><br>\$0<br>\$0                                              | \$0 \$<br>\$0 \$0 \$<br>\$0 \$<br>\$0 \$<br>\$0 \$0 \$0 \$<br>\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$                                                                                                                                                                                                                                                                                                                                               | 0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0 \$<br>\$0 \$<br>\$0 \$<br>\$0 \$<br>\$0 \$<br>\$0 \$1<br>\$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$5,000<br>20,000<br>77,000<br><b>02,000</b><br>\$0<br>\$0                                                                              | \$0 \$<br>\$0 \$0 \$<br>\$0 \$0 \$<br>\$0 \$<br>\$0 \$0 \$0 \$<br>\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$ | 0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                          | \$0<br>\$5,000<br>\$20,000<br>\$77,000<br>\$102,000<br>\$0<br>\$0                                                                                           | \$0<br>\$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0                                          | \$0<br>\$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0                                          | \$0<br>\$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0                                          | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$102<br>\$0<br>\$0<br>\$0<br>\$0                   | \$000<br>\$000<br>\$000<br>\$00<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$0         \$c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 \$<br>0 \$<br>0 \$<br>0 \$<br>0 \$<br>0 \$<br>0 \$<br>0 \$<br>0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 28<br>29<br>30<br>31<br>32                                                                          | Subtotal Project Closure Assessments Decommissioning - Remedy Completion Assubtotal Project Management <sup>3</sup>                                                                                                                                                                           | aboratory + Field Activities + Reporting/Deliverables                                                                                                                                                                                                                                                                                                                                                                                       | \$77,000<br><b>\$102,000</b><br>uld be filled<br>\$0<br>\$0                                                      | 0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$77,000<br><b>\$97,000</b><br>mbers or eq<br>\$0<br>\$0                                              | \$0<br>\$0<br>\$0<br>uations.<br>\$0<br>\$0                               | \$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0                                                 | \$20,000<br>\$77,000<br><b>\$102,000</b><br>\$0<br>\$0                                              | \$0 \$<br>\$0 \$0 \$<br>\$0 \$<br>\$0 \$<br>\$0 \$0 \$0 \$<br>\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$                                                                                                                                                                                                                                                                                                                                               | 0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$0 \$<br>\$0 \$<br>\$0 \$<br>\$0 \$<br>\$0 \$<br>\$0 \$1<br>\$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$5,000<br>20,000<br>77,000<br><b>02,000</b><br>\$0<br>\$0                                                                              | \$0 \$<br>\$0 \$0 \$<br>\$0 \$0 \$<br>\$0 \$<br>\$0 \$0 \$0 \$<br>\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$ | 0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                          | \$0<br>\$5,000<br>\$20,000<br>\$77,000<br>\$102,000<br>\$0<br>\$0                                                                                           | \$0<br>\$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0                                          | \$0<br>\$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0                                          | \$0<br>\$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0                                          | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$102<br>\$0<br>\$0<br>\$0<br>\$0                   | \$000<br>\$000<br>\$000<br>\$00<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$0         \$c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 \$<br>0 \$<br>0 \$<br>0 \$<br>0 \$<br>0 \$<br>0 \$<br>0 \$<br>0 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 28<br>29<br>30<br>31<br>32<br>33                                                                    | Subtotal       Project Closure       Assessments     Assessments       Decommissioning - Remedy Completion     Assessments       Subtotal     Project Management <sup>3</sup> During Implementation     Assessments                                                                           | Aboratory + Field Activities + Reporting/Deliverables                                                                                                                                                                                                                                                                                                                                                                                       | \$77,000<br>\$102,000<br>ould be filled<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                       | 0 \$0<br>9 \$0<br>with \$ 0's, nu<br>0 \$0<br>0 \$0<br>0 \$0<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$77,000<br>\$97,000<br>mbers or eq<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                            | \$20,000<br>\$77,000<br>\$102,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                | \$0 \$<br>\$0 \$0 \$<br>\$0 \$<br>\$0 \$<br>\$0 \$0 \$0 \$<br>\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$                                                                                                                                                                                                                                                                                                                                               | 0 \$0<br>0 \$0 | \$0 \$<br>\$0 \$<br>\$0 \$<br>\$0 \$<br>\$0 \$11<br>\$0 \$<br>\$0 \$0 \$<br>\$0 \$0 \$<br>\$0 \$<br>\$0 \$0 \$0 \$<br>\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$ | \$5.000<br>20,000<br>77,000<br>02,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                | \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 \$0<br>0 \$0                                                                                                                          | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0              | \$0<br>\$5,000<br>\$20,000<br>\$77,000<br>\$102,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                     | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                     | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                   | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                     | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0              | \$000<br>\$000<br>\$000<br>\$000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S0         SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00 \$<br>00 \$ |
| 28<br>29<br>30<br>31<br>32<br>33<br>34                                                              | Subtotal         Project Closure         Assessments       A:         Decommissioning - Remedy Completion       A:         Subtotal                                                                                                                                                           | aboratory + Field Activities + Reporting/Deliverables Assume 1% of Design+Implementation+OM&M Assume 1% of Design+Implementation+OM&M                                                                                                                                                                                                                                                                                                       | \$77,000<br>\$102,000<br>ould be filled<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240<br>\$0 | b \$0<br>b \$0<br>b \$0<br>b \$0<br>b \$0<br>b \$0<br>c \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$77,000<br>\$97,000<br>mbers or eq<br>\$0<br>\$0<br>\$0<br>\$0<br>\$11,640<br>\$0<br>\$11,640<br>\$0 | 50<br>50<br>uations.<br>50<br>50<br>50<br>50<br>50<br>50<br>50            | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0       | \$20,000<br>\$77,000<br>\$102,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0      | \$0 \$<br>\$0 \$0 \$<br>\$0 \$0 \$<br>\$0 \$0 \$0 \$<br>\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$ | 0 \$0<br>0 \$0                                                                                                                                        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$5,000<br>20,000<br>77,000<br>50<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0            | S0         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 \$0<br>0 \$0<br>0<br>0 \$0<br>0 \$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$5,000<br>\$20,000<br>\$102,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$00<br>\$00<br>\$00<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S0         SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00         \$           00         \$           00         \$           00         \$           00         \$           00         \$           00         \$           00         \$           00         \$           00         \$           00         \$           00         \$           00         \$           00         \$           00         \$           00         \$           00         \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>34<br>35                                                  | Subtotal Project Closure Assessments Decommissioning - Remedy Completion Art Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal                                                                                                               | Aboratory + Field Activities + Reporting/Deliverables           Assume 1% of Design+Implementation+OM&M           Assume 1% of Design+Implementation+OM&M           Assume 1% of Design+Implementation           Assume 12% of Design+Implementation           Assume 12% of OM&M           Assume 12% of Closure                                                                                                                           | \$77,000<br>\$102,000<br>uld be filled<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240                       | 5 \$0<br>5 \$0<br>with \$ 0's, nu<br>5 \$0<br>5 \$0 | \$77,000<br>\$97,000<br>mbers or eq<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$11,640<br>\$0<br>\$11,640 | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                  | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$20,000<br>\$77,000<br>\$102,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240 | \$0 \$<br>\$0 \$0 \$<br>\$0 \$0 \$<br>\$0 \$<br>\$0 \$0 \$0 \$<br>\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$ | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                      | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$5,000<br>20,000<br>77,000<br><b>02,000</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | S0         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$5,000<br>\$20,000<br>\$102,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240<br>\$0<br>\$12,240                                | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$00<br>\$00<br>\$00<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S0         SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x0         \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>34<br>35<br>35<br>36                                      | Subtotal Project Closure Assessments Decommissioning - Remedy Completion Project Management <sup>3</sup> During Implementation During OM&M During Closure SUBTOTAL COST OF ELEMENT E3                                                                                                         | Aboratory + Field Activities + Reporting/Deliverables  Assume 1% of Design+Implementation+OM&M  Assume 1% of Design+Implementation  Assume 12% of Design+Implementation  Assume 12% of OM&M  Assume 12% of Closure  STIMATES                                                                                                                                                                                                                | \$77,000<br>\$102,000<br>ould be filled<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240<br>\$0 | 5 \$0<br>5 \$0<br>with \$ 0's, nu<br>5 \$0<br>5 \$0 | \$77,000<br>\$97,000<br>mbers or eq<br>\$0<br>\$0<br>\$0<br>\$0<br>\$11,640<br>\$0<br>\$11,640<br>\$0 | 50<br>50<br>14tions.<br>50<br>50<br>50<br>50<br>50<br>50                  | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$20,000<br>\$77,000<br>\$102,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0      | \$0 \$<br>\$0 \$0 \$<br>\$0 \$0 \$<br>\$0 \$<br>\$0 \$0 \$0 \$<br>\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$ | 0 \$0<br>0 \$0                                                                                                                                        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$5,000<br>20,000<br>77,000<br><b>02,000</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | S0         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$5,000<br>\$20,000<br>\$102,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$00<br>\$00<br>\$00<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S0         SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x0         \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>34<br>35<br>35<br>36<br>37                                | Subtotal Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT ES Contingencies In                                                                      | Aboratory + Field Activities + Reporting/Deliverables           Assume 1% of Design+Implementation+OM&M           Assume 1% of Design+Implementation+OM&M           Assume 12% of Design+Implementation           Assume 12% of Obsign+Implementation           Assume 12% of Obsign+Implementation           Assume 12% of Obsign+Implementation           Assume 12% of Closure           ISTIMATES           Implementation         OM&M | \$77,000<br>\$102,000<br>uld be filled<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240                       | 5 \$0<br>5 \$0<br>with \$ 0's, nu<br>5 \$0<br>5 \$0 | \$77,000<br>\$97,000<br>mbers or eq<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$11,640<br>\$0<br>\$11,640 | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                  | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$20,000<br>\$77,000<br>\$102,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240 | \$0 \$<br>\$0 \$0 \$<br>\$0 \$0 \$<br>\$0 \$<br>\$0 \$0 \$0 \$<br>\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$ | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                      | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$5,000<br>20,000<br>77,000<br><b>02,000</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | S0         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$5,000<br>\$20,000<br>\$102,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240<br>\$0<br>\$12,240                                | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$00<br>\$00<br>\$00<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S0         SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x0         \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>34<br>35<br>35<br>36<br>37<br>38<br>39                    | Subtotal Project Closure Assessments Decommissioning - Remedy Completion Decommissioning - Remedy Completion Decommissioning - Remedy Completion During Implementation During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT ES Contingencies Bid (10 to 20%)    | Aboratory + Field Activities + Reporting/Deliverables           Assume 1% of Design+Implementation+OM&M           Assume 1% of Design+Implementation+OM&M           Assume 12% of Design+Implementation           Assume 12% of Obsign+Implementation           Assume 12% of Obsign+Implementation           Assume 12% of Obsign+Implementation           Assume 12% of Closure           ISTIMATES           Implementation         OM&M | \$77,000<br>\$102,000<br>uld be filled<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240                       | 5 \$0<br>5 \$0<br>with \$ 0's, nu<br>5 \$0<br>5 \$0 | \$77,000<br>\$97,000<br>mbers or eq<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$11,640<br>\$0<br>\$11,640 | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                  | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$20,000<br>\$77,000<br>\$102,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240 | \$0 \$<br>\$0 \$0 \$<br>\$0 \$0 \$<br>\$0 \$<br>\$0 \$0 \$0 \$<br>\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$ | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                      | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$5,000<br>20,000<br>77,000<br><b>02,000</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | S0         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$5,000<br>\$20,000<br>\$102,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240<br>\$0<br>\$12,240                                | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$00<br>\$00<br>\$00<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S0         SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x0         \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>34<br>35<br>35<br>36<br>37<br>38<br>39<br>40              | Subtotal Project Closure Assessments Decommissioning - Remedy Completion Subtotal During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT ES Contingencies II Scope (10 to 25%) Bid (10 to 20%) Subtotal                                                           | Assume 1% of Design+Implementation+OM&M Assume 1% of Design+Implementation+OM&M Assume 12% of Design+Implementation Assume 12% of OM&M Assume 12% of OM&M Assume 12% of Closure STIMATES Implementation 0M&M Closure 12.2% 15% 25%                                                                                                                                                                                                          | \$77,000<br>\$102,000<br>uld be filled<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240                       | 5 \$0<br>5 \$0<br>with \$ 0's, nu<br>5 \$0<br>5 \$0 | \$77,000<br>\$97,000<br>mbers or eq<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$11,640<br>\$0<br>\$11,640 | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                  | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$20,000<br>\$77,000<br>\$102,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240 | \$0 \$<br>\$0 \$0 \$<br>\$0 \$0 \$<br>\$0 \$<br>\$0 \$0 \$0 \$<br>\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$ | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                      | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$5,000<br>20,000<br>77,000<br><b>02,000</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | S0         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$5,000<br>\$20,000<br>\$102,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240<br>\$0<br>\$12,240                                | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$00<br>\$00<br>\$00<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S0         SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x0         \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>34<br>35<br>35<br>36<br>37<br>38<br>39<br>40<br>41        | Subtotal Project Closure Assessments Decommissioning - Remedy Completion Decommissioning - Remedy Completion Decommissioning - Remedy Completion During Implementation During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT ES Contingencies Bid (10 to 20%)    | Assume 1% of Design+Implementation+OM&M Assume 1% of Design+Implementation+OM&M Assume 12% of Design+Implementation Assume 12% of OM&M Assume 12% of OM&M Assume 12% of Closure STIMATES Implementation 0M&M Closure 12.2% 15% 25%                                                                                                                                                                                                          | \$77,000<br>\$102,000<br>uld be filled<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240                       | 5 \$0<br>5 \$0<br>with \$ 0's, nu<br>5 \$0<br>5 \$0 | \$77,000<br>\$97,000<br>mbers or eq<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$11,640<br>\$0<br>\$11,640 | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                  | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$20,000<br>\$77,000<br>\$102,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240 | \$0 \$<br>\$0 \$0 \$<br>\$0 \$0 \$<br>\$0 \$<br>\$0 \$0 \$0 \$<br>\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$ | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                      | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$5,000<br>20,000<br>77,000<br><b>02,000</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | S0         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$5,000<br>\$20,000<br>\$102,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240<br>\$0<br>\$12,240                                | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$00<br>\$00<br>\$00<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S0         SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x0         \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>34<br>35<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42  | Subtotal  Project Closure  Assessments Assessments Decommissioning - Remedy Completion Project Management <sup>3</sup> During Implementation During OM&M Assessments During Closure Assubtotal  Subtotal  Scope (10 to 25%) Bid (10 to 20%)  Subtotal  GRAND TOTAL COST                       | Assume 1% of Design+Implementation+OM&M Assume 1% of Design+Implementation+OM&M Assume 12% of Design+Implementation Assume 12% of OM&M Assume 12% of OM&M Assume 12% of Olosure  STIMATES Implementation 12.2% 15% 25% 10% 10% 20%                                                                                                                                                                                                          | \$77,000<br>\$102,000<br>uld be filled<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240                       | 5 \$0<br>5 \$0<br>with \$ 0's, nu<br>5 \$0<br>5 \$0 | \$77,000<br>\$97,000<br>mbers or eq<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$11,640<br>\$0<br>\$11,640 | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                  | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$20,000<br>\$77,000<br>\$102,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240 | \$0 \$<br>\$0 \$0 \$<br>\$0 \$0 \$<br>\$0 \$<br>\$0 \$0 \$0 \$<br>\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$ | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                      | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$5,000<br>20,000<br>77,000<br><b>02,000</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | S0         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$5,000<br>\$20,000<br>\$102,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240<br>\$0<br>\$12,240                                | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$00<br>\$00<br>\$00<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S0         SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x0         \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>LOE | Subtotal Project Closure Assessments Decommissioning - Remedy Completion Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT ES Contingencies II Scope (10 to 25%) Bid (10 to 20%) Subtotal GRAND TOTAL COST Level Of Effort O | Assume 1% of Design+Implementation+OM&M Assume 1% of Design+Implementation+OM&M Assume 12% of Design+Implementation Assume 12% of OM&M Assume 12% of OM&M Assume 12% of Closure STIMATES Implementation 0M&M Closure 12.2% 15% 25%                                                                                                                                                                                                          | \$77,000<br>\$102,000<br>uld be filled<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240                       | 5 \$0<br>5 \$0<br>with \$ 0's, nu<br>5 \$0<br>5 \$0 | \$77,000<br>\$97,000<br>mbers or eq<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$11,640<br>\$0<br>\$11,640 | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                  | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$20,000<br>\$77,000<br>\$102,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240 | \$0 \$<br>\$0 \$0 \$<br>\$0 \$0 \$<br>\$0 \$<br>\$0 \$0 \$0 \$<br>\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$ | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                      | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$5,000<br>20,000<br>77,000<br><b>02,000</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | S0         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$5,000<br>\$20,000<br>\$102,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$12,240<br>\$0<br>\$12,240<br>\$0<br>\$12,240                                | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$ | \$00<br>\$00<br>\$00<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S0         SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x0         \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |


# TABLE E-10 **COST ESTIMATES FOR ALTERNATIVE 4I**

| ITE: Lockheed Martin - Middle River Comp                                   |                                                                                                                             |                    | ATIVE: 4I <u>. Partial Remova</u> |                           |                              |                            |                         |                       |                            |                                     |                       |                       |                                 | ATE: _November,          |                         |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------|---------------------------|------------------------------|----------------------------|-------------------------|-----------------------|----------------------------|-------------------------------------|-----------------------|-----------------------|---------------------------------|--------------------------|-------------------------|
| EVEL OF ESTIMATE: Screening                                                | or Detailed X                                                                                                               | DISCOUN            | T RATE:                           | 7%                        |                              | ESCALATION RATE            |                         |                       | 1                          |                                     |                       |                       | B                               | ACKUP REFERE             | NCE <sup>2</sup> :      |
| В                                                                          | C D E                                                                                                                       | F                  | G                                 | н                         | I                            | J K                        | L                       | М                     | N                          | 0                                   | Р                     | Q                     | R                               | S                        | т                       |
|                                                                            |                                                                                                                             |                    |                                   |                           |                              |                            | n Current Dollars       |                       |                            | Cost in NPV D                       |                       |                       | Yea                             | -d                       |                         |
|                                                                            | Description                                                                                                                 |                    | Units                             |                           | Cost Extension \$            | (Add costs that have       | been distributed o      | over 50 years)        | (NPV                       | costs that have been dis            | stributed over 50 ye  | ears)                 | fea                             | 5                        |                         |
| Element                                                                    | (Explain Element as necessary)                                                                                              | Qty                | (Select as appropriate)           | \$/Unit                   | (F x H)                      |                            |                         |                       | TOTAL                      |                                     |                       |                       |                                 |                          |                         |
|                                                                            |                                                                                                                             |                    |                                   |                           |                              | Implementation             | OM&M                    | Closure               | (O+P+Q)                    | Implementation                      | OM&M                  | Closure               | 1                               | 2                        | 3                       |
| Remedial Design                                                            |                                                                                                                             | _                  |                                   |                           |                              |                            |                         |                       |                            |                                     |                       |                       | Note: Make sure th              | ere are no blank         | s in these cells        |
| Bench/Pilot Testing                                                        | n/a                                                                                                                         |                    | LS or V                           |                           | \$0                          | \$0                        |                         |                       | \$0                        | \$0                                 |                       |                       | \$0                             | \$0                      | \$0                     |
| Field Investigation                                                        | Additional data collection, pre-design survey - 1% of Remedy<br>Implementation                                              | 1                  | LS or UC and LOE                  | \$140,672                 | \$140,672                    | \$140,672                  |                         |                       | \$140,672                  | \$140,672                           |                       |                       | \$140,672                       | \$0                      | \$0                     |
| Modeling                                                                   | MNR modeling                                                                                                                | 1                  | LS                                | \$10,000                  | \$10,000                     | \$10,000                   |                         |                       | \$10,000                   | \$10,000                            | -                     |                       | \$10,000                        | \$0                      | \$0                     |
| Reporting/Deliverables                                                     | Remedial Design submittal - 6% of Remedy Implementation                                                                     | 1                  | LS                                | \$844,031                 | \$844,031                    | \$844,031                  |                         |                       | \$844,031                  | \$844,031                           |                       |                       | \$844,031                       | \$0                      | \$0                     |
| ubtotal<br>Remedy Implementation                                           |                                                                                                                             | - T                |                                   |                           | \$994,703                    | \$994,703                  |                         |                       | \$994,703                  | \$994,703                           |                       |                       | \$994,703<br>Note: Make sure th | \$0<br>sre are no blanks | \$0<br>s in these cells |
| Mobilization                                                               |                                                                                                                             | 1                  | LS or %                           | \$634,426                 | \$634,426                    | \$634,426                  |                         |                       | \$634,426                  | \$634,426                           |                       |                       | \$634,426                       | so                       | s in these cens         |
| Contractor Submittals and Permits                                          | Contractor submittals, construction permits, as-builts (1.5%)                                                               | 1                  | LS or %                           | \$190,328                 | \$190,328                    | \$190,328                  |                         |                       | \$190,328                  | \$190,328                           |                       |                       |                                 |                          |                         |
| Implementation                                                             | applied to Remedy Implementation                                                                                            | -                  | V or UC                           |                           | \$0                          | \$0                        | _                       |                       | \$0                        | \$0                                 | _                     |                       | \$190,328                       | \$0<br>\$0               | \$0<br>\$0              |
| Dredging                                                                   | Cost of material removal by mechanical dredging                                                                             | 62,890             | CY                                | \$20                      | \$1,257,801                  | \$1,257,801                | -                       |                       | \$1,257,801                | \$1,257,801                         | -                     |                       | \$1,257,801                     | \$0                      |                         |
| Material Barge, Assist Tug, Transport<br>Sediments                         | Cost of material transport                                                                                                  | 81,757             | TN                                | \$10                      | \$817,570                    | \$817,570                  |                         |                       | \$817,570                  | \$817,570                           |                       |                       | \$817,570                       | \$0                      | \$0                     |
| Water Management                                                           | Estimate per day                                                                                                            | 80                 | DAY                               | \$10,000                  | \$800,000                    | \$800,000                  |                         |                       | \$800,000                  | \$800,000                           |                       |                       | \$800,000                       | \$0                      | \$0                     |
| Dewatering/Transloading Area Setup<br>Handling and Transport to Subtitle D | Estimate to setup dewatering/transloading area                                                                              | 1                  | LS                                | \$500,000                 | \$500,000                    | \$500,000                  | _                       |                       | \$500,000                  | \$500,000                           | _                     |                       | \$500,000                       | \$0                      | \$0                     |
| Landfill                                                                   | Assume 1.3 tn/cy - quote by WM                                                                                              | 81,757             | TN                                | \$40                      | \$3,270,282                  | \$3,270,282                |                         |                       | \$3,270,282                | \$3,270,282                         |                       |                       | \$3,270,282                     | \$0                      | \$0                     |
| Subtitle D Landfill Disposal                                               | Assume 1.3 tn/cy -quote by WM                                                                                               | 81,757             | TN                                | \$36                      | \$2,943,254                  | \$2,943,254                | _                       |                       | \$2,943,254                | \$2,943,254                         | 4                     |                       | \$2,943,254                     | \$0                      | \$0                     |
| TSCA Waste Handling and Transport to<br>Hazardous Waste Landfill           | Assumes 1.3 tn/cy -quote by phone                                                                                           | 2,200              | TN                                | \$90                      | \$198,000                    | \$198,000                  |                         |                       | \$198,000                  | \$198,000                           |                       |                       | \$198,000                       | \$0                      | \$0                     |
| Hazardous Waste Landfill Disposal                                          | Assume 1.3 tn/cy -quote by phone                                                                                            | 2,200              | TN                                | \$87                      | \$191,400                    | \$191,400                  |                         |                       | \$191,400                  | \$191,400                           |                       |                       | \$191,400                       | \$0                      | \$0                     |
| Backfill<br>Material Barge & Tug                                           | Cost of backfill material purchase, delivery and placement at site<br>Transport from quarry to site                         | e 19,300<br>28,950 | CY<br>TN                          | \$30<br>\$10              | \$579,000<br>\$289,500       | \$579,000<br>\$289,500     | _                       |                       | \$579,000<br>\$289,500     | \$579,000<br>\$289,500              | _                     |                       | \$579,000<br>\$289,500          | \$0<br>\$0               | \$0<br>\$0              |
| In situ GAC treatment                                                      | Procurement, delivery, placement                                                                                            | 0                  | LB                                | \$2                       | \$0                          | \$0                        |                         |                       | \$0                        | \$0                                 | _                     |                       | \$289,500                       | \$0                      | \$0                     |
| Reactive ENR                                                               | Procurement, delivery, placement                                                                                            | 0                  | CY                                | \$120                     | \$0                          | \$0                        |                         |                       | \$0                        | \$0                                 |                       |                       | \$0                             | \$0                      | \$0                     |
| Material Barge & Tug                                                       | Transport to site                                                                                                           | 0                  | TN                                | \$10                      | \$0                          | \$0                        |                         |                       | \$0                        | \$0                                 | _                     |                       | \$0                             | \$0                      | \$0                     |
| Construction QA/QC                                                         | Verification sampling, bathymetric surveys, water quality monito                                                            |                    | LS                                | \$1,124,480               | \$1,124,480                  | \$1,124,480                |                         |                       | \$1,124,480                | \$1,124,480                         |                       |                       | \$1,124,480                     | \$0                      | \$0                     |
| Shoreline Stabilization                                                    | Procurement, delivery, placement (2' T x 3800' L x 10' W)                                                                   | 5,345              | TN                                | \$50                      | \$267,241                    | \$267,241                  |                         |                       | \$267,241                  | \$267,241                           | _                     |                       | \$267,241                       | \$0                      | \$0                     |
| Habitat Enhancement & Riparian Planting                                    | g Procurement, delivery, placement (25' each bank x 2100' bank)<br>Maryland sales tax (6%) applied to Remedy Implementation | 3                  | AC                                | \$150,000                 | \$450,000                    | \$450,000                  |                         |                       | \$450,000                  | \$450,000                           | _                     |                       | \$450,000                       | \$0                      | \$0                     |
| Sales Tax                                                                  | excluding disposal cost                                                                                                     | 1                  | LS or %                           | \$414,621                 | \$414,621                    | \$414,621                  |                         |                       | \$414,621                  | \$414,621                           |                       |                       | \$414,621                       | \$0                      | \$0                     |
| Bonds                                                                      | Contractor's performance and payment bonds (1%) applied to<br>Remedy Implementation                                         | 1                  | LS or %                           | \$139,279                 | \$139,279                    | \$139,279                  |                         |                       | \$139,279                  | \$139,279                           |                       |                       | \$139,279                       | \$0                      | \$0                     |
| ubtotal                                                                    |                                                                                                                             |                    | A                                 |                           | \$14,067,182                 | \$14,067,182               |                         |                       | \$14,067,182               | \$14,067,182                        |                       |                       | \$14,067,182                    | \$0                      | \$0                     |
| OM&M<br>Maintenance                                                        |                                                                                                                             | _                  | Annual<br>%, V, or LOE            |                           | \$0                          |                            | \$0                     |                       | \$0                        |                                     | \$0                   |                       | Note: Make sure th              | ere are no blanks        | s in these cells        |
| Laboratory                                                                 |                                                                                                                             |                    | UC                                |                           | \$0                          |                            | \$0                     | -                     | \$0                        | -                                   | \$0                   | -                     | \$0                             | \$0                      | \$0                     |
| Field Activities                                                           |                                                                                                                             |                    | UC and LOE                        |                           | \$0                          |                            | \$0                     |                       | \$0                        | _                                   | \$0                   | ]                     | \$0                             | \$0                      | \$0                     |
| Materials, Fuels and Treatment Media<br>Reporting/Deliverables             |                                                                                                                             |                    | UC or V<br>LS or LOE              |                           | \$0<br>\$0                   |                            | \$0<br>\$0              | -                     | \$0<br>\$0                 | -                                   | \$0<br>\$0            | -                     | \$0                             | \$0<br>\$0               | \$0<br>\$0              |
| Modeling                                                                   | MNR modeling                                                                                                                | -                  | LOE                               |                           | \$0                          |                            | \$0                     | -                     | \$0                        | -                                   | \$14,529              | -                     | \$0                             | \$0<br>\$5,000           | \$0<br>\$0              |
| Institutional Controls                                                     | Public outreach, support seafood consumption advisories,<br>reporting, agency review                                        |                    | LOE                               |                           | \$0                          |                            | \$240,000               |                       | \$188,910                  |                                     | \$188,910             |                       | \$100,000                       | \$20,000                 | \$20,000                |
| Total OM&M Costs (Alternative to above sub                                 |                                                                                                                             |                    | LOE                               | <b>1</b>                  |                              |                            | \$368,000               |                       | \$250,494                  |                                     | \$250,494             |                       |                                 |                          |                         |
| topics)                                                                    |                                                                                                                             |                    | Attached Work She                 | eet                       |                              |                            | \$633.000               |                       | \$453.933                  |                                     | \$453.933             |                       | \$46,000<br>\$146.000           | \$46,000<br>\$71.000     | \$46,000                |
| Project Closure                                                            |                                                                                                                             | T                  |                                   |                           |                              |                            | \$633,000               |                       | \$400,900                  |                                     | \$400,900             |                       | Note: Make sure th              |                          | <i>400,000</i>          |
| Assessments                                                                | Assume 1% of Design+Implementation+OM&M                                                                                     | 1                  | V or UC and LOE                   | \$156,949                 | \$156,949                    |                            |                         | \$156,949             | \$146,681                  |                                     |                       | \$146,681             | \$0                             | \$156,949                | \$0                     |
| Decommissioning - Remedy Completion                                        | Assume 1% of Design+Implementation+OM&M                                                                                     | 1                  | LS, % or V                        | \$156,949                 | \$156,949                    |                            |                         | \$156,949             | \$146,681                  |                                     |                       | \$146,681             | \$0                             | \$156,949                | \$0                     |
| ubtotal<br>roject Management <sup>3</sup>                                  |                                                                                                                             |                    |                                   |                           | \$313,898                    |                            |                         | \$313,898             | \$293,362                  |                                     |                       | \$293,362             | \$0                             | \$313,898                | \$0                     |
| roject management                                                          |                                                                                                                             |                    |                                   | Of Remedial Design &      | 8                            |                            |                         |                       | 1                          | 1                                   |                       |                       |                                 |                          |                         |
| During Implementation                                                      | Assume 12% of Design+Implementation                                                                                         | 12%                | %                                 | Remedy                    | \$1,807,426                  | \$1,807,426                |                         |                       | \$1,807,426                | \$1,807,426                         |                       |                       |                                 |                          |                         |
| During OM&M                                                                | Assume 12% of OM&M                                                                                                          | 12%                | %                                 | Implementation<br>Of OM&M | \$75,960.00                  |                            | \$75,960                | Т                     | \$45,472                   |                                     | \$45,472              | ٦                     | \$1,807,426.19<br>\$17,520      | \$0<br>\$8,520           | \$0<br>\$7,920          |
| During Closure                                                             | Assume 12% of Closure                                                                                                       | 12%                | %                                 | Of Closure                | \$75,960.00                  |                            | φr 0,900                | \$37,668              | \$45,472<br>\$35,203       | 1                                   | ψ <del>4</del> 0,472  | \$35,203              | \$17,520                        | \$8,520                  | \$7,920<br>\$0          |
| ubtotal                                                                    |                                                                                                                             |                    | ·                                 | •                         |                              | \$1,807,426                | \$75,960                | \$37,668              | \$1,888,102                | \$1,807,426                         | \$45,472              | \$35,203              | \$1,824,946                     | \$46,188                 | \$7,920                 |
| SUBTOTAL COST OF ELEMENT                                                   | ESTIMATES                                                                                                                   |                    |                                   |                           |                              | \$16,869,311               | \$708,960               | \$351,565             | \$17,697,281               | \$16,869,311                        | \$499,405             | \$328,566             | \$17,032,831                    | \$431,085                | \$73,920                |
| Contingencies                                                              | Implementation OM&M Closure                                                                                                 |                    |                                   |                           |                              |                            |                         |                       |                            |                                     |                       |                       |                                 |                          |                         |
| -                                                                          | 12.2% 15% 25%                                                                                                               |                    |                                   |                           |                              | \$2,135,282                | \$106,344               | \$87,891              | \$2,215,108                | \$2,058,056                         | \$74,911              | \$82,141              | $\downarrow$                    | T                        |                         |
| Scope (10 to 25%)                                                          | 10% 10% 20%                                                                                                                 |                    |                                   |                           |                              | \$1,750,231<br>\$3,885,513 | \$70,896<br>\$177,240   | \$70,313<br>\$158,204 | \$1,802,585<br>\$4,017,693 | \$1,686,931<br>\$3,744,987          | \$49,940<br>\$124,851 | \$65,713<br>\$147,855 |                                 |                          |                         |
| Scope (10 to 25%)<br>Bid (10 to 20%)                                       |                                                                                                                             |                    |                                   |                           |                              |                            | \$886,200               | \$509,770             | 1.,211,000                 | \$20,614,298                        | \$624,256             | \$476,420             |                                 |                          |                         |
| Scope (10 to 25%)<br>Bid (10 to 20%)<br>ubtotal                            |                                                                                                                             |                    |                                   |                           |                              | \$20.754.824               | 2000,ZUU                | 3003.770              |                            |                                     |                       |                       |                                 |                          |                         |
| Scope (10 to 25%)<br>Bid (10 to 20%)<br>ubtotal                            |                                                                                                                             |                    |                                   |                           |                              | \$20,754,824               | . ,                     | \$309,770             | \$21 714 074               | \$20,014,200                        | <b>402</b> -1,200     | φ <del>4</del> 70,420 |                                 |                          |                         |
| Scope (10 to 25%)<br>Bid (10 to 20%)<br>ubtotal<br>RAND TOTAL COST         |                                                                                                                             |                    |                                   |                           |                              |                            | \$888,200<br>22,150,794 | \$509,770             | \$21,714,974               |                                     |                       | φ <del>1</del> 10,420 | I                               |                          |                         |
| Scope (10 to 25%)<br>Bid (10 to 20%)<br>ubtotal<br>RAND TOTAL COST         | OM&M Operational, Maintenance & Monitoring<br>UC Unit Cost                                                                  |                    | NOTES:                            | they will occur, costs o  | of required for all 50 years |                            | 22,150,794              | \$303,110             | \$21,714,974               | For use in the CD<br>Capital Cost = |                       | \$21,090,719          |                                 |                          |                         |

3 Formulas are set up to calculate project management costs during implementation and OM&M as a percentage of these latter costs. In the event annual costs vary and have been separately estimated, they should be entered directly into the appropriate cells for each year.

# TABLE E-10 COST ESTIMATES FOR ALTERNATIVE 4

| _ | SITE: Lockheed Martin - Middle River Comple                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                         |                                                                                                                       |                                                                                               |                                                                                                                                                                     |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |                                                             |                                                                          |                                                             |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | LEVEL OF ESTIMATE: Screening  or B                                                                                                                                                                                                                                                      | C D E                                                                                                                                                                                                                                                                                   | v                                                                                                                     | w                                                                                             | X Y                                                                                                                                                                 | z                                                                         | AA                                                                                                                                                                                                                                                                                                                                                                                                                                 | AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AD                                                                 | AE                                                          | AF                                                                       | AG                                                          | АН                                                                                      | AI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AJ |
|   |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                                                                                                       |                                                                                               |                                                                                                                                                                     |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                  |                                                             |                                                                          |                                                             |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | Element                                                                                                                                                                                                                                                                                 | Description<br>(Explain Element as necessary)                                                                                                                                                                                                                                           | 5                                                                                                                     | 6                                                                                             | 7 8                                                                                                                                                                 | 9                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                                                 | 14                                                          | 15                                                                       | 16                                                          | 17                                                                                      | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19 |
| - | Remedial Design                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         | d be filled wi                                                                                                        | th equations I                                                                                | inking to, and distri                                                                                                                                               | buting the appro                                                          | priate total cos                                                                                                                                                                                                                                                                                                                                                                                                                   | sts in column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I, or with zeros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                             |                                                                          |                                                             |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | Bench/Pilot Testing                                                                                                                                                                                                                                                                     | n/a                                                                                                                                                                                                                                                                                     | \$0                                                                                                                   | \$0                                                                                           | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             | i0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|   | Field Investigation                                                                                                                                                                                                                                                                     | Additional data collection, pre-design survey - 1% of Remedy<br>Implementation                                                                                                                                                                                                          | \$0                                                                                                                   | \$0                                                                                           | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             | io \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | o so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     | so \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|   | Modeling                                                                                                                                                                                                                                                                                | MNR modeling                                                                                                                                                                                                                                                                            | \$0                                                                                                                   |                                                                                               | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0<br>\$0                                                         | \$0                                                         | \$0<br>\$0                                                               | \$0                                                         | \$0                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | Reporting/Deliverables                                                                                                                                                                                                                                                                  | Remedial Design submittal - 6% of Remedy Implementation                                                                                                                                                                                                                                 | \$0                                                                                                                   |                                                                                               | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | Subtotal                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                         | \$0                                                                                                                   | •                                                                                             | \$0                                                                                                                                                                 | \$0                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                    | i0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|   | Remedy Implementation<br>Mobilization                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                         | 1                                                                                                                     |                                                                                               | inking to, and distri                                                                                                                                               |                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>*</b> 0                                                         | <b>^</b>                                                    |                                                                          | <b>^</b>                                                    |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   |                                                                                                                                                                                                                                                                                         | Contractor submittals, construction permits, as-builts (1.5%)                                                                                                                                                                                                                           | \$0                                                                                                                   | \$0                                                                                           | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             | i0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|   | Contractor Submittals and Permits                                                                                                                                                                                                                                                       | applied to Remedy Implementation                                                                                                                                                                                                                                                        | \$0                                                                                                                   |                                                                                               | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | Implementation                                                                                                                                                                                                                                                                          | Control entering and the second size denter                                                                                                                                                                                                                                             | \$0                                                                                                                   |                                                                                               | \$0                                                                                                                                                                 | \$0                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                    | i0 \$(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | Dredging<br>Material Barge, Assist Tug, Transport                                                                                                                                                                                                                                       | Cost of material removal by mechanical dredging                                                                                                                                                                                                                                         | \$0                                                                                                                   | \$0                                                                                           | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             | 60 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|   | Sediments                                                                                                                                                                                                                                                                               | Cost of material transport                                                                                                                                                                                                                                                              | \$0                                                                                                                   |                                                                                               | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | Water Management                                                                                                                                                                                                                                                                        | Estimate per day                                                                                                                                                                                                                                                                        | \$0                                                                                                                   |                                                                                               | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | Dewatering/Transloading Area Setup<br>Handling and Transport to Subtitle D                                                                                                                                                                                                              | Estimate to setup dewatering/transloading area                                                                                                                                                                                                                                          | \$0                                                                                                                   | \$0                                                                                           | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             | 60 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|   | Landfill                                                                                                                                                                                                                                                                                | Assume 1.3 tn/cy - quote by WM                                                                                                                                                                                                                                                          | \$0                                                                                                                   | \$0                                                                                           | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             | i0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|   | Subtitle D Landfill Disposal                                                                                                                                                                                                                                                            | Assume 1.3 tn/cy -quote by WM                                                                                                                                                                                                                                                           | \$0                                                                                                                   | \$0                                                                                           | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             | 60 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|   | TSCA Waste Handling and Transport to<br>Hazardous Waste Landfill                                                                                                                                                                                                                        | Assumes 1.3 tn/cy -quote by phone                                                                                                                                                                                                                                                       | \$0                                                                                                                   | \$0                                                                                           | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             | io \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | o so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     | so \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|   | Hazardous Waste Landill Disposal                                                                                                                                                                                                                                                        | Assume 1.3 tn/cy -quote by phone                                                                                                                                                                                                                                                        | \$0                                                                                                                   |                                                                                               | \$0                                                                                                                                                                 | \$0                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                    | i0 \$(<br>i0 \$(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0<br>\$0                                                         | \$0                                                         | \$0                                                                      | \$0<br>\$0                                                  | \$0                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | Backfill                                                                                                                                                                                                                                                                                | Cost of backfill material purchase, delivery and placement at site                                                                                                                                                                                                                      | \$0                                                                                                                   |                                                                                               | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0<br>\$0                                                         | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | Material Barge & Tug                                                                                                                                                                                                                                                                    | Transport from quarry to site                                                                                                                                                                                                                                                           | \$0                                                                                                                   |                                                                                               | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | In situ GAC treatment                                                                                                                                                                                                                                                                   | Procurement, delivery, placement                                                                                                                                                                                                                                                        | \$0                                                                                                                   | \$0                                                                                           | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             | 60 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|   | Reactive ENR                                                                                                                                                                                                                                                                            | Procurement, delivery, placement                                                                                                                                                                                                                                                        | \$0                                                                                                                   |                                                                                               | \$0                                                                                                                                                                 | \$0                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                    | iO \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | Material Barge & Tug                                                                                                                                                                                                                                                                    | Transport to site                                                                                                                                                                                                                                                                       | \$0                                                                                                                   | \$0                                                                                           | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             | 60 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| l | Construction QA/QC                                                                                                                                                                                                                                                                      | Verification sampling, bathymetric surveys, water quality monitorin                                                                                                                                                                                                                     | g \$0                                                                                                                 | \$0                                                                                           | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             | io \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | o so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     | so so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|   | Shoreline Stabilization                                                                                                                                                                                                                                                                 | Procurement, delivery, placement (2' T x 3800' L x 10' W)                                                                                                                                                                                                                               | \$0                                                                                                                   |                                                                                               | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|   | Habitat Enhancement & Riparian Planting                                                                                                                                                                                                                                                 | Procurement, delivery, placement (25' each bank x 2100' bank)                                                                                                                                                                                                                           | \$0                                                                                                                   | \$0                                                                                           | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             | io \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|   | Sales Tax                                                                                                                                                                                                                                                                               | Maryland sales tax (6%) applied to Remedy Implementation                                                                                                                                                                                                                                | \$0                                                                                                                   |                                                                                               | \$0                                                                                                                                                                 | \$0                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | o so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    | \$0                                                         | \$0                                                                      | \$0                                                         |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   |                                                                                                                                                                                                                                                                                         | excluding disposal cost<br>Contractor's performance and payment bonds (1%) applied to                                                                                                                                                                                                   |                                                                                                                       | 50<br>50                                                                                      | \$0                                                                                                                                                                 | \$U                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0                                                                | \$U                                                         | 20                                                                       | <b>ф</b> О                                                  | \$0                                                                                     | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|   | Bonds                                                                                                                                                                                                                                                                                   | Remedy Implementation                                                                                                                                                                                                                                                                   | \$0                                                                                                                   | \$0                                                                                           | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _  |
| - | Subtotal<br>OM&M                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         | \$0                                                                                                                   |                                                                                               | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|   | Maintenance                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                         | a be filled wi                                                                                                        | · · · · ·                                                                                     | ers or equations.<br>\$0                                                                                                                                            | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             | i0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|   | Laboratory                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                         | \$0                                                                                                                   |                                                                                               | \$0                                                                                                                                                                 | \$0                                                                       | \$0 3<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0<br>\$0                                                         | \$0                                                         | \$0                                                                      | \$0<br>\$0                                                  | \$0                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|   | Field Activities                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         | \$0                                                                                                                   |                                                                                               | \$0                                                                                                                                                                 | \$0                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                    | i0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0<br>\$0                                                         | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | Materials, Fuels and Treatment Media                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         | \$0                                                                                                                   | \$0                                                                                           | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | Reporting/Deliverables                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                         | \$0                                                                                                                   |                                                                                               | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$                                                                                                                                                                                                                                                                                                                                                                                                                             | 60 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                | \$0                                                         | \$0                                                                      | \$0                                                         | \$0                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | Modeling                                                                                                                                                                                                                                                                                | MNR modeling<br>Public outreach, support seafood consumption advisories,                                                                                                                                                                                                                | \$5,000                                                                                                               | \$0                                                                                           | \$0                                                                                                                                                                 | \$0                                                                       | \$0 \$5,00                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0                                                                | \$0                                                         | \$5,000                                                                  | \$0                                                         | \$0                                                                                     | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|   | Institutional Controls                                                                                                                                                                                                                                                                  | reporting, agency review                                                                                                                                                                                                                                                                | \$20,000                                                                                                              | \$0                                                                                           | \$20,000                                                                                                                                                            | \$0                                                                       | \$0 \$20,00                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0                                                                | \$0                                                         | \$20,000                                                                 | \$0                                                         | \$0                                                                                     | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|   | Total OM&M Costs (Alternative to above sub-                                                                                                                                                                                                                                             | Laboratory + Field Activities + Reporting/Deliverables                                                                                                                                                                                                                                  |                                                                                                                       |                                                                                               |                                                                                                                                                                     |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |                                                             |                                                                          |                                                             |                                                                                         | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|   | topics)                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                         |                                                                                                                       |                                                                                               |                                                                                                                                                                     |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0                                                                | \$0                                                         | \$46,000                                                                 | \$0                                                         |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _  |
|   |                                                                                                                                                                                                                                                                                         | Laboratory + Heid Adamates + Reporting/Deliverables                                                                                                                                                                                                                                     | \$46,000                                                                                                              |                                                                                               | \$46,000                                                                                                                                                            | \$0                                                                       | \$0 \$46,00                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |                                                             |                                                                          |                                                             |                                                                                         | \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|   | Subtotal                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                         | \$71,000                                                                                                              | \$0                                                                                           | \$66,000                                                                                                                                                            | \$0<br><b>\$0</b>                                                         | \$0 \$46,00<br>\$0 \$71,00                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$0                                                                | \$0                                                         | \$71,000                                                                 | \$0                                                         | \$0                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | Project Closure                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         | \$71,000<br>d be filled wi                                                                                            | \$0<br>\$0 th \$ 0's, numb                                                                    | \$66,000<br>ers or equations.                                                                                                                                       | \$0                                                                       | \$0 \$71,00                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    | \$0                                                         | \$71,000                                                                 | \$0                                                         |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | Project Closure<br>Assessments                                                                                                                                                                                                                                                          | Assume 1% of Design+Implementation+OM&M                                                                                                                                                                                                                                                 | \$71,000<br>d be filled wi<br>\$0                                                                                     | \$0<br>th \$ 0's, numb<br>\$0                                                                 | \$66,000<br>pers or equations.<br>\$0                                                                                                                               | <b>\$0</b><br>\$0                                                         | \$0 \$71,00<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                              | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$0                                                                |                                                             | <b>\$71,000</b><br>\$0                                                   | \$0<br>\$0                                                  | \$0                                                                                     | 0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|   | Project Closure<br>Assessments<br>Decommissioning - Remedy Completion                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                         | \$71,000<br>d be filled wi<br>\$0<br>\$0                                                                              | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                        | \$66,000<br>eers or equations.<br>\$0<br>\$0                                                                                                                        | \$0<br>\$0<br>\$0                                                         | \$0 \$71,00<br>\$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                    | 0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0<br>\$0                                                         | \$0                                                         | <b>\$71,000</b><br>\$0<br>\$0                                            | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b>               | \$0                                                                                     | 50 \$0<br>50 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|   | Project Closure<br>Assessments<br>Decommissioning - Remedy Completion<br>Subtotal                                                                                                                                                                                                       | Assume 1% of Design+Implementation+OM&M                                                                                                                                                                                                                                                 | \$71,000<br>d be filled wi<br>\$0                                                                                     | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                        | \$66,000<br>pers or equations.<br>\$0<br>\$0                                                                                                                        | <b>\$0</b><br>\$0                                                         | \$0 \$71,00<br>\$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                    | 0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0                                                                | \$0                                                         | <b>\$71,000</b><br>\$0<br>\$0                                            | \$0                                                         | \$0<br>\$0                                                                              | 50 \$0<br>50 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|   | Project Closure<br>Assessments<br>Decommissioning - Remedy Completion                                                                                                                                                                                                                   | Assume 1% of Design+Implementation+OM&M                                                                                                                                                                                                                                                 | \$71,000<br>d be filled wi<br>\$0<br>\$0                                                                              | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                        | \$66,000<br>eers or equations.<br>\$0<br>\$0                                                                                                                        | \$0<br>\$0<br>\$0                                                         | \$0 \$71,00<br>\$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                    | 0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0<br>\$0                                                         | \$0                                                         | <b>\$71,000</b><br>\$0<br>\$0                                            | \$0                                                         | \$0                                                                                     | 50 \$0<br>50 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|   | Project Closure<br>Assessments<br>Decommissioning - Remedy Completion<br>Subtotal                                                                                                                                                                                                       | Assume 1% of Design+Implementation+OM&M                                                                                                                                                                                                                                                 | \$71,000<br>d be filled wi<br>\$0<br>\$0                                                                              | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                        | \$66,000<br>eers or equations.<br>\$0<br>\$0                                                                                                                        | \$0<br>\$0<br>\$0                                                         | \$0 \$71,00<br>\$0 \$<br>\$0 \$                                                                                                                                                                                                                                                                                                                                                                                                    | 0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$0<br>\$0                                                         | \$0                                                         | <b>\$71,000</b><br>\$0<br>\$0                                            | \$0                                                         | \$0                                                                                     | 50 \$0<br>50 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|   | Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation                                                                                                                                                          | Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M<br>Assume 12% of Design+Implementation                                                                                                                                                               | \$71,000<br>d be filled wi<br>\$0<br>\$0<br>\$0<br>\$0                                                                | \$0<br>ith \$ 0's, numb<br>50<br>50<br>50<br>50<br>50                                         | \$66,000           bers or equations.           \$0           \$0           \$0           \$0           \$0           \$0           \$0           \$0           \$0 | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                    | \$0         \$71,00           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$                                                                                                                                                                               | 0 \$1<br>0 \$2<br>0 \$2<br>0<br>0 \$2<br>0 \$2<br>0<br>0 \$2<br>0<br>0 \$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0\$2<br>0<br>0<br>0<br>0 | 0         \$0           0         \$0           0         \$0           0         \$0           0         \$0           0         \$0           0         \$0           0         \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$0<br>\$0<br><b>\$0</b><br>\$0                                    | \$0<br><b>\$0</b><br>\$0                                    | \$71,000<br>\$0<br>\$0<br>\$0<br>\$0                                     | \$0<br><b>\$0</b><br>\$0<br>\$0                             | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                  | 0 \$0<br>0 \$0<br>9 <b>\$0</b><br>9 <b>\$0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|   | Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M                                                                                                                                              | Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M<br>Assume 12% of Design+Implementation<br>Assume 12% of OM&M                                                                                                                                         | \$71,000<br>d be filled wi<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | \$0<br>ith \$ 0's, numb<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | \$66,000<br>pers or equations.<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                      | \$0         \$71,00           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$                                                                                                                             | 0 \$(<br>0 \$() \$(<br>0 \$() \$() \$() \$() \$() \$() \$() \$() \$() \$()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0                      | \$0<br>\$0<br>\$0<br>\$0<br>\$0                             | \$71,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$8,520            | \$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0<br>\$0               | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                    | 2 \$0<br>2 \$0<br>3 \$0<br>5 \$0<br>5 \$0<br>5 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|   | Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure                                                                                                                               | Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M<br>Assume 12% of Design+Implementation                                                                                                                                                               | \$71,000<br>d be filled wi<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | \$0<br>ith \$ 0's, numb<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | \$66,000<br>ers or equations.<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                 | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0        | \$0         \$71,00           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$                                                  | 0 \$(<br>0 \$() \$(<br>0 \$() \$(<br>0 \$() \$() \$() \$() \$() \$() \$() \$() \$() \$()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0<br>0 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0               | \$71,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$8,520<br>\$0<br>\$0     | \$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | 2 \$0<br>2 \$0<br>3 \$0<br>5 \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|   | Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal                                                                                                                      | Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M<br>Assume 12% of Design+Implementation<br>Assume 12% of OM&M<br>Assume 12% of Closure                                                                                                                | \$71,000<br>d be filled wi<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$0             | \$0<br>th \$ 0's, numb<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0  | \$66,000<br>ers or equations.<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$7,920<br>\$0<br>\$7,920                                                                       | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | S0         \$71,00           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$ | 0 \$1<br>0 \$2<br>0 \$2                                                                                                                                                                                                                              | 0 \$0<br>0 \$0 | \$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b> | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b> | \$71,000<br>\$0<br>\$0<br>\$0<br>\$8,520<br>\$8,520                      | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b>        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                             | 2 \$0<br>3 \$0<br>5 \$0          |    |
|   | Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT                                                                                             | Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M<br>Assume 12% of Design+Implementation<br>Assume 12% of OM&M<br>Assume 12% of Closure<br>ESTIMATES                                                                                                   | \$71,000<br>d be filled wi<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | \$0<br>th \$ 0's, numb<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0  | \$66,000<br>ers or equations.<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                                                                 | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0        | \$0         \$71,00           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$                                                  | 0 \$1<br>0 \$2<br>0 \$2                                                                                                                                                                                                                              | SO         SO           0         \$0         \$0           0         \$0         \$0           0         \$0         \$0           0         \$0         \$0           0         \$0         \$0           0         \$0         \$0           0         \$0         \$0           0         \$0         \$0           0         \$0         \$0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b> | \$71,000<br>\$0<br>\$0<br>\$0<br>\$0<br>\$8,520<br>\$0<br><b>\$8,520</b> | \$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                             | 2 \$0<br>3 \$0<br>5 \$0 |    |
|   | Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT I Contingencies                                                                             | Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M<br>Assume 12% of Design+Implementation<br>Assume 12% of OM&M<br>Assume 12% of Closure<br>ESTIMATES<br>Implementation OM&M Closure                                                                    | \$71,000<br>d be filled wi<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$0             | \$0<br>th \$ 0's, numb<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0  | \$66,000<br>ers or equations.<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$7,920<br>\$0<br>\$7,920                                                                       | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | S0         \$71,00           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$ | 0 \$1<br>0 \$2<br>0 \$2                                                                                                                                                                                                                              | 0 \$0<br>0 \$0 | \$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b> | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b> | \$71,000<br>\$0<br>\$0<br>\$0<br>\$8,520<br>\$8,520                      | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b>        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                             | 2 \$0<br>3 \$0<br>5 \$0          |    |
|   | Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT I Contingencies Scope (10 to 25%)                                                           | Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M<br>Assume 12% of Design+Implementation<br>Assume 12% of OM&M<br>Assume 12% of Closure<br>ESTIMATES<br>Implementation OM&M Closure<br>12.2% 15% 25%                                                   | \$71,000<br>d be filled wi<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$0             | \$0<br>th \$ 0's, numb<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0  | \$66,000<br>ers or equations.<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$7,920<br>\$0<br>\$7,920                                                                       | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | S0         \$71,00           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$ | 0 \$1<br>0 \$2<br>0 \$2                                                                                                                                                                                                                              | 0 \$0<br>0 \$0 | \$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b> | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b> | \$71,000<br>\$0<br>\$0<br>\$0<br>\$8,520<br>\$8,520                      | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b>        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                             | 2 \$0<br>3 \$0<br>5 \$0          |    |
|   | Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT I Contingencies Scope (10 to 25%) Bid (10 to 20%)                                           | Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M<br>Assume 12% of Design+Implementation<br>Assume 12% of OM&M<br>Assume 12% of Closure<br>ESTIMATES<br>Implementation OM&M Closure                                                                    | \$71,000<br>d be filled wi<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$0             | \$0<br>th \$ 0's, numb<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0  | \$66,000<br>ers or equations.<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$7,920<br>\$0<br>\$7,920                                                                       | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | S0         \$71,00           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$ | 0 \$1<br>0 \$2<br>0 \$2                                                                                                                                                                                                                              | 0 \$0<br>0 \$0 | \$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b> | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b> | \$71,000<br>\$0<br>\$0<br>\$0<br>\$8,520<br>\$8,520                      | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b>        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                             | 2 \$0<br>3 \$0<br>5 \$0          |    |
|   | Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT I Contingencies Scope (10 to 25%) Bid (10 to 20%) Subtotal                                  | Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M<br>Assume 12% of Design+Implementation<br>Assume 12% of OM&M<br>Assume 12% of Closure<br>ESTIMATES<br>Implementation OM&M Closure<br>12.2% 15% 25%                                                   | \$71,000<br>d be filled wi<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$0             | \$0<br>th \$ 0's, numb<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0  | \$66,000<br>ers or equations.<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$7,920<br>\$0<br>\$7,920                                                                       | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | S0         \$71,00           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$ | 0 \$1<br>0 \$2<br>0 \$2                                                                                                                                                                                                                              | 0 \$0<br>0 \$0 | \$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b> | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b> | \$71,000<br>\$0<br>\$0<br>\$0<br>\$8,520<br>\$8,520                      | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b>        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                             | 2 \$0<br>3 \$0<br>5 \$0                   |    |
|   | Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT I Contingencies Scope (10 to 25%) Bid (10 to 20%)                                           | Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M<br>Assume 12% of Design+Implementation<br>Assume 12% of OM&M<br>Assume 12% of Closure<br>ESTIMATES<br>Implementation OM&M Closure<br>12.2% 15% 25%                                                   | \$71,000<br>d be filled wi<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$0             | \$0<br>th \$ 0's, numb<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0  | \$66,000<br>ers or equations.<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$7,920<br>\$0<br>\$7,920                                                                       | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | S0         \$71,00           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$ | 0 \$1<br>0 \$2<br>0 \$2                                                                                                                                                                                                                              | 0 \$0<br>0 \$0 | \$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b> | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b> | \$71,000<br>\$0<br>\$0<br>\$0<br>\$8,520<br>\$8,520                      | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b>        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                             | 2 \$0<br>3 \$0<br>5 \$0                   |    |
|   | Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT I Contingencies Scope (10 to 25%) Bid (10 to 20%) Subtotal                                  | Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M<br>Assume 12% of Design+Implementation<br>Assume 12% of OM&M<br>Assume 12% of Closure<br>ESTIMATES<br>Implementation OM&M Closure<br>12.2% 15% 25%                                                   | \$71,000<br>d be filled wi<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$0             | \$0<br>th \$ 0's, numb<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0  | \$66,000<br>ers or equations.<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$7,920<br>\$0<br>\$7,920                                                                       | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | S0         \$71,00           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$ | 0 \$1<br>0 \$2<br>0 \$2                                                                                                                                                                                                                              | 0 \$0<br>0 \$0 | \$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b> | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b> | \$71,000<br>\$0<br>\$0<br>\$0<br>\$8,520<br>\$8,520                      | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b>        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                             | 2 \$0<br>3 \$0<br>5 \$0                   |    |
|   | Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT I Contingencies Scope (10 to 25%) Bid (10 to 20%) Subtotal                                  | Assume 1% of Design+Implementation+OM&M<br>Assume 1% of Design+Implementation+OM&M<br>Assume 12% of Design+Implementation<br>Assume 12% of OM&M<br>Assume 12% of Closure<br>ESTIMATES<br>Implementation OM&M Closure<br>12.2% 15% 25%                                                   | \$71,000<br>d be filled wi<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$0             | \$0<br>th \$ 0's, numb<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0  | \$66,000<br>ers or equations.<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$7,920<br>\$0<br>\$7,920                                                                       | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | S0         \$71,00           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$ | 0 \$1<br>0 \$2<br>0 \$2                                                                                                                                                                                                                              | 0 \$0<br>0 \$0 | \$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b> | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b> | \$71,000<br>\$0<br>\$0<br>\$0<br>\$8,520<br>\$8,520                      | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b>        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                             | 2 \$0<br>3 \$0<br>5 \$0                   |    |
|   | Project Closure Assessments Decommissioning - Remedy Completion Subtotal Project Management <sup>3</sup> During Implementation During OM&M During Closure Subtotal SUBTOTAL COST OF ELEMENT I Contingencies Scope (10 to 25%) Bid (10 to 25%) Bid (10 to 20%) Subtotal GRAND TOTAL COST | Assume 1% of Design+Implementation+OM&M         Assume 1% of Design+Implementation+OM&M         Assume 12% of Design+Implementation         Assume 12% of OM&M         Assume 12% of Closure         ESTIMATES         Implementation         12.2%         15%         25%         10% | \$71,000<br>d be filled wi<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$00<br>\$0             | \$0<br>th \$ 0's, numb<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0  | \$66,000<br>ers or equations.<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$7,920<br>\$0<br>\$7,920                                                                       | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0 | S0         \$71,00           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$           \$0         \$ | 0 \$1<br>0 \$2<br>0 \$2                                                                                                                                                                                                                              | 0 \$0<br>0 \$0 | \$0<br>\$0<br><b>\$0</b><br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b> | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b> | \$71,000<br>\$0<br>\$0<br>\$0<br>\$8,520<br>\$8,520                      | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br><b>\$0</b>        | \$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0<br>\$0                             | 2 \$0<br>3 \$0<br>5 \$0                   |    |

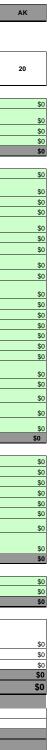


# TABLE E-11 COST ESTIMATES FOR ALTERNATIVE 4J

| EVEL OF ESTIMATE: Screening 🗌 d                                                              | or Detailed X                                                                                       | DISCOUN          | T RATE:                          | 7%                        |                               | ESCALATION RATE                    |                                         |                |                             |                                    |                        |                        | В                          | ACKUP REFERE                | NCE <sup>2</sup> :   |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------|----------------------------------|---------------------------|-------------------------------|------------------------------------|-----------------------------------------|----------------|-----------------------------|------------------------------------|------------------------|------------------------|----------------------------|-----------------------------|----------------------|
| B                                                                                            | C D E                                                                                               | F                | G                                | н                         | 1                             | J K                                | L                                       | м              | N                           | 0                                  | Р                      | Q                      | R                          | S                           | т                    |
|                                                                                              |                                                                                                     |                  |                                  |                           |                               |                                    |                                         |                |                             | Cost in NPV D                      |                        |                        |                            |                             |                      |
|                                                                                              |                                                                                                     |                  |                                  |                           |                               | (Add costs that have               | n Current Dollars<br>been distributed o | over 50 years) | (NPV                        | costs that have been dis           |                        | ears)                  | Year                       | s                           |                      |
| Element                                                                                      | Description<br>(Explain Element as necessary)                                                       | Qty              | Units<br>(Select as appropriate) | \$/Unit                   | Cost Extension \$<br>( F x H) | Implementation                     | OM&M                                    | Closure        | TOTAL<br>(O+P+Q)            | Implementation                     | OM&M                   | Closure                | 1                          | 2                           | 3                    |
|                                                                                              |                                                                                                     |                  |                                  |                           |                               |                                    |                                         |                | (01114)                     |                                    |                        |                        |                            |                             |                      |
| Remedial Design Bench/Pilot Testing                                                          | In situ amendments testing                                                                          | 1                | LS or V                          | \$40,000                  | \$40,000                      | \$40,000                           |                                         |                | \$40,000                    | \$40,000                           |                        |                        | Note: Make sure the        | ere are no blanks           | s in these cells     |
| ÿ                                                                                            | Additional data collection, pre-design survey - 1% of Remedy                                        |                  | LS or UC and LOE                 | \$40,000                  | \$142,830                     | \$40,000                           | -                                       |                | \$40,000                    | \$40,000                           | _                      |                        | \$40,000                   | \$0                         | \$0                  |
| Field Investigation                                                                          | Implementation<br>MNR modeling                                                                      | -                |                                  |                           |                               |                                    | _                                       |                |                             |                                    | _                      |                        | \$142,830                  | \$0                         | \$0                  |
| Modeling<br>Reporting/Deliverables                                                           | Remedial Design submittal - 6% of Remedy Implementation                                             | 1                | LS                               | \$10,000<br>\$856,980     | \$10,000<br>\$856,980         | \$10,000<br>\$856,980              | -                                       |                | \$10,000<br>\$856,980       | \$10,000<br>\$856,980              | _                      |                        | \$10,000<br>\$856,980      | \$0<br>\$0                  | \$0<br>\$0           |
| ubtotal                                                                                      |                                                                                                     |                  |                                  |                           | \$1,049,810                   | \$1,049,810                        |                                         |                | \$1,049,810                 | \$1,049,810                        |                        |                        | \$1,049,810                | \$0                         | \$0                  |
| Remedy Implementation                                                                        |                                                                                                     |                  |                                  |                           |                               |                                    |                                         |                |                             |                                    |                        |                        | Note: Make sure the        | ere are no blanks           | s in these cells     |
| Mobilization                                                                                 |                                                                                                     | 1                | LS or %                          | \$643,890                 | \$643,890                     | \$643,890                          | _                                       |                | \$643,890                   | \$643,890                          | _                      |                        | \$643,890                  | \$0                         | \$0                  |
| Contractor Submittals and Permits                                                            | Contractor submittals, construction permits, as-builts (1.5%)<br>applied to Remedy Implementation   | 1                | LS or %                          | \$193,167                 | \$193,167                     | \$193,167                          |                                         |                | \$193,167                   | \$193,167                          |                        |                        | \$193,167                  | \$0                         | \$0                  |
| Implementation                                                                               |                                                                                                     |                  | V or UC                          |                           | \$0                           | \$0                                |                                         |                | \$0                         | \$0                                |                        |                        | \$0                        | \$0                         | \$0                  |
| Dredging<br>Material Barge, Assist Tug, Transport                                            | Cost of material removal by mechanical dredging                                                     | 62,890           | CY                               | \$20                      | \$1,257,801                   | \$1,257,801                        | _                                       |                | \$1,257,801                 | \$1,257,801                        | _                      |                        | \$1,257,801                | \$0                         | \$0                  |
| Sediments                                                                                    | Cost of material transport                                                                          | 81,757           | TN                               | \$10                      | \$817,570                     | \$817,570                          | 4                                       |                | \$817,570                   | \$817,570                          | 4                      |                        | \$817,570                  | \$0                         | \$0                  |
| Water Management                                                                             | Estimate per day<br>Estimate to setup dewatering/transloading area                                  | 80               | DAY                              | \$10,000                  | \$800,000                     | \$800,000                          | -                                       |                | \$800,000                   | \$800,000                          | -                      |                        | \$800,000                  | \$0                         | \$0                  |
| Dewatering/Transloading Area Setup<br>Handling and Transport to Subtitle D                   |                                                                                                     | 1 81,757         | LS                               | \$500,000                 | \$500,000                     | \$500,000                          | -                                       |                | \$500,000                   | \$500,000                          | -                      |                        | \$500,000                  | \$0                         | \$0                  |
| Landfill                                                                                     | Assume 1.3 tn/cy - quote by WM                                                                      |                  |                                  | \$40                      | \$3,270,282                   | \$3,270,282                        | _                                       |                | \$3,270,282                 | \$3,270,282                        | _                      |                        | \$3,270,282                | \$0                         | \$0                  |
| Subtitle D Landfill Disposal<br>TSCA Waste Handling and Transport to                         | Assume 1.3 tn/cy -quote by WM                                                                       | 81,757           | TN                               | \$36                      | \$2,943,254                   | \$2,943,254                        | _                                       |                | \$2,943,254                 | \$2,943,254                        | _                      |                        | \$2,943,254                | \$0                         | \$0                  |
| Hazardous Waste Landfill                                                                     | Assumes 1.3 tn/cy -quote by phone                                                                   | 2,200            | TN                               | \$90                      | \$198,000                     | \$198,000                          |                                         |                | \$198,000                   | \$198,000                          |                        |                        | \$198,000                  | \$0                         | \$0                  |
| Hazardous Waste Landfill Disposal                                                            | Assume 1.3 tn/cy -quote by phone                                                                    | 2,200            | TN                               | \$87                      | \$191,400                     | \$191,400                          | _                                       |                | \$191,400                   | \$191,400                          | _                      |                        | \$191,400                  | \$0                         | \$0                  |
| Backfill<br>Material Barge & Tug                                                             | Cost of backfill material purchase, delivery and placement at site<br>Transport from quarry to site | 19,300<br>28,950 | CY<br>TN                         | \$30<br>\$10              | \$579,000<br>\$289,500        | \$579,000<br>\$289,500             | -                                       |                | \$579,000<br>\$289,500      | \$579,000<br>\$289,500             | _                      |                        | \$579,000<br>\$289,500     | \$0<br>\$0                  | \$0<br>\$0           |
| In situ GAC treatment                                                                        | Procurement, delivery, placement                                                                    | 59,640           | LB                               | \$2                       | \$119,280                     | \$119,280                          | -                                       |                | \$119,280                   | \$119,280                          | -                      |                        | \$119,280                  | \$0                         | \$0                  |
| Reactive ENR                                                                                 | Procurement, delivery, placement                                                                    | 0                | CY                               | \$120                     | \$0                           | \$0                                |                                         |                | \$0                         | \$0                                |                        |                        | \$0                        | \$0                         | \$0                  |
| Material Barge & Tug                                                                         | Transport to site                                                                                   | 0                | TN                               | \$10                      | \$0                           | \$0                                | _                                       |                | \$0                         | \$0                                | _                      |                        | \$0                        | \$0                         | \$0                  |
| Construction QA/QC                                                                           | Verification sampling, bathymetric surveys, water quality monitoring                                | g 1              | LS                               | \$1,194,480               | \$1,194,480                   | \$1,194,480                        |                                         |                | \$1,194,480                 | \$1,194,480                        |                        |                        | \$1,194,480                | \$0                         | \$0                  |
| Shoreline Stabilization                                                                      | Procurement, delivery, placement (2' T x 3800' L x 10' W)                                           | 5,345            | TN                               | \$50                      | \$267,241                     | \$267,241                          |                                         |                | \$267,241                   | \$267,241                          |                        |                        | \$267,241                  | \$0                         | \$0                  |
| Habitat Enhancement & Riparian Planting                                                      |                                                                                                     | 3                | AC                               | \$150,000                 | \$450,000                     | \$450,000                          |                                         |                | \$450,000                   | \$450,000                          |                        |                        | \$450,000                  | \$0                         | \$0                  |
| Sales Tax                                                                                    | Maryland sales tax (6%) applied to Remedy Implementation<br>excluding disposal cost                 | 1                | LS or %                          | \$426,715.80              | \$426,716                     | \$426,716                          |                                         |                | \$426,716                   | \$426,716                          |                        |                        | \$426,716                  | \$0                         | \$0                  |
| Bonds                                                                                        | Contractor's performance and payment bonds (1%) applied to<br>Remedy Implementation                 | 1                | LS or %                          | \$141,416                 | \$141,416                     | \$141,416                          |                                         |                | \$141,416                   | \$141,416                          |                        |                        | \$141,416                  | \$0                         | \$0                  |
| ubtotal                                                                                      | Remedy implementation                                                                               | 4                |                                  |                           | \$14,282,997                  | \$14,282,997                       |                                         |                | \$14,282,997                | \$14,282,997                       |                        |                        | \$14,282,997               | \$0                         | \$0                  |
| OM&M                                                                                         |                                                                                                     |                  | Annual                           |                           |                               |                                    |                                         | -              |                             |                                    | -                      | -                      | Note: Make sure the        | ere are no blanks           | s in these cells     |
| Maintenance                                                                                  | Assume 10% of AC repair at Year 2                                                                   | 5,964            | LB                               | \$4                       | \$23,856                      |                                    | \$23,856                                |                | \$22,295                    |                                    | \$22,295               | _                      | \$0                        | \$23,856                    | \$0                  |
| Laboratory<br>Field Activities                                                               |                                                                                                     |                  | UC<br>UC and LOE                 |                           | \$0<br>\$0                    |                                    | \$0<br>\$0                              | -              | \$0<br>\$0                  | -                                  | \$0<br>\$0             | -                      | \$0<br>\$0                 | \$0<br>\$0                  | \$0<br>\$0           |
| Materials, Fuels and Treatment Media                                                         | -                                                                                                   |                  | UC or V                          |                           | \$0                           |                                    | \$0                                     | -              | \$0                         |                                    | \$0                    | -                      | \$0                        | \$0                         | \$0                  |
| Reporting/Deliverables                                                                       |                                                                                                     |                  | LS or LOE                        |                           | \$0                           |                                    | \$0                                     |                | \$0                         |                                    | \$0                    |                        | \$0                        | \$0                         | \$0                  |
| Modeling                                                                                     | MNR modeling<br>Public outreach, support seafood consumption advisories,                            |                  | LOE                              |                           | \$0                           |                                    | \$15,000                                | _              | \$11,207                    | _                                  | \$11,207               | _                      | \$0                        | \$5,000                     | \$0                  |
| Institutional Controls                                                                       | reporting, agency review                                                                            |                  | LOE                              |                           | \$0                           |                                    | \$200,000                               | _              | \$175,624                   |                                    | \$175,624              |                        | \$100,000                  | \$20,000                    | \$20,000             |
| Total OM&M Costs (Alternative to above sub<br>topics)                                        | b-<br>Laboratory + Field Activities + Reporting/Deliverables                                        |                  | LOE<br>Attached Work She         | et                        |                               |                                    | \$276,000                               |                | \$219,935                   |                                    | \$219,935              |                        | \$46,000                   | ¢40.000                     | £40.000              |
| ubtotal                                                                                      |                                                                                                     |                  |                                  |                           |                               |                                    | \$514,856                               |                | \$429,061                   |                                    | \$429,061              |                        | \$46,000                   | \$46,000<br><b>\$94,856</b> | \$46,000<br>\$66.000 |
| Project Closure                                                                              |                                                                                                     |                  |                                  |                           |                               |                                    |                                         |                |                             |                                    |                        |                        | Note: Make sure the        | ere are no blanks           | s in these cells     |
| Assessments                                                                                  | Assume 1% of Design+Implementation+OM&M                                                             | 1                | V or UC and LOE                  | \$158,477                 | \$158,477                     |                                    |                                         | \$158,477      | \$148,109                   |                                    |                        | \$148,109              | \$0                        | \$158,477                   | \$0                  |
| Decommissioning - Remedy Completion                                                          | Assume 1% of Design+Implementation+OM&M                                                             | 1                | LS, % or V                       | \$158,477                 | \$158,477                     |                                    |                                         | \$158,477      | \$148,109                   |                                    |                        | \$148,109<br>\$296,218 | \$0<br>\$0                 | \$158,477<br>\$316,953      | \$0<br>\$0           |
| roject Management <sup>3</sup>                                                               |                                                                                                     |                  |                                  |                           | \$316,953                     |                                    |                                         | \$316,953      | \$296,218                   |                                    |                        | \$296,218              | \$0                        | \$316,953                   | ŞU                   |
| rojeot management                                                                            |                                                                                                     |                  |                                  | Of Remedial Design &      | ۹.                            |                                    |                                         |                | 1                           | 1                                  |                        |                        |                            |                             |                      |
| During Implementation                                                                        | Assume 12% of Design+Implementation                                                                 | 12%              | %                                | Remedy                    | \$1,839,937                   | \$1,839,937                        |                                         |                | \$1,839,937                 | \$1,839,937                        |                        |                        |                            |                             |                      |
| During OM&M                                                                                  | Assume 12% of OM&M                                                                                  | 12%              | %                                | Implementation<br>Of OM&M | \$61,782.72                   |                                    | \$61,783                                | Т              | \$45,350                    |                                    | \$45,350               | Г                      | \$1,839,936.83<br>\$17,520 | \$0<br>\$11,383             | \$0<br>\$7,920       |
| During Closure                                                                               | Assume 12% of Closure                                                                               | 12%              | %                                | Of Closure                | \$38,034                      |                                    | φ01,700                                 | \$38,034       | \$45,350<br>\$35,546        | 1                                  | φ <del>4</del> 0,000   | \$35,546               | \$17,520                   | \$11,383                    | \$7,920<br>\$0       |
|                                                                                              |                                                                                                     |                  |                                  |                           |                               | \$1,839,937                        | \$61,783                                | \$38,034       | \$1,920,833                 | \$1,839,937                        | \$45,350               | \$35,546               | \$1,857,457                | \$49,417                    | \$7,920              |
| ubtotal                                                                                      | ESTIMATES                                                                                           |                  |                                  |                           |                               | \$17,172,744                       | \$576,639                               | \$354,988      | \$17,978,919                | \$17,172,744                       | \$474,411              | \$331,764              | \$17,336,264               | \$461,226                   | \$73,920             |
| ubtotal<br>SUBTOTAL COST OF ELEMENT                                                          |                                                                                                     |                  |                                  |                           |                               |                                    |                                         |                |                             |                                    |                        |                        |                            |                             |                      |
|                                                                                              | Implementation OM&M Closure                                                                         |                  |                                  |                           |                               | \$2,157,887                        | \$86,496                                | \$88,747       | \$2,249,177                 | \$2,095,075                        | \$71,162               | \$82,941               |                            |                             |                      |
| SUBTOTAL COST OF ELEMENT<br>Contingencies<br>Scope (10 to 25%)                               | 12.2% 15% 25%                                                                                       | -                |                                  |                           |                               |                                    |                                         | \$70,998       | \$1,831,068                 | \$1,717,274                        | \$47,441               | \$66,353               |                            |                             |                      |
| SUBTOTAL COST OF ELEMENT<br>Contingencies<br>Scope (10 to 25%)<br>Bid (10 to 20%)            | •                                                                                                   |                  |                                  |                           |                               | \$1,768,760                        | \$57,664                                |                | \$4.090.046                 |                                    |                        |                        |                            |                             |                      |
| SUBTOTAL COST OF ELEMENT<br>Contingencies<br>Scope (10 to 25%)<br>Bid (10 to 20%)<br>ubtotal | 12.2% 15% 25%                                                                                       |                  |                                  |                           |                               | \$3,926,647                        | \$144,160                               | \$159,744      | \$4,080,246                 | \$3,812,349                        | \$118,603              | \$149,294              |                            |                             |                      |
| SUBTOTAL COST OF ELEMENT<br>Contingencies<br>Scope (10 to 25%)<br>Bid (10 to 20%)            | 12.2% 15% 25%                                                                                       |                  |                                  |                           |                               | \$3,926,647<br><b>\$21,099,391</b> | \$144,160<br><b>\$720,798</b>           |                |                             |                                    |                        |                        |                            |                             |                      |
| SUBTOTAL COST OF ELEMENT<br>Contingencies<br>Scope (10 to 25%)<br>Bid (10 to 20%)<br>ubtotal | 12.2%         15%         25%           10%         10%         20%                                 |                  |                                  |                           |                               | \$3,926,647<br><b>\$21,099,391</b> | \$144,160                               | \$159,744      | \$4,080,246<br>\$22,059,164 | \$3,812,349<br><b>\$20,985,093</b> | \$118,603<br>\$593,014 | \$149,294              |                            |                             |                      |
| SUBTOTAL COST OF ELEMENT<br>Contingencies<br>Scope (10 to 25%)<br>Bid (10 to 20%)<br>ubtotal | 12.2% 15% 25%                                                                                       |                  | NOTES:                           |                           |                               | \$3,926,647<br><b>\$21,099,391</b> | \$144,160<br>\$720,798<br>22,334,921    | \$159,744      |                             | \$3,812,349                        | \$118,603<br>\$593,014 | \$149,294              |                            |                             |                      |

3 Formulas are set up to calculate project management costs during implementation and OM&M as a percentage of these latter costs. In the event annual costs vary and have been separately estimated, they should be entered directly into the appropriate cells for each year.

# TABLE E-11 **COST ESTIMATES FOR ALTERNATIVE 4J**


|          | SITE: Lockheed Martin - Middle River Comple                                | ex                                               |                                          | TABLE E-11.             |                             |                   |                             |                   |                   |                             |             |                  |                   |      |                   |                   |                   |            |                   |
|----------|----------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------|-------------------------|-----------------------------|-------------------|-----------------------------|-------------------|-------------------|-----------------------------|-------------|------------------|-------------------|------|-------------------|-------------------|-------------------|------------|-------------------|
|          | LEVEL OF ESTIMATE: Screening                                               | r Detailed X                                     |                                          |                         |                             |                   |                             |                   |                   |                             |             |                  |                   |      |                   |                   |                   |            |                   |
| Α        | В                                                                          | С                                                | D                                        | E                       | v                           | W                 | x                           | Y                 | z                 | AA                          | AB          | AC               | AD                | AE   | AF                | AG                | AH                | AI         | AJ                |
| 4        | - Element                                                                  | (Ехр                                             | Description<br>plain Element as nece     | ssary)                  |                             |                   |                             |                   |                   |                             |             |                  |                   |      |                   |                   |                   |            |                   |
| 5        |                                                                            |                                                  |                                          |                         | 5                           | 6                 | 7                           | 8                 | 9                 | 10                          | 11          | 12               | 13                | 14   | 15                | 16                | 17                | 18         | 19                |
| 6        | Remedial Design                                                            |                                                  |                                          |                         | d be filled wi              | th equations li   | nking to, and               | distributing      | the appropria     | te total cost               | s in column | I, or with zeros |                   |      |                   |                   |                   |            |                   |
| 7        | Bench/Pilot Testing                                                        | In situ amendments te                            |                                          | . 40/ of Domodu         | \$0                         | \$0               | \$0                         | \$0               | \$0               | \$0                         | \$          | 0 \$0            | \$0               | \$0  | \$0               | \$0               | \$0               | \$0        | \$0               |
| 8        | Field Investigation                                                        | Additional data collect                          | tion, pre-design survey                  | / - 1% of Remeay        | \$0                         | \$0               | \$0                         | \$0               | \$0               | \$0                         | \$          | 0 \$0            | \$0               | \$0  | \$0               | \$0               | \$0               | \$0        | \$0               |
| 9        | Modeling                                                                   | MNR modeling                                     |                                          | 1                       | \$0                         | \$0               | \$0                         | \$0               |                   | \$0                         |             |                  | \$0               |      |                   | \$0               |                   |            | \$0               |
| 10<br>12 | Reporting/Deliverables Subtotal                                            | Remedial Design sub                              | mittal - 6% of Remedy                    | Implementation          | \$0<br>\$0                  | \$0<br>\$0        | \$0<br>\$0                  | \$0<br><b>\$0</b> |                   | \$0<br>\$0                  |             |                  | \$0<br>\$0        |      |                   | \$0<br>\$0        |                   |            | \$0<br><b>\$0</b> |
| 13       | Remedy Implementation                                                      |                                                  |                                          |                         | d be filled wi              | th equations li   |                             | -                 |                   |                             |             | I, or with zeros |                   |      |                   |                   |                   |            | ••                |
| 14       | Mobilization                                                               |                                                  |                                          |                         | \$0                         | \$0               | \$0                         | \$0               | \$0               | \$0                         | \$          | 0 \$0            | \$0               | \$0  | \$0               | \$0               | \$0               | \$0        | \$0               |
|          | Contractor Submittals and Permits                                          | contractor submittals<br>applied to Remedy In    | , construction permits,<br>nplementation | as-builts (1.5%)        | \$0                         | \$0               | \$0                         | \$0               | \$0               | \$0                         | \$          | 0 \$0            | \$0               | \$0  | \$0               | \$0               | \$0               | \$0        | \$0               |
| 15       | Implementation                                                             |                                                  | ·                                        |                         | \$0                         | \$0               | \$0                         | \$0               |                   | \$0                         |             |                  | \$0               |      |                   |                   |                   |            | \$0               |
|          | Dredging<br>Material Barge, Assist Tug, Transport                          |                                                  | oval by mechanical dree                  | dging                   | \$0                         | \$0               | \$0                         | \$0               | \$0               | \$0                         | \$          | 0 \$0            | \$0               | \$0  | \$0               | \$0               | \$0               | \$0        | \$0               |
|          | Sediments                                                                  | Cost of material trans                           | port                                     |                         | \$0                         | \$0               | \$0                         | \$0               | \$0               | \$0                         |             |                  | \$0               |      | \$0               | \$0               |                   |            | \$0               |
|          | Water Management                                                           | Estimate per day                                 | vatering/transloading a                  | rea                     | \$0<br>\$0                  | \$0<br>\$0        | \$0<br>\$0                  | \$0<br>\$0        |                   | \$0<br>\$0                  | 1           |                  | \$0<br>\$0        |      |                   | \$0<br>\$0        |                   |            | \$0<br>\$0        |
|          | Dewatering/Transloading Area Setup<br>Handling and Transport to Subtitle D | Assume 1.3 tn/cy - qu                            |                                          |                         |                             | \$0               |                             |                   |                   |                             |             |                  |                   |      |                   |                   |                   |            |                   |
|          | Landfill<br>Subtitle D Landfill Disposal                                   | Assume 1.3 tn/cy - qu<br>Assume 1.3 tn/cy -qu    |                                          |                         | \$0<br>\$0                  | \$0<br>\$0        | \$0<br>\$0                  | \$0<br>\$0        | \$0<br>\$0        | \$0<br>\$0                  |             |                  | \$0<br>\$0        |      | \$0<br>\$0        | \$0<br>\$0        | ) \$0<br>) \$0    |            | \$0<br>\$0        |
|          | TSCA Waste Handling and Transport to                                       | Assumes 1.3 tn/cy -qu                            |                                          |                         | \$0                         | <b>Ф</b> О        | \$U                         | \$0               | \$U               | \$0                         | \$          | 5 \$U            | \$0               | \$0  | \$0               | \$0               | \$0               | 20         | φU                |
|          | Hazardous Waste Landfill                                                   |                                                  |                                          |                         | \$0                         | \$0               | \$0                         | \$0               | \$0               | \$0                         |             |                  | \$0               |      | \$0               | \$0               | \$0               |            | \$0               |
|          | Hazardous Waste Landfill Disposal<br>Backfill                              | Assume 1.3 tn/cy -que<br>Cost of backfill materi | ote by pnone<br>ial purchase, delivery a | and placement at site   | \$0<br>\$0                  | \$0<br>\$0        | \$0<br>\$0                  | \$0<br>\$0        |                   | \$0<br>\$0                  |             |                  | \$0<br>\$0        |      |                   | \$0<br>\$0        | ) \$0<br>) \$0    |            | \$0<br>\$0        |
|          | Material Barge & Tug                                                       | Transport from quarry                            |                                          |                         | \$0                         | \$0<br>\$0        | \$0                         | \$0               |                   | \$0<br>\$0                  |             |                  | \$0<br>\$0        |      |                   | \$0               |                   |            | \$0               |
|          | In situ GAC treatment                                                      | Procurement, delivery                            |                                          |                         | \$0                         | \$0               | \$0                         | \$0               |                   | \$0                         |             |                  | \$0               |      |                   | \$0               | \$0               |            | \$0               |
|          | Reactive ENR<br>Material Barge & Tug                                       | Procurement, delivery<br>Transport to site       | y, placement                             |                         | \$0<br>\$0                  | \$0<br>\$0        | \$0<br>\$0                  | \$0<br>\$0        |                   | \$0<br>\$0                  |             |                  | <u>\$0</u><br>\$0 |      |                   | \$0<br>\$0        |                   |            | \$0<br>\$0        |
|          | Construction QA/QC                                                         |                                                  | , bathymetric surveys, v                 | water quality monitorin | na                          | φU                |                             |                   | φυ                |                             |             |                  |                   |      |                   | φυ                | <b>φ</b> υ        |            |                   |
|          | Shoreline Stabilization                                                    |                                                  | y, placement (2' T x 380                 |                         | .9 \$0<br>\$0               | \$0<br>\$0        | \$0<br>\$0                  | \$0<br>\$0        | \$0<br>\$0        | \$0<br>\$0                  |             | - +-             | \$0<br>\$0        |      | \$0<br>\$0        | \$0<br>\$0        | ) \$0<br>) \$0    | \$0<br>\$0 | \$0<br>\$0        |
|          | Habitat Enhancement & Riparian Planting                                    | -                                                | y, placement (25' each                   |                         | \$0                         |                   |                             |                   |                   |                             |             |                  |                   |      |                   | \$0<br>\$0        |                   |            | \$0               |
|          | Sales Tax                                                                  | Maryland sales tax (6                            | %) applied to Remedy                     |                         |                             | \$0               | \$0                         | \$0               | \$0               | \$0                         |             |                  | \$0               |      | \$0               |                   | \$0               |            |                   |
|          |                                                                            | excluding disposal co<br>Contractor's performa   | ist<br>ance and payment bond             | ds (1%) applied to      | \$0                         | \$0               | \$0                         | \$0               | \$0               | \$0                         | \$          | 0 \$0            | \$0               | \$0  | \$0               | \$0               | \$0               | \$0        | \$0               |
| 19       | Bonds<br>Subtotal                                                          | Remedy Implementat                               |                                          |                         | \$0<br><b>\$0</b>           | \$0<br><b>\$0</b> | \$0<br><b>\$0</b>           | \$0<br><b>\$0</b> | \$0<br>\$0        | \$0<br><b>\$0</b>           | \$          | - +-             | \$0<br><b>\$0</b> |      | \$0<br><b>\$0</b> | \$0<br><b>\$0</b> | \$0<br>\$0        | \$0<br>\$0 | \$0<br>\$0        |
| 20       | OM&M                                                                       |                                                  |                                          |                         |                             | th \$ 0's, numb   |                             |                   | \$U               | φU                          | J 40        | φU               | φU                | - QQ | φU                | φU                |                   | φu         | φU                |
| 21       | Maintenance                                                                | Assume 10% of AC re                              | epair at Year 2                          |                         | \$0                         | \$0               | \$0                         | \$0               | \$0               | \$0                         | \$          | 0 \$0            | \$0               | \$0  | \$0               | \$0               | \$0               | \$0        | \$0               |
| 22       | Laboratory                                                                 |                                                  |                                          |                         | \$0                         | \$0               | \$0                         | \$0               |                   | \$0                         |             |                  | \$0               |      |                   |                   |                   |            | \$0               |
| 23<br>24 | Field Activities<br>Materials, Fuels and Treatment Media                   |                                                  |                                          |                         | \$0<br>\$0                  | \$0<br>\$0        | \$0<br>\$0                  | \$0<br>\$0        |                   | \$0<br>\$0                  | 1           |                  | \$0<br>\$0        |      |                   |                   |                   |            | \$0<br>\$0        |
| 24       | Reporting/Deliverables                                                     |                                                  |                                          |                         | \$0                         | \$0<br>\$0        | \$0                         | \$0<br>\$0        |                   | \$0<br>\$0                  |             |                  | \$0<br>\$0        |      |                   | \$U<br>\$0        | \$0<br>\$0<br>\$0 |            | \$0               |
| 26       | Modeling                                                                   | MNR modeling                                     |                                          |                         | \$5,000                     | \$0               | \$0                         | \$0               |                   | \$5,000                     | \$          | 0 \$0            | \$0               |      |                   | \$0               | \$0               | 1          | \$0               |
|          | Institutional Controls                                                     | reporting, agency revi                           | oort seafood consumpti<br>iew            | ion advisories,         | \$20,000                    | \$0               | \$20,000                    | \$0               | \$0               | \$20,000                    | \$          | 0 \$0            | \$0               | \$0  | \$0               | \$0               | \$0               | \$0        | \$0               |
| 27       | Total OM&M Costs (Alternative to above sub-<br>topics)                     | Laboratory + Field Ac                            | tivities + Reporting/Del                 | liverables              | 640.000                     | 00                | £40.000                     | 60                | 00                | 640.000                     |             |                  | **                | \$0  | 00                |                   |                   |            | 60                |
| 28       | Subtotal                                                                   | 1                                                |                                          |                         | \$46,000<br><b>\$71,000</b> | \$0<br><b>\$0</b> | \$46,000<br><b>\$66,000</b> | \$0<br><b>\$0</b> | \$0<br><b>\$0</b> | \$46,000<br><b>\$71,000</b> | \$          |                  | \$0<br><b>\$0</b> |      | \$0<br><b>\$0</b> | \$0<br><b>\$0</b> | \$0<br>\$0<br>\$0 | \$0<br>\$0 | \$0<br><b>\$0</b> |
| 29       | Project Closure                                                            |                                                  |                                          |                         |                             | th \$ 0's, numb   | ers or equation             | -                 |                   |                             |             |                  |                   |      |                   |                   |                   |            |                   |
| 30       | Assessments                                                                | °                                                | n+Implementation+OM                      |                         | \$0                         |                   | \$0                         | \$0               |                   | \$0                         |             |                  | \$0               |      |                   |                   |                   |            | \$0               |
| 31<br>32 | Decommissioning - Remedy Completion Subtotal                               | Assume 1% of Design                              | n+Implementation+OM                      |                         | \$0<br>\$0                  |                   | \$0<br><b>\$0</b>           | \$0<br><b>\$0</b> |                   | \$0<br>\$0                  |             |                  | \$0<br>\$0        |      |                   |                   |                   |            | \$0<br>\$0        |
| 33       | Project Management <sup>3</sup>                                            |                                                  |                                          |                         | ψŪ                          | ψŪ                |                             |                   | ŶŬ                |                             | Ý           | ΨŪ               | ψυ                | ψŪ   | ψŪ                | ψŪ                | ψŪ                | ψŰ         |                   |
| 34       | During Implementation                                                      | Assume 12% of Desi                               | gn+Implementation                        |                         |                             |                   |                             | <b>*</b>          |                   |                             |             |                  |                   |      |                   | <b>^</b>          |                   |            | <b>*</b>          |
|          | During OM&M                                                                | Assume 12% of OM&                                | M                                        |                         | \$0<br>\$8,520              | \$0<br>\$0        | \$0<br>\$7,920              | \$0<br>\$0        |                   | \$0<br>\$8,520              |             |                  | \$0<br>\$0        |      |                   | \$0<br>\$0        |                   |            | \$0<br>\$0        |
|          | During Closure                                                             | Assume 12% of Closu                              |                                          |                         | \$0                         | \$0               | \$0                         | \$0               | \$0               | \$0                         | \$          | 0 \$0            | \$0               | \$0  | \$0               | \$0               | \$0               | \$0        | \$0               |
| 35       | Subtotal                                                                   |                                                  |                                          |                         | \$8,520                     | \$0               | \$7,920                     | \$0               |                   | \$8,520                     |             |                  | \$0               |      |                   |                   |                   |            | \$0               |
| 36       | SUBTOTAL COST OF ELEMENT                                                   |                                                  |                                          |                         | \$79,520                    | \$0               | \$73,920                    | \$0               | \$0               | \$79,520                    | \$0         | D \$0            | \$0               | \$0  | \$0               | \$0               | \$0               | \$0        | \$0               |
| 37       | Contingencies                                                              | Implementation                                   |                                          | Closure                 |                             | 1                 |                             |                   |                   |                             |             | 1 1              |                   |      |                   |                   | 1                 |            | 1                 |
| 38<br>39 | Scope (10 to 25%)<br>Bid (10 to 20%)                                       | 12.2%                                            | 15%<br>10%                               | 25%<br>20%              |                             |                   |                             |                   |                   |                             |             |                  |                   |      |                   |                   |                   |            |                   |
| 40       | Subtotal                                                                   | 10%                                              | 1070                                     | 2078                    |                             |                   |                             |                   |                   |                             |             |                  |                   |      |                   |                   |                   |            |                   |
| 41       | GRAND TOTAL COST                                                           |                                                  |                                          |                         |                             |                   |                             |                   |                   |                             |             |                  |                   |      |                   |                   |                   |            |                   |
| 42       |                                                                            |                                                  |                                          |                         |                             |                   |                             |                   |                   |                             |             |                  |                   |      |                   |                   |                   |            |                   |
|          | Level Of Effort                                                            | OM&M                                             | Operational, Maintena                    | ance & Monitoring       |                             |                   |                             |                   |                   |                             |             |                  |                   |      |                   |                   |                   |            |                   |
|          | Lump Sum                                                                   | UC                                               | Unit Cost                                | a monitoring            |                             |                   |                             |                   |                   |                             |             |                  |                   |      |                   |                   |                   |            |                   |
|          |                                                                            |                                                  |                                          |                         |                             |                   |                             |                   |                   |                             |             |                  |                   |      |                   |                   |                   |            |                   |

LS Lump Sum NPV Net Present Value

Unit Cost Vendor

UC V

Lockheed Martin Corporation



Version G April 2012

# APPENDIX F—ESTIMATION OF SHORT-TERM EFFECTS, ENVIRONMENTAL FOOTPRINT, AND SUSTAINABILITY MEASURES

# TABLE OF CONTENTS

| APPENDIX | F ESTIMATION OF SHORT-TERM EFFECTS, ENVIRONMENTAL<br>FOOTPRINT, AND SUSTAINABILITY MEASURES | 1 |
|----------|---------------------------------------------------------------------------------------------|---|
| F.1      | INTRODUCTION                                                                                | 1 |
| F.2      | METHODOLOGY FOR ESTIMATING SHORT-TERM IMPACTS<br>METRICS                                    | 1 |
|          | <ul><li>F.2.1 Remedial Activities Evaluated</li><li>F.2.2 Inventory of Metrics</li></ul>    |   |
|          | F.2.3 SiteWise Inputs                                                                       | 4 |
| F.3      | RESULTS                                                                                     | 5 |
| F.4      | SUSTAINABILITY MEASURES                                                                     | 8 |
| F.5      | REFERENCES                                                                                  | 9 |

| ATTACHMENT 1 | SITEWISE INPUTS                                  |
|--------------|--------------------------------------------------|
| ATTACHMENT 2 | ENVIRONMENTAL FOOTPRINT OF REMEDIAL ALTERNATIVES |

# LIST OF TABLES

| Table F-1.   Estimation of Short-Term Impacts Metrics10 |  |
|---------------------------------------------------------|--|
|---------------------------------------------------------|--|

# LIST OF FIGURES

| Figure F-1. | Greenhouse gas emissions and total energy used comparison of remedial |   |
|-------------|-----------------------------------------------------------------------|---|
|             | alternatives                                                          | 5 |
| Figure F-2. | Air pollution emissions comparison of remedial alternatives.          | 7 |

# APPENDIX F Estimation of Short-term Effects, Environmental Footprint, and Sustainability Measures

# F.1 INTRODUCTION

This appendix presents the methods used for estimating short-term impact metrics and environmental footprint for the remedial alternatives developed in this Lockheed Middle River Complex FS. Short-term environmental impacts of the active remedial actions were evaluated by utilizing the Naval Facilities Engineering Command (NAVFAC) SiteWise tool for Green and Sustainable Remediation to calculate the environmental footprint of remedial alternatives (NAVFAC, 2011). The method is consistent with USEPA's Green Remediation policy to enhance the environmental benefits of federal cleanup programs by promoting technologies and practices that are sustainable (USEPA 2008, USEPA 2010, USEPA 2012). EPA's Green Remediation strategy outlines the principles of green remediation and describes opportunities to reduce the footprint of cleanup activities throughout the life of a project. The SiteWise tool was developed jointly by the United States Navy, the United States Army Corps of Engineers (USACE), and Battelle, and is used to assess the remedial alternatives in terms of a consistent set of environmental metrics.

# F.2 METHODOLOGY FOR ESTIMATING SHORT-TERM IMPACTS METRICS

Potential environmental footprint of a cleanup action is associated with the emission of greenhouse gases (GHG) such as carbon dioxide (CO<sub>2</sub>) and others contributing to climate change; energy use; air emissions of criteria pollutants including nitrogen oxide (NOx), sulfur oxide (SOx), and particulate matter ( $PM_{10}$ ); water consumption; resource consumption; landfill space; and worker safety. The net carbon emission associated with a defined activity is often referred to as the activity's carbon footprint (USEPA, 2010). The SiteWise tool was used to quantify the environmental footprint of the remedial alternatives.

# F.2.1 Remedial Activities Evaluated

Remedial activities are typically separated into different phases of the remedial actions: Remedial Investigation, Remedial Action Construction (RAC), Remedial Action Operations, and Long-term Monitoring (LTM). Once broken down into various phases, the footprint of each module is calculated individually by the SiteWise tool. The different footprints are then combined to estimate the overall footprint of the remedial alternative. The short-term effectiveness analysis for the Lockheed MRC site primarily focused on the RAC and LTM activities. The Remedial Investigation phase activities involve limited and similar actions for each alternative which includes additional field data collection (applicable to all alternatives) and bench scale testing for the alternatives that involve sediment amendments. The environmental footprint from these activities is considered negligible compared to remedial action construction activities. There are no Remedial Action Operations for the MRC remedial alternatives. The LTM is another category that the level of effort varies for each alternative and warrants estimating the short-term impacts.

Specific remediation actions under RAC were identified for each alternative. Removal components of the alternatives include the following RAC actions:

- Mechanical dredging/excavation of sediments using barge-mounted derrick crane;
- Off-loading of dredged material by derrick crane to the transloading/dewatering area;
- Handling of dredged sediments at transloading/dewatering area by loader;
- Water treatment of water from mechanically dredged sediments;
- Transportation of dredged material by truck from the transloading/dewatering area to the landfill cell;
- Handling of backfill/ENR material at quarry by loader
- Transportation of backfill/ENR material from quarry to the site by barge;
- Backfill/ENR placement using barge mounted derrick crane.

Alternatives 4G and 4J include in situ treatment by activated carbon (AC) and Alternative 4F includes reactive ENR placement, which is thin layer placement of sand mixed with AC. Additional remediation actions associated with AC in addition to the list above include:

- Loading of AC onto trucks with loader;
- Transportation of AC from source site to the construction site by trucks; and
- AC placement using barge mounted derrick crane or another internal combustion engine.

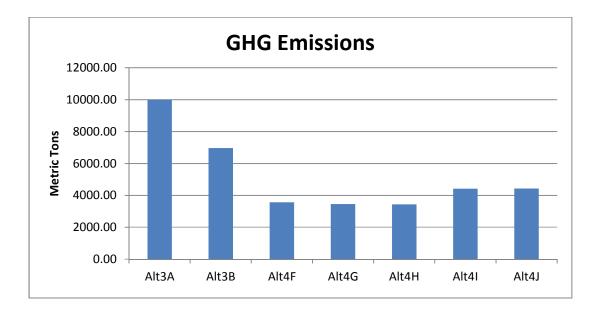
The remedial alternatives may also involve tertiary activities such as emissions from survey boat operations during construction QA/QC monitoring and other miscellaneous activities from small scale construction equipment. These activities are assumed to be accounted for in the volume contingency built in the dredge residuals management backfill and ENR volume estimates. The other assumptions used for estimating short-term impact metrics include:

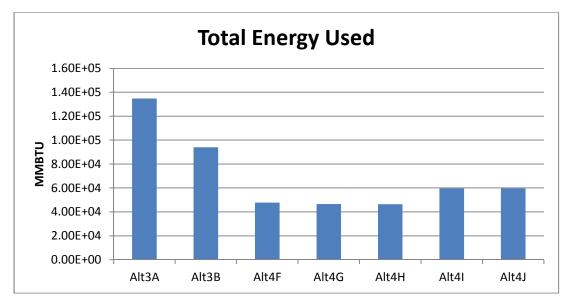
- Four construction laborers for RAC activities (i.e. dredging, transloading of dredged material to dewatering area, material transport by barge, material placement) and three laborers for LTM activities;
- Material production phase of backfill, ENR material and AC are not incorporated;
- Manufacturing of construction equipment, other construction materials, fuels, lubricants, staging equipment and support facilities; transportation of workers to/from site; transportation of equipment; electricity generation for consumption at the site; and landfill management are not included in the metrics;
- Environmental footprint reduction measures are not incorporated at this time.
- Hazardous waste landfill disposal is not separated from non-hazardous waste disposal. The portion of hazardous waste is same for all alternatives and limited to approximately 2,500 tons.

# F.2.2 Inventory of Metrics

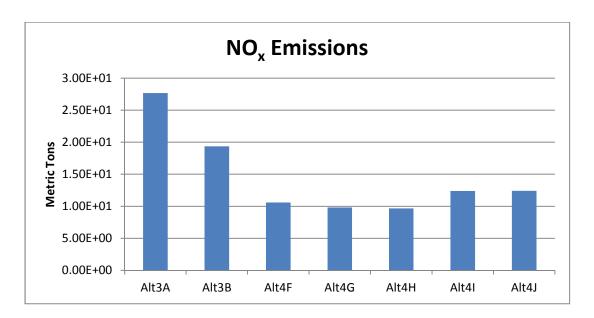
The remedy alternative environmental footprint is calculated in SiteWise by multiplying the impact factors (e.g., emissions per usage rate) with the usage rate (consumption) of fuel during a remedial action.

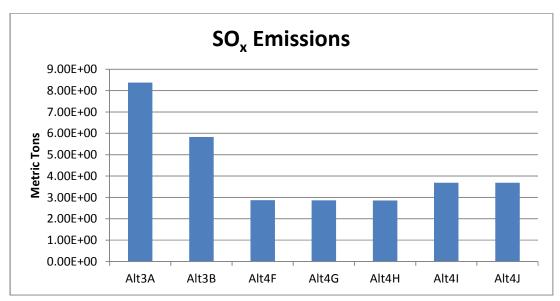
SiteWise performs all of the calculations based on emission factors obtained from governmental or non-governmental research sources. U.S. EPA Climate Leaders Program (USEPA, 2009) provides a GHG Inventory Guidance used by industry to document emissions of GHGs including carbon dioxide ( $CO_2$ ), methane ( $CH_4$ ), and nitrous oxide ( $N_2O$ ). The EPA Climate Leaders GHG Inventory Guidance is a modification of the GHG protocol developed by the World Resources


Institute and the World Business Council for Sustainable Development. SiteWise<sup>TM</sup> also uses emission factors developed by Argonne National Laboratory's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model, USEPA's Mobile 6 model, and USEPA's Non-road model. Emission factors for consumables are life cycle based and obtained from sources that provide life cycle inventories (e.g., the life cycle inventory provided by National Renewable Energy Laboratory).


# F.2.3 SiteWise Inputs

Environmental footprint metrics (i.e., material quantities, operation hours, required landfill volume, water consumption) for each remedial action summarized in Section C.2.1, were estimated in Table F-1. These metrics were entered into SiteWise analyses as input to its corresponding categories which are RAC (i.e. equipment use, residual handling and resource consumption) for all alternatives and LTM (i.e. equipment use) for Alternatives 4I through 4J. The inputs for each alternative, as entered to SiteWise, are compiled in Attachment 1.


# F.3 RESULTS


Alternative 3A, complete removal action over the AOPC addressing depth to 52 inches would use the most energy and release the most GHG air pollution emissions (Figure F-1 and F-2). As the dredge volume of the alternatives decrease, GHG and air pollution emissions decrease. Alternative 4H has the smallest environmental footprint closely followed by Alternative 4G and 4F. Complete SiteWise output results are included in Attachment 2.





**Figure F-1.** Greenhouse gas emissions and total energy used comparison of remedial alternatives.





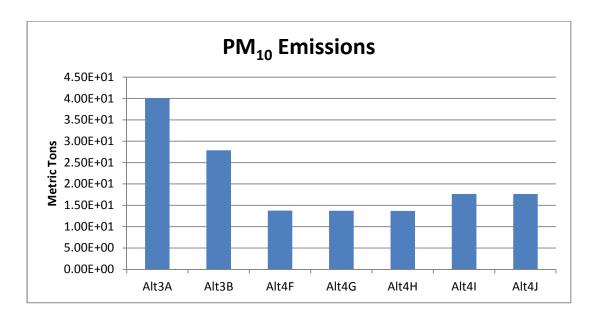



Figure F-2. Air pollution emissions comparison of remedial alternatives.

## F.4 SUSTAINABILITY MEASURES

U.S. EPA's Green Remediation strategy outlines the goal of comprehensively evaluating cleanup actions to ensure protection of human health and the environment and to reduce the environmental footprint of cleanup activities to the maximum extent possible (USEPA, 2010). Green remediation comprises a range of best practices that may be applied throughout the cleanup process. The best management practices of green remediation provide potential means to improve waste management; conserve or preserve energy, fuel, water, and other natural resources; reduce GHG emissions; promote sustainable long-term stewardship; and reduce adverse impacts on local communities during and after remediation activities.

In general,  $CO_2$  production is driven largely by fuel consumption during on-site and off-site activities. Reducing  $CO_2$  emissions on a large scale is difficult for the Lockheed MRC remedial alternatives because of the type of activities required for sediment remediation and the limitations of available technologies to reduce  $CO_2$  emissions associated with heavy construction equipment. It may be possible to reduce  $CO_2$  emissions by using alternative fuels and adopting sustainable BMPs during the project. A reduction in  $CO_2$  emissions can be achieved by using biodiesel in the smaller construction equipment (e.g., front-end loaders). If hydraulic dredging is considered, some electric dredges are currently in use that would reduce emissions associated with dredging activities; however, this technology is new and not widely used. Electric booster pumps can also be used if an upland booster pump is needed to pump hydraulically dredged material into geotubes. Emissions of PM<sub>10</sub> are primarily generated through the operation of construction equipment. The best way to reduce GHG emission is through the use of BMPs. Some BMPs considered for the Lockheed MRC site are:

- Perform construction sequentially to reduce unnecessary movement of construction equipment,
- Analyze various alternative technologies that could reduce energy consumption, waste, and emissions,
- Recycle uncontaminated materials removed (i.e., metals, construction debris, tires, etc.),
- Limit on-site vehicle speed to reduce particle suspension and increase fuel efficiency,
- Select properly sized and powered equipment,

- Based on availability, consider engines with Tier 2 emissions standard for equipment (likely to have a cost premium associated with this option),
- Select fuel efficient equipment,
- Select lower GHG emitting fuel sources (e.g., biodiesel) for small equipment and trucks,
- Provide alternatives to diesel-powered generators for use during construction, and
- Use low sulphur fuels when possible.

# F.5 REFERENCES

- 1. USEPA (U.S. Environmental Protection Agency). 2008. Green Remediation: Incorporating Sustainable Environmental Practices into Remediation of Contaminated Sites. April 2008.
- 2. USEPA (U.S. Environmental Protection Agency). 2009. Climate Leaders Program Direct Emissions from Stationary Combustion Sources. Available at: www.epa.gov/climateleaders.
- USEPA (U.S. Environmental Protection Agency). 2010. Superfund Green Remediation Strategy. EPA Office of Superfund Remediation and Technology Innovation. September 2010.
- USEPA (U.S. Environmental Protection Agency). 2012. Green Remediation Best Management Practices: Overview of EPA's Methodology to Address the Environmental Footprint of Site Cleanup. March 2012.
- NAVFAC (Naval Facilities Engineering Command). 2011. SiteWise Version 2 User Guide. Battelle Memorial Institute, Columbus, Ohio. June.

|                          |                                                                                                                              |                |                           |                                       | Remedial                               | Alternative                                                |                               |                                |                                                                    |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------|---------------------------------------|----------------------------------------|------------------------------------------------------------|-------------------------------|--------------------------------|--------------------------------------------------------------------|
|                          |                                                                                                                              | 1<br>No Action | 3A<br>Complete<br>Removal | 3B<br>Removal at CPC,<br>DHC          | 4F<br>Partial Removal,<br>Reactive ENR | 4G<br>Partial Removal,<br><i>In situ</i> Treatment,<br>MNR | 4H<br>Partial Removal,<br>MNR | 4I<br>Partial+ Removal,<br>MNR | 4J<br>Partial+ Removal, <i>In</i><br><i>situ</i> Treatment,<br>MNR |
| Equipment Hours          | 1                                                                                                                            |                | 1                         |                                       |                                        |                                                            |                               |                                |                                                                    |
|                          | Dredge Volume at Cow Pen Creek by mechanical dredging/excavation(cy) a/                                                      | 0              | 24,376                    | 24,378                                | 24,378                                 | 24,378                                                     | 24,378                        | 24,378                         | 24,378                                                             |
|                          |                                                                                                                              |                | 1                         | · · · · · · · · · · · · · · · · · · · |                                        | Í Í                                                        |                               | · · · · ·                      | í í                                                                |
|                          | Dredge Volume at Dark Head Cove by mechanical dredging (cy) a/                                                               | 0              | 118,752                   | 75,170                                | 24,405                                 | 24,405                                                     | 24,405                        | 38,512                         | 38,512                                                             |
| Input Data               | Backfill, Reactive ENR Volume at CPC and DHC (cy) b/                                                                         | 0              | 33,300                    | 25,500                                | 29,000                                 | 15,200                                                     | 15,200                        | 19,300                         | 19,300                                                             |
|                          | Activated Carbon Mass (lb) <sup>c/</sup>                                                                                     | 0              | 0                         | 0                                     | 0                                      | 266,094                                                    | 0                             | 0                              | 59,640                                                             |
|                          | Activated Carbon Mass (cy)                                                                                                   | 0              | 0                         | 0                                     | 0                                      | 493                                                        | 0                             | 0                              | 110                                                                |
|                          | Remedial Action Construction Cost (\$)                                                                                       | \$0            | \$41,655,293              | \$30,234,859                          | \$20,456,124                           | \$18,364,124                                               | \$17,174,621                  | \$21,090,719                   | \$21,466,151                                                       |
|                          | Long-term Monitoring Cost (\$)                                                                                               | \$0            | \$0                       | \$0                                   | \$1,014,163                            | \$1,056,347                                                | \$945,793                     | \$624,256                      | \$593,014                                                          |
| Equipment Hours due to   | Dredging <sup>ar</sup>                                                                                                       |                | · ·                       | • ·                                   |                                        |                                                            | ,                             |                                | ,                                                                  |
|                          | Mechanical dredging/excavation at Cow Pen Creek (barge mounted derrick crane) (hr)                                           | 0              | 298                       | 298                                   | 298                                    | 298                                                        | 298                           | 298                            | 298                                                                |
| Dredging                 | Mechanical dredging at Dark Head Cove (barge mounted derrick crane) (hr)                                                     | 0              | 1,449                     | 917                                   | 298                                    | 298                                                        | 298                           | 470                            | 470                                                                |
|                          | Total hours of dredging/excavation at CPC and DHC                                                                            | 0              | 1,747                     | 1,215                                 | 596                                    | 596                                                        | 596                           | 768                            | 768                                                                |
|                          | Total days of dredging/excavation at CPC and DHC                                                                             | 0              | 180                       | 130                                   | 60                                     | 60                                                         | 60                            | 80                             | 80                                                                 |
| Equipment Hours due to   |                                                                                                                              | •              |                           |                                       |                                        |                                                            |                               |                                |                                                                    |
|                          | Barge mounted derrick crane for mechanicaly dredged material from Cow Pen<br>Creek to transloading/dewatering area (hr)      | 0              | 407                       | 407                                   | 407                                    | 407                                                        | 407                           | 407                            | 407                                                                |
| Transloading             | Barge mounted derrick crane for mechanicaly dredged material from Dark<br>Head Cove to transloading/dewatering area (hr)     | 0              | 1,980                     | 1,253                                 | 407                                    | 407                                                        | 407                           | 642                            | 642                                                                |
|                          | Total hours of transloading dredged material                                                                                 | 0              | 2,387                     | 1,660                                 | 814                                    | 814                                                        | 814                           | 1,049                          | 1,049                                                              |
|                          | Dredge material handling at transloading/dewatering area by front loaders (cy)                                               | 0              | 143,128                   | 99,547                                | 48,783                                 | 48,783                                                     | 48,783                        | 62,890                         | 62,890                                                             |
| Equipment Hours due to   | Transportation "                                                                                                             |                |                           |                                       |                                        |                                                            |                               |                                |                                                                    |
|                          | Dredge Material (ton)                                                                                                        | 0              | 186,066                   | 129,411                               | 63,418                                 | 63,418                                                     | 63,418                        | 81,757                         | 81,757                                                             |
|                          | Dredge material to landfill - truck trips                                                                                    | 0              | 9,550                     | 6,640                                 | 3,260                                  | 3,260                                                      | 3,260                         | 4,200                          | 4,200                                                              |
|                          | Dredge material to landfill - truck miles                                                                                    | 0              | 2,387,500                 | 1,660,000                             | 815,000                                | 815,000                                                    | 815,000                       | 1,050,000                      | 1,050,000                                                          |
| Transportation           | Water Treatment Volume for mechanical dredging at CPC and DHC (gal)                                                          | 0              | 8,672,000                 | 6,032,000                             | 2,956,000                              | 2,956,000                                                  | 2,956,000                     | 3,811,000                      | 3,811,000                                                          |
|                          | Activated carbon to Site - truck trips                                                                                       | 0              | 0                         | 0                                     | 0                                      | 49                                                         | 0                             | 0                              | 11                                                                 |
|                          | Activated carbon to Site - truck hours                                                                                       | 0              | 0                         | 0                                     | 0                                      | 493                                                        | 0                             | 0                              | 110                                                                |
| Equipment Hours due to   | Backfill/ENR material to site - barge (hr) Backfill, ENR, In situ Treatment <sup>97</sup>                                    | 0              | 84                        | 64                                    | 73                                     | 38                                                         | 38                            | 49                             | 49                                                                 |
|                          |                                                                                                                              | 0              | 33,300                    | 25,500                                | 29,000                                 | 15,200                                                     | 15,200                        | 19,300                         | 19,300                                                             |
| Backfill, Reactive ENR,  | Backfill/ENR handling at quarry to barge by front loaders (cy)<br>Backfill/ENR placement by barge mounted derrick crane (hr) | 0              | 33,300                    | 25,500                                | 29,000                                 | 15,200                                                     | 15,200                        | 210                            | 210                                                                |
| Activated Carbon         | Activated carbon placement - barge mounted crane (hr)                                                                        | 0              | 0                         | 0                                     | 0                                      | 80                                                         | 0                             | 0                              | 18                                                                 |
|                          | Total days of Backfill/ENR/Activated carbon placement (days)                                                                 | 0              | 50                        | 40                                    | 40                                     | 50                                                         | 30                            | 30                             | 40                                                                 |
| Total In-water Construct |                                                                                                                              | 0              | 230                       | 170                                   | 100                                    | 110                                                        | 90                            | 110                            | 120                                                                |
| Equipment Hours due to   | Long-term Operation Maintenace and Monitoring                                                                                |                | •                         | -                                     |                                        |                                                            |                               | •                              | -                                                                  |
| Long-term OM&M           | Bathymetric & Sampling Boat usage (hr)                                                                                       | 0              | 0                         | 0                                     | 54                                     | 72                                                         | 126                           | 40                             | 30                                                                 |

Table F-1. Estimation of Short-term Environmental Impacts Metrics

Notes:

a/ Neat dredge volumes were estimated by utilizing Thiessen polygons and increased by 50% for SiteWise analysis to account for the various causes of volume creep.

<sup>b/</sup> Reactive ENR volumewas estimated assuming 12 inch layer of sand mixed with activated carbon over the footprint to reach minimum 6 inch coverage. Dredge residual backfill material volume was estimated assuming 9 inch layer of sand over the footprint to reach minimum 6 inch coverage.

c/ 35,000 kg granulated activated carbon per hactare (31,230 lb/ha) (Ghosh, 2011).

<sup>d/</sup> Barge mounted derrick crane will be used for removal by mechanical dredging/excavation (82 cy/hr, 25 gal/hr, 816 cy/day at 10 hour/day operation).

e/ Mechanically dredged material will be offloaded from barge by derrick crane at the transloading area (60 cy/hr, 25 gal/hr).

<sup>1/</sup> Assumptions: 1) dredged material will be transported by trucks from the transloading area to Grows North landfill in Morrisville, PA (15 cy/truck, 250 mile/round trip, 0.22 gal/miles) and from landfill offloading site to the disposal cell (15 cy/truck, 12 miles/round trip, 0.22 gal/miles); 2) Assume dewatered volume of dredged material is same as in-situ FS level dredge volume; 3) Assume water to be treated collected by mechanical dredging is 30% of dredged material including additional stormwater; 4) Activated carbon will be delivered by trucks (10 cy/truck, 10 hr per trip); 5) ENR and backfill material will be delivered by barge (barge capacity: 1,600 cy, speed: 5 miles/hr avg., distance from quarry: 10 miles, each barge trip: 4 hours, fuel consumption: 85 gal/hr).

9' Assumptions: 1) barge mounted derrick crane will be used for backfill and ENR material placement (92 cy/hr, 25 gal/hr, 736 cy/day); 2) GAC placement rate is 1.5 ton/hr or 12 ton/day based on field pilot studies (e-mail correspondence with Dr. Ghosh). h' Total in-water construction duration is based on 10 hour/day operations.

i/ Assumptions: 1) boat will be used for bathymetry and sampling (1 acre/hr, 5 gal/hr), Alt.4 - 14 sampling events in 50 years; Alts.5, 6 - 8 sampling events in 25 years; Alts.7, 8 - 6 sampling events in 10 years.

cy=cubic yard; ENR=Enhanced natural recovery; MNR=monitored natural recovery; gal=gallon; CPC=Cow Pen Creek; DHC=Dark Head Cove

# ATTACHMENT 1 SITEWISE INPUTS

| SITE INFORMATION               |                        |
|--------------------------------|------------------------|
| User Name and Date             | Tetra Tech - July 2012 |
| Site Name                      | Middle River Complex   |
| Remedial Alternative Name      | MRC-Complete Removal   |
| Alternative File Name (will be |                        |
| used in graphics and as file   |                        |
| name; avoid invalid            | Alt3A                  |
| characters, e.g. ? : " / \ <   |                        |
| >   * )                        |                        |
| Choose electricity region      | RFCE                   |

Do you want to reload a previously saved remedial alternative in the SiteWise input sheet? RA\_Alt2\_NoFR\_3 \\eciseafile\groups\SedMgmt -Refresh List

Yes

Reset all input values on all worksheets to default

Reset All Values on All Sheets

-= Status =-

Done Loading!









Sitewise I ool for Green and Sustainable Remediation has been developed jointly by United States (US) Navy, United States Army Corps of Engineers (USACE), and Battelle. This tool is made available on an as-is basis without guarantee or warranty of any kind, express or implied. The US Navy, USACE, Battelle, the authors, and the reviewers accept no liability resulting from the use of this tool or its documentation; nor does the above warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof. Implementation of SiteWise<sup>™</sup> tool and interpretation or use of the results provided by the tool are the sole responsibility of the user. The tool is provided free of charge for everyone to use, but is not supported in any way by the US Navy, USACE, or Battelle.

#### This worksheet allows the user to define material production, transportation, equipment use, and residual handling variables for the remedial alternative Yellow cells require the user to choose an input from a drop down menu White cells require the user to type in a value

### BASELINE INFORMATION

| REMEDIAL ACTION CONSTRUCTION COST                  | Entire Site |
|----------------------------------------------------|-------------|
| Input total remedial action construction cost (\$) | 41,655,293  |

### MATERIAL PRODUCTION

| /ELL MATERIALS                                                    | Well Type 1       | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6     |
|-------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------|
| Input number of wells                                             |                   |                   |                   |                   |                   |                 |
| Input depth of wells (ft)                                         |                   |                   |                   |                   |                   |                 |
| Choose specific material schedule from drop down menu             | Sch 40 PVC        | Sch 40 PVC      |
| Choose well diameter (in) from drop down menu                     | 1/8               | 1/8               | 1/8               | 1/8               | 1/8               | 1/8             |
|                                                                   |                   |                   |                   |                   |                   |                 |
| REATMENT CHEMICALS & MATERIALS                                    | Treatment 1       | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6     |
| Input number of injection points                                  |                   |                   |                   |                   |                   |                 |
| Choose material type from drop down menu                          | Hydrogen Peroxide | Hydrogen Peroxi |
| Input amount of material injected at each point (pounds dry mass) |                   |                   |                   |                   |                   |                 |
| Input number of injections per injection point                    |                   |                   |                   |                   |                   |                 |
|                                                                   |                   |                   |                   |                   |                   |                 |
| REATMENT MEDIA                                                    | Treatment 1       | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6     |
| Input weight of media used (lbs)                                  |                   |                   |                   |                   |                   |                 |
| Choose media type from drop down menu                             | Virgin GAC        | Virgin GAC      |
|                                                                   |                   |                   |                   |                   |                   |                 |
| ONSTRUCTION MATERIALS                                             | Material 1        | Material 2        | Material 3        | Material 4        | Material 5        | Material 6      |
| Choose material type from drop down menu                          | HDPE Liner        | HDPE Liner      |
| Input area of material (ft2)                                      |                   |                   |                   |                   |                   |                 |
| Input depth of material (ft)                                      |                   |                   |                   |                   |                   |                 |
|                                                                   |                   |                   |                   |                   |                   |                 |
| ELL DECOMMISSIONING                                               | Well Type 1       | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6     |
| Input number of wells                                             |                   |                   |                   |                   |                   |                 |
| Input depth of wells (ft)                                         |                   |                   |                   |                   |                   |                 |
| Input well diameter (in)                                          |                   |                   |                   |                   |                   |                 |
| Choose material from drop down menu                               | Soil              | Soil              | Soil              | Soil              | Soil              | Soil            |
|                                                                   |                   |                   |                   |                   |                   |                 |
| ULK MATERIAL QUANTITIES                                           | Material 1        | Material 2        | Material 3        | Material 4        | Material 5        | Material 6      |
| Choose material from drop down menu                               | Acetic Acid       | Acetic Acid     |
| Choose units of material quantity from drop down menu             | cubic feet        | pounds            | pounds            | pounds            | pounds            | pounds          |
| Input material quantity                                           |                   |                   |                   |                   |                   |                 |

### TRANSPORTATION

| PERSONNEL TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
|------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose vehicle type from drop down menu*                                                       | Cars           | Cars           | Cars           | Cars           | Cars           | Cars           |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input distance traveled per trip (miles)                                                       |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input estimated vehicular fuel economy (mi/gal) (Input only if known for the vehicle selected, |                |                |                |                |                |                |
| otherwise a default will be used by the tool)                                                  |                |                |                |                |                |                |
| *For vehicle type 'Other' please enter values in Table 2b in the Look Up Table tab.            |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - AIR                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input number of flights taken                                                                  |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - RAIL                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Choose vehicle type from drop down menu                                                        | Intercity rail |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input total distance traveled (miles) with a given load. Add return trip(s) with no load in a  |                |                |                |                |                |                |
| separate column if applicable.                                                                 |                |                |                |                |                |                |
| Input weight of equipment transported per truck load (tons)                                    |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - AIR                                                                 | Tain 4         | Trip 2         | Trin 0         | Trin 4         | Trin C         | Trip 6         |
| EQUIPMENT TRANSPORTATION - AIR<br>Input distance traveled (miles)                              | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | rip 6          |
|                                                                                                |                |                |                |                |                |                |
| Input weight of equipment transported (tons)                                                   |                |                | l              | l              |                |                |
| EQUIPMENT TRANSPORTATION - RAIL                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                | 1 qui          | inp z          | inp 3          | 11/P 4         | inh 2          | 1110           |
| Input distance daveled (miles)                                                                 |                |                |                |                |                |                |
| input weight of food (tens)                                                                    |                | 1              | 1              | 1              | 1              | 1              |
| EQUIPMENT TRANSPORTATION - WATER                                                               | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
|                                                                                                |                | 1111112        |                |                | inip 5         | inp o          |
| Input distance traveled (mile)                                                                 |                |                |                |                |                |                |

### EQUIPMENT USE

| EARTHWORK                                                                         | Equipment 1    | Equipment 2    | Equipment 3 | Equipment 4 | Equipment 5 | Equipment 6 |
|-----------------------------------------------------------------------------------|----------------|----------------|-------------|-------------|-------------|-------------|
| Choose earthwork equipment type from drop down menu                               | Loader/Backhoe | Loader/Backhoe | Dozer       | Dozer       | Dozer       | Dozer       |
| Choose fuel type from drop down menu                                              | Diesel         | Diesel         | Diesel      | Diesel      | Diesel      | Diesel      |
| Input volume of material to be removed (yd3)                                      | 143,128        | 33,300         |             |             |             |             |
| Will DIESEL-run equipment be retrofitted with a particulate reduction technology? | No             | No             | No          | No          | No          | No          |
|                                                                                   |                |                |             |             |             |             |
| DRILLING                                                                          | Event 1        | Event 2        | Event 3     | Event 4     | Event 5     | Event 6     |
|                                                                                   |                |                |             |             |             |             |
| Input number of drilling locations                                                |                |                |             |             |             |             |
| Input number of drilling locations<br>Choose drilling method from drop down menu  | Direct Push    | Direct Push    | Direct Push | Direct Push | Direct Push | Direct Push |
|                                                                                   | Direct Push    | Direct Push    | Direct Push | Direct Push | Direct Push | Direct Push |

| TRENCHING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Trencher 1                                                                                                                                                                                          | Trencher 2                                                                                                                                                                                                                         | Trencher 3                                                                                                                                                                         | Trencher 4                                                                                                                                                               | Trencher 5                                                                                                                                  | Trencher 6                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gasoline<br>1 to 3                                                                                                                                                                                  | Gasoline<br>1 to 3                                                                                                                                                                                                                 | Gasoline<br>1 to 3                                                                                                                                                                 | Gasoline<br>1 to 3                                                                                                                                                       | Gasoline<br>1 to 3                                                                                                                          | Gasoline<br>1 to 3                                                                                                                          |
| Input operating hours (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                          |                                                                                                                                             |                                                                                                                                             |
| For each pump, select only one of the three methods to calculate energy and GHG<br>Enter "0" for all user input values for unused pump columns or unused methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | emissions                                                                                                                                                                                           |                                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                          |                                                                                                                                             |                                                                                                                                             |
| PUMP OPERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pump 1                                                                                                                                                                                              | Pump 2                                                                                                                                                                                                                             | Pump 3                                                                                                                                                                             | Pump 4                                                                                                                                                                   | Pump 5                                                                                                                                      | Pump 6                                                                                                                                      |
| Choose method from drop down<br>Method 1 - ELECTRICAL USAGE IS KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Method 1                                                                                                                                                                                            | Method 1                                                                                                                                                                                                                           | Method 1                                                                                                                                                                           | Method 1                                                                                                                                                                 | Method 1                                                                                                                                    | Method 1                                                                                                                                    |
| Input pump electrical usage (KWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                  | 0                                                                                                                                                                                  | 0                                                                                                                                                                        | 0                                                                                                                                           | 0                                                                                                                                           |
| Method 2 - PUMP HEAD IS KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                          |                                                                                                                                             |                                                                                                                                             |
| Input flow rate (gpm)<br>Input total head (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                  | 0                                                                                                                                                                                  | 0                                                                                                                                                                        | 0                                                                                                                                           | 0                                                                                                                                           |
| Input number of pumps operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                  | 0                                                                                                                                                                                  | 0                                                                                                                                                                        | 0                                                                                                                                           | 0                                                                                                                                           |
| Input operating time for each pump (hrs)<br>Pump efficiency times motor efficiency (default already present, user over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                     | 0<br>0.51                                                                                                                                                                                                                          | 0.51                                                                                                                                                                               | 0.51                                                                                                                                                                     | 0.51                                                                                                                                        | 0.51                                                                                                                                        |
| Input specific gravity (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                  | 1                                                                                                                                                                                  | 1                                                                                                                                                                        | 1                                                                                                                                           | 1                                                                                                                                           |
| Method 3 - NAME PLATE SPECIFICATIONS ARE KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                   | <u>^</u>                                                                                                                                                                                                                           | 0                                                                                                                                                                                  | 0                                                                                                                                                                        | 0                                                                                                                                           | 0                                                                                                                                           |
| Input pump horsepower (hp) Input number of pumps operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                  | 0                                                                                                                                                                                  | 0                                                                                                                                                                        | 0                                                                                                                                           | 0                                                                                                                                           |
| Input operating time for each pump (hrs)<br>Input pump load (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                  | 0<br>0.85                                                                                                                                                                          | 0.85                                                                                                                                                                     | 0 0.85                                                                                                                                      | 0<br>0.85                                                                                                                                   |
| Input pump motor efficiency (default already present, user override possib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                     | 0.85                                                                                                                                                                                                                               | 0.85                                                                                                                                                                               | 0.85                                                                                                                                                                     | 0.85                                                                                                                                        | 0.85                                                                                                                                        |
| Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                          |                                                                                                                                             |                                                                                                                                             |
| Electricity Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RFCE                                                                                                                                                                                                | RFCE                                                                                                                                                                                                                               | RFCE                                                                                                                                                                               | RFCE                                                                                                                                                                     | RFCE                                                                                                                                        | RFCE                                                                                                                                        |
| DIESEL AND GASOLINE PUMPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pump 1                                                                                                                                                                                              | Pump 2                                                                                                                                                                                                                             | Pump 3                                                                                                                                                                             | Pump 4                                                                                                                                                                   | Pump 5                                                                                                                                      | Pump 6                                                                                                                                      |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gasoline<br>2-Stroke: 0 to 1                                                                                                                                                                        | Gasoline<br>2-Stroke: 0 to 1                                                                                                                                                                                                       | Gasoline<br>2-Stroke: 0 to 1                                                                                                                                                       | Gasoline<br>2-Stroke: 0 to 1                                                                                                                                             | Gasoline<br>2-Stroke: 0 to 1                                                                                                                | Gasoline<br>2-Stroke: 0 to 1                                                                                                                |
| Equipment operating hours (hrs)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pump selected.                                                                                                                                                                                      |                                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                          |                                                                                                                                             |                                                                                                                                             |
| otherwise a default will be used by the tool)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | samp colosica,                                                                                                                                                                                      |                                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                          |                                                                                                                                             |                                                                                                                                             |
| For each type of equipment, select only one of the methods to calculate energy and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                          |                                                                                                                                             |                                                                                                                                             |
| Enter "0" for all user input values for unused equipment columns or unused method<br>BLOWER, COMPRESSOR, MIXER, AND OTHER EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Equipment 1                                                                                                                                                                                         | Equipment 2                                                                                                                                                                                                                        | Equipment 3                                                                                                                                                                        | Equipment 4                                                                                                                                                              | Equipment 5                                                                                                                                 | Equipment 6                                                                                                                                 |
| Choose type of equipment from drop down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Blower                                                                                                                                                                                              | Blower                                                                                                                                                                                                                             | Blower                                                                                                                                                                             | Blower                                                                                                                                                                   | Blower                                                                                                                                      | Blower                                                                                                                                      |
| Choose method from drop down<br>Method 1 - NAME PLATE SPECIFICATIONS ARE KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Method 1                                                                                                                                                                                            | Method 1                                                                                                                                                                                                                           | Method 1                                                                                                                                                                           | Method 1                                                                                                                                                                 | Method 1                                                                                                                                    | Method 1                                                                                                                                    |
| Input equipment horsepower (hp) Input number of equipments operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                  | 0                                                                                                                                                                                  | 0                                                                                                                                                                        | 0                                                                                                                                           | 0                                                                                                                                           |
| Input operating time for each equipment (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                  | 0                                                                                                                                                                                  | 0                                                                                                                                                                        | 0                                                                                                                                           | 0                                                                                                                                           |
| Input equipment load (default already present, user override possible)<br>Input motor efficiency (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.85<br>0.85                                                                                                                                                                                        | 0.85<br>0.85                                                                                                                                                                                                                       | 0.85<br>0.85                                                                                                                                                                       | 0.85<br>0.85                                                                                                                                                             | 0.85<br>0.85                                                                                                                                | 0.85<br>0.85                                                                                                                                |
| Method 2 - ELECTRICAL USAGE IS KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                          |                                                                                                                                             |                                                                                                                                             |
| Input equipment electrical usage, if known (kWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                  | 0                                                                                                                                                                                  | 0                                                                                                                                                                        | 0                                                                                                                                           | 0                                                                                                                                           |
| Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                          |                                                                                                                                             |                                                                                                                                             |
| Electricity Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RFCE                                                                                                                                                                                                | RFCE                                                                                                                                                                                                                               | RFCE                                                                                                                                                                               | RFCE                                                                                                                                                                     | RFCE                                                                                                                                        | RFCE                                                                                                                                        |
| GENERATORS<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Generator 1<br>Gasoline                                                                                                                                                                             | Generator 2<br>Gasoline                                                                                                                                                                                                            | Generator 3<br>Gasoline                                                                                                                                                            | Generator 4<br>Gasoline                                                                                                                                                  | Generator 5<br>Gasoline                                                                                                                     | Generator 6<br>Gasoline                                                                                                                     |
| Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 to 1                                                                                                                                                                                              | 0 to 1                                                                                                                                                                                                                             | 0 to 1                                                                                                                                                                             | 0 to 1                                                                                                                                                                   | 0 to 1                                                                                                                                      | 0 to 1                                                                                                                                      |
| Input operating hours (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                          |                                                                                                                                             |                                                                                                                                             |
| AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tillage Tractor 1<br>Gasoline                                                                                                                                                                       | Tillage Tractor 2<br>Gasoline                                                                                                                                                                                                      | Tillage Tractor 3<br>Gasoline                                                                                                                                                      | Tillage Tractor 4<br>Gasoline                                                                                                                                            | Tillage Tractor 5<br>Gasoline                                                                                                               | Tillage Tractor 6<br>Gasoline                                                                                                               |
| Input area to till (acre)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                          |                                                                                                                                             |                                                                                                                                             |
| Choose soil condition from drop down menu<br>Choose soil type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Firm untilled soil Clay Soil                                                                                                                                                                        | Firm untilled soil<br>Clay Soil                                                                                                                                                                                                    | Firm untilled soil<br>Clay Soil                                                                                                                                                    | Firm untilled soil<br>Clay Soil                                                                                                                                          | Firm untilled soil<br>Clay Soil                                                                                                             | Firm untilled soil<br>Clay Soil                                                                                                             |
| Input time available (work days)<br>Input depth of tillage (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                    | •                                                                                                                                                                        |                                                                                                                                             |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                          |                                                                                                                                             |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                          |                                                                                                                                             |                                                                                                                                             |
| CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Equipment 1<br>Roller                                                                                                                                                                               | Equipment 2<br>Roller                                                                                                                                                                                                              | Equipment 3<br>Roller                                                                                                                                                              | Equipment 4<br>Roller                                                                                                                                                    | Equipment 5<br>Roller                                                                                                                       | Equipment 6<br>Roller                                                                                                                       |
| Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                     |                                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                          |                                                                                                                                             |                                                                                                                                             |
| Choose stabilization equipment type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Roller                                                                                                                                                                                              | Roller                                                                                                                                                                                                                             | Roller                                                                                                                                                                             | Roller                                                                                                                                                                   | Roller                                                                                                                                      | Roller                                                                                                                                      |
| Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu<br>Input area (ft2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Roller                                                                                                                                                                                              | Roller                                                                                                                                                                                                                             | Roller                                                                                                                                                                             | Roller                                                                                                                                                                   | Roller                                                                                                                                      | Roller                                                                                                                                      |
| Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Roller<br>Gasoline<br>Mixer 1<br>Gasoline                                                                                                                                                           | Roller<br>Gasoline<br>Mixer 2<br>Gasoline                                                                                                                                                                                          | Roller<br>Gasoline<br>Mixer 3<br>Gasoline                                                                                                                                          | Roller<br>Gasoline<br>Mixer 4<br>Gasoline                                                                                                                                | Roller<br>Gasoline<br>Mixer 5<br>Gasoline                                                                                                   | Roller<br>Gasoline<br>Mixer 6<br>Gasoline                                                                                                   |
| Choose stabilization equipment type from drop down menu     Choose fuel type from drop down menu     Input area (ft2)     Input time available (work days)  MIXING EQUIPMENT     Choose fuel type from drop down menu     Choose horsepower range from drop down menu     Input volume (vd3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Roller<br>Gasoline<br>Mixer 1                                                                                                                                                                       | Roller<br>Gasoline<br>Mixer 2                                                                                                                                                                                                      | Roller<br>Gasoline<br>Mixer 3                                                                                                                                                      | Roller<br>Gasoline<br>Mixer 4                                                                                                                                            | Roller<br>Gasoline<br>Mixer 5                                                                                                               | Roller<br>Gasoline<br>Mixer 6                                                                                                               |
| Choose stabilization equipment type from drop down menu Choose fuel type from drop down menu Input area (ft2) Input time available (work days) MIXING EQUIPMENT Choose fuel type from drop down menu Choose horsepower range from drop down menu Input volume (yd3) Input production rate (yd3/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3                                                                                                                                                 | Roller<br>Gasoline<br>Mixer 2<br>Gasoline                                                                                                                                                                                          | Roller<br>Gasoline<br>Mixer 3<br>Gasoline                                                                                                                                          | Roller<br>Gasoline<br>Mixer 4<br>Gasoline                                                                                                                                | Roller<br>Gasoline<br>Mixer 5<br>Gasoline                                                                                                   | Roller<br>Gasoline<br>Mixer 6<br>Gasoline                                                                                                   |
| Choose stabilization equipment type from drop down menu     Choose fuel type from drop down menu     Input area (ft2)     Input time available (work days)  MIXING EQUIPMENT     Choose fuel type from drop down menu     Choose horsepower range from drop down menu     Input volume (yd3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3                                                                                                                                                 | Roller<br>Gasoline<br>Mixer 2<br>Gasoline                                                                                                                                                                                          | Roller<br>Gasoline<br>Mixer 3<br>Gasoline                                                                                                                                          | Roller<br>Gasoline<br>Mixer 4<br>Gasoline                                                                                                                                | Roller<br>Gasoline<br>Mixer 5<br>Gasoline                                                                                                   | Roller<br>Gasoline<br>Mixer 6<br>Gasoline                                                                                                   |
| Choose stabilization equipment type from drop down menu Choose fuel type from drop down menu Input area (ft2) Input time available (work days) MIXING EQUIPMENT Choose fuel type from drop down menu Choose horsepower range from drop down menu Input volume (yd3) Input production rate (yd3/hr) Input estimated fuel consumption rate (gal/hr) (Input only if known for the i otherwise a default will be used by the tool) INTERNAL COMBUSTION ENGINES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>mixer selected,<br>Engine 1                                                                                                                  | Roller<br>Gasoline<br>Mixer 2<br>Gasoline<br>1 to 3<br>Engine 2                                                                                                                                                                    | Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Engine 3                                                                                                                    | Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>Engine 4                                                                                                          | Roller<br>Gasoline<br>Mixer 5<br>Gasoline<br>1 to 3<br>Engine 5                                                                             | Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Engine 6                                                                             |
| Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input volume (yd3)<br>Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the software of the softwa | Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>mixer selected,                                                                                                                              | Roller<br>Gasoline<br>Mixer 2<br>Gasoline<br>1 to 3                                                                                                                                                                                | Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3                                                                                                                                | Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3                                                                                                                      | Roller<br>Gasoline<br>Mixer 5<br>Gasoline<br>1 to 3                                                                                         | Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3                                                                                         |
| Choose stabilization equipment type from drop down menu     Choose fuel type from drop down menu     Input area (ft2)     Input time available (work days)  MIXING EQUIPMENT     Choose fuel type from drop down menu     Choose horsepower range from drop down menu     Input volume (yd3)     Input production rate (yd3/hr)     Input production rate (yd3/hr)     Input stimated fuel consumption rate (gal/hr) (Input only if known for the i     otherwise a default will be used by the tool)  INTERNAL COMBUSTION ENGINES     Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>mixer selected,<br>Engine 1<br>Diesel                                                                                                        | Roller<br>Gasoline<br>Mixer 2<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel                                                                                                                                                          | Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Engine 3<br>Diesel                                                                                                          | Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel                                                                                                | Roller<br>Gasoline<br>Mixer 5<br>Gasoline<br>1 to 3<br>Engine 5                                                                             | Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Engine 6                                                                             |
| Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input volume (yd3)<br>Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the i<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input leic consumption rate (gal/hr) or scf/hr)<br>Input delic consumption rate (gal/hr or scf/hr)<br>Input operating hours (hr)<br>OTHER FUELED EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>inixer selected,<br>Engine 1<br>Diesel<br>25<br>1747<br>Fuel 1                                                                               | Roller<br>Gasoline<br>Mixer 2<br>Gasoline<br>1 to 3<br>L<br>Engine 2<br>Diesel<br>25<br>2387<br>Fuel 2                                                                                                                             | Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Lissel<br>85<br>84<br>Fuel 3                                                                                                | Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>to 3<br>Engine 4<br>Diesel<br>25<br>362<br>Fuel 4                                                                 | Roller<br>Gasoline<br>Mixer 5<br>Gasoline<br>1 to 3<br>Engine 5<br>Diesel<br>Fuel 5                                                         | Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6                                                         |
| Choose tabilization equipment type from drop down menu     Choose fuel type from drop down menu     Input area (ft2)     Input time available (work days)  MIXING EQUIPMENT     Choose fuel type from drop down menu     Choose fuel type from drop down menu     Input volume (yd3)     Input estimated fuel consumption rate (gal/hr) (Input only if known for the i     otherwise a default will be used by the tool)  INTERNAL COMBUSTION ENGINES     Choose fuel type from drop down menu     Input fuel consumption rate (gal/hr) or scf/hr)     Input fuel consumption rate (gal/hr) or scf/hr)     Input fuel consumption rate (gal/hr) input fuel consumption rate (gal/hr) (Input only if known for the i     otherwise a default will be used by the tool)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>mixer selected,<br>Engine 1<br>Diesel<br>25<br>1747                                                                                          | Roller<br>Gasoline<br>Mixer 2<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>25<br>2387                                                                                                                                            | Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Engine 3<br>Diesel<br>85<br>84                                                                                              | Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>25<br>362                                                                                   | Roller<br>Gasoline<br>Mixer 5<br>Gasoline<br>1 to 3<br>Los 3<br>Engine 5<br>Diesel                                                          | Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel                                                                   |
| Choose stabilization equipment type from drop down menu     Choose fuel type from drop down menu     Input area (ft2)     Input time available (work days)  MIXING EQUIPMENT     Choose fuel type from drop down menu     Input volume (yd3)     Input estimated fuel consumption rate (gal/hr) (Input only if known for the v     otherwise a default will be used by the tool)  INTERNAL COMBUSTION ENCINES     Choose fuel type from drop down menu     Input volume (gal/hr or scf/hr)     Input estimated fuel ype from drop sown menu     Input stimated fuel type from drop down menu     Input stimated fuel type from drop down menu     Input stimated fuel type from drop down menu     Input testimated fuel type from drop down menu     Input fuel consumption rate (gal/hr or scf/hr)     Input operating hours (hr)  OTHER FUELED EQUIPMENT     Choose fuel type from drop down menu     Input volume (scf for Natural gas, gallons for all others)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>inixer selected,<br>Engine 1<br>Diesel<br>25<br>1747<br>Fuel 1<br>Natural gas                                                                | Roller<br>Gasoline<br>Mixer 2<br>Gasoline<br>1 to 3<br>Logene 2<br>Diesel<br>25<br>2387<br>Fuel 2<br>Natural gas                                                                                                                   | Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Lissel<br>85<br>84<br>Fuel 3<br>Natural gas                                                                                 | Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>1 to 3<br>Engine 4<br>Diesel<br>25<br>362<br>Engine 4<br>Natural gas                                              | Roller<br>Gasoline<br>Mixer 5<br>Gasoline<br>1 to 3<br>to 3<br>Engine 5<br>Diesel<br>Fuel 5<br>Natural gas                                  | Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Lissel<br>Diesel<br>Fuel 6<br>Natural gas                                            |
| Choose tabilization equipment type from drop down menu     Choose fuel type from drop down menu     Input area (ft2)     Input time available (work days)  MIXING EQUIPMENT     Choose fuel type from drop down menu     Choose fuel type from drop down menu     Choose fuel type from drop down menu     Input volume (yd3)     Input estimated fuel consumption rate (gal/hr) (Input only if known for the i     otherwise a default will be used by the tool)  INTERNAL COMBUSTION ENGINES     Choose fuel type from drop down menu     Input volume (gal/hr or scf/hr)     Input fuel consumption rate (gal/hr or scf/hr)     Input poperating hours (hr)  OTHER FUELED EQUIPMENT     Choose fuel type from drop down menu     Input volume (scf for Natural gas, gallons for all others)  OPERATOR LABOR     Choose occupation from drop-down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>inixer selected,<br>Engine 1<br>Diesel<br>25<br>1747<br>Fuel 1<br>Natural gas<br>Occupation 1<br>Construction laborers                       | Roller<br>Gasoline<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>25<br>2387<br>Fuel 2<br>Natural gas<br>Occupation 2<br>Construction laborers                                                                                     | Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>1 to 3<br><u>Diesel</u><br>85<br>84<br><u>State</u><br>84<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers | Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>1 to 3<br>Engine 4<br>Diesel<br>25<br>362<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers       | Roller<br>Gasoline<br>Mixer 5<br>Gasoline<br>1 to 3<br>Engine 5<br>Diesel<br>Fuel 5                                                         | Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6                                                         |
| Choose stabilization equipment type from drop down menu     Choose fuel type from drop down menu     Input area (ft2)     Input time available (work days)  MIXING EQUIPMENT     Choose fuel type from drop down menu     Choose horsepower range from drop down menu     Input orduction rate (yd3/hr)     Input production rate (yd3/hr)     Input production rate (yd3/hr)     Input extinated fuel consumption rate (gal/hr) (Input only if known for the r     otherwise a default will be used by the tool)  INTERNAL COMBUSTION ENGINES     Choose fuel type from drop down menu     Input teil consumption rate (gal/hr) or sof/hr)     Input fuel consumption rate (gal/hr) or sof/hr)     Input operating hours (hr)  OTHER FUELED EQUIPMENT     Choose fuel type from drop down menu     Input volume (sof for Natural gas, gallons for all others)  OPERATOR LABOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>mixer selected,<br>Engine 1<br>Diesel<br>25<br>1747<br>Fuel 1<br>Natural gas<br>Occupation 1                                                 | Roller<br>Gasoline<br>Mixer 2<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>25<br>2387<br>Fuel 2<br>Natural gas<br>Occupation 2                                                                                                   | Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Diesel<br>85<br>84<br>Fuel 3<br>Natural gas<br>Occupation 3                                                                 | Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>25<br>362<br>Fuel 4<br>Natural gas<br>Occupation 4                                          | Roller<br>Gasoline<br>Mixer 5<br>Gasoline<br>1 to 3<br>Engine 5<br>Diesel<br>Fuel 5<br>Natural gas<br>Occupation 5                          | Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6<br>Natural gas<br>Occupation 6                          |
| Choose stabilization equipment type from drop down menu     Choose fuel type from drop down menu     Input area (ft2)     Input time available (work days)  MIXING EQUIPMENT     Choose fuel type from drop down menu     Choose fuel type from drop down menu     Choose fuel type from drop down menu     Input volume (yd3)     Input reduction rate (yd3/hr)     Input estimated fuel consumption rate (gal/hr) (Input only if known for the     otherwise a default will be used by the tool)  INTERNAL COMBUSTION ENGINES     Choose fuel type from drop down menu     Input veloumes (here the type from drop down menu     Input fuel consumption rate (gal/hr) (Input only if known for the     otherwise a default will be used by the tool)  INTERNAL COMBUSTION ENGINES     Choose fuel type from drop down menu     Input veloperating hours (hr)     OTHER FUELDE EQUIPMENT     Choose fuel type from drop down menu     Input volume (scf for Natural gas, gallons for all others)  OPERATOR LABOR     Choose cocupation from drop-down menu     Input total time worked onsite (hours) LABORATORY ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>inixer selected,<br>Engine 1<br>Diesel<br>25<br>1747<br>Fuel 1<br>Natural gas<br>Occupation 1<br>Construction laborers                       | Roller<br>Gasoline<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>25<br>2387<br>Fuel 2<br>Natural gas<br>Occupation 2<br>Construction laborers                                                                                     | Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>1 to 3<br><u>Diesel</u><br>85<br>84<br><u>Fuel 3</u><br>Natural gas<br>Occupation 3<br><u>Construction laborers</u>         | Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>1 to 3<br>Engine 4<br>Diesel<br>25<br>362<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers       | Roller<br>Gasoline<br>Mixer 5<br>Gasoline<br>1 to 3<br>Engine 5<br>Diesel<br>Fuel 5<br>Natural gas<br>Occupation 5                          | Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6<br>Natural gas<br>Occupation 6                          |
| Choose tabilization equipment type from drop down menu     Choose fuel type from drop down menu     Input area (ft2)     Input time available (work days)  MIXING EQUIPMENT     Choose fuel type from drop down menu     Choose horsepower range from drop down menu     Input volume (yd3)     Input production rate (yd3/hr)     Input roduction rate (yd3/hr)     Input setimated fuel consumption rate (gal/hr) (Input only if known for the I     otherwise a default will be used by the tool)  INTERNAL COMBUSTION ENGINES     Choose fuel type from drop down menu     Input Genosuption rate (gal/hr) or sc/hr)     Input goduction rate (gal/hr) or sc/hr)     Input fuel consumption rate (gal/hr) or sc/hr)     Input fuel consumption rate (gal/hr) or sc/hr)     Input operating hours (hr)  OTHER FUELED EQUIPMENT     Choose fuel type from drop down menu     Input volume (scf for Natural gas, gallons for all others)  OPERATOR LABOR     Choose occupation from drop-down menu     Input total time worked onsite (hours)  LABORATORY ANALYSIS     Input dollars spent on laboratory analysis (\$)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>mixer selected,<br>Engine 1<br>Diesel<br>25<br>1747<br>Fuel 1<br>Natural gas<br>Occupation 1<br>Construction laborers<br>13976<br>Analysis 1 | Roller         Gasoline         Mixer 2         Gasoline         1 to 3         Engine 2         Diesel         25         2387         Fuel 2         Natural gas         Occupation 2         Construction laborers         9548 | Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Diesel<br>85<br>84<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers<br>336                                 | Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>25<br>362<br>Esel<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers<br>1448 | Roller<br>Gasoline<br>Mixer 5<br>Gasoline<br>1 to 3<br>Engine 5<br>Diesel<br>Fuel 5<br>Natural gas<br>Occupation 5<br>Construction laborers | Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6<br>Natural gas<br>Occupation 6<br>Construction laborers |
| Choose stabilization equipment type from drop down menu     Choose fuel type from drop down menu     Input area (ft2)     Input time available (work days)  MIXING EQUIPMENT     Choose fuel type from drop down menu     Choose fuel type from drop down menu     Choose fuel type from drop down menu     Input volume (yd3)     Input estimated fuel consumption rate (gal/hr) (Input only if known for the i     otherwise a default will be used by the tool)  INTERNAL COMBUSTION ENGINES     Choose fuel type from drop down menu     Input volume (gal/hr)     Input fuel consumption rate (gal/hr) (Input only if known for the i     otherwise a default will be used by the tool)  INTERNAL COMBUSTION ENGINES     Choose fuel type from drop down menu     Input fuel consumption rate (gal/hr or scf/hr)     Input operating hours (hr)  OTHER FUELDE DEUIPMENT     Choose fuel type from drop down menu     Input volume (scf for Natural gas, gallons for all others)  OPERATOR LABOR     Choose occupation from drop-down menu     Input total time worked onsite (hours)  LABORATORY ANALYSIS     Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>nixer selected,<br>Engine 1<br>Diesel<br>25<br>1747<br>Fuel 1<br>Natural gas<br>Occupation 1<br>Construction laborers<br>13976               | Roller         Gasoline         Mixer 2         Gasoline         1 to 3         Engine 2         Diesel         25         2387         Fuel 2         Natural gas         Occupation 2         Construction laborers         9548 | Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Diesel<br>85<br>84<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers<br>336                                 | Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>25<br>362<br>Esel<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers<br>1448 | Roller<br>Gasoline<br>Mixer 5<br>Gasoline<br>1 to 3<br>Engine 5<br>Diesel<br>Fuel 5<br>Natural gas<br>Occupation 5<br>Construction laborers | Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6<br>Natural gas<br>Occupation 6<br>Construction laborers |
| Choose tabilization equipment type from drop down menu     Choose fuel type from drop down menu     Input area (ft2)     Input time available (work days)  MIXING EQUIPMENT     Choose fuel type from drop down menu     Choose horsepower range from drop down menu     Input volume (yd3)     Input production rate (yd3/hr)     Input roduction rate (yd3/hr)     Input setimated fuel consumption rate (gal/hr) (Input only if known for the I     otherwise a default will be used by the tool)  INTERNAL COMBUSTION ENGINES     Choose fuel type from drop down menu     Input Genosuption rate (gal/hr) or sc/hr)     Input goduction rate (gal/hr) or sc/hr)     Input fuel consumption rate (gal/hr) or sc/hr)     Input fuel consumption rate (gal/hr) or sc/hr)     Input operating hours (hr)  OTHER FUELED EQUIPMENT     Choose fuel type from drop down menu     Input volume (scf for Natural gas, gallons for all others)  OPERATOR LABOR     Choose occupation from drop-down menu     Input total time worked onsite (hours)  LABORATORY ANALYSIS     Input dollars spent on laboratory analysis (\$)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>mixer selected,<br>Engine 1<br>Diesel<br>25<br>1747<br>Fuel 1<br>Natural gas<br>Occupation 1<br>Construction laborers<br>13976<br>Analysis 1 | Roller         Gasoline         Mixer 2         Gasoline         1 to 3         Engine 2         Diesel         25         2387         Fuel 2         Natural gas         Occupation 2         Construction laborers         9548 | Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Diesel<br>85<br>84<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers<br>336                                 | Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>25<br>362<br>Esel<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers<br>1448 | Roller<br>Gasoline<br>Mixer 5<br>Gasoline<br>1 to 3<br>Engine 5<br>Diesel<br>Fuel 5<br>Natural gas<br>Occupation 5<br>Construction laborers | Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6<br>Natural gas<br>Occupation 6<br>Construction laborers |

| Input N2O emission (metric ton CO2 e) |  |
|---------------------------------------|--|
| Input CH4 emission (metric ton CO2 e) |  |
| Input NOx emission (metric ton)       |  |
| Input SOx emission (metric ton)       |  |
| Input PM10 emission (metric ton)      |  |
| Input fatality risk                   |  |
| Input injury risk                     |  |

### RESIDUAL HANDLING

| ESIDUE DISPOSAL/RECYCLING                                                         | Soil Residue               | Residual Water             | Material Residue           | Other Residuals            | Other Residuals            | Other Residuals            |
|-----------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?  | No                         | No                         | No                         | No                         | No                         | No                         |
| Input weight of the waste transported to<br>landfill or recycling per trip (tons) | 25                         |                            |                            |                            |                            |                            |
| Choose fuel used from drop down menu                                              | Diesel                     | Gasoline                   | Gasoline                   | Gasoline                   | Gasoline                   | Gasoline                   |
| Input total number of trips                                                       | 9550                       |                            |                            |                            |                            |                            |
| Input number of miles per trip                                                    | 250                        |                            |                            |                            |                            |                            |
|                                                                                   |                            |                            |                            |                            |                            |                            |
| ANDFILL OPERATIONS                                                                | Operation 1                | Operation 2                | Operation 3                | Operation 4                | Operation 5                | Operation 6                |
| Choose landfill type for waste disposal                                           | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              |
| Input amount of waste disposed in landfill (tons)                                 | 214692                     |                            |                            |                            |                            |                            |
| Input landfill methane emissions (metric tons CH4)                                |                            |                            |                            |                            |                            |                            |
|                                                                                   |                            |                            |                            |                            |                            |                            |
| HERMAL/CATALYTIC OXIDIZERS*                                                       | Oxidizer 1                 | Oxidizer 2                 | Oxidizer 3                 | Oxidizer 4                 | Oxidizer 5                 | Oxidizer 6                 |
| Choose oxidizer type from drop down menu                                          | Simple Thermal<br>Oxidizer |
| Choose fuel type from drop down menu                                              | Natural gas                |
| Input waste gas flow rate (scfm)                                                  |                            |                            |                            |                            |                            |                            |
| Input time running (hours)                                                        |                            |                            |                            |                            |                            |                            |
| Input waste gas inlet temperature (F)                                             |                            |                            |                            |                            |                            |                            |
| input waste gas intertemperature (r)                                              |                            |                            |                            |                            |                            |                            |

### RESOURCE CONSUMPTION

| WATER CONSUMPTION                                                      | Treatment System 1 | Treatment System 2 | Treatment System 3 | Treatment System 4 | Treatment System 5 | Treatment System 6 |
|------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Input total water consumed from potable water treatment facility (gal) |                    |                    |                    |                    |                    |                    |
| Input total water disposed to wastewater treatment facility (gal)      | 8672000            |                    |                    |                    |                    |                    |
|                                                                        |                    |                    |                    |                    |                    |                    |
| ONSITE LAND AND WATER RESOURCE CONSUMPTION                             | Entire Site 1      | Entire Site 2      | Entire Site 3      | Entire Site 4      | Entire Site 5      | Entire Site 6      |
| Input volume of topsoil brought to site (cubic yards)                  |                    |                    |                    |                    |                    |                    |
| Input volume of groundwater or surface water lost (gal)                |                    |                    |                    |                    |                    |                    |

| SITE INFORMATION                                                                                                  |                          |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|--|
| User Name and Date                                                                                                | Tetra Tech - May 2012    |  |  |  |
| Site Name                                                                                                         | Middle River Complex     |  |  |  |
| Remedial Alternative Name                                                                                         | MRC- Removal at CPC, DHC |  |  |  |
| Alternative File Name (will be<br>used in graphics and as file<br>name; avoid invalid<br>characters, e.g.?: "/\ < | Alt3B                    |  |  |  |
| >   * )                                                                                                           |                          |  |  |  |
| Choose electricity region                                                                                         | RFCE                     |  |  |  |

Do you want to reload a previously saved remedial alternative in the SiteWise input sheet? RA\_Alt3\_NoFR\_1 \\eciseafile\groups\SedMgmt -Refresh List

Yes

Reset all input values on all worksheets to default

Reset All Values on All Sheets

-= Status =-

Done Loading!









Sitewise I ool for Green and Sustainable Remediation has been developed jointly by United States (US) Navy, United States Army Corps of Engineers (USACE), and Battelle. This tool is made available on an as-is basis without guarantee or warranty of any kind, express or implied. The US Navy, USACE, Battelle, the authors, and the reviewers accept no liability resulting from the use of this tool or its documentation; nor does the above warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof. Implementation of SiteWise<sup>™</sup> tool and interpretation or use of the results provided by the tool are the sole responsibility of the user. The tool is provided free of charge for everyone to use, but is not supported in any way by the US Navy, USACE, or Battelle.

#### This worksheet allows the user to define material production, transportation, equipment use, and residual handling variables for the remedial alternative Yellow cells require the user to choose an input from a drop down menu White cells require the user to type in a value

#### BASELINE INFORMATION

 REMEDIAL ACTION CONSTRUCTION COST
 Entire Site

 Input total remedial action construction cost (\$)
 30,234,859

### MATERIAL PRODUCTION

| VELL MATERIALS                                                    | Well Type 1       | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6      |
|-------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|
| Input number of wells                                             |                   |                   |                   |                   |                   |                  |
| Input depth of wells (ft)                                         |                   |                   |                   |                   |                   |                  |
| Choose specific material schedule from drop down menu             | Sch 40 PVC        | Sch 40 PVC       |
| Choose well diameter (in) from drop down menu                     | 1/8               | 1/8               | 1/8               | 1/8               | 1/8               | 1/8              |
|                                                                   |                   |                   |                   |                   |                   |                  |
| REATMENT CHEMICALS & MATERIALS                                    | Treatment 1       | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6      |
| Input number of injection points                                  |                   |                   |                   |                   |                   |                  |
| Choose material type from drop down menu                          | Hydrogen Peroxide | Hydrogen Peroxid |
| Input amount of material injected at each point (pounds dry mass) |                   |                   |                   |                   |                   |                  |
| Input number of injections per injection point                    |                   |                   |                   |                   |                   |                  |
|                                                                   |                   |                   |                   |                   |                   |                  |
| REATMENT MEDIA                                                    | Treatment 1       | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6      |
| Input weight of media used (lbs)                                  |                   |                   |                   |                   |                   |                  |
| Choose media type from drop down menu                             | Virgin GAC        | Virgin GAC       |
|                                                                   |                   |                   |                   |                   |                   |                  |
| ONSTRUCTION MATERIALS                                             | Material 1        | Material 2        | Material 3        | Material 4        | Material 5        | Material 6       |
| Choose material type from drop down menu                          | HDPE Liner        | HDPE Liner       |
| Input area of material (ft2)                                      |                   |                   |                   |                   |                   |                  |
| Input depth of material (ft)                                      |                   |                   |                   |                   |                   |                  |
|                                                                   |                   |                   |                   |                   |                   |                  |
| ELL DECOMMISSIONING                                               | Well Type 1       | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6      |
| Input number of wells                                             |                   |                   |                   |                   |                   |                  |
| Input depth of wells (ft)                                         |                   |                   |                   |                   |                   |                  |
| Input well diameter (in)                                          |                   |                   |                   |                   |                   |                  |
| Choose material from drop down menu                               | Soil              | Soil              | Soil              | Soil              | Soil              | Soil             |
|                                                                   |                   |                   |                   |                   |                   |                  |
| ULK MATERIAL QUANTITIES                                           | Material 1        | Material 2        | Material 3        | Material 4        | Material 5        | Material 6       |
| Choose material from drop down menu                               | Acetic Acid       | Acetic Acid      |
| Choose units of material quantity from drop down menu             | pounds            | pounds            | pounds            | pounds            | pounds            | pounds           |
| Input material quantity                                           |                   |                   |                   |                   |                   |                  |

### TRANSPORTATION

| PERSONNEL TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
|------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose vehicle type from drop down menu*                                                       | Cars           | Cars           | Cars           | Cars           | Cars           | Cars           |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input distance traveled per trip (miles)                                                       |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input estimated vehicular fuel economy (mi/gal) (Input only if known for the vehicle selected, |                |                |                |                |                |                |
| otherwise a default will be used by the tool)                                                  |                |                |                |                |                |                |
| *For vehicle type 'Other' please enter values in Table 2b in the Look Up Table tab.            |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - AIR                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input number of flights taken                                                                  |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - RAIL                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Choose vehicle type from drop down menu                                                        | Intercity rail |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input total distance traveled (miles) with a given load. Add return trip(s) with no load in a  |                |                |                |                |                |                |
| separate column if applicable.                                                                 |                |                |                |                |                |                |
| Input weight of equipment transported per truck load (tons)                                    |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - AIR                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input weight of equipment transported (tons)                                                   |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - RAIL                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input weight of load (tons)                                                                    |                |                | l              |                | l              |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - WATER                                                               | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (mile)                                                                 |                |                |                |                |                |                |
| Input weight of load (tons)                                                                    |                | 1              | 1              |                |                |                |

### EQUIPMENT USE

| EARTHWORK                                                                         | Equipment 1    | Equipment 2    | Equipment 3 | Equipment 4 | Equipment 5 | Equipment 6 |
|-----------------------------------------------------------------------------------|----------------|----------------|-------------|-------------|-------------|-------------|
| Choose earthwork equipment type from drop down menu                               | Loader/Backhoe | Loader/Backhoe | Dozer       | Dozer       | Dozer       | Dozer       |
| Choose fuel type from drop down menu                                              | Diesel         | Diesel         | Diesel      | Diesel      | Diesel      | Diesel      |
| Input volume of material to be removed (yd3)                                      | 99,547         | 25,500         |             |             |             |             |
| Will DIESEL-run equipment be retrofitted with a particulate reduction technology? | No             | No             | No          | No          | No          | No          |
|                                                                                   |                |                |             |             |             |             |
| DRILLING                                                                          | Event 1        | Event 2        | Event 3     | Event 4     | Event 5     | Event 6     |
| Input number of drilling locations                                                |                |                |             |             |             |             |
| Choose drilling method from drop down menu                                        | Direct Push    | Direct Push    | Direct Push | Direct Push | Direct Push | Direct Push |
|                                                                                   |                |                |             |             |             |             |
| Input time spent drilling at each location (hr)                                   |                |                |             |             |             |             |

| TRENCHING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trencher 1                                                                                                                                                                              | Trencher 2                                                                                                                                                                        | Trencher 3                                                                                                                                                                         | Trencher 4                                                                                                                                                                             | Trencher 5                                                                                                                                     | Trencher 6                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gasoline                                                                                                                                                                                | Gasoline                                                                                                                                                                          | Gasoline                                                                                                                                                                           | Gasoline                                                                                                                                                                               | Gasoline                                                                                                                                       | Gasoline                                                                                                                                                                  |
| Choose horsepower range from drop down menu<br>Input operating hours (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 to 3                                                                                                                                                                                  | 1 to 3                                                                                                                                                                            | 1 to 3                                                                                                                                                                             | 1 to 3                                                                                                                                                                                 | 1 to 3                                                                                                                                         | 1 to 3                                                                                                                                                                    |
| For each pump, select only one of the three methods to calculate energy and GHG emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                                           |
| Enter "0" for all user input values for unused pump columns or unused methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                                           |
| PUMP OPERATION<br>Choose method from drop down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pump 1<br>Method 1                                                                                                                                                                      | Pump 2<br>Method 1                                                                                                                                                                | Pump 3<br>Method 1                                                                                                                                                                 | Pump 4<br>Method 1                                                                                                                                                                     | Pump 5<br>Method 1                                                                                                                             | Pump 6<br>Method 1                                                                                                                                                        |
| Method 1 - ELECTRICAL USAGE IS KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                         |                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                                           |
| Input pump electrical usage (KWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                       | 0                                                                                                                                                                                 | 0                                                                                                                                                                                  | 0                                                                                                                                                                                      | 0                                                                                                                                              | 0                                                                                                                                                                         |
| Method 2 - PUMP HEAD IS KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Â                                                                                                                                                                                       | Â                                                                                                                                                                                 | â                                                                                                                                                                                  | â                                                                                                                                                                                      | â                                                                                                                                              | â                                                                                                                                                                         |
| Input flow rate (gpm)<br>Input total head (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                       | 0                                                                                                                                                                                 | 0                                                                                                                                                                                  | 0                                                                                                                                                                                      | 0                                                                                                                                              | 0                                                                                                                                                                         |
| Input number of pumps operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                       | 0                                                                                                                                                                                 | 0                                                                                                                                                                                  | 0                                                                                                                                                                                      | 0                                                                                                                                              | 0                                                                                                                                                                         |
| Input operating time for each pump (hrs)<br>Pump efficiency times motor efficiency (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.51                                                                                                                                                                                    | 0.51                                                                                                                                                                              | 0.51                                                                                                                                                                               | 0.51                                                                                                                                                                                   | 0.51                                                                                                                                           | 0.51                                                                                                                                                                      |
| Input specific gravity (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                       | 1                                                                                                                                                                                 | 1                                                                                                                                                                                  | 1                                                                                                                                                                                      | 1                                                                                                                                              | 1                                                                                                                                                                         |
| Method 3 - NAME PLATE SPECIFICATIONS ARE KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                         |                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                                           |
| Input pump horsepower (hp) Input number of pumps operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                       | 0                                                                                                                                                                                 | 0                                                                                                                                                                                  | 0                                                                                                                                                                                      | 0                                                                                                                                              | 0                                                                                                                                                                         |
| Input operating time for each pump (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                       | 0                                                                                                                                                                                 | 0                                                                                                                                                                                  | 0                                                                                                                                                                                      | 0                                                                                                                                              | 0                                                                                                                                                                         |
| Input pump load (default already present, user override possible)<br>Input pump motor efficiency (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.85                                                                                                                                                                                    | 0.85                                                                                                                                                                              | 0.85<br>0.85                                                                                                                                                                       | 0.85                                                                                                                                                                                   | 0.85                                                                                                                                           | 0.85                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                    | 0.00                                                                                                                                                                              | 0.00                                                                                                                                                                               | 0.00                                                                                                                                                                                   | 0.00                                                                                                                                           | 0.00                                                                                                                                                                      |
| Region Electricity Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RFCE                                                                                                                                                                                    | RFCE                                                                                                                                                                              | RFCE                                                                                                                                                                               | RFCE                                                                                                                                                                                   | RFCE                                                                                                                                           | RFCE                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                   | -                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                                           |
| DIESEL AND GASOLINE PUMPS<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pump 1<br>Gasoline                                                                                                                                                                      | Pump 2<br>Gasoline                                                                                                                                                                | Pump 3<br>Gasoline                                                                                                                                                                 | Pump 4<br>Gasoline                                                                                                                                                                     | Pump 5<br>Gasoline                                                                                                                             | Pump 6<br>Gasoline                                                                                                                                                        |
| Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-Stroke: 0 to 1                                                                                                                                                                        | 2-Stroke: 0 to 1                                                                                                                                                                  | 2-Stroke: 0 to 1                                                                                                                                                                   | 2-Stroke: 0 to 1                                                                                                                                                                       | 2-Stroke: 0 to 1                                                                                                                               | 2-Stroke: 0 to 1                                                                                                                                                          |
| Equipment operating hours (hrs)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the pump selected,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                                           |
| otherwise a default will be used by the tool)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                                           |
| For each type of equipment, select only one of the methods to calculate energy and GHG emissi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ons                                                                                                                                                                                     |                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                                           |
| Enter "0" for all user input values for unused equipment columns or unused methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                         | _                                                                                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                | _                                                                                                                                                                         |
| BLOWER, COMPRESSOR, MIXER, AND OTHER EQUIPMENT<br>Choose type of equipment from drop down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Equipment 1<br>Blower                                                                                                                                                                   | Equipment 2<br>Blower                                                                                                                                                             | Equipment 3<br>Blower                                                                                                                                                              | Equipment 4<br>Blower                                                                                                                                                                  | Equipment 5<br>Blower                                                                                                                          | Equipment 6<br>Blower                                                                                                                                                     |
| Choose method from drop down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Method 1                                                                                                                                                                                | Method 1                                                                                                                                                                          | Method 1                                                                                                                                                                           | Method 1                                                                                                                                                                               | Method 1                                                                                                                                       | Method 1                                                                                                                                                                  |
| Method 1 - NAME PLATE SPECIFICATIONS ARE KNOWN Input equipment horsepower (hp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                       | 0                                                                                                                                                                                 | 0                                                                                                                                                                                  | 0                                                                                                                                                                                      | 0                                                                                                                                              | 0                                                                                                                                                                         |
| Input number of equipments operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                       | 0                                                                                                                                                                                 | 0                                                                                                                                                                                  | 0                                                                                                                                                                                      | 0                                                                                                                                              | 0                                                                                                                                                                         |
| Input operating time for each equipment (hrs)<br>Input equipment load (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                                                                                                    | 0                                                                                                                                                                                 | 0.85                                                                                                                                                                               | 0<br>0.85                                                                                                                                                                              | 0.85                                                                                                                                           | 0<br>0.85                                                                                                                                                                 |
| Input motor efficiency (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.85                                                                                                                                                                                    | 0.85                                                                                                                                                                              | 0.85                                                                                                                                                                               | 0.85                                                                                                                                                                                   | 0.85                                                                                                                                           | 0.85                                                                                                                                                                      |
| Method 2 - ELECTRICAL USAGE IS KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                         |                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                                           |
| Input equipment electrical usage, if known (kWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                       | 0                                                                                                                                                                                 | 0                                                                                                                                                                                  | 0                                                                                                                                                                                      | 0                                                                                                                                              | 0                                                                                                                                                                         |
| Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                         |                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                                           |
| Electricity Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RFCE                                                                                                                                                                                    | RFCE                                                                                                                                                                              | RFCE                                                                                                                                                                               | RFCE                                                                                                                                                                                   | RFCE                                                                                                                                           | RFCE                                                                                                                                                                      |
| GENERATORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Generator 1                                                                                                                                                                             | Generator 2                                                                                                                                                                       | Generator 3                                                                                                                                                                        | Generator 4                                                                                                                                                                            | Generator 5                                                                                                                                    | Generator 6                                                                                                                                                               |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gasoline<br>0 to 1                                                                                                                                                                      | Gasoline<br>0 to 1                                                                                                                                                                | Gasoline<br>0 to 1                                                                                                                                                                 | Gasoline<br>0 to 1                                                                                                                                                                     | Gasoline<br>0 to 1                                                                                                                             | Gasoline<br>0 to 1                                                                                                                                                        |
| Input operating hours (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                         |                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                |                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tillage Tractor 1                                                                                                                                                                       | Tillage Tractor 2                                                                                                                                                                 | Tillage Tractor 3                                                                                                                                                                  | Tillage Tractor 4                                                                                                                                                                      | Tillage Tractor 5                                                                                                                              | Tillage Tractor 6                                                                                                                                                         |
| AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tillage Tractor 1<br>Gasoline                                                                                                                                                           | Tillage Tractor 2<br>Gasoline                                                                                                                                                     | Tillage Tractor 3<br>Gasoline                                                                                                                                                      | Tillage Tractor 4<br>Gasoline                                                                                                                                                          | Tillage Tractor 5<br>Gasoline                                                                                                                  | Tillage Tractor 6<br>Gasoline                                                                                                                                             |
| Choose fuel type from drop down menu<br>Input area to till (acre)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                         | Gasoline                                                                                                                                                                          | Gasoline                                                                                                                                                                           | Gasoline                                                                                                                                                                               | Gasoline                                                                                                                                       |                                                                                                                                                                           |
| Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gasoline                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                | Gasoline                                                                                                                                                                  |
| Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gasoline<br>Firm untilled soil                                                                                                                                                          | Gasoline<br>Firm untilled soil                                                                                                                                                    | Gasoline<br>Firm untilled soil                                                                                                                                                     | Gasoline<br>Firm untilled soil                                                                                                                                                         | Gasoline<br>Firm untilled soil                                                                                                                 | Gasoline<br>Firm untilled soil                                                                                                                                            |
| Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gasoline<br>Firm untilled soll<br>Clay Soil                                                                                                                                             | Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                       | Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                        | Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                            | Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                    | Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                               |
| Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gasoline Firm untilled soil Clay Soil Equipment 1                                                                                                                                       | Gasoline Firm untilled soil Clay Soil Equipment 2                                                                                                                                 | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3                                                                                                                         | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4                                                                                                                             | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5                                                                                     | Gasoline Firm untilled soil Clay Soil Equipment 6                                                                                                                         |
| Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EOUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gasoline<br>Firm untilled soll<br>Clay Soil                                                                                                                                             | Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                       | Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                        | Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                            | Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                    | Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                               |
| Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller                                                                                                                                | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller                                                                                                                          | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller                                                                                                                           | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller                                                                                                                               | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller                                                                                       | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller                                                                                                                  |
| Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EOUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gasoline Firm untilled soil Clay Soil Equipment 1 Gasoline                                                                                                                              | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline                                                                                                  | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline                                                                                                   | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline                                                                                                       | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline                                                               | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline                                                                                          |
| Choose fuel type from drop down menu Input area to till (dare) Choose soil condition from drop down menu Input time available (work days) Input depth of tillage (in) CAPPING EQUIPMENT Choose stabilization equipment type from drop down menu Choose fuel type from drop down menu Input area (ft2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller                                                                                                                                | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller                                                                                                                          | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller                                                                                                                           | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller                                                                                                                               | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller                                                                                       | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller                                                                                                                  |
| Choose fuel type from drop down menu<br>Input area to till (dare)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gasoline Firm untilled soil Clay Soil Equipment 1 Gasoline Mixer 1                                                                                                                      | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2                                                                                                         | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3                                                                                                          | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4                                                                                            | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5                                                    | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6                                                                               |
| Choose fuel type from drop down menu Input area to till (acre) Choose soil type from drop down menu Choose soil type from drop down menu Input time available (work days) Input depth of tillage (in) CAPPING EQUIPMENT Choose stabilization equipment type from drop down menu Choose stabilization equipment type from drop down menu Input area (ft2) Input time available (work days) MIXING EQUIPMENT Choose fuel type from drop down menu Choose fuel type from drop down menu Choose fuel type from drop down menu Choose stabilization equipment type from drop down menu Choose stabilization equipment type from drop down menu Choose fuel type from drop down menu Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline                                                                                                      | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline                                                                                                | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline                                                                                                 | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline                                                                                                     | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline                                                             | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline                                                                                        |
| Choose fuel type from drop down menu     Input area to till (arer)     Choose soil condition from drop down menu     Choose soil type from drop down menu     Input time available (work days)     Input depth of tillage (in)     CAPPING EOUIPMENT     Choose fuel type from drop down menu     Input area (ft2)     Input area (ft2)     Input time available (work days)  MIXING EOUIPMENT     Choose fuel type from drop down menu     Choose fuel type from drop down menu     Input area (ft2)     Input time available (work days)  MIXING EOUIPMENT     Choose fuel type from drop down menu     Choose fuel type from drop down menu     Input area (ft2)     Input time available (work days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline                                                                                                      | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline                                                                                                | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline                                                                                                 | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline                                                                                                     | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline                                                             | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline                                                                                        |
| Choose fuel type from drop down menu     Input area to till (acre)     Choose soil condition from drop down menu     Choose soil type from drop down menu     Input time available (work days)     Input depth of tillage (in)     CAPPING EQUIPMENT     Choose stabilization equipment type from drop down menu     Choose fuel type from drop down menu     Input area (ft2)     Input area (ft2)     Input area (ft2)     Input of tillage from drop down menu     Choose fuel type from drop down menu     Input area (ft2)     Input area (ft2)     Input trime available (work days)  MIXING EQUIPMENT     Choose fuel type from drop down menu     Choose fuel type from drop down menu     Input trime available (work days)  MIXING EQUIPMENT     Choose fuel type from drop down menu     Input of the type from drop down menu     Input otime (yd3)     Input production rate (yd3/hr)     Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,     otherwise a default will be used by the tool)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3                                                                                               | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3                                                                                         | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3                                                                                          | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3                                                                                              | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3                                                      | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3                                                                                 |
| Choose fuel type from drop down menu     Input area to till (arer)     Choose soil condition from drop down menu     Choose soil type from drop down menu     Input time available (work days)     Input depth of tillage (in)     CAPPING EQUIPMENT     Choose stabilization equipment type from drop down menu     Choose fuel type from drop down menu     Input area (ft2)     Input area (ft2)     Input time available (work days)  MIXING EQUIPMENT     Choose fuel type from drop down menu     Choose fuel type from drop down menu     Input area (ft2)     Input area (ft2)     Input ime available (work days)  MIXING EQUIPMENT     Choose fuel type from drop down menu     Choose fuel type from drop down menu     Input area (ft2)     Input time available (work days)  MIXING EQUIPMENT     Choose fuel type from drop down menu     Input set (gt3/hr)     Input volume (yt3/hr)     Input setimated fuel consumption rate (gtal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)  INTERNAL COMBUSTION ENGINES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1                                                                                      | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline 1 to 3 Engine 2 Engine 2                                                                                        | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3                                                                                 | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline 1 to 3 Engine 4                                                                                                      | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline 1 to 3 Engine 5 Engine 5                                                     | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline 1 to 3 Engine 6                                                                                         |
| Choose fuel type from drop down menu     Input area to till (acre)     Choose soil condition from drop down menu     Choose soil type from drop down menu     Input time available (work days)     Input depth of tillage (in)  CAPPING EQUIPMENT     Choose stabilization equipment type from drop down menu     Choose stabilization equipment type from drop down menu     Input area (ft2)     Input area (ft2)     Input area (ft2)     Input depth of the down menu     Choose fuel type from drop down menu     Input area (ft2)     Input time available (work days)  MIXING EQUIPMENT     Choose fuel type from drop down menu     Input setimated (work days)  IInput production rate (yd3/hr)     Input estimated (vel consumption rate (gal/hr) (Input only if known for the mixer selected,     otherwise a default will be used by the tool)  INTERNAL COMBUSTION ENGINES     Choose fuel type from drop down menu     Input from long down menu     Input from drop down menu     Input from drop down menu     Input from drop down menu     Input fuel consumption rate (gal/hr) (Input only if known for the mixer selected,     otherwise a default will be used by the tool)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 25                                                                            | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel 25                                                                      | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3 Diesel 85                                                                       | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel 25                                                                           | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3                                                      | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3                                                                                 |
| Choose fuel type from drop down menu     Input area to till (acre)     Choose soil condition from drop down menu     Choose soil type from drop down menu     Input depth of tillage (in)     CAPPING EQUIPMENT     Choose stabilization equipment type from drop down menu     Choose stabilization equipment type from drop down menu     Choose fuel type from drop down menu     Input efft2     Input time available (work days)     Input type from drop down menu     Choose fuel type from drop down menu     Input trave (ft2)     Input time available (work days)  MIXING EQUIPMENT     Choose fuel type from drop down menu     Choose fuel type from drop down menu     Choose fuel type from drop down menu     Input rolume (yd3)     Input production rate (yd3/hr)     Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,     otherwise a default will be used by the tool)  INTERNAL COMBUSTION ENGINES     Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel                                                                               | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel                                                                         | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3 Diesel                                                                          | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel                                                                              | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline 1 to 3 Engine 5 Engine 5                                                     | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline 1 to 3 Engine 6                                                                                         |
| Choose fuel type from drop down menu<br>Input area to till (arere)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Input area (ft2)<br>Input area (ft2)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Input volume (yd3)<br>Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input fuel consumption rate (gal/hr or scf/hr)<br>Input operating hours (hr)<br>OTHER FUELED EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 25 1215 Fuel 1                                                                | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel 25 1660 Fuel 2                                                          | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3 Diesel 85 64 Fuel 3                                                             | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel 25 278 Fuel 4                                                                | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3 Engine 5 Diesel Fuel 5                               | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6                                                          |
| Choose fuel type from drop down menu     Input area to till (acre)     Choose soil condition from drop down menu     Choose soil opt from drop down menu     Input time available (work days)     Input depth of tillage (in)     CAPPING EQUIPMENT     Choose stabilization equipment type from drop down menu     Choose stabilization equipment type from drop down menu     Choose fuel type from drop down menu     Input area (f12)     Input time available (work days)  MIXING EQUIPMENT     Choose fuel type from drop down menu     Input orduction rate (yd3/hr)     Input production rate (yd3/hr)     Input production rate (yd3/hr)     Input production rate (gal/hr) (Input only if known for the mixer selected,     otherwise a default will be used by the tool)  INTERNAL COMBUSTION ENGINES     Choose fuel type from drop down menu     Input fuel consumption rate (gal/hr) or sc/hr)     Input gerting hours (hr)  OTHER FUELED EQUIPMENT     Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 25 1215                                                                       | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel 25 1660                                                                 | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3 Diesel 85 64                                                                    | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel 25 278                                                                       | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3 Engine 5 Diesel                                      | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel                                                                 |
| Choose fuel type from drop down menu         Input area to till (acre)         Choose soil condition from drop down menu         Input time available (work days)         Input depth of tillage (in)         CAPPING EQUIPMENT         Choose stabilization equipment type from drop down menu         Input depth of tillage (in)         CAPPING EQUIPMENT         Choose stabilization equipment type from drop down menu         Input area (ft2)         Input area (ft2)         Choose fuel type from drop down menu         Choose fuel type from drop down menu         Choose fuel type from drop down menu         Input area (ft2)         Input volume (yd3)         Input volume (yd3)         Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)         INTERNAL COMBUSTION ENGINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 25 1215 Fuel 1 Natural gas                                                    | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel 25 1660 Fuel 2 Natural gas                                    | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3 Diesel 85 64 Fuel 3 Natural gas                                                 | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel 25 278 Fuel 4 Natural gas                                                    | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas                   | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas                                              |
| Choose fuel type from drop down menu<br>Input area to till (aree)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose huel type from drop down menu<br>Input area (ft2)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input fuel consumption rate (gal/hr or scf/hr)<br>Input fuel consumption rate (gal/hr or scf/hr)<br>Input fuel Combustion (hr)<br>OTHER FUELED EQUIPMENT<br>Choose fuel type from drop down menu<br>Input volume (scf for Natural gas, gallons for all others)<br>OPERATOR LABOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 25 1215 Fuel 1 Natural gas Occupation 1                                       | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel 25 1660 Fuel 2 Natural gas Occupation 2                                 | Gasoline Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3 Diesel 85 64 Fuel 3 Natural gas Occupation 3                           | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel 25 278 Fuel 4 Natural gas Occupation 4                                       | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas Occupation 5      | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas Occupation 6                                 |
| Choose fuel type from drop down menu     Input area to till (acre)     Choose soil type from drop down menu     Choose soil type from drop down menu     Input time available (work days)     Input depth of tillage (in)  CAPPING EQUIPMENT     Choose stabilization equipment type from drop down menu     Choose stabilization equipment type from drop down menu     Choose stabilization equipment type from drop down menu     Input area (ft2)     Input area (ft2)     Input area (ft2)     Input area (ft2)     Input time available (work days)  MIXING EQUIPMENT     Choose fuel type from drop down menu     Input area (ft2)     Input setimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,     otherwise a default will be used by the tool)  INTERNAL COMBUSTION ENGINES     Choose fuel type from drop down menu     Input volume (scf for Natural gas, gallons for all others)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 25 1215 Fuel 1 Natural gas                                                    | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel 25 1660 Fuel 2 Natural gas                                    | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3 Diesel 85 64 Fuel 3 Natural gas                                                 | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel 25 278 Fuel 4 Natural gas                                                    | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas                   | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas                                              |
| Choose fuel type from drop down menu         Input area to till (acre)         Choose soil type from drop down menu         Input depth of tillage (in)         CAPPING EQUIPMENT         Choose soil type from drop down menu         Input depth of tillage (in)         CAPPING EQUIPMENT         Choose stabilization equipment type from drop down menu         Input area (f2)         Input time available (work days)         MIXING EQUIPMENT         Choose fuel type from drop down menu         Input troduction rate (yd3/hr)         Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)         INTERNAL COMBUSTION ENGINES         Choose fuel type from drop down menu         Input fuel consumption rate (gal/hr or scl/hr)         Input poerating hours (hr)         OTHER FUELED EQUIPMENT         Choose fuel type from drop down menu         Input volume (scl for Natural gas, gallons for all others)         OPERATOR LABOR         Choose fuel type from drop down menu </td <td>Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 25 1215 Fuel 1 Natural gas Occupation 1 Construction laborers 9720</td> <td>Gasoline Firm untilled soll Clay Soll Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel 25 1660 Fuel 2 Natural gas Occupation 2 Construction laborers 6640</td> <td>Gasoline Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3 Diesel 85 64 Fuel 3 Natural gas Occupation 3 Construction laborers 256</td> <td>Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel 25 278 Fuel 4 Natural gas Occupation 4 Construction laborers 1112</td> <td>Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas Occupation 5 Construction laborers</td> <td>Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas Occupation 6 Construction laborers</td> | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 25 1215 Fuel 1 Natural gas Occupation 1 Construction laborers 9720            | Gasoline Firm untilled soll Clay Soll Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel 25 1660 Fuel 2 Natural gas Occupation 2 Construction laborers 6640      | Gasoline Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3 Diesel 85 64 Fuel 3 Natural gas Occupation 3 Construction laborers 256 | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel 25 278 Fuel 4 Natural gas Occupation 4 Construction laborers 1112  | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas Occupation 5 Construction laborers | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas Occupation 6 Construction laborers |
| Choose fuel type from drop down menu         Input area to till (acre)         Choose soil condition from drop down menu         Input depth of tillage (in)         CAPPING EQUIPMENT         Choose stabilization equipment type from drop down menu         Input depth of tillage (in)         CAPPING EQUIPMENT         Choose stabilization equipment type from drop down menu         Input depth of tillage (in)         CAPPING EQUIPMENT         Choose stabilization equipment type from drop down menu         Input area (ft2)         Input time available (work days)         MIXING EQUIPMENT         Choose fuel type from drop down menu         Choose fuel type from drop down menu         Input production rate (yd3/hr)         Input production rate (yd3/hr)         Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)         INTERNAL COMBUSTION ENGINES         Choose fuel type from drop down menu         Input operating hours (hr)         OTHER FUELED EQUIPMENT         Choose fuel type from drop down menu         Input operating hours (hr)         OTHER FUELED EQUIPMENT         Choose fuel type from drop down menu         Input operating hours (hr)         OTHER FUELE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 25 1215 Fuel 1 Natural gas Occupation 1 Construction laborers                 | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel 25 1660 Fuel 2 Natural gas Occupation 2 Construction laborers | Gasoline Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3 Diesel 85 64 Fuel 3 Natural gas Occupation 3 Construction laborers     | Gasoline  Firm untilled soil  Clay Soil  Equipment 4  Roller  Gasoline  Mixer 4  Gasoline  1 to 3  Engine 4  Diesel  25  278  Fuel 4  Natural gas  Occupation 4  Construction laborers | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas Occupation 5      | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas Occupation 6                                 |
| Choose fuel type from drop down menu         Input area to till (acre)         Choose soil type from drop down menu         Input depth of tillage (in)         CAPPING EQUIPMENT         Choose stabilization equipment type from drop down menu         Input depth of tillage (in)         CAPPING EQUIPMENT         Choose stabilization equipment type from drop down menu         Input area (ft2)         Input time available (work days)         MIXING EQUIPMENT         Choose fuel type from drop down menu         Input toriducion rate (yd3/hr)         Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)         INTERNAL COMBUSTION ENGINES         Choose fuel type from drop down menu         Input fuel consumption rate (gal/hr or sc/hr)         Input operating hours (hr)         OTHER FUELEOUPMENT         Choose fuel type from drop down menu         Input total time worked onsite (hours)         OPERATOR LABOR         Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 25 1215 Fuel 1 Natural gas Occupation 1 Construction laborers 9720 Analysis 1 | Gasoline Firm untilled soll Clay Soll Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel 25 1660 Fuel 2 Natural gas Occupation 2 Construction laborers 6640      | Gasoline Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3 Diesel 85 64 Fuel 3 Natural gas Occupation 3 Construction laborers 256 | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel 25 278 Fuel 4 Natural gas Occupation 4 Construction laborers 1112  | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas Occupation 5 Construction laborers | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas Occupation 6 Construction laborers |
| Choose fuel type from drop down menu Input area to till (acre) Choose soil condition from drop down menu Choose soil type from drop down menu Input time available (work days) Input depth of tillage (in) CAPPING EQUIPMENT Choose stabilization equipment type from drop down menu Choose stabilization equipment type from drop down menu Choose fuel type from drop down menu Input area (ft2) Input time available (work days) MIXING EQUIPMENT Choose fuel type from drop down menu Input area (ft2) Input eraduate (yd3/n') Input production rate (yd3/n') Input production rate (yd3/n') Input production rate (yd3/n') Input production rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool) INTERNAL COMBUSTION ENGINES Choose fuel type from drop down menu Input tuel consumption rate (gal/hr) or scf/hr) Input operating hours (hr) OTHER FUELED EQUIPMENT Choose occupation from drop-down menu Input volume (scf for Natural gas, galions for all others) DPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dolars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Input energy usage (MMBTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 25 1215 Fuel 1 Natural gas Occupation 1 Construction laborers 9720            | Gasoline Firm untilled soll Clay Soll Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel 25 1660 Fuel 2 Natural gas Occupation 2 Construction laborers 6640      | Gasoline Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3 Diesel 85 64 Fuel 3 Natural gas Occupation 3 Construction laborers 256 | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel 25 278 Fuel 4 Natural gas Occupation 4 Construction laborers 1112  | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas Occupation 5 Construction laborers | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas Occupation 6 Construction laborers |
| Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil type from drop down menu<br>Choose soil type from drop down menu<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Input rea (rt2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Input volume (yd3)<br>Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input fuel consumption rate (gal/hr or scf/hr)<br>Input operating hours (hr)<br>OTHER FUELED EQUIPMENT<br>Choose cocupation from drop-down menu<br>Input volume (scf for Natural gas, gallons for all others)<br>OPERATOR LABOR<br>Choose cocupation from drop-down menu<br>Input total time worked onsite (hours)<br>LABORATORY ANALYSIS<br>Input dollars spent on laboratory analysis (\$)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 25 1215 Fuel 1 Natural gas Occupation 1 Construction laborers 9720 Analysis 1 | Gasoline Firm untilled soll Clay Soll Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel 25 1660 Fuel 2 Natural gas Occupation 2 Construction laborers 6640      | Gasoline Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3 Diesel 85 64 Fuel 3 Natural gas Occupation 3 Construction laborers 256 | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel 25 278 Fuel 4 Natural gas Occupation 4 Construction laborers 1112  | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas Occupation 5 Construction laborers | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas Occupation 6 Construction laborers |

| Input N2O emission (metric ton CO2 e) |  |
|---------------------------------------|--|
| Input CH4 emission (metric ton CO2 e) |  |
| Input NOx emission (metric ton)       |  |
| Input SOx emission (metric ton)       |  |
| Input PM10 emission (metric ton)      |  |
| Input fatality risk                   |  |
| Input injury risk                     |  |

### RESIDUAL HANDLING

| ESIDUE DISPOSAL/RECYCLING                                                         | Soil Residue               | Residual Water             | Material Residue           | Other Residuals            | Other Residuals            | Other Residuals            |
|-----------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?  | No                         | No                         | No                         | No                         | No                         | No                         |
| Input weight of the waste transported to<br>landfill or recycling per trip (tons) | 25                         |                            |                            |                            |                            |                            |
| Choose fuel used from drop down menu                                              | Diesel                     | Gasoline                   | Gasoline                   | Gasoline                   | Gasoline                   | Gasoline                   |
| Input total number of trips                                                       | 6640                       |                            |                            |                            |                            |                            |
| Input number of miles per trip                                                    | 250                        |                            |                            |                            |                            |                            |
|                                                                                   |                            |                            |                            |                            |                            |                            |
| ANDFILL OPERATIONS                                                                | Operation 1                | Operation 2                | Operation 3                | Operation 4                | Operation 5                | Operation 6                |
| Choose landfill type for waste disposal                                           | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              |
| Input amount of waste disposed in landfill (tons)                                 | 149321                     |                            |                            |                            |                            |                            |
| Input landfill methane emissions (metric tons CH4)                                |                            |                            |                            |                            |                            |                            |
|                                                                                   |                            |                            |                            |                            |                            |                            |
| HERMAL/CATALYTIC OXIDIZERS*                                                       | Oxidizer 1                 | Oxidizer 2                 | Oxidizer 3                 | Oxidizer 4                 | Oxidizer 5                 | Oxidizer 6                 |
| Choose oxidizer type from drop down menu                                          | Simple Thermal<br>Oxidizer |
| Choose fuel type from drop down menu                                              | Natural gas                |
| Input waste gas flow rate (scfm)                                                  |                            |                            |                            |                            |                            |                            |
| Input time running (hours)                                                        |                            |                            |                            |                            |                            |                            |
| Input waste gas inlet temperature (F)                                             |                            |                            |                            |                            |                            |                            |
|                                                                                   |                            |                            |                            |                            |                            |                            |

### RESOURCE CONSUMPTION

| WATER CONSUMPTION                                                      | Treatment System 1 | Treatment System 2 | Treatment System 3 | Treatment System 4 | Treatment System 5 | Treatment System 6 |
|------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Input total water consumed from potable water treatment facility (gal) |                    |                    |                    |                    |                    |                    |
| Input total water disposed to wastewater treatment facility (gal)      | 6032000            |                    |                    |                    |                    |                    |
|                                                                        |                    |                    |                    |                    |                    |                    |
| ONSITE LAND AND WATER RESOURCE CONSUMPTION                             | Entire Site 1      | Entire Site 2      | Entire Site 3      | Entire Site 4      | Entire Site 5      | Entire Site 6      |
| Input volume of topsoil brought to site (cubic yards)                  |                    |                    |                    |                    |                    |                    |
| Input volume of groundwater or surface water lost (gal)                |                    |                    |                    |                    |                    |                    |

| SITE INFORMATION                                                                                                      |                        |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|
| User Name and Date                                                                                                    | Tetra Tech - July 2012 |  |  |  |
| Site Name                                                                                                             | Middle River Complex   |  |  |  |
| Remedial Alternative Name                                                                                             | MRC-Combined           |  |  |  |
| Alternative File Name (will be<br>used in graphics and as file<br>name; avoid invalid<br>characters, e.g. ? : " / \ < | Alt4F                  |  |  |  |
| Choose electricity region                                                                                             | RFCE                   |  |  |  |

Do you want to reload a previously saved remedial alternative in the SiteWise input sheet? RA\_Alt8\_NoFR\_1 \\eciseafile\groups\SedMgmt -Refresh List

Yes

Reset all input values on all worksheets to default

Reset All Values on All Sheets

-= Status =-

Done Loading!









Sitewise I ool for Green and Sustainable Remediation has been developed jointly by United States (US) Navy, United States Army Corps of Engineers (USACE), and Battelle. This tool is made available on an as-is basis without guarantee or warranty of any kind, express or implied. The US Navy, USACE, Battelle, the authors, and the reviewers accept no liability resulting from the use of this tool or its documentation; nor does the above warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof. Implementation of SiteWise<sup>™</sup> tool and interpretation or use of the results provided by the tool are the sole responsibility of the user. The tool is provided free of charge for everyone to use, but is not supported in any way by the US Navy, USACE, or Battelle.

#### This worksheet allows the user to define material production, transportation, equipment use, and residual handling variables for the remedial alternative Yellow cells require the user to choose an input from a drop down menu White cells require the user to type in a value

### BASELINE INFORMATION

| REMEDIAL ACTION CONSTRUCTION COST                  | Entire Site |
|----------------------------------------------------|-------------|
| Input total remedial action construction cost (\$) | 20,456,124  |

### MATERIAL PRODUCTION

| VELL MATERIALS                                                    | Well Type 1       | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6      |
|-------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|
| Input number of wells                                             |                   |                   |                   |                   |                   |                  |
| Input depth of wells (ft)                                         |                   |                   |                   |                   |                   |                  |
| Choose specific material schedule from drop down menu             | Sch 40 PVC        | Sch 40 PVC       |
| Choose well diameter (in) from drop down menu                     | 1/8               | 1/8               | 1/8               | 1/8               | 1/8               | 1/8              |
|                                                                   |                   |                   |                   |                   |                   |                  |
| REATMENT CHEMICALS & MATERIALS                                    | Treatment 1       | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6      |
| Input number of injection points                                  |                   |                   |                   |                   |                   |                  |
| Choose material type from drop down menu                          | Hydrogen Peroxide | Hydrogen Peroxid |
| Input amount of material injected at each point (pounds dry mass) |                   |                   |                   |                   |                   |                  |
| Input number of injections per injection point                    |                   |                   |                   |                   |                   |                  |
|                                                                   |                   |                   |                   |                   |                   |                  |
| REATMENT MEDIA                                                    | Treatment 1       | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6      |
| Input weight of media used (lbs)                                  |                   |                   |                   |                   |                   |                  |
| Choose media type from drop down menu                             | Virgin GAC        | Virgin GAC       |
|                                                                   |                   |                   |                   |                   |                   |                  |
| ONSTRUCTION MATERIALS                                             | Material 1        | Material 2        | Material 3        | Material 4        | Material 5        | Material 6       |
| Choose material type from drop down menu                          | HDPE Liner        | HDPE Liner       |
| Input area of material (ft2)                                      |                   |                   |                   |                   |                   |                  |
| Input depth of material (ft)                                      |                   |                   |                   |                   |                   |                  |
|                                                                   |                   |                   |                   |                   |                   |                  |
| /ELL DECOMMISSIONING                                              | Well Type 1       | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6      |
| Input number of wells                                             |                   |                   |                   |                   |                   |                  |
| Input depth of wells (ft)                                         |                   |                   |                   |                   |                   |                  |
| Input well diameter (in)                                          |                   |                   |                   |                   |                   |                  |
| Choose material from drop down menu                               | Soil              | Soil              | Soil              | Soil              | Soil              | Soil             |
|                                                                   |                   |                   |                   |                   |                   |                  |
| ULK MATERIAL QUANTITIES                                           | Material 1        | Material 2        | Material 3        | Material 4        | Material 5        | Material 6       |
| Choose material from drop down menu                               | Acetic Acid       | Acetic Acid      |
| Choose units of material quantity from drop down menu             | pounds            | pounds            | pounds            | pounds            | pounds            | pounds           |
| Input material quantity                                           |                   |                   |                   |                   |                   |                  |

### TRANSPORTATION

| PERSONNEL TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
|------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose vehicle type from drop down menu*                                                       | Cars           | Cars           | Cars           | Cars           | Cars           | Cars           |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input distance traveled per trip (miles)                                                       |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input estimated vehicular fuel economy (mi/gal) (Input only if known for the vehicle selected, |                |                |                |                |                |                |
| otherwise a default will be used by the tool)                                                  |                |                |                |                |                |                |
| *For vehicle type 'Other' please enter values in Table 2b in the Look Up Table tab.            |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - AIR                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input number of flights taken                                                                  |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - RAIL                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Choose vehicle type from drop down menu                                                        | Intercity rail |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input total distance traveled (miles) with a given load. Add return trip(s) with no load in a  |                |                |                |                |                |                |
| separate column if applicable.                                                                 |                |                |                |                |                |                |
| Input weight of equipment transported per truck load (tons)                                    |                |                |                |                |                |                |
|                                                                                                | <b>.</b>       | <b>T T C</b>   |                |                |                | T :            |
| EQUIPMENT TRANSPORTATION - AIR                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input weight of equipment transported (tons)                                                   |                |                |                |                |                |                |
|                                                                                                | <b>T</b> 1 4   | <b>T T L A</b> | T              | <b>-</b> • •   | T              | T :            |
| EQUIPMENT TRANSPORTATION - RAIL                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                | <u> </u>       |
| Input weight of load (tons)                                                                    |                | I              | I              | I              | I              | I              |
| EQUIPMENT TRANSPORTATION - WATER                                                               | Trin 4         | Trin 2         | Trin 2         | Trip 4         | Trip 5         | Trip 6         |
|                                                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | 1 rip 5        | Trip 6         |
| Input distance traveled (mile)                                                                 |                |                |                |                |                |                |
| Input weight of load (tons)                                                                    |                |                | I              | 1              | I              | I              |

### EQUIPMENT USE

| EARTHWORK                                                                         | Equipment 1    | Equipment 2    | Equipment 3 | Equipment 4 | Equipment 5 | Equipment 6 |
|-----------------------------------------------------------------------------------|----------------|----------------|-------------|-------------|-------------|-------------|
| Choose earthwork equipment type from drop down menu                               | Loader/Backhoe | Loader/Backhoe | Dozer       | Dozer       | Dozer       | Dozer       |
| Choose fuel type from drop down menu                                              | Diesel         | Diesel         | Diesel      | Diesel      | Diesel      | Diesel      |
| Input volume of material to be removed (yd3)                                      | 48,783         | 29,000         |             |             |             |             |
| Will DIESEL-run equipment be retrofitted with a particulate reduction technology? | No             | No             | No          | No          | No          | No          |
|                                                                                   |                |                |             |             |             |             |
| DRILLING                                                                          | Event 1        | Event 2        | Event 3     | Event 4     | Event 5     | Event 6     |
| Input number of drilling locations                                                |                |                |             |             |             |             |
|                                                                                   |                |                |             |             |             |             |
| Choose drilling method from drop down menu                                        | Direct Push    | Direct Push    | Direct Push | Direct Push | Direct Push | Direct Push |
|                                                                                   | Direct Push    | Direct Push    | Direct Push | Direct Push | Direct Push | Direct Push |

| TRENCHING                                                                                                                                          | Trencher 1             | Trencher 2            | Trencher 3            | Trencher 4            | Trencher 5            | Trencher 6            |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                | Gasoline<br>1 to 3     | Gasoline<br>1 to 3    | Gasoline<br>1 to 3    | Gasoline<br>1 to 3    | Gasoline<br>1 to 3    | Gasoline<br>1 to 3    |
| Input operating hours (hr)                                                                                                                         |                        |                       |                       |                       |                       |                       |
| For each pump, select only one of the three methods to calculate energy and GHG emissions                                                          |                        |                       |                       |                       |                       |                       |
| Enter "0" for all user input values for unused pump columns or unused methods PUMP OPERATION                                                       | Pump 1                 | Pump 2                | Pump 3                | Pump 4                | Pump 5                | Pump 6                |
| Choose method from drop down                                                                                                                       | Method 1               | Method 1              | Method 1              | Method 1              | Method 1              | Method 1              |
| Method 1 - ELECTRICAL USAGE IS KNOWN<br>Input pump electrical usage (KWh)                                                                          | 0                      | 0                     | 0                     | 0                     | 0                     | 0                     |
| Method 2 - PUMP HEAD IS KNOWN                                                                                                                      |                        |                       |                       |                       |                       |                       |
| Input flow rate (gpm)                                                                                                                              | 0                      | 0                     | 0                     | 0                     | 0                     | 0                     |
| Input total head (ft)<br>Input number of pumps operating                                                                                           | 0                      | 0                     | 0                     | 0                     | 0                     | 0                     |
| Input operating time for each pump (hrs)<br>Pump efficiency times motor efficiency (default already present, user override possible)               | 0.51                   | 0<br>0.51             | 0<br>0.51             | 0<br>0.51             | 0<br>0.51             | 0<br>0.51             |
| Input specific gravity (default already present, user override possible)                                                                           | 1                      | 1                     | 1                     | 1                     | 1                     | 1                     |
| Method 3 - NAME PLATE SPECIFICATIONS ARE KNOWN                                                                                                     |                        |                       |                       |                       |                       |                       |
| Input pump horsepower (hp)                                                                                                                         | 0                      | 0                     | 0                     | 0                     | 0                     | 0                     |
| Input number of pumps operating<br>Input operating time for each pump (hrs)                                                                        | 0                      | 0                     | 0                     | 0                     | 0                     | 0                     |
| Input pump load (default already present, user override possible)<br>Input pump motor efficiency (default already present, user override possible) | 0.85                   | 0.85                  | 0.85<br>0.85          | 0.85                  | 0.85                  | 0.85<br>0.85          |
|                                                                                                                                                    | 0.03                   | 0.00                  | 0.05                  | 0.00                  | 0.00                  | 0.05                  |
| Region Electricity Region                                                                                                                          | RFCE                   | RFCE                  | RFCE                  | RFCE                  | RFCE                  | RFCE                  |
|                                                                                                                                                    |                        |                       | -                     |                       |                       |                       |
| DIESEL AND GASOLINE PUMPS<br>Choose fuel type from drop down menu                                                                                  | Pump 1<br>Gasoline     | Pump 2<br>Gasoline    | Pump 3<br>Gasoline    | Pump 4<br>Gasoline    | Pump 5<br>Gasoline    | Pump 6<br>Gasoline    |
| Choose horsepower range from drop down menu<br>Equipment operating hours (hrs)                                                                     | 2-Stroke: 0 to 1       | 2-Stroke: 0 to 1      | 2-Stroke: 0 to 1      | 2-Stroke: 0 to 1      | 2-Stroke: 0 to 1      | 2-Stroke: 0 to 1      |
| Input estimated fuel consumption rate (gal/hr) (Input only if known for the pump selected,                                                         |                        |                       |                       |                       |                       |                       |
| otherwise a default will be used by the tool)                                                                                                      |                        |                       |                       |                       |                       |                       |
| For each type of equipment, select only one of the methods to calculate energy and GHG emissions                                                   |                        |                       |                       |                       |                       |                       |
| Enter "0" for all user input values for unused equipment columns or unused methods<br>BLOWER, COMPRESSOR, MIXER, AND OTHER EQUIPMENT               | Equipment 1            | Equipment 2           | Equipment 3           | Equipment 4           | Equipment 5           | Equipment 6           |
| Choose type of equipment from drop down<br>Choose method from drop down                                                                            | Blower<br>Method 1     | Blower<br>Method 1    | Blower<br>Method 1    | Blower<br>Method 1    | Blower<br>Method 1    | Blower<br>Method 1    |
| Method 1 - NAME PLATE SPECIFICATIONS ARE KNOWN                                                                                                     |                        |                       |                       |                       |                       |                       |
| Input equipment horsepower (hp) Input number of equipments operating                                                                               | 0                      | 0                     | 0                     | 0                     | 0                     | 0                     |
| Input operating time for each equipment (hrs)                                                                                                      | 0.85                   | 0<br>0.85             | 0<br>0.85             | 0<br>0.85             | 0<br>0.85             | 0<br>0.85             |
| Input equipment load (default already present, user override possible)<br>Input motor efficiency (default already present, user override possible) | 0.85                   | 0.85                  | 0.85                  | 0.85                  | 0.85                  | 0.85                  |
| Method 2 - ELECTRICAL USAGE IS KNOWN                                                                                                               |                        |                       |                       |                       |                       |                       |
| Input equipment electrical usage, if known (kWh)                                                                                                   | 0                      | 0                     | 0                     | 0                     | 0                     | 0                     |
| Region                                                                                                                                             |                        |                       |                       |                       |                       |                       |
| Electricity Region                                                                                                                                 | RFCE                   | RFCE                  | RFCE                  | RFCE                  | RFCE                  | RFCE                  |
| GENERATORS                                                                                                                                         | Generator 1            | Generator 2           | Generator 3           | Generator 4           | Generator 5           | Generator 6           |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                | Gasoline<br>0 to 1     | Gasoline<br>0 to 1    | Gasoline<br>0 to 1    | Gasoline<br>0 to 1    | Gasoline<br>0 to 1    | Gasoline<br>0 to 1    |
| Input operating hours (hr)                                                                                                                         |                        |                       |                       |                       |                       |                       |
| AGRICULTURAL EQUIPMENT                                                                                                                             | Tillage Tractor 1      | Tillage Tractor 2     | Tillage Tractor 3     | Tillage Tractor 4     | Tillage Tractor 5     | Tillage Tractor 6     |
| Choose fuel type from drop down menu<br>Input area to till (acre)                                                                                  | Gasoline               | Gasoline              | Gasoline              | Gasoline              | Gasoline              | Gasoline              |
| Choose soil condition from drop down menu                                                                                                          | Firm untilled soil     | Firm untilled soil    | Firm untilled soil    | Firm untilled soil    | Firm untilled soil    | Firm untilled soil    |
| Choose soil type from drop down menu<br>Input time available (work days)                                                                           | Clay Soil              | Clay Soil             | Clay Soil             | Clay Soil             | Clay Soil             | Clay Soil             |
| Input depth of tillage (in)                                                                                                                        |                        |                       |                       |                       |                       |                       |
| CAPPING EQUIPMENT                                                                                                                                  | Equipment 1            | Equipment 2           | Equipment 3           | Equipment 4           | Equipment 5           | Equipment 6           |
| Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu                                                    | Roller<br>Gasoline     | Roller<br>Gasoline    | Roller<br>Gasoline    | Roller<br>Gasoline    | Roller<br>Gasoline    | Roller<br>Gasoline    |
| Input area (ft2)                                                                                                                                   |                        |                       |                       |                       |                       |                       |
| Input time available (work days)                                                                                                                   |                        |                       |                       |                       |                       |                       |
| MIXING EQUIPMENT<br>Choose fuel type from drop down menu                                                                                           | Mixer 1<br>Gasoline    | Mixer 2<br>Gasoline   | Mixer 3<br>Gasoline   | Mixer 4<br>Gasoline   | Mixer 5<br>Gasoline   | Mixer 6<br>Gasoline   |
| Choose horsepower range from drop down menu                                                                                                        | 1 to 3                 | 1 to 3                | 1 to 3                | 1 to 3                | 1 to 3                | 1 to 3                |
| Input volume (yd3)<br>Input production rate (yd3/hr)                                                                                               |                        |                       |                       |                       |                       |                       |
| Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)       |                        |                       |                       |                       |                       |                       |
|                                                                                                                                                    |                        | l                     |                       |                       | l                     |                       |
| INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu                                                                                | Engine 1<br>Diesel     | Engine 2<br>Diesel    | Engine 3<br>Diesel    | Engine 4<br>Diesel    | Engine 5<br>Diesel    | Engine 6<br>Diesel    |
| Input fuel consumption rate (gal/hr or scf/hr)                                                                                                     | 25                     | 25                    | 85                    | 25                    |                       |                       |
| Input operating hours (hr)                                                                                                                         | 596                    | 814                   | 73                    | 484                   | l                     | I                     |
| OTHER FUELED EQUIPMENT<br>Choose fuel type from drop down menu                                                                                     | Fuel 1<br>Natural gas  | Fuel 2<br>Natural gas | Fuel 3<br>Natural gas | Fuel 4<br>Natural gas | Fuel 5<br>Natural gas | Fuel 6<br>Natural gas |
| Choose fuel type from drop down menu<br>Input volume (scf for Natural gas, gallons for all others)                                                 | inatural gas           | naturai gas           | naturai gas           | indural gas           | naturai gas           | indurar gas           |
| OPERATOR LABOR                                                                                                                                     | Occupation 1           | Occupation 2          | Occupation 3          | Occupation 4          | Occupation 5          | Occupation 6          |
| Choose occupation from drop-down menu                                                                                                              | Construction laborers  | Construction laborers | Construction laborers | Construction laborers | Construction laborers | Construction laborers |
| Input total time worked onsite (hours)                                                                                                             | 4768                   | 3256                  | 292                   | 1452                  | l                     |                       |
|                                                                                                                                                    |                        | Analysis 2            | Analysis 3            | Analysis 4            | Analysis 5            | Analysis 6            |
| LABORATORY ANALYSIS                                                                                                                                | Analysis 1             | Analysis 2            |                       |                       |                       |                       |
| Input dollars spent on laboratory analysis (\$)                                                                                                    |                        | Analysis              |                       |                       |                       |                       |
| Input dollars spent on laboratory analysis (\$)<br>OTHER KNOWN ONSITE ACTIVITIES                                                                   | Analysis 1 Entire Site | Analysis              |                       |                       |                       |                       |
| Input dollars spent on laboratory analysis (\$)                                                                                                    |                        | Analysis 2            |                       |                       |                       |                       |

| Input N2O emission (metric ton CO2 e) |  |
|---------------------------------------|--|
| Input CH4 emission (metric ton CO2 e) |  |
| Input NOx emission (metric ton)       |  |
| Input SOx emission (metric ton)       |  |
| Input PM10 emission (metric ton)      |  |
| Input fatality risk                   |  |
| Input injury risk                     |  |

| RESIDUE DISPOSAL/RECYCLING                                                        | Soil Residue               | Residual Water             | Material Residue           | Other Residuals            | Other Residuals            | Other Residuals            |
|-----------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?  | No                         | No                         | No                         | No                         | No                         | No                         |
| Input weight of the waste transported to<br>landfill or recycling per trip (tons) | 25                         |                            |                            |                            |                            |                            |
| Choose fuel used from drop down menu                                              | Diesel                     | Gasoline                   | Gasoline                   | Gasoline                   | Gasoline                   | Gasoline                   |
| Input total number of trips                                                       | 3260                       |                            |                            |                            |                            |                            |
| Input number of miles per trip                                                    | 250                        |                            |                            |                            |                            |                            |
|                                                                                   |                            |                            |                            |                            |                            |                            |
| ANDFILL OPERATIONS                                                                | Operation 1                | Operation 2                | Operation 3                | Operation 4                | Operation 5                | Operation 6                |
| Choose landfill type for waste disposal                                           | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              |
| Input amount of waste disposed in landfill (tons)                                 | 73174                      |                            |                            |                            |                            |                            |
| Input landfill methane emissions (metric tons CH4)                                |                            |                            |                            |                            |                            |                            |
|                                                                                   |                            |                            |                            |                            |                            |                            |
| HERMAL/CATALYTIC OXIDIZERS*                                                       | Oxidizer 1                 | Oxidizer 2                 | Oxidizer 3                 | Oxidizer 4                 | Oxidizer 5                 | Oxidizer 6                 |
| Choose oxidizer type from drop down menu                                          | Simple Thermal<br>Oxidizer |
| Choose fuel type from drop down menu                                              | Natural gas                |
| Input waste gas flow rate (scfm)                                                  |                            |                            |                            |                            |                            |                            |
| Input time running (hours)                                                        |                            |                            |                            |                            |                            |                            |
| Input waste gas inlet temperature (F)                                             |                            |                            |                            |                            |                            |                            |
|                                                                                   |                            |                            |                            |                            |                            |                            |

| WATER CONSUMPTION                                                      | Treatment System 1 | Treatment System 2 | Treatment System 3 | Treatment System 4 | Treatment System 5 | Treatment System 6 |
|------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Input total water consumed from potable water treatment facility (gal) |                    |                    |                    |                    |                    |                    |
| Input total water disposed to wastewater treatment facility (gal)      | 2956000            |                    |                    |                    |                    |                    |
|                                                                        |                    |                    |                    |                    |                    |                    |
| ONSITE LAND AND WATER RESOURCE CONSUMPTION                             | Entire Site 1      | Entire Site 2      | Entire Site 3      | Entire Site 4      | Entire Site 5      | Entire Site 6      |
| Input volume of topsoil brought to site (cubic yards)                  |                    |                    |                    |                    |                    |                    |
| Input volume of groundwater or surface water lost (gal)                |                    |                    |                    |                    |                    |                    |

#### BASELINE INFORMATION

| LONGTERM MONITORING COST AND DURATION             | Entire Site |
|---------------------------------------------------|-------------|
| Input total longterm monitoring cost (\$)         | 1,014,163   |
| Input duration of longterm monitoring (unit time) | 1.0         |

## MATERIAL PRODUCTION

| VELL MATERIALS                                                    | Well Type 1       | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6      |
|-------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|
| Input number of wells                                             |                   |                   |                   |                   |                   |                  |
| Input depth of wells (ft)                                         |                   |                   |                   |                   |                   |                  |
| Choose specific material schedule from drop down menu             | Sch 40 PVC        | Sch 40 PVC       |
| Choose well diameter (in) from drop down menu                     | 1/8               | 1/8               | 1/8               | 1/8               | 1/8               | 1/8              |
|                                                                   |                   |                   |                   |                   |                   |                  |
| REATMENT CHEMICALS & MATERIALS                                    | Treatment 1       | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6      |
| Input number of injection points                                  |                   |                   |                   |                   |                   |                  |
| Choose material type from drop down menu                          | Hydrogen Peroxide | Hydrogen Peroxid |
| Input amount of material injected at each point (pounds dry mass) |                   |                   |                   |                   |                   |                  |
| Input number of injections per injection point                    |                   |                   |                   |                   |                   |                  |
|                                                                   |                   |                   |                   |                   |                   |                  |
| REATMENT MEDIA                                                    | Treatment 1       | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6      |
| Input weight of media used (lbs)                                  |                   |                   |                   |                   |                   |                  |
| Choose media type from drop down menu                             | Virgin GAC        | Virgin GAC       |
|                                                                   |                   |                   |                   |                   |                   |                  |
| CONSTRUCTION MATERIALS                                            | Material 1        | Material 2        | Material 3        | Material 4        | Material 5        | Material 6       |
| Choose material type from drop down menu                          | HDPE Liner        | HDPE Liner       |
| Input area of material (ft2)                                      |                   |                   |                   |                   |                   |                  |
| Input depth of material (ft)                                      |                   |                   |                   |                   |                   |                  |
|                                                                   |                   |                   |                   |                   |                   |                  |
| /ELL DECOMMISSIONING                                              | Well Type 1       | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6      |
| Input number of wells                                             |                   |                   |                   |                   |                   |                  |
| Input depth of wells (ft)                                         |                   |                   |                   |                   |                   |                  |
| Input well diameter (in)                                          |                   |                   |                   |                   |                   |                  |
| Choose material from drop down menu                               | Soil              | Soil              | Soil              | Soil              | Soil              | Soil             |
|                                                                   |                   |                   |                   |                   |                   |                  |
| ULK MATERIAL QUANTITIES                                           | Material 1        | Material 2        | Material 3        | Material 4        | Material 5        | Material 6       |
| Choose material from drop down menu                               | Acetic Acid       | Acetic Acid      |
| Choose units of material quantity from drop down menu             | pounds            | pounds            | pounds            | pounds            | pounds            | pounds           |
| Input material guantity                                           |                   |                   |                   |                   |                   |                  |

#### TRANSPORTATION

| ERSONNEL TRANSPORTATION - ROAD                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
|------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose vehicle type from drop down menu*                                                       | Cars           | Cars           | Cars           | Cars           | Cars           | Cars           |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input distance traveled per trip (miles)                                                       |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input estimated vehicular fuel economy (mi/gal) (Input only if known for the vehicle selected, |                |                |                |                |                |                |
| otherwise a default will be used by the tool)                                                  |                |                |                |                |                |                |
| *For vehicle type 'Other' please enter values in Table 2b in the Look Up Table tab.            |                | •              | •              | ·              | ·              |                |
| ERSONNEL TRANSPORTATION - AIR                                                                  | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input number of flights taken                                                                  |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| ERSONNEL TRANSPORTATION - RAIL                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Choose vehicle type from drop down menu                                                        | Intercity rail |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| QUIPMENT TRANSPORTATION - ROAD                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input total distance traveled (miles) with a given load. Add return trip(s) with no load in a  |                |                |                |                |                |                |
| separate column if applicable.                                                                 |                |                |                |                |                |                |
| Input weight of equipment transported per truck load (tons)                                    |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| DUIPMENT TRANSPORTATION - AIR                                                                  | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input weight of equipment transported (tons)                                                   |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| QUIPMENT TRANSPORTATION - RAIL                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input weight of load (tons)                                                                    |                |                |                |                |                | <u> </u>       |
|                                                                                                |                | <b>T</b> : 0   | <b>.</b>       |                | <b>.</b>       |                |
| QUIPMENT TRANSPORTATION - WATER                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (mile)                                                                 |                |                |                |                |                |                |
| Input weight of load (tons)                                                                    |                |                | 1              | 1              |                |                |

| EARTHWORK                                                                         | Equipment 1 | Equipment 2 | Equipment 3 | Equipment 4 | Equipment 5 | Equipment 6 |
|-----------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Choose earthwork equipment type from drop down menu                               | Dozer       | Dozer       | Dozer       | Dozer       | Dozer       | Dozer       |
| Choose fuel type from drop down menu                                              | Diesel      | Diesel      | Diesel      | Diesel      | Diesel      | Diesel      |
| Input volume of material to be removed (yd3)                                      |             |             |             |             |             |             |
| Will DIESEL-run equipment be retrofitted with a particulate reduction technology? | No          | No          | No          | No          | No          | No          |
|                                                                                   |             |             |             |             |             |             |
| DRILLING                                                                          | Event 1     | Event 2     | Event 3     | Event 4     | Event 5     | Event 6     |
| Input number of drilling locations                                                |             |             |             |             |             |             |
| Choose drilling method from drop down menu                                        | Direct Push |
| Input time spent drilling at each location (hr)                                   |             |             |             |             |             |             |
|                                                                                   |             |             | Diesel      | Diesel      | Diesel      | Diesel      |

| TRENCHING<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Trencher 1<br>Gasoline                                                                                   | Trencher 2<br>Gasoline                                                   | Trencher 3<br>Gasoline                                                   | Trencher 4<br>Gasoline                                                   | Trencher 5<br>Gasoline                                                   | Trencher 6<br>Gasoline                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------|
| Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 to 3                                                                                                   | 1 to 3                                                                   | 1 to 3                                                                   | 1 to 3                                                                   | 1 to 3                                                                   | 1 to 3                                                       |
| Input operating hours (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                              |
| For each pump, select only one of the three methods to calculate energy and GHG emissions<br>Enter "0" for all user input values for unused pump columns or unused methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                              |
| PUMP OPERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pump 1                                                                                                   | Pump 2                                                                   | Pump 3                                                                   | Pump 4                                                                   | Pump 5                                                                   | Pump 6                                                       |
| Choose method from drop down<br>Method 1 - ELECTRICAL USAGE IS KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Method 1                                                                                                 | Method 1                                                                 | Method 1                                                                 | Method 1                                                                 | Method 1                                                                 | Method 1                                                     |
| Input pump electrical usage (KWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                        | 0                                                                        | 0                                                                        | 0                                                                        | 0                                                                        | 0                                                            |
| Method 2 - PUMP HEAD IS KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                              |
| Input flow rate (gpm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                        | 0                                                                        | 0                                                                        | 0                                                                        | 0                                                                        | 0                                                            |
| Input total head (ft)<br>Input number of pumps operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                        | 0                                                                        | 0                                                                        | 0                                                                        | 0                                                                        | 0                                                            |
| Input operating time for each pump (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>0.51                                                                                                | 0<br>0.51                                                                | 0<br>0.51                                                                | 0<br>0.51                                                                | 0<br>0.51                                                                | 0<br>0.51                                                    |
| Pump efficiency times motor efficiency (default already present, user override possible)<br>Input specific gravity (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                        | 1                                                                        | 1                                                                        | 1                                                                        | 1                                                                        | 1                                                            |
| Method 3 - NAME PLATE SPECIFICATIONS ARE KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                              |
| Input pump horsepower (hp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                        | 0                                                                        | 0                                                                        | 0                                                                        | 0                                                                        | 0                                                            |
| Input number of pumps operating<br>Input operating time for each pump (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                        | 0                                                                        | 0                                                                        | 0                                                                        | 0                                                                        | 0                                                            |
| Input pump load (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.85                                                                                                     | 0.85                                                                     | 0.85                                                                     | 0.85                                                                     | 0.85                                                                     | 0.85                                                         |
| Input pump motor efficiency (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.85                                                                                                     | 0.85                                                                     | 0.85                                                                     | 0.85                                                                     | 0.85                                                                     | 0.85                                                         |
| Region Electric Decision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DEOF                                                                                                     | DEOE                                                                     | DEOE                                                                     | DEOE                                                                     | DEGE                                                                     | DEGE                                                         |
| Electricity Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RFCE                                                                                                     | RFCE                                                                     | RFCE                                                                     | RFCE                                                                     | RFCE                                                                     | RFCE                                                         |
| DIESEL AND GASOLINE PUMPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pump 1                                                                                                   | Pump 2                                                                   | Pump 3                                                                   | Pump 4                                                                   | Pump 5                                                                   | Pump 6                                                       |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gasoline<br>2-Stroke: 0 to 1                                                                             | Gasoline<br>2-Stroke: 0 to 1                                             | Gasoline<br>2-Stroke: 0 to 1                                             | Gasoline<br>2-Stroke: 0 to 1                                             | Gasoline<br>2-Stroke: 0 to 1                                             | Gasoline<br>2-Stroke: 0 to 1                                 |
| Equipment operating hours (hrs)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the pump selected,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                              |
| otherwise a default will be used by the tool)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                              |
| For each type of equipment, select only one of the methods to calculate energy and GHG emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                              |
| Enter "0" for all user input values for unused equipment columns or unused methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                        |                                                                          |                                                                          |                                                                          |                                                                          |                                                              |
| BLOWER, COMPRESSOR, MIXER, AND OTHER EQUIPMENT<br>Choose type of equipment from drop down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Equipment 1<br>Blower                                                                                    | Equipment 2<br>Blower                                                    | Equipment 3<br>Blower                                                    | Equipment 4<br>Blower                                                    | Equipment 5<br>Blower                                                    | Equipment 6<br>Blower                                        |
| Choose method from drop down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Method 1                                                                                                 | Method 1                                                                 | Method 1                                                                 | Method 1                                                                 | Method 1                                                                 | Method 1                                                     |
| Method 1 - NAME PLATE SPECIFICATIONS ARE KNOWN Input equipment horsepower (hp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                        | 0                                                                        | 0                                                                        | 0                                                                        | 0                                                                        | 0                                                            |
| Input number of equipments operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                        | 0                                                                        | 0                                                                        | 0                                                                        | 0                                                                        | 0                                                            |
| Input operating time for each equipment (hrs)<br>Input equipment load (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.85                                                                                                     | 0<br>0.85                                                                | 0<br>0.85                                                                | 0.85                                                                     | 0<br>0.85                                                                | 0<br>0.85                                                    |
| Input motor efficiency (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.85                                                                                                     | 0.85                                                                     | 0.85                                                                     | 0.85                                                                     | 0.85                                                                     | 0.85                                                         |
| Method 2 - ELECTRICAL USAGE IS KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                              |
| Input equipment electrical usage, if known (kWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                        | 0                                                                        | 0                                                                        | 0                                                                        | 0                                                                        | 0                                                            |
| Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2505                                                                                                     | 2505                                                                     | 2505                                                                     | 2545                                                                     | 2505                                                                     | 2505                                                         |
| Electricity Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RFCE                                                                                                     | RFCE                                                                     | RFCE                                                                     | RFCE                                                                     | RFCE                                                                     | RFCE                                                         |
| GENERATORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Generator 1                                                                                              | Generator 2                                                              | Generator 3                                                              | Generator 4                                                              | Generator 5                                                              | Generator 6                                                  |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gasoline<br>0 to 1                                                                                       | Gasoline<br>0 to 1                                                       | Gasoline<br>0 to 1                                                       | Gasoline<br>0 to 1                                                       | Gasoline<br>0 to 1                                                       | Gasoline<br>0 to 1                                           |
| Input operating hours (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                              |
| AGRICULTURAL EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tillage Tractor 1                                                                                        | Tillage Tractor 2                                                        | Tillage Tractor 3                                                        | Tillage Tractor 4                                                        | Tillage Tractor 5                                                        | Tillage Tractor 6                                            |
| Choose fuel type from drop down menu<br>Input area to till (acre)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gasoline                                                                                                 | Gasoline                                                                 | Gasoline                                                                 | Gasoline                                                                 | Gasoline                                                                 | Gasoline                                                     |
| Choose soil condition from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Firm untilled soil                                                                                       | Firm untilled soil                                                       | Firm untilled soil                                                       | Firm untilled soil                                                       | Firm untilled soil                                                       | Firm untilled soil                                           |
| Choose soil type from drop down menu<br>Input time available (work days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Clay Soil                                                                                                | Clay Soil                                                                | Clay Soil                                                                | Clay Soil                                                                | Clay Soil                                                                | Clay Soil                                                    |
| Input depth of tillage (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                              |
| CAPPING EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Equipment 1                                                                                              | Equipment 2                                                              | Equipment 3                                                              | Equipment 4                                                              | Equipment 5                                                              | Equipment 6                                                  |
| Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Roller<br>Gasoline                                                                                       | Roller<br>Gasoline                                                       | Roller<br>Gasoline                                                       | Roller<br>Gasoline                                                       | Roller<br>Gasoline                                                       | Roller<br>Gasoline                                           |
| Input area (ft2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gasonne                                                                                                  | Gasoline                                                                 | Gasoline                                                                 | Gasonine                                                                 | Gasoline                                                                 | Gasoline                                                     |
| Input time available (work days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                              |
| MIXING EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mixer 1                                                                                                  | Mixer 2                                                                  | Mixer 3                                                                  | Mixer 4                                                                  | Mixer 5                                                                  | Mixer 6                                                      |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gasoline<br>1 to 3                                                                                       | Gasoline<br>1 to 3                                                       | Gasoline<br>1 to 3                                                       | Gasoline<br>1 to 3                                                       | Gasoline<br>1 to 3                                                       | Gasoline<br>1 to 3                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                              |
| Input volume (yd3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                              |
| Input volume (yd3)<br>Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                              |
| Input volume (yd3)<br>Input production rate (yd3/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                              |
| Input volume (yd3)<br>Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES                                                                                                                                                                                                                                                                                                                                                                                                                         | Engine 1                                                                                                 | Engine 2                                                                 | Engine 3                                                                 | Engine 4                                                                 | Engine 5                                                                 | Engine 6                                                     |
| Input volume (yd3)<br>Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                 | Diesel                                                                                                   | Engine 2<br>Diesel                                                       | Engine 3<br>Diesel                                                       | Engine 4<br>Diesel                                                       | Engine 5<br>Diesel                                                       | Engine 6<br>Diesel                                           |
| Input volume (yd3)<br>Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                          |                                                                          |                                                                          |                                                                          |                                                                          |                                                              |
| Input volume (yd3) Input production rate (yd3/hr) Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool) INTERNAL COMBUSTION ENGINES Choose fuel type from drop down menu Input fuel consumption rate (gal/hr or scf/hr)                                                                                                                                                                                                                                                                                                                                                 | Diesel<br>5                                                                                              |                                                                          |                                                                          |                                                                          |                                                                          |                                                              |
| Input volume (yd3) Input production rate (yd3/hr) Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool) INTERNAL COMBUSTION ENGINES Choose fuel type from drop down menu Input fuel consumption rate (gal/hr or scf/hr) Input operating hours (hr) OTHER FUELED EQUIPMENT Choose fuel type from drop down menu                                                                                                                                                                                                                                                          | Diesel<br>5<br>54                                                                                        | Diesel                                                                   | Diesel                                                                   | Diesel                                                                   | Diesel                                                                   | Diesel                                                       |
| Input volume (yd3) Input production rate (yd3/hr) Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool) INTERNAL COMBUSTION ENGINES Choose fuel type from drop down menu Input fuel consumption rate (gal/hr or scf/hr) Input operating hours (hr) OTHER FUELED EQUIPMENT                                                                                                                                                                                                                                                                                               | Diesel<br>5<br>54<br>Fuel 1                                                                              | Diesel<br>Fuel 2                                                         | Diesel<br>Fuel 3                                                         | Diesel<br>Fuel 4                                                         | Diesel<br>Fuel 5                                                         | Diesel<br>Fuel 6                                             |
| Input volume (yd3) Input production rate (yd3/hr) Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool) INTERNAL COMBUSTION ENGINES Choose fuel type from drop down menu Input fuel consumption rate (gal/hr or scf/hr) Input operating hours (hr) OTHER FUELED EQUIPMENT Choose fuel type from drop down menu Input volume (scf for Natural gas, gallons for all others) OPERATOR LABOR                                                                                                                                                                                | Diesel<br>5<br>54<br>Fuel 1<br>Natural gas<br>Occupation 1                                               | Diesel<br>Fuel 2<br>Natural gas<br>Occupation 2                          | Diesel<br>Fuel 3<br>Natural gas<br>Occupation 3                          | Diesel<br>Fuel 4<br>Natural gas<br>Occupation 4                          | Diesel<br>Fuel 5<br>Natural gas<br>Occupation 5                          | Diesel<br>Fuel 6<br>Natural gas<br>Occupation 6              |
| Input volume (yd3)<br>Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input fuel consumption rate (gal/hr or scf/hr)<br>Input operating hours (hr)<br>OTHER FUELED EQUIPMENT<br>Choose fuel type from drop down menu<br>Input volume (scf for Natural gas, gallons for all others)                                                                                                                                                                 | Diesel<br>5<br>54<br>Fuel 1<br>Natural gas                                                               | Diesel<br>Fuel 2<br>Natural gas                                          | Diesel<br>Fuel 3<br>Natural gas                                          | Diesel<br>Fuel 4<br>Natural gas                                          | Diesel<br>Fuel 5<br>Natural gas                                          | Diesel<br>Fuel 6<br>Natural gas                              |
| Input volume (yd3) Input production rate (yd3/hr) Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool) INTERNAL COMBUSTION ENCINES Choose fuel type from drop down menu Input fuel consumption rate (gal/hr or sc/hr) Input operating hours (hr) OTHER FUELED EQUIPMENT Choose fuel type from drop down menu Input volume (scf for Natural gas, gallons for all others) OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours)                                                                                                    | Diesel<br>5<br>54<br>Fuel 1<br>Natural gas<br>Occupation 1<br>Construction laborers<br>162               | Diesel<br>Fuel 2<br>Natural gas<br>Occupation 2<br>Construction laborers | Diesel<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers | Diesel<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers | Diesel<br>Fuel 5<br>Natural gas<br>Occupation 5<br>Construction laborers | Diesel Fuel 6 Natural gas Occupation 6 Construction laborers |
| Input volume (yd3) Input production rate (yd3/hr) Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool) INTERNAL COMBUSTION ENGINES Choose fuel type from drop down menu Input fuel consumption rate (gal/hr or scf/hr) Input operating hours (hr) OTHER FUELED EQUIPMENT Choose fuel type from drop down menu Input volume (scf for Natural gas, gallons for all others) OPERATOR LABOR Choose occupation from drop-down menu                                                                                                                                          | Diesel<br>5<br>54<br>Fuel 1<br>Natural gas<br>Occupation 1<br>Construction laborers                      | Diesel<br>Fuel 2<br>Natural gas<br>Occupation 2                          | Diesel<br>Fuel 3<br>Natural gas<br>Occupation 3                          | Diesel<br>Fuel 4<br>Natural gas<br>Occupation 4                          | Diesel<br>Fuel 5<br>Natural gas<br>Occupation 5                          | Diesel<br>Fuel 6<br>Natural gas<br>Occupation 6              |
| Input volume (yd3) Input production rate (yd3/hr) Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool) INTERNAL COMBUSTION ENCINES Choose fuel type from drop down menu Input fuel consumption rate (gal/hr or scf/hr) Input operating hours (hr) OTHER FUELED EQUIPMENT Choose fuel type from drop down menu Input volume (scf for Natural gas, gallons for all others) OPERATOR LABOR Choose coupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$)                                | Diesel<br>5<br>54<br>Fuel 1<br>Natural gas<br>Occupation 1<br>Construction laborers<br>162<br>Analysis 1 | Diesel<br>Fuel 2<br>Natural gas<br>Occupation 2<br>Construction laborers | Diesel<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers | Diesel<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers | Diesel<br>Fuel 5<br>Natural gas<br>Occupation 5<br>Construction laborers | Diesel Fuel 6 Natural gas Occupation 6 Construction laborers |
| Input volume (yd3)<br>Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input tuel consumption rate (gal/hr or scf/hr)<br>Input operating hours (hr)<br>OTHER FUELED EQUIPMENT<br>Choose fuel type from drop down menu<br>Input volume (scf for Natural gas, gallons for all others)<br>OPERATOR LABOR<br>Choose occupation from drop-down menu<br>Input total time worked onsite (hours)<br>LABORATORY ANALYSIS                                     | Diesel<br>5<br>54<br>Fuel 1<br>Natural gas<br>Occupation 1<br>Construction laborers<br>162               | Diesel<br>Fuel 2<br>Natural gas<br>Occupation 2<br>Construction laborers | Diesel<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers | Diesel<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers | Diesel<br>Fuel 5<br>Natural gas<br>Occupation 5<br>Construction laborers | Diesel Fuel 6 Natural gas Occupation 6 Construction laborers |
| Input volume (yd3) Input production rate (yd3/hr) Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool) INTERNAL COMBUSTION ENGINES Choose fuel type from drop down menu Input tuel consumption rate (gal/hr) or sc/hr) Input operating hours (hr) OTHER FUELED EQUIPMENT Choose fuel type from drop down menu Input volume (scf for Natural gas, gallons for all others) OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES | Diesel<br>5<br>54<br>Fuel 1<br>Natural gas<br>Occupation 1<br>Construction laborers<br>162<br>Analysis 1 | Diesel<br>Fuel 2<br>Natural gas<br>Occupation 2<br>Construction laborers | Diesel<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers | Diesel<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers | Diesel<br>Fuel 5<br>Natural gas<br>Occupation 5<br>Construction laborers | Diesel Fuel 6 Natural gas Occupation 6 Construction laborers |

| Input N2O emission (metric ton CO2 e) |  |
|---------------------------------------|--|
| Input CH4 emission (metric ton CO2 e) |  |
| Input NOx emission (metric ton)       |  |
| Input SOx emission (metric ton)       |  |
| Input PM10 emission (metric ton)      |  |
| Input fatality risk                   |  |
| Input injury risk                     |  |

| ESIDUE DISPOSAL/RECYCLING                                                        | Soil Residue   | Residual Water | Material Residue | Other Residuals | Other Residuals | Other Residuals |
|----------------------------------------------------------------------------------|----------------|----------------|------------------|-----------------|-----------------|-----------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? | No             | No             | No               | No              | No              | No              |
| Input weight of the waste transported to                                         |                |                |                  |                 |                 |                 |
| landfill or recycling per trip (tons)                                            |                |                |                  |                 |                 |                 |
| Choose fuel used from drop down menu                                             | Gasoline       | Gasoline       | Gasoline         | Gasoline        | Gasoline        | Gasoline        |
| Input total number of trips                                                      |                |                |                  |                 |                 |                 |
| Input number of miles per trip                                                   |                |                |                  |                 |                 |                 |
|                                                                                  |                |                |                  |                 |                 |                 |
| ANDFILL OPERATIONS                                                               | Operation 1    | Operation 2    | Operation 3      | Operation 4     | Operation 5     | Operation 6     |
| Choose landfill type for waste disposal                                          | Non-Hazardous  | Non-Hazardous  | Non-Hazardous    | Non-Hazardous   | Non-Hazardous   | Non-Hazardous   |
| Input amount of waste disposed in landfill (tons)                                |                |                |                  |                 |                 |                 |
| Input landfill methane emissions (metric tons CH4)                               |                |                |                  |                 |                 |                 |
|                                                                                  |                |                |                  |                 |                 |                 |
| HERMAL/CATALYTIC OXIDIZERS*                                                      | Oxidizer 1     | Oxidizer 2     | Oxidizer 3       | Oxidizer 4      | Oxidizer 5      | Oxidizer 6      |
| Choose oxidizer type from drop down menu                                         | Simple Thermal | Simple Thermal | Simple Thermal   | Simple Thermal  | Simple Thermal  | Simple Thermal  |
|                                                                                  | Oxidizer       | Oxidizer       | Oxidizer         | Oxidizer        | Oxidizer        | Oxidizer        |
| Choose fuel type from drop down menu                                             | Natural gas    | Natural gas    | Natural gas      | Natural gas     | Natural gas     | Natural gas     |
| Input waste gas flow rate (scfm)                                                 |                |                |                  |                 |                 |                 |
| Input time running (hours)                                                       |                |                |                  |                 |                 |                 |
| Input waste gas inlet temperature (F)                                            |                |                |                  |                 |                 |                 |
| Input contaminant concentration (ppmV)                                           |                |                |                  |                 |                 |                 |
| *(Electric blowers are included in the analysis)                                 |                | •              | •                |                 | -               | -               |

| WATER CONSUMPTION                                                      | Treatment System 1 | Treatment System 2 | Treatment System 3 | Treatment System 4 | Treatment System 5 | Treatment System 6 |
|------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Input total water consumed from potable water treatment facility (gal) |                    |                    |                    |                    |                    |                    |
| Input total water disposed to wastewater treatment facility (gal)      |                    |                    |                    |                    |                    |                    |
|                                                                        |                    |                    |                    |                    |                    |                    |
| ONSITE LAND AND WATER RESOURCE CONSUMPTION                             | Entire Site 1      | Entire Site 2      | Entire Site 3      | Entire Site 4      | Entire Site 5      | Entire Site 6      |
| Input volume of topsoil brought to site (cubic yards)                  |                    |                    |                    |                    |                    |                    |
| Input volume of groundwater or surface water lost (gal)                |                    |                    |                    |                    |                    |                    |

| SITE INFORMATION                                                                                                  |                        |
|-------------------------------------------------------------------------------------------------------------------|------------------------|
| User Name and Date                                                                                                | Tetra Tech - July 2012 |
| Site Name                                                                                                         | Middle River Complex   |
| Remedial Alternative Name                                                                                         | MRC-Combined           |
| Alternative File Name (will be<br>used in graphics and as file<br>name; avoid invalid<br>characters, e.g.?: "/\ < | Alt4G                  |
| >   * )<br>Choose electricity region                                                                              | RFCE                   |
| Choose electricity region                                                                                         | REGE                   |

Do you want to reload a previously saved remedial alternative in the SiteWise input sheet? RA\_Alt6\_NoFR\_1 \\eciseafile\groups\SedMgmt -Refresh List

Yes

Reset all input values on all worksheets to default

Reset All Values on All Sheets

-= Status =-

Done Loading!









Sitewise I ool for Green and Sustainable Remediation has been developed jointly by United States (US) Navy, United States Army Corps of Engineers (USACE), and Battelle. This tool is made available on an as-is basis without guarantee or warranty of any kind, express or implied. The US Navy, USACE, Battelle, the authors, and the reviewers accept no liability resulting from the use of this tool or its documentation; nor does the above warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof. Implementation of SiteWise<sup>™</sup> tool and interpretation or use of the results provided by the tool are the sole responsibility of the user. The tool is provided free of charge for everyone to use, but is not supported in any way by the US Navy, USACE, or Battelle.

#### BASELINE INFORMATION

 REMEDIAL ACTION CONSTRUCTION COST
 Entire Site

 Input total remedial action construction cost (\$)
 18,364,124

#### MATERIAL PRODUCTION

| /ELL MATERIALS                                                    | Well Type 1                           | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6     |
|-------------------------------------------------------------------|---------------------------------------|-------------------|-------------------|-------------------|-------------------|-----------------|
| Input number of wells                                             |                                       |                   |                   |                   |                   |                 |
| Input depth of wells (ft)                                         |                                       |                   |                   |                   |                   |                 |
| Choose specific material schedule from drop down menu             | Sch 40 PVC                            | Sch 40 PVC        | Sch 40 PVC        | Sch 40 PVC        | Sch 40 PVC        | Sch 40 PVC      |
| Choose well diameter (in) from drop down menu                     | 1/8                                   | 1/8               | 1/8               | 1/8               | 1/8               | 1/8             |
|                                                                   | · · · · · · · · · · · · · · · · · · · | ·                 |                   |                   |                   |                 |
| REATMENT CHEMICALS & MATERIALS                                    | Treatment 1                           | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6     |
| Input number of injection points                                  |                                       |                   |                   |                   |                   |                 |
| Choose material type from drop down menu                          | Hydrogen Peroxide                     | Hydrogen Peroxide | Hydrogen Peroxide | Hydrogen Peroxide | Hydrogen Peroxide | Hydrogen Peroxi |
| Input amount of material injected at each point (pounds dry mass) |                                       |                   |                   |                   |                   |                 |
| Input number of injections per injection point                    |                                       |                   |                   |                   |                   |                 |
|                                                                   |                                       |                   |                   |                   |                   |                 |
| REATMENT MEDIA                                                    | Treatment 1                           | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6     |
| Input weight of media used (lbs)                                  |                                       |                   |                   |                   |                   |                 |
| Choose media type from drop down menu                             | Virgin GAC                            | Virgin GAC        | Virgin GAC        | Virgin GAC        | Virgin GAC        | Virgin GAC      |
|                                                                   |                                       |                   |                   |                   |                   |                 |
| ONSTRUCTION MATERIALS                                             | Material 1                            | Material 2        | Material 3        | Material 4        | Material 5        | Material 6      |
| Choose material type from drop down menu                          | HDPE Liner                            | HDPE Liner        | HDPE Liner        | HDPE Liner        | HDPE Liner        | HDPE Liner      |
| Input area of material (ft2)                                      |                                       |                   |                   |                   |                   |                 |
| Input depth of material (ft)                                      |                                       |                   |                   |                   |                   |                 |
|                                                                   |                                       |                   |                   |                   |                   |                 |
| ELL DECOMMISSIONING                                               | Well Type 1                           | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6     |
| Input number of wells                                             |                                       |                   |                   |                   |                   |                 |
| Input depth of wells (ft)                                         |                                       |                   |                   |                   |                   |                 |
| Input well diameter (in)                                          |                                       |                   |                   |                   |                   |                 |
| Choose material from drop down menu                               | Soil                                  | Soil              | Soil              | Soil              | Soil              | Soil            |
|                                                                   |                                       |                   |                   |                   |                   |                 |
| JLK MATERIAL QUANTITIES                                           | Material 1                            | Material 2        | Material 3        | Material 4        | Material 5        | Material 6      |
| Choose material from drop down menu                               | Acetic Acid                           | Acetic Acid       | Acetic Acid       | Acetic Acid       | Acetic Acid       | Acetic Acid     |
| Choose units of material quantity from drop down menu             | pounds                                | pounds            | pounds            | pounds            | pounds            | pounds          |
| Input material quantity                                           |                                       |                   |                   |                   |                   |                 |

#### TRANSPORTATION

| PERSONNEL TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
|------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose vehicle type from drop down menu*                                                       | Cars           | Cars           | Cars           | Cars           | Cars           | Cars           |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input distance traveled per trip (miles)                                                       |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input estimated vehicular fuel economy (mi/gal) (Input only if known for the vehicle selected, |                |                |                |                |                |                |
| otherwise a default will be used by the tool)                                                  |                |                |                |                |                |                |
| *For vehicle type 'Other' please enter values in Table 2b in the Look Up Table tab.            |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - AIR                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input number of flights taken                                                                  |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - RAIL                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Choose vehicle type from drop down menu                                                        | Intercity rail |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input total distance traveled (miles) with a given load. Add return trip(s) with no load in a  |                |                |                |                |                |                |
| separate column if applicable.                                                                 |                |                |                |                |                |                |
| Input weight of equipment transported per truck load (tons)                                    |                |                |                |                |                |                |
| QUIPMENT TRANSPORTATION - AIR                                                                  | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                | прт            | inp 2          | The S          | TTP 4          | inp 5          | TTP 0          |
| Input weight of equipment transported (tons)                                                   |                |                |                |                |                |                |
| input weight of equipment transported (tons)                                                   |                |                |                |                |                |                |
| QUIPMENT TRANSPORTATION - RAIL                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input weight of load (tons)                                                                    |                | 1              | 1              |                |                |                |
| ,                                                                                              |                |                |                |                | •              |                |
| EQUIPMENT TRANSPORTATION - WATER                                                               | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (mile)                                                                 |                |                |                |                |                |                |
| Input weight of load (tons)                                                                    |                |                |                |                |                |                |

| EARTHWORK                                                                         | Equipment 1    | Equipment 2    | Equipment 3    | Equipment 4 | Equipment 5 | Equipment 6 |
|-----------------------------------------------------------------------------------|----------------|----------------|----------------|-------------|-------------|-------------|
| Choose earthwork equipment type from drop down menu                               | Loader/Backhoe | Loader/Backhoe | Loader/Backhoe | Dozer       | Dozer       | Dozer       |
| Choose fuel type from drop down menu                                              | Diesel         | Diesel         | Diesel         | Diesel      | Diesel      | Diesel      |
| Input volume of material to be removed (yd3)                                      | 48,783         | 15,200         | 493            |             |             |             |
| Will DIESEL-run equipment be retrofitted with a particulate reduction technology? | No             | No             | No             | No          | No          | No          |
|                                                                                   |                |                |                |             |             |             |
| DRILLING                                                                          | Event 1        | Event 2        | Event 3        | Event 4     | Event 5     | Event 6     |
| Input number of drilling locations                                                |                |                |                |             |             |             |
| input number of unining locations                                                 |                |                |                |             |             |             |
| Choose drilling method from drop down menu                                        | Direct Push    | Direct Push    | Direct Push    | Direct Push | Direct Push | Direct Push |
|                                                                                   | Direct Push    | Direct Push    | Direct Push    | Direct Push | Direct Push | Direct Push |

| TRENCHING<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trencher 1<br>Gasoline                                                                                                                                                              | Trencher 2<br>Gasoline                                                                                              | Trencher 3<br>Gasoline                                                                                            | Trencher 4<br>Gasoline                                                                                   | Trencher 5<br>Gasoline                                                               | Trencher 6<br>Gasoline                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Choose horsepower range from drop down menu<br>Input operating hours (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 to 3                                                                                                                                                                              | 1 to 3                                                                                                              | 1 to 3                                                                                                            | 1 to 3                                                                                                   | 1 to 3                                                                               | 1 to 3                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                     | l                                                                                                                   |                                                                                                                   |                                                                                                          | l                                                                                    |                                                              |
| For each pump, select only one of the three methods to calculate energy and GHG emissions<br>Enter "0" for all user input values for unused pump columns or unused methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                     |                                                                                                                     |                                                                                                                   |                                                                                                          |                                                                                      |                                                              |
| PUMP OPERATION<br>Choose method from drop down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pump 1<br>Method 1                                                                                                                                                                  | Pump 2<br>Method 1                                                                                                  | Pump 3<br>Method 1                                                                                                | Pump 4<br>Method 1                                                                                       | Pump 5<br>Method 1                                                                   | Pump 6<br>Method 1                                           |
| Method 1 - ELECTRICAL USAGE IS KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                     |                                                                                                                     |                                                                                                                   |                                                                                                          |                                                                                      |                                                              |
| Input pump electrical usage (KWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                   | 0                                                                                                                   | 0                                                                                                                 | 0                                                                                                        | 0                                                                                    | 0                                                            |
| Method 2 - PUMP HEAD IS KNOWN<br>Input flow rate (gpm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | â                                                                                                                                                                                   | 0                                                                                                                   | 0                                                                                                                 | 0                                                                                                        | â                                                                                    | 0                                                            |
| Input total head (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                   | 0                                                                                                                   | 0                                                                                                                 | 0                                                                                                        | 0                                                                                    | 0                                                            |
| Input number of pumps operating<br>Input operating time for each pump (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                   | 0                                                                                                                   | 0                                                                                                                 | 0                                                                                                        | 0                                                                                    | 0                                                            |
| Pump efficiency times motor efficiency (default already present, user override possible)<br>Input specific gravity (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.51                                                                                                                                                                                | 0.51                                                                                                                | 0.51                                                                                                              | 0.51                                                                                                     | 0.51                                                                                 | 0.51                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                   | 1                                                                                                                   | 1                                                                                                                 | I                                                                                                        | 1                                                                                    | · ·                                                          |
| Method 3 - NAME PLATE SPECIFICATIONS ARE KNOWN<br>Input pump horsepower (hp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                   | 0                                                                                                                   | 0                                                                                                                 | 0                                                                                                        | 0                                                                                    | 0                                                            |
| Input number of pumps operating<br>Input operating time for each pump (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                   | 0                                                                                                                   | 0                                                                                                                 | 0                                                                                                        | 0                                                                                    | 0                                                            |
| Input pump load (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.85                                                                                                                                                                                | 0.85                                                                                                                | 0.85                                                                                                              | 0.85                                                                                                     | 0.85                                                                                 | 0.85                                                         |
| Input pump motor efficiency (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.85                                                                                                                                                                                | 0.85                                                                                                                | 0.85                                                                                                              | 0.85                                                                                                     | 0.85                                                                                 | 0.85                                                         |
| Region<br>Electricity Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RFCE                                                                                                                                                                                | RFCE                                                                                                                | RFCE                                                                                                              | RFCE                                                                                                     | RFCE                                                                                 | RFCE                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                     |                                                                                                                     |                                                                                                                   |                                                                                                          |                                                                                      |                                                              |
| DIESEL AND GASOLINE PUMPS<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pump 1<br>Gasoline                                                                                                                                                                  | Pump 2<br>Gasoline                                                                                                  | Pump 3<br>Gasoline                                                                                                | Pump 4<br>Gasoline                                                                                       | Pump 5<br>Gasoline                                                                   | Pump 6<br>Gasoline                                           |
| Choose horsepower range from drop down menu<br>Equipment operating hours (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-Stroke: 0 to 1                                                                                                                                                                    | 2-Stroke: 0 to 1                                                                                                    | 2-Stroke: 0 to 1                                                                                                  | 2-Stroke: 0 to 1                                                                                         | 2-Stroke: 0 to 1                                                                     | 2-Stroke: 0 to 1                                             |
| Input estimated fuel consumption rate (gal/hr) (Input only if known for the pump selected,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                     | <u> </u>                                                                                                            |                                                                                                                   |                                                                                                          | <u> </u>                                                                             |                                                              |
| otherwise a default will be used by the tool)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                     | 1                                                                                                                   |                                                                                                                   |                                                                                                          | 1                                                                                    |                                                              |
| For each type of equipment, select only one of the methods to calculate energy and GHG emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ons                                                                                                                                                                                 |                                                                                                                     |                                                                                                                   |                                                                                                          |                                                                                      |                                                              |
| Enter "0" for all user input values for unused equipment columns or unused methods<br>BLOWER, COMPRESSOR, MIXER, AND OTHER EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Equipment 1                                                                                                                                                                         | Equipment 2                                                                                                         | Equipment 3                                                                                                       | Equipment 4                                                                                              | Equipment 5                                                                          | Equipment 6                                                  |
| Choose type of equipment from drop down<br>Choose method from drop down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Blower<br>Method 1                                                                                                                                                                  | Blower<br>Method 1                                                                                                  | Blower<br>Method 1                                                                                                | Blower<br>Method 1                                                                                       | Blower<br>Method 1                                                                   | Blower<br>Method 1                                           |
| Method 1 - NAME PLATE SPECIFICATIONS ARE KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                     |                                                                                                                     |                                                                                                                   |                                                                                                          |                                                                                      |                                                              |
| Input equipment horsepower (hp) Input number of equipments operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                   | 0                                                                                                                   | 0                                                                                                                 | 0                                                                                                        | 0                                                                                    | 0                                                            |
| Input operating time for each equipment (hrs)<br>Input equipment load (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.85                                                                                                                                                                                | 0<br>0.85                                                                                                           | 0<br>0.85                                                                                                         | 0 0.85                                                                                                   | 0<br>0.85                                                                            | 0<br>0.85                                                    |
| Input motor efficiency (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.85                                                                                                                                                                                | 0.85                                                                                                                | 0.85                                                                                                              | 0.85                                                                                                     | 0.85                                                                                 | 0.85                                                         |
| Method 2 - ELECTRICAL USAGE IS KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                     |                                                                                                                     |                                                                                                                   |                                                                                                          |                                                                                      |                                                              |
| Input equipment electrical usage, if known (kWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                   | 0                                                                                                                   | 0                                                                                                                 | 0                                                                                                        | 0                                                                                    | 0                                                            |
| Region<br>Electricity Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RFCE                                                                                                                                                                                | RFCE                                                                                                                | RFCE                                                                                                              | RFCE                                                                                                     | RFCE                                                                                 | RFCE                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                     |                                                                                                                     |                                                                                                                   |                                                                                                          |                                                                                      |                                                              |
| GENERATORS<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Generator 1<br>Gasoline                                                                                                                                                             | Generator 2<br>Gasoline                                                                                             | Generator 3<br>Gasoline                                                                                           | Generator 4<br>Gasoline                                                                                  | Generator 5<br>Gasoline                                                              | Generator 6<br>Gasoline                                      |
| Choose horsepower range from drop down menu<br>Input operating hours (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 to 1                                                                                                                                                                              | 0 to 1                                                                                                              | 0 to 1                                                                                                            | 0 to 1                                                                                                   | 0 to 1                                                                               | 0 to 1                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tillage Tractor 1                                                                                                                                                                   | Tillere Treater 2                                                                                                   | Tillere Treates 2                                                                                                 | Tillage Tractor 4                                                                                        | Tillens Treates 5                                                                    | Tillage Tractor 6                                            |
| AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gasoline                                                                                                                                                                            | Tillage Tractor 2<br>Gasoline                                                                                       | Tillage Tractor 3<br>Gasoline                                                                                     | Gasoline                                                                                                 | Tillage Tractor 5<br>Gasoline                                                        | Gasoline                                                     |
| Input area to till (acre)<br>Choose soil condition from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Firm untilled soil                                                                                                                                                                  | Firm untilled soil                                                                                                  | Firm untilled soil                                                                                                | Firm untilled soil                                                                                       | Firm untilled soil                                                                   | Firm untilled soil                                           |
| Choose soil type from drop down menu<br>Input time available (work days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Clay Soil                                                                                                                                                                           | Clay Soil                                                                                                           | Clay Soil                                                                                                         | Clay Soil                                                                                                | Clay Soil                                                                            | Clay Soil                                                    |
| Input depth of tillage (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                     |                                                                                                                     |                                                                                                                   |                                                                                                          |                                                                                      |                                                              |
| CAPPING EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Equipment 1                                                                                                                                                                         | Equipment 2                                                                                                         | Equipment 3                                                                                                       | Equipment 4                                                                                              | Equipment 5                                                                          | Equipment 6                                                  |
| Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Roller<br>Gasoline                                                                                                                                                                  | Roller<br>Gasoline                                                                                                  | Roller<br>Gasoline                                                                                                | Roller<br>Gasoline                                                                                       | Roller<br>Gasoline                                                                   | Roller<br>Gasoline                                           |
| Input area (ft2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gasoline                                                                                                                                                                            | Gasoline                                                                                                            | Gasoline                                                                                                          | Gasoline                                                                                                 | Gasoline                                                                             | Gasoline                                                     |
| Input time available (work days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                     |                                                                                                                     |                                                                                                                   |                                                                                                          |                                                                                      |                                                              |
| MIXING EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mixer 1<br>Gasoline                                                                                                                                                                 | Mixer 2                                                                                                             | Mixer 3<br>Gasoline                                                                                               | Mixer 4<br>Gasoline                                                                                      | Mixer 5<br>Gasoline                                                                  | Mixer 6<br>Gasoline                                          |
| Chappe fuel time from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                     |                                                                                                                     |                                                                                                                   |                                                                                                          | 1 to 3                                                                               | 1 to 3                                                       |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 to 3                                                                                                                                                                              | Gasoline<br>1 to 3                                                                                                  | 1 to 3                                                                                                            | 1 to 3                                                                                                   |                                                                                      |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                     |                                                                                                                     |                                                                                                                   | 1 to 3                                                                                                   |                                                                                      |                                                              |
| Choose horsepower range from drop down menu<br>Input volume (yd3)<br>Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                     |                                                                                                                     |                                                                                                                   | 1 to 3                                                                                                   |                                                                                      |                                                              |
| Choose horsepower range from drop down menu<br>Input volume (yd3)<br>Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 to 3                                                                                                                                                                              | 1 to 3                                                                                                              | 1 to 3                                                                                                            |                                                                                                          |                                                                                      |                                                              |
| Choose horsepower range from drop down menu Input volume (yd3) Input production rate (yd3/hr) Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool) INTERNAL COMBUSTION ENGINES Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                   | 1 to 3                                                                                                                                                                              | 1 to 3<br>Engine 2<br>Diesel                                                                                        | 1 to 3<br>Engine 3<br>Diesel                                                                                      | Engine 4<br>Diesel                                                                                       | Engine 5<br>Diesel                                                                   | Engine 6<br>Diesel                                           |
| Choose horsepower range from drop down menu<br>Input volume (yd3)<br>Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input fuel consumption rate (gal/hr or scf/hr)                                                                                                                                                                                                                                                                                               | 1 to 3<br>Engine 1<br>Diesel<br>25                                                                                                                                                  | 1 to 3<br>Engine 2<br>Diesel<br>25                                                                                  | 1 to 3<br>Engine 3<br>Diesel<br>85                                                                                | Engine 4<br>Diesel<br>25                                                                                 | Diesel<br>25                                                                         |                                                              |
| Choose horsepower range from drop down menu Input volume (yd3) Input production rate (yd3/hr) Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool) INTERNAL COMBUSTION ENGINES Choose fuel type from drop down menu Input fuel consumption rate (gal/hr or scf/hr) Input fuel consumption rate (gal/hr or scf/hr) Input operating hours (hr)                                                                                                                                                                                                                                          | 1 to 3 Engine 1 Diesel 25 596                                                                                                                                                       | 1 to 3<br>Engine 2<br>Diesel<br>25<br>814                                                                           | 1 to 3                                                                                                            | Engine 4<br>Diesel<br>25<br>166                                                                          | Diesel<br>25<br>80                                                                   | Diesel                                                       |
| Choose horsepower range from drop down menu<br>Input volume (yd3)<br>Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input fuel consumption rate (gal/hr or sc/hr)                                                                                                                                                                                                                                                                                                | 1 to 3<br>Engine 1<br>Diesel<br>25                                                                                                                                                  | 1 to 3<br>Engine 2<br>Diesel<br>25                                                                                  | 1 to 3<br>Engine 3<br>Diesel<br>85                                                                                | Engine 4<br>Diesel<br>25                                                                                 | Diesel<br>25                                                                         |                                                              |
| Choose horsepower range from drop down menu Input volume (yd3) Input production rate (yd3/hr) Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool) INTERNAL COMBUSTION ENGINES Choose fuel type from drop down menu Input fuel consumption rate (gal/hr or scf/hr) Input operating hours (hr) OTHER FUELED EQUIPMENT                                                                                                                                                                                                                                                                  | 1 to 3 Engine 1 Diesel 25 596 Fuel 1                                                                                                                                                | 1 to 3 Engine 2 Diesel 25 814 Fuel 2                                                                                | 1 to 3<br>Engine 3<br>Diesel<br>85<br>38<br>Fuel 3                                                                | Engine 4<br>Diesel<br>25<br>166<br>Fuel 4                                                                | Diesel<br>25<br>80<br>Fuel 5                                                         | Diesel<br>Fuel 6                                             |
| Choose horsepower range from drop down menu Input volume (yd3) Input production rate (yd3/hr) Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool) INTERNAL COMBUSTION ENGINES Choose fuel type from drop down menu Input fuel consumption rate (gal/hr or scf/hr) Input operating hours (hr) OTHER FUELED EQUIPMENT Choose fuel type from drop down menu Input volume (scf for Natural gas, gallons for all others) OPERATOR LABOR                                                                                                                                                   | 1 to 3<br>Engine 1<br>Diesel<br>25<br>596<br>Fuel 1<br>Natural gas                                                                                                                  | 1 to 3<br>Engine 2<br>Diesel<br>25<br>814<br>Fuel 2<br>Natural gas<br>Occupation 2                                  | 1 to 3<br>Engine 3<br>Diesel<br>85<br>38<br>Fuel 3<br>Natural gas<br>Occupation 3                                 | Engine 4<br>Diesel<br>25<br>166<br>Fuel 4<br>Natural gas<br>Occupation 4                                 | Diesel<br>25<br>80<br>Fuel 5<br>Natural gas<br>Occupation 5                          | Diesel<br>Fuel 6<br>Natural gas<br>Occupation 6              |
| Choose horsepower range from drop down menu Input volume (yd3) Input production rate (yd3/hr) Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool) INTERNAL COMBUSTION ENGINES Choose fuel type from drop down menu Input fuel consumption rate (gal/hr or scf/hr) Input operating hours (hr) OTHER FUELED EQUIPMENT Choose fuel type from drop down menu Input volume (scf for Natural gas, gallons for all others)                                                                                                                                                                  | 1 to 3 Engine 1 Diesel 25 596 Fuel 1 Natural gas                                                                                                                                    | 1 to 3 Engine 2 Diesel 25 814 Fuel 2 Natural gas                                                                    | 1 to 3<br>Engine 3<br>Diesel<br>85<br>38<br>Fuel 3<br>Natural gas                                                 | Engine 4<br>Diesel<br>25<br>166<br>Fuel 4<br>Natural gas                                                 | Diesel<br>25<br>80<br>Fuel 5<br>Natural gas                                          | Diesel<br>Fuel 6<br>Natural gas                              |
| Choose horsepower range from drop down menu Input volume (yd3) Input production rate (yd3/hr) Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool) INTERNAL COMBUSTION ENGINES Choose fuel type from drop down menu Input fuel consumption rate (gal/hr or scf/hr) Input operating hours (hr) OTHER FUELED EQUIPMENT Choose fuel type from drop down menu Input volume (scf for Natural gas, gallons for all others) OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours)                                                                      | 1 to 3         Engine 1         Diesel         25         596         Fuel 1         Natural gas         Occupation 1         Construction laborers         4768                    | 1 to 3<br>Engine 2<br>Diesel<br>25<br>814<br>Fuel 2<br>Natural gas<br>Occupation 2<br>Construction laborers<br>3256 | 1 to 3<br>Engine 3<br>Diesel<br>85<br>38<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers<br>152 | Engine 4<br>Diesel<br>25<br>166<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers<br>664 | Diesel<br>25<br>80<br>Fuel 5<br>Natural gas<br>Occupation 5<br>Construction laborers | Diesel Fuel 6 Natural gas Occupation 6 Construction laborers |
| Choose horsepower range from drop down menu Input volume (yd3) Input production rate (yd3/hr) Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool) INTERNAL COMBUSTION ENGINES Choose fuel type from drop down menu Input fuel consumption rate (gal/hr or scf/hr) Input operating hours (hr) OTHER FUELED EQUIPMENT Choose fuel type from drop down menu Input volume (scf for Natural gas, gallons for all others) OPERATOR LABOR Choose occupation from drop-down menu Choose occupation from drop-down menu                                                                       | 1 to 3<br>Engine 1<br>Diesel<br>25<br>596<br>Fuel 1<br>Natural gas<br>Occupation 1<br>Construction laborers                                                                         | 1 to 3<br>Engine 2<br>Diesel<br>25<br>814<br>Fuel 2<br>Natural gas<br>Occupation 2<br>Construction laborers         | 1 to 3<br>Engine 3<br>Diesel<br>85<br>38<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers        | Engine 4<br>Diesel<br>25<br>166<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers        | Diesel<br>25<br>80<br>Fuel 5<br>Natural gas<br>Occupation 5                          | Diesel<br>Fuel 6<br>Natural gas<br>Occupation 6              |
| Choose horsepower range from drop down menu Input volume (yd3) Input production rate (yd3/hr) Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool) INTERNAL COMBUSTION ENGINES Choose fuel type from drop down menu Input fuel consumption rate (gal/hr or sc/fhr) Input operating hours (hr) OTHER FUELED EQUIPMENT Choose fuel type from drop down menu Input volume (scf for Natural gas, gallons for all others) OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS                                                  | 1 to 3         Engine 1         Diesel         25         596         Fuel 1         Natural gas         Occupation 1         Construction laborers         4768                    | 1 to 3<br>Engine 2<br>Diesel<br>25<br>814<br>Fuel 2<br>Natural gas<br>Occupation 2<br>Construction laborers<br>3256 | 1 to 3<br>Engine 3<br>Diesel<br>85<br>38<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers<br>152 | Engine 4<br>Diesel<br>25<br>166<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers<br>664 | Diesel<br>25<br>80<br>Fuel 5<br>Natural gas<br>Occupation 5<br>Construction laborers | Diesel Fuel 6 Natural gas Occupation 6 Construction laborers |
| Choose horsepower range from drop down menu Input volume (yd3) Input production rate (yd3/hr) Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool) INTERNAL COMBUSTION ENGINES Choose fuel type from drop down menu Input fuel consumption rate (gal/hr) or scf/hr) Input operating hours (hr) OTHER FUELED EQUIPMENT Choose fuel type from drop down menu Input volume (scf for Natural gas, gallons for all others) OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) | 1 to 3         Engine 1         Diesel         25         596         Fuel 1         Natural gas         Occupation 1         Construction laborers         4768         Analysis 1 | 1 to 3<br>Engine 2<br>Diesel<br>25<br>814<br>Fuel 2<br>Natural gas<br>Occupation 2<br>Construction laborers<br>3256 | 1 to 3<br>Engine 3<br>Diesel<br>85<br>38<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers<br>152 | Engine 4<br>Diesel<br>25<br>166<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers<br>664 | Diesel<br>25<br>80<br>Fuel 5<br>Natural gas<br>Occupation 5<br>Construction laborers | Diesel Fuel 6 Natural gas Occupation 6 Construction laborers |

| Input N2O emission (metric ton CO2 e) |  |
|---------------------------------------|--|
| Input CH4 emission (metric ton CO2 e) |  |
| Input NOx emission (metric ton)       |  |
| Input SOx emission (metric ton)       |  |
| Input PM10 emission (metric ton)      |  |
| Input fatality risk                   |  |
| Input injury risk                     |  |

| RESIDUE DISPOSAL/RECYCLING                                                        | Soil Residue               | Residual Water             | Material Residue           | Other Residuals            | Other Residuals            | Other Residuals            |
|-----------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?  | No                         | No                         | No                         | No                         | No                         | No                         |
| Input weight of the waste transported to<br>landfill or recycling per trip (tons) | 25                         |                            |                            |                            |                            |                            |
| Choose fuel used from drop down menu                                              | Diesel                     | Gasoline                   | Gasoline                   | Gasoline                   | Gasoline                   | Gasoline                   |
| Input total number of trips                                                       | 3260                       |                            |                            |                            |                            |                            |
| Input number of miles per trip                                                    | 250                        |                            |                            |                            |                            |                            |
|                                                                                   |                            |                            |                            |                            |                            |                            |
| ANDFILL OPERATIONS                                                                | Operation 1                | Operation 2                | Operation 3                | Operation 4                | Operation 5                | Operation 6                |
| Choose landfill type for waste disposal                                           | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              |
| Input amount of waste disposed in landfill (tons)                                 | 73174                      |                            |                            |                            |                            |                            |
| Input landfill methane emissions (metric tons CH4)                                |                            |                            |                            |                            |                            |                            |
|                                                                                   |                            |                            |                            |                            |                            |                            |
| HERMAL/CATALYTIC OXIDIZERS*                                                       | Oxidizer 1                 | Oxidizer 2                 | Oxidizer 3                 | Oxidizer 4                 | Oxidizer 5                 | Oxidizer 6                 |
| Choose oxidizer type from drop down menu                                          | Simple Thermal<br>Oxidizer |
| Choose fuel type from drop down menu                                              | Natural gas                |
| Input waste gas flow rate (scfm)                                                  |                            |                            |                            |                            |                            |                            |
| Input time running (hours)                                                        |                            |                            |                            |                            |                            |                            |
| Input waste gas inlet temperature (F)                                             |                            |                            |                            |                            |                            |                            |
|                                                                                   |                            |                            |                            |                            |                            |                            |

| WATER CONSUMPTION                                                      | Treatment System 1 | Treatment System 2 | Treatment System 3 | Treatment System 4 | Treatment System 5 | Treatment System 6 |
|------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Input total water consumed from potable water treatment facility (gal) |                    |                    |                    |                    |                    |                    |
| Input total water disposed to wastewater treatment facility (gal)      | 2956000            |                    |                    |                    |                    |                    |
|                                                                        |                    |                    |                    |                    |                    |                    |
| ONSITE LAND AND WATER RESOURCE CONSUMPTION                             | Entire Site 1      | Entire Site 2      | Entire Site 3      | Entire Site 4      | Entire Site 5      | Entire Site 6      |
| Input volume of topsoil brought to site (cubic yards)                  |                    |                    |                    |                    |                    |                    |
| Input volume of groundwater or surface water lost (gal)                |                    |                    |                    |                    |                    |                    |

#### BASELINE INFORMATION

| LONGTERM MONITORING COST AND DURATION             | Entire Site |
|---------------------------------------------------|-------------|
| Input total longterm monitoring cost (\$)         | 1,056,347   |
| Input duration of longterm monitoring (unit time) | 1.0         |

# MATERIAL PRODUCTION

| VELL MATERIALS                                                    | Well Type 1       | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6      |
|-------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|
| Input number of wells                                             |                   |                   |                   |                   |                   |                  |
| Input depth of wells (ft)                                         |                   |                   |                   |                   |                   |                  |
| Choose specific material schedule from drop down menu             | Sch 40 PVC        | Sch 40 PVC       |
| Choose well diameter (in) from drop down menu                     | 1/8               | 1/8               | 1/8               | 1/8               | 1/8               | 1/8              |
|                                                                   |                   |                   |                   |                   |                   |                  |
| REATMENT CHEMICALS & MATERIALS                                    | Treatment 1       | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6      |
| Input number of injection points                                  |                   |                   |                   |                   |                   |                  |
| Choose material type from drop down menu                          | Hydrogen Peroxide | Hydrogen Peroxid |
| Input amount of material injected at each point (pounds dry mass) |                   |                   |                   |                   |                   |                  |
| Input number of injections per injection point                    |                   |                   |                   |                   |                   |                  |
|                                                                   |                   |                   |                   |                   |                   |                  |
| REATMENT MEDIA                                                    | Treatment 1       | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6      |
| Input weight of media used (lbs)                                  |                   |                   |                   |                   |                   |                  |
| Choose media type from drop down menu                             | Virgin GAC        | Virgin GAC       |
|                                                                   |                   |                   |                   |                   |                   |                  |
| CONSTRUCTION MATERIALS                                            | Material 1        | Material 2        | Material 3        | Material 4        | Material 5        | Material 6       |
| Choose material type from drop down menu                          | HDPE Liner        | HDPE Liner       |
| Input area of material (ft2)                                      |                   |                   |                   |                   |                   |                  |
| Input depth of material (ft)                                      |                   |                   |                   |                   |                   |                  |
|                                                                   |                   |                   |                   |                   |                   |                  |
| /ELL DECOMMISSIONING                                              | Well Type 1       | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6      |
| Input number of wells                                             |                   |                   |                   |                   |                   |                  |
| Input depth of wells (ft)                                         |                   |                   |                   |                   |                   |                  |
| Input well diameter (in)                                          |                   |                   |                   |                   |                   |                  |
| Choose material from drop down menu                               | Soil              | Soil              | Soil              | Soil              | Soil              | Soil             |
|                                                                   |                   |                   |                   |                   |                   |                  |
| ULK MATERIAL QUANTITIES                                           | Material 1        | Material 2        | Material 3        | Material 4        | Material 5        | Material 6       |
| Choose material from drop down menu                               | Acetic Acid       | Acetic Acid      |
| Choose units of material quantity from drop down menu             | pounds            | pounds            | pounds            | pounds            | pounds            | pounds           |
| Input material guantity                                           |                   |                   |                   |                   |                   |                  |

#### TRANSPORTATION

| PERSONNEL TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
|------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose vehicle type from drop down menu*                                                       | Cars           | Cars           | Cars           | Cars           | Cars           | Cars           |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input distance traveled per trip (miles)                                                       |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input estimated vehicular fuel economy (mi/gal) (Input only if known for the vehicle selected, |                |                |                |                |                |                |
| otherwise a default will be used by the tool)                                                  |                |                |                |                |                |                |
| *For vehicle type 'Other' please enter values in Table 2b in the Look Up Table tab.            |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - AIR                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input number of flights taken                                                                  |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - RAIL                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Choose vehicle type from drop down menu                                                        | Intercity rail |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input total distance traveled (miles) with a given load. Add return trip(s) with no load in a  |                |                |                |                |                |                |
| separate column if applicable.                                                                 |                |                |                |                |                |                |
| Input weight of equipment transported per truck load (tons)                                    |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - AIR                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input weight of equipment transported (tons)                                                   |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - RAIL                                                                | Tain 4         | Trin 0         | Trin 0         | Trin 4         | Tain C         | Trin C         |
| EQUIPMENT TRANSPORTATION - RAIL<br>Input distance traveled (miles)                             | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles) Input weight of load (tons)                                    |                |                |                |                |                | <u> </u>       |
| input weight or load (tons)                                                                    |                | I              | I              |                | I              | ·              |
| EQUIPMENT TRANSPORTATION - WATER                                                               | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (mile)                                                                 | i ip i         | 1110 2         | inh 2          | 1110 4         | 1105           | 1110.0         |
| Input distance raveled (mile)                                                                  |                |                |                |                |                | <u> </u>       |
| input weight of load (tons)                                                                    |                | 1              | 1              |                | 1              | ·              |

| EARTHWORK                                                                         | Equipment 1 | Equipment 2 | Equipment 3 | Equipment 4 | Equipment 5 | Equipment 6 |
|-----------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Choose earthwork equipment type from drop down menu                               | Dozer       | Dozer       | Dozer       | Dozer       | Dozer       | Dozer       |
| Choose fuel type from drop down menu                                              | Diesel      | Diesel      | Diesel      | Diesel      | Diesel      | Diesel      |
| Input volume of material to be removed (yd3)                                      |             |             |             |             |             |             |
| Will DIESEL-run equipment be retrofitted with a particulate reduction technology? | No          | No          | No          | No          | No          | No          |
|                                                                                   |             |             |             |             |             |             |
| DRILLING                                                                          | Event 1     | Event 2     | Event 3     | Event 4     | Event 5     | Event 6     |
|                                                                                   |             |             |             |             |             |             |
| Input number of drilling locations                                                |             |             |             |             |             |             |
| Input number of drilling locations<br>Choose drilling method from drop down menu  | Direct Push |
|                                                                                   | Direct Push |

| TRENCHING<br>Choose fuel type from drop down menu                                                                                                                          | Trencher 1<br>Gasoline       | Trencher 2<br>Gasoline       | Trencher 3<br>Gasoline       | Trencher 4<br>Gasoline       | Trencher 5<br>Gasoline       | Trencher 6<br>Gasoline       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Choose horsepower range from drop down menu                                                                                                                                | 1 to 3                       |
| Input operating hours (hr)                                                                                                                                                 |                              |                              |                              |                              |                              |                              |
| For each pump, select only one of the three methods to calculate energy and GHG emissions<br>Enter "0" for all user input values for unused pump columns or unused methods |                              |                              |                              |                              |                              |                              |
| PUMP OPERATION                                                                                                                                                             | Pump 1                       | Pump 2                       | Pump 3                       | Pump 4                       | Pump 5                       | Pump 6                       |
| Choose method from drop down<br>Method 1 - ELECTRICAL USAGE IS KNOWN                                                                                                       | Method 1                     |
| Input pump electrical usage (KWh)                                                                                                                                          | 0                            | 0                            | 0                            | 0                            | 0                            | 0                            |
| Method 2 - PUMP HEAD IS KNOWN                                                                                                                                              |                              |                              |                              |                              |                              |                              |
| Input flow rate (gpm)                                                                                                                                                      | 0                            | 0                            | 0                            | 0                            | 0                            | 0                            |
| Input total head (ft)<br>Input number of pumps operating                                                                                                                   | 0                            | 0                            | 0                            | 0                            | 0                            | 0                            |
| Input operating time for each pump (hrs)                                                                                                                                   | 0.51                         | 0<br>0.51                    | 0<br>0.51                    | 0<br>0.51                    | 0<br>0.51                    | 0<br>0.51                    |
| Pump efficiency times motor efficiency (default already present, user override possible)<br>Input specific gravity (default already present, user override possible)       | 1                            | 1                            | 1                            | 1                            | 1                            | 1                            |
| Method 3 - NAME PLATE SPECIFICATIONS ARE KNOWN                                                                                                                             |                              |                              |                              |                              |                              |                              |
| Input pump horsepower (hp)                                                                                                                                                 | 0                            | 0                            | 0                            | 0                            | 0                            | 0                            |
| Input number of pumps operating<br>Input operating time for each pump (hrs)                                                                                                | 0                            | 0                            | 0                            | 0                            | 0                            | 0                            |
| Input pump load (default already present, user override possible)                                                                                                          | 0.85                         | 0.85                         | 0.85                         | 0.85                         | 0.85                         | 0.85                         |
| Input pump motor efficiency (default already present, user override possible)                                                                                              | 0.85                         | 0.85                         | 0.85                         | 0.85                         | 0.85                         | 0.85                         |
| Region                                                                                                                                                                     | 2505                         | 22.05                        |                              | 2505                         | 2505                         | 2505                         |
| Electricity Region                                                                                                                                                         | RFCE                         | RFCE                         | RFCE                         | RFCE                         | RFCE                         | RFCE                         |
| DIESEL AND GASOLINE PUMPS                                                                                                                                                  | Pump 1                       | Pump 2                       | Pump 3                       | Pump 4                       | Pump 5                       | Pump 6                       |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                        | Gasoline<br>2-Stroke: 0 to 1 |
| Equipment operating hours (hrs)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the pump selected,                                              |                              |                              |                              |                              |                              |                              |
| input estimated rule consumption rate (gai/nr) (input only if known for the pump selected,<br>otherwise a default will be used by the tool)                                |                              |                              |                              |                              |                              |                              |
| For each type of equipment, select only one of the methods to calculate energy and GHG emissions                                                                           |                              |                              |                              |                              |                              |                              |
| Enter "0" for all user input values for unused equipment columns or unused methods                                                                                         | _                            |                              |                              |                              |                              |                              |
| BLOWER, COMPRESSOR, MIXER, AND OTHER EQUIPMENT<br>Choose type of equipment from drop down                                                                                  | Equipment 1<br>Blower        | Equipment 2<br>Blower        | Equipment 3<br>Blower        | Equipment 4<br>Blower        | Equipment 5<br>Blower        | Equipment 6<br>Blower        |
| Choose method from drop down                                                                                                                                               | Method 1                     |
| Method 1 - NAME PLATE SPECIFICATIONS ARE KNOWN<br>Input equipment horsepower (hp)                                                                                          | 0                            | 0                            | 0                            | 0                            | 0                            | 0                            |
| Input number of equipments operating                                                                                                                                       | 0                            | 0                            | 0                            | 0                            | 0                            | 0                            |
| Input operating time for each equipment (hrs)<br>Input equipment load (default already present, user override possible)                                                    | 0.85                         | 0<br>0.85                    | 0<br>0.85                    | 0<br>0.85                    | 0<br>0.85                    | 0<br>0.85                    |
| Input motor efficiency (default already present, user override possible)                                                                                                   | 0.85                         | 0.85                         | 0.85                         | 0.85                         | 0.85                         | 0.85                         |
| Method 2 - ELECTRICAL USAGE IS KNOWN                                                                                                                                       |                              |                              |                              |                              |                              |                              |
| Input equipment electrical usage, if known (kWh)                                                                                                                           | 0                            | 0                            | 0                            | 0                            | 0                            | 0                            |
| Region                                                                                                                                                                     | 2545                         |                              |                              |                              | 2505                         |                              |
| Electricity Region                                                                                                                                                         | RFCE                         | RFCE                         | RFCE                         | RFCE                         | RFCE                         | RFCE                         |
| GENERATORS<br>Choose fuel type from drop down menu                                                                                                                         | Generator 1<br>Gasoline      | Generator 2<br>Gasoline      | Generator 3<br>Gasoline      | Generator 4<br>Gasoline      | Generator 5<br>Gasoline      | Generator 6<br>Gasoline      |
| Choose horsepower range from drop down menu                                                                                                                                | 0 to 1                       |
| Input operating hours (hr)                                                                                                                                                 |                              |                              |                              |                              |                              |                              |
| AGRICULTURAL EQUIPMENT                                                                                                                                                     | Tillage Tractor 1            | Tillage Tractor 2            | Tillage Tractor 3            | Tillage Tractor 4            | Tillage Tractor 5            | Tillage Tractor 6            |
| Choose fuel type from drop down menu<br>Input area to till (acre)                                                                                                          | Gasoline                     | Gasoline                     | Gasoline                     | Gasoline                     | Gasoline                     | Gasoline                     |
| Choose soil condition from drop down menu<br>Choose soil type from drop down menu                                                                                          | Firm untilled soil           |
| Input time available (work days)                                                                                                                                           | Clay Soil                    |
| Input depth of tillage (in)                                                                                                                                                |                              |                              |                              |                              |                              |                              |
| CAPPING EQUIPMENT                                                                                                                                                          | Equipment 1                  | Equipment 2                  | Equipment 3                  | Equipment 4                  | Equipment 5                  | Equipment 6                  |
| Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu                                                                            | Roller<br>Gasoline           | Roller<br>Gasoline           | Roller<br>Gasoline           | Roller<br>Gasoline           | Roller<br>Gasoline           | Roller<br>Gasoline           |
| Input area (ft2)                                                                                                                                                           | Gasoline                     | Gasonine                     | Gasointe                     | Gasonne                      | Gasoline                     | Gasonne                      |
| Input time available (work days)                                                                                                                                           |                              |                              |                              |                              |                              |                              |
| MIXING EQUIPMENT                                                                                                                                                           | Mixer 1                      | Mixer 2                      | Mixer 3                      | Mixer 4                      | Mixer 5                      | Mixer 6                      |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                        | Gasoline<br>1 to 3           |
| Input volume (yd3)                                                                                                                                                         |                              |                              |                              |                              |                              |                              |
| Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,                                              |                              |                              |                              |                              |                              |                              |
| otherwise a default will be used by the tool)                                                                                                                              |                              | l                            | l                            |                              |                              | l                            |
| INTERNAL COMBUSTION ENGINES                                                                                                                                                | Engine 1                     | Engine 2                     | Engine 3                     | Engine 4                     | Engine 5                     | Engine 6                     |
| Choose fuel type from drop down menu                                                                                                                                       | Diesel                       | Diesel                       | Diesel                       | Diesel                       | Diesel                       | Diesel                       |
| Input fuel consumption rate (gal/hr or scf/hr)<br>Input operating hours (hr)                                                                                               | 5<br>72                      |                              |                              |                              | <u> </u>                     |                              |
| OTHER FUELED EQUIPMENT                                                                                                                                                     | Fuel 1                       | Fuel 2                       | Fuel 3                       | Fuel 4                       | Fuel 5                       | Fuel 6                       |
| Choose fuel type from drop down menu                                                                                                                                       | Fuel 1<br>Natural gas        | Natural gas                  | Natural gas                  | Natural gas                  | Natural gas                  | Natural gas                  |
| Input volume (scf for Natural gas, gallons for all others)                                                                                                                 |                              |                              |                              |                              | I                            |                              |
| OPERATOR LABOR                                                                                                                                                             | Occupation 1                 | Occupation 2                 | Occupation 3                 | Occupation 4                 | Occupation 5                 | Occupation 6                 |
| Choose occupation from drop-down menu<br>Input total time worked onsite (hours)                                                                                            | Construction laborers<br>216 | Construction laborers        |
|                                                                                                                                                                            |                              | I                            |                              |                              | ı                            | I                            |
| LABORATORY ANALYSIS                                                                                                                                                        | Analysis 1                   | Analysis 2                   | Analysis 3                   | Analysis 4                   | Analysis 5                   | Analysis 6                   |
| Input dollars spent on laboratory analysis (\$)                                                                                                                            |                              |                              |                              |                              |                              |                              |
|                                                                                                                                                                            |                              |                              |                              |                              |                              |                              |
| OTHER KNOWN ONSITE ACTIVITIES                                                                                                                                              | Entire Site                  |                              |                              |                              |                              |                              |
|                                                                                                                                                                            | Entire Site                  |                              |                              |                              |                              |                              |

| Input N2O emission (metric ton CO2 e) |  |
|---------------------------------------|--|
| Input CH4 emission (metric ton CO2 e) |  |
| Input NOx emission (metric ton)       |  |
| Input SOx emission (metric ton)       |  |
| Input PM10 emission (metric ton)      |  |
| Input fatality risk                   |  |
| Input injury risk                     |  |

| ESIDUE DISPOSAL/RECYCLING                                                        | Soil Residue   | Residual Water | Material Residue | Other Residuals | Other Residuals | Other Residuals |
|----------------------------------------------------------------------------------|----------------|----------------|------------------|-----------------|-----------------|-----------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? | No             | No             | No               | No              | No              | No              |
| Input weight of the waste transported to                                         |                |                |                  |                 |                 |                 |
| landfill or recycling per trip (tons)                                            |                |                |                  |                 |                 |                 |
| Choose fuel used from drop down menu                                             | Gasoline       | Gasoline       | Gasoline         | Gasoline        | Gasoline        | Gasoline        |
| Input total number of trips                                                      |                |                |                  |                 |                 |                 |
| Input number of miles per trip                                                   |                |                |                  |                 |                 |                 |
|                                                                                  |                |                |                  |                 |                 |                 |
| ANDFILL OPERATIONS                                                               | Operation 1    | Operation 2    | Operation 3      | Operation 4     | Operation 5     | Operation 6     |
| Choose landfill type for waste disposal                                          | Non-Hazardous  | Non-Hazardous  | Non-Hazardous    | Non-Hazardous   | Non-Hazardous   | Non-Hazardous   |
| Input amount of waste disposed in landfill (tons)                                |                |                |                  |                 |                 |                 |
| Input landfill methane emissions (metric tons CH4)                               |                |                |                  |                 |                 |                 |
|                                                                                  |                |                |                  |                 |                 |                 |
| HERMAL/CATALYTIC OXIDIZERS*                                                      | Oxidizer 1     | Oxidizer 2     | Oxidizer 3       | Oxidizer 4      | Oxidizer 5      | Oxidizer 6      |
| Choose oxidizer type from drop down menu                                         | Simple Thermal | Simple Thermal | Simple Thermal   | Simple Thermal  | Simple Thermal  | Simple Thermal  |
|                                                                                  | Oxidizer       | Oxidizer       | Oxidizer         | Oxidizer        | Oxidizer        | Oxidizer        |
| Choose fuel type from drop down menu                                             | Natural gas    | Natural gas    | Natural gas      | Natural gas     | Natural gas     | Natural gas     |
| Input waste gas flow rate (scfm)                                                 |                |                |                  |                 |                 |                 |
| Input time running (hours)                                                       |                |                |                  |                 |                 |                 |
| Input waste gas inlet temperature (F)                                            |                |                |                  |                 |                 |                 |
| Input contaminant concentration (ppmV)                                           |                |                |                  |                 |                 |                 |
| *(Electric blowers are included in the analysis)                                 |                | •              | •                |                 | -               | -               |

| WATER CONSUMPTION                                                      | Treatment System 1 | Treatment System 2 | Treatment System 3 | Treatment System 4 | Treatment System 5 | Treatment System 6 |
|------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Input total water consumed from potable water treatment facility (gal) |                    |                    |                    |                    |                    |                    |
| Input total water disposed to wastewater treatment facility (gal)      |                    |                    |                    |                    |                    |                    |
|                                                                        |                    |                    |                    |                    |                    |                    |
| ONSITE LAND AND WATER RESOURCE CONSUMPTION                             | Entire Site 1      | Entire Site 2      | Entire Site 3      | Entire Site 4      | Entire Site 5      | Entire Site 6      |
| Input volume of topsoil brought to site (cubic yards)                  |                    |                    |                    |                    |                    |                    |
| Input volume of groundwater or surface water lost (gal)                |                    |                    |                    |                    |                    |                    |

| SITE INFORMATION                                                                      |                        |
|---------------------------------------------------------------------------------------|------------------------|
| User Name and Date                                                                    | Tetra Tech - July 2012 |
| Site Name                                                                             | Middle River Complex   |
| Remedial Alternative Name                                                             | MRC-Combined           |
| Alternative File Name (will be<br>used in graphics and as file<br>name; avoid invalid | Alt4H                  |
| characters, e.g. ? : " / \ <<br>>   * )<br>Choose electricity region                  | RFCE                   |

Do you want to reload a previously saved remedial alternative in the SiteWise input sheet? RA\_Alt4\_NoFR\_1 \\eciseafile\groups\SedMgmt -Refresh List

Yes

Reset all input values on all worksheets to default

Reset All Values on All Sheets

-= Status =-

Done Loading!









Sitewise I ool for Green and Sustainable Remediation has been developed jointly by United States (US) Navy, United States Army Corps of Engineers (USACE), and Battelle. This tool is made available on an as-is basis without guarantee or warranty of any kind, express or implied. The US Navy, USACE, Battelle, the authors, and the reviewers accept no liability resulting from the use of this tool or its documentation; nor does the above warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof. Implementation of SiteWise<sup>™</sup> tool and interpretation or use of the results provided by the tool are the sole responsibility of the user. The tool is provided free of charge for everyone to use, but is not supported in any way by the US Navy, USACE, or Battelle.

#### BASELINE INFORMATION

 REMEDIAL ACTION CONSTRUCTION COST
 Entire Site

 Input total remedial action construction cost (\$)
 17,174,621

#### MATERIAL PRODUCTION

| /ELL MATERIALS                                                    | Well Type 1                           | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6     |
|-------------------------------------------------------------------|---------------------------------------|-------------------|-------------------|-------------------|-------------------|-----------------|
| Input number of wells                                             |                                       |                   |                   |                   |                   |                 |
| Input depth of wells (ft)                                         |                                       |                   |                   |                   |                   |                 |
| Choose specific material schedule from drop down menu             | Sch 40 PVC                            | Sch 40 PVC        | Sch 40 PVC        | Sch 40 PVC        | Sch 40 PVC        | Sch 40 PVC      |
| Choose well diameter (in) from drop down menu                     | 1/8                                   | 1/8               | 1/8               | 1/8               | 1/8               | 1/8             |
|                                                                   | ·                                     |                   |                   | ·                 |                   |                 |
| REATMENT CHEMICALS & MATERIALS                                    | Treatment 1                           | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6     |
| Input number of injection points                                  |                                       |                   |                   |                   |                   |                 |
| Choose material type from drop down menu                          | Hydrogen Peroxide                     | Hydrogen Peroxide | Hydrogen Peroxide | Hydrogen Peroxide | Hydrogen Peroxide | Hydrogen Peroxi |
| Input amount of material injected at each point (pounds dry mass) |                                       |                   |                   |                   |                   |                 |
| Input number of injections per injection point                    |                                       |                   |                   |                   |                   |                 |
|                                                                   |                                       | ·                 |                   | •                 | ·                 |                 |
| REATMENT MEDIA                                                    | Treatment 1                           | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6     |
| Input weight of media used (lbs)                                  |                                       |                   |                   |                   |                   |                 |
| Choose media type from drop down menu                             | Virgin GAC                            | Virgin GAC        | Virgin GAC        | Virgin GAC        | Virgin GAC        | Virgin GAC      |
|                                                                   | · · · · · · · · · · · · · · · · · · · |                   |                   |                   |                   |                 |
| ONSTRUCTION MATERIALS                                             | Material 1                            | Material 2        | Material 3        | Material 4        | Material 5        | Material 6      |
| Choose material type from drop down menu                          | HDPE Liner                            | HDPE Liner        | HDPE Liner        | HDPE Liner        | HDPE Liner        | HDPE Liner      |
| Input area of material (ft2)                                      |                                       |                   |                   |                   |                   |                 |
| Input depth of material (ft)                                      |                                       |                   |                   |                   |                   |                 |
|                                                                   |                                       |                   |                   |                   |                   |                 |
| ELL DECOMMISSIONING                                               | Well Type 1                           | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6     |
| Input number of wells                                             |                                       |                   |                   |                   |                   |                 |
| Input depth of wells (ft)                                         |                                       |                   |                   |                   |                   |                 |
| Input well diameter (in)                                          |                                       |                   |                   |                   |                   |                 |
| Choose material from drop down menu                               | Soil                                  | Soil              | Soil              | Soil              | Soil              | Soil            |
|                                                                   |                                       |                   |                   |                   |                   |                 |
| JLK MATERIAL QUANTITIES                                           | Material 1                            | Material 2        | Material 3        | Material 4        | Material 5        | Material 6      |
| Choose material from drop down menu                               | Acetic Acid                           | Acetic Acid       | Acetic Acid       | Acetic Acid       | Acetic Acid       | Acetic Acid     |
| Choose units of material quantity from drop down menu             | pounds                                | pounds            | pounds            | pounds            | pounds            | pounds          |
| Input material quantity                                           |                                       |                   |                   |                   |                   |                 |

#### TRANSPORTATION

| PERSONNEL TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
|------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose vehicle type from drop down menu*                                                       | Cars           | Cars           | Cars           | Cars           | Cars           | Cars           |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input distance traveled per trip (miles)                                                       |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input estimated vehicular fuel economy (mi/gal) (Input only if known for the vehicle selected, |                |                |                |                |                |                |
| otherwise a default will be used by the tool)                                                  |                |                |                |                |                |                |
| *For vehicle type 'Other' please enter values in Table 2b in the Look Up Table tab.            |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - AIR                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input number of flights taken                                                                  |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - RAIL                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Choose vehicle type from drop down menu                                                        | Intercity rail |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input total distance traveled (miles) with a given load. Add return trip(s) with no load in a  |                |                |                |                |                |                |
| separate column if applicable.                                                                 |                |                |                |                |                |                |
| Input weight of equipment transported per truck load (tons)                                    |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - AIR                                                                 | Tain 4         | Trip 2         | Trin 0         | Trin 4         | Trin C         | Trip 6         |
| EQUIPMENT TRANSPORTATION - AIR<br>Input distance traveled (miles)                              | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | rip 6          |
|                                                                                                |                |                |                |                |                |                |
| Input weight of equipment transported (tons)                                                   |                |                | l              | l              |                |                |
| EQUIPMENT TRANSPORTATION - RAIL                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                | 1 qui          | inp z          | inp 3          | 11/P 4         | inh 2          | 1110           |
| Input distance daveled (miles)                                                                 |                |                |                |                |                |                |
| input weight of road (tens)                                                                    |                | 1              | 1              | 1              | 1              | 1              |
| EQUIPMENT TRANSPORTATION - WATER                                                               | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
|                                                                                                |                | 1111112        |                |                | inip 5         | inp o          |
| Input distance traveled (mile)                                                                 |                |                |                |                |                |                |

| EARTHWORK                                                                         | Equipment 1            | Equipment 2            | Equipment 3            | Equipment 4            | Equipment 5            | Equipment 6            |
|-----------------------------------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Choose earthwork equipment type from drop down menu                               | Loader/Backhoe         | Loader/Backhoe         | Dozer                  | Dozer                  | Dozer                  | Dozer                  |
| Choose fuel type from drop down menu                                              | Diesel                 | Diesel                 | Diesel                 | Diesel                 | Diesel                 | Diesel                 |
| Input volume of material to be removed (yd3)                                      | 48,783                 | 15,200                 |                        |                        |                        |                        |
| Will DIESEL-run equipment be retrofitted with a particulate reduction technology? | No                     | No                     | No                     | No                     | No                     | No                     |
|                                                                                   |                        |                        |                        |                        |                        |                        |
|                                                                                   |                        |                        |                        |                        |                        |                        |
| DRILLING                                                                          | Event 1                | Event 2                | Event 3                | Event 4                | Event 5                | Event 6                |
| DRILLING<br>Input number of drilling locations                                    | Event 1                | Event 2                | Event 3                | Event 4                | Event 5                | Event 6                |
|                                                                                   | Event 1<br>Direct Push | Event 2<br>Direct Push | Event 3<br>Direct Push | Event 4<br>Direct Push | Event 5<br>Direct Push | Event 6<br>Direct Push |
| Input number of drilling locations                                                |                        |                        |                        |                        |                        |                        |

| TRENCHING<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Trencher 1<br>Gasoline                                                                                                                                                                                                                                                                  | Trencher 2<br>Gasoline                                                                                                                                                                                                                                                         | Trencher 3<br>Gasoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trencher 4<br>Gasoline                                                                                                                                                                                                                                         | Trencher 5<br>Gasoline                                                                                                                                                                                                                                    | Trencher 6<br>Gasoline                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 to 3                                                                                                                                                                                                                                                                                  | 1 to 3                                                                                                                                                                                                                                                                         | 1 to 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 to 3                                                                                                                                                                                                                                                         | 1 to 3                                                                                                                                                                                                                                                    | 1 to 3                                                                                                                                                                                                                                     |
| Input operating hours (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                            |
| For each pump, select only one of the three methods to calculate energy and GHG emissions<br>Enter "0" for all user input values for unused pump columns or unused methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                            |
| PUMP OPERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pump 1                                                                                                                                                                                                                                                                                  | Pump 2                                                                                                                                                                                                                                                                         | Pump 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pump 4                                                                                                                                                                                                                                                         | Pump 5                                                                                                                                                                                                                                                    | Pump 6                                                                                                                                                                                                                                     |
| Choose method from drop down Method 1 - ELECTRICAL USAGE IS KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Method 1                                                                                                                                                                                                                                                                                | Method 1                                                                                                                                                                                                                                                                       | Method 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Method 1                                                                                                                                                                                                                                                       | Method 1                                                                                                                                                                                                                                                  | Method 1                                                                                                                                                                                                                                   |
| Input pump electrical usage (KWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                          |
| Method 2 - PUMP HEAD IS KNOWN<br>Input flow rate (gpm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                          |
| Input total head (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                          |
| Input number of pumps operating<br>Input operating time for each pump (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                          |
| Pump efficiency times motor efficiency (default already present, user override possible)<br>Input specific gravity (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.51                                                                                                                                                                                                                                                                                    | 0.51                                                                                                                                                                                                                                                                           | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.51                                                                                                                                                                                                                                                           | 0.51                                                                                                                                                                                                                                                      | 0.51                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · ·                                                                                                                                                                                                                                                                                     | · ·                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P                                                                                                                                                                                                                                                              | ļ                                                                                                                                                                                                                                                         | · · · ·                                                                                                                                                                                                                                    |
| Method 3 - NAME PLATE SPECIFICATIONS ARE KNOWN<br>Input pump horsepower (hp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                          |
| Input number of pumps operating<br>Input operating time for each pump (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                          |
| Input pump load (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.85                                                                                                                                                                                                                                                                                    | 0.85                                                                                                                                                                                                                                                                           | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                                                                                                                                                                           | 0.85                                                                                                                                                                                                                                                      | 0.85                                                                                                                                                                                                                                       |
| Input pump motor efficiency (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.85                                                                                                                                                                                                                                                                                    | 0.85                                                                                                                                                                                                                                                                           | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                                                                                                                                                                           | 0.85                                                                                                                                                                                                                                                      | 0.85                                                                                                                                                                                                                                       |
| Region<br>Electricity Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RFCE                                                                                                                                                                                                                                                                                    | RFCE                                                                                                                                                                                                                                                                           | RFCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RFCE                                                                                                                                                                                                                                                           | RFCE                                                                                                                                                                                                                                                      | RFCE                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                            |
| DIESEL AND GASOLINE PUMPS<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pump 1<br>Gasoline                                                                                                                                                                                                                                                                      | Pump 2<br>Gasoline                                                                                                                                                                                                                                                             | Pump 3<br>Gasoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pump 4<br>Gasoline                                                                                                                                                                                                                                             | Pump 5<br>Gasoline                                                                                                                                                                                                                                        | Pump 6<br>Gasoline                                                                                                                                                                                                                         |
| Choose horsepower range from drop down menu<br>Equipment operating hours (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Stroke: 0 to 1                                                                                                                                                                                                                                                                        | 2-Stroke: 0 to 1                                                                                                                                                                                                                                                               | 2-Stroke: 0 to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Stroke: 0 to 1                                                                                                                                                                                                                                               | 2-Stroke: 0 to 1                                                                                                                                                                                                                                          | 2-Stroke: 0 to 1                                                                                                                                                                                                                           |
| Input estimated fuel consumption rate (gal/hr) (Input only if known for the pump selected,<br>otherwise a default will be used by the tool)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                            |
| For each type of equipment, select only one of the methods to calculate energy and GHG emissions<br>Enter "0" for all user input values for unused equipment columns or unused methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                            |
| BLOWER, COMPRESSOR, MIXER, AND OTHER EQUIPMENT<br>Choose type of equipment from drop down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Equipment 1<br>Blower                                                                                                                                                                                                                                                                   | Equipment 2<br>Blower                                                                                                                                                                                                                                                          | Equipment 3<br>Blower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Equipment 4<br>Blower                                                                                                                                                                                                                                          | Equipment 5<br>Blower                                                                                                                                                                                                                                     | Equipment 6<br>Blower                                                                                                                                                                                                                      |
| Choose method from drop down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Method 1                                                                                                                                                                                                                                                                                | Method 1                                                                                                                                                                                                                                                                       | Method 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Method 1                                                                                                                                                                                                                                                       | Method 1                                                                                                                                                                                                                                                  | Method 1                                                                                                                                                                                                                                   |
| Method 1 - NAME PLATE SPECIFICATIONS ARE KNOWN<br>Input equipment horsepower (hp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                          |
| Input number of equipments operating<br>Input operating time for each equipment (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                          |
| Input equipment load (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.85                                                                                                                                                                                                                                                                                    | 0.85                                                                                                                                                                                                                                                                           | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                                                                                                                                                                           | 0.85                                                                                                                                                                                                                                                      | 0.85                                                                                                                                                                                                                                       |
| Input motor efficiency (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.85                                                                                                                                                                                                                                                                                    | 0.85                                                                                                                                                                                                                                                                           | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85                                                                                                                                                                                                                                                           | 0.85                                                                                                                                                                                                                                                      | 0.85                                                                                                                                                                                                                                       |
| Method 2 - ELECTRICAL USAGE IS KNOWN<br>Input equipment electrical usage, if known (kWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                          |
| Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                            |
| Electricity Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RFCE                                                                                                                                                                                                                                                                                    | RFCE                                                                                                                                                                                                                                                                           | RFCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RFCE                                                                                                                                                                                                                                                           | RFCE                                                                                                                                                                                                                                                      | RFCE                                                                                                                                                                                                                                       |
| GENERATORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                       | Generator 2                                                                                                                                                                                                                                                                    | Generator 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Generator 4                                                                                                                                                                                                                                                    | Companying 5                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Generator 1                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Generator 4                                                                                                                                                                                                                                                    | Generator 5                                                                                                                                                                                                                                               | Generator 6                                                                                                                                                                                                                                |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Generator 1<br>Gasoline<br>0 to 1                                                                                                                                                                                                                                                       | Gasoline<br>0 to 1                                                                                                                                                                                                                                                             | Gasoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gasoline<br>0 to 1                                                                                                                                                                                                                                             | Gasoline                                                                                                                                                                                                                                                  | Gasoline                                                                                                                                                                                                                                   |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input operating hours (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gasoline                                                                                                                                                                                                                                                                                | Gasoline                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gasoline                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                            |
| Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gasoline<br>0 to 1<br>Tillage Tractor 1                                                                                                                                                                                                                                                 | Gasoline<br>0 to 1<br>Tillage Tractor 2                                                                                                                                                                                                                                        | Gasoline<br>0 to 1<br>Tillage Tractor 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gasoline<br>0 to 1<br>Tillage Tractor 4                                                                                                                                                                                                                        | Gasoline<br>0 to 1<br>Tillage Tractor 5                                                                                                                                                                                                                   | Gasoline<br>0 to 1<br>Tillage Tractor 6                                                                                                                                                                                                    |
| Choose horsepower range from drop down menu<br>Input operating hours (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gasoline<br>0 to 1                                                                                                                                                                                                                                                                      | Gasoline<br>0 to 1                                                                                                                                                                                                                                                             | Gasoline<br>0 to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gasoline<br>0 to 1                                                                                                                                                                                                                                             | Gasoline<br>0 to 1                                                                                                                                                                                                                                        | Gasoline<br>0 to 1                                                                                                                                                                                                                         |
| Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil                                                                                                                                                                                                               | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil                                                                                                                                                                                                      | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil                                                                                                                                                                                      | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil                                                                                                                                                                                 | Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil                                                                                                                                                                  |
| Choose horsepower range from drop down menu<br>Input operating hours (hr) AGRICULTURAL EQUIPMENT Choose fuel type from drop down menu<br>Input area to till (acre) Choose soil condition from drop down menu<br>Choose soil condition from drop down menu<br>Input line available (work days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline                                                                                                                                                                                                                                     | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline                                                                                                                                                                                                                            | Gasoline 0 to 1 Tillage Tractor 3 Gasoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline                                                                                                                                                                                                            | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline                                                                                                                                                                                                       | Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline                                                                                                                                                                                        |
| Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil                                                                                                                                                                                                               | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil                                                                                                                                                                                                      | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil                                                                                                                                                                                      | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil                                                                                                                                                                                 | Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil                                                                                                                                                                  |
| Choose horsepower range from drop down menu<br>Input operating hours (hr) AGRICULTURAL EQUIPMENT Choose fuel type from drop down menu<br>Input area to till (acre) Choose soil condition from drop down menu<br>Choose soil condition from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in) CAPPING EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 1                                                                                                                                                                                   | Gasoline<br>O to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2                                                                                                                                                                          | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4                                                                                                                                                          | Gasoline<br>O to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5                                                                                                                                                     | Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6                                                                                                                                      |
| Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>ACRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Choose tuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                                                                                  | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                                                                         | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                                                         | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                                                    | Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                                     |
| Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 1<br>Roller                                                                                                                                                                         | Gasoline<br>O to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller                                                                                                                                                                | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3<br>Roller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gasoline 0 to 1 Tillage Tractor 4 Gasoline Firm untilled soil Clay Soil Equipment 4 Roller                                                                                                                                                                     | Gasoline<br>O to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller                                                                                                                                           | Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller                                                                                                                            |
| Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline                                                                                                                                                             | Gasoline<br>O to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline                                                                                                                                                    | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gasoline 0 to 1 Tillage Tractor 4 Gasoline Firm untilled soil Clay Soil Equipment 4 Roller                                                                                                                                                                     | Gasoline<br>O to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller                                                                                                                                           | Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller                                                                                                                            |
| Choose horsepower range from drop down menu<br>Input operating hours (hr) AGRICULTURAL EQUIPMENT Choose fuel type from drop down menu Input area to till (acre) Choose soil condition from drop down menu Choose soil type from drop down menu Input time available (work days) Input depth of tillage (in) CAPPING EQUIPMENT Choose fuel type from drop down menu Input area (ft2) Input time available (work days) MIXING EQUIPMENT Choose fuel type from drop down menu Input time available (work days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline                                                                                                                         | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>Mixer 2<br>Gasoline                                                                                                                             | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4<br>Gasoline                                                                                                             | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5<br>Gasoline                                                                                                        | Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6<br>Gasoline                                                                                         |
| Choose horsepower range from drop down menu Input operating hours (hr)  AGRICULTURAL EQUIPMENT Choose fuel type from drop down menu Input area to till (acre) Choose soil condition from drop down menu Choose soil type from drop down menu Input time available (work days) Input depth of tillage (in)  CAPPING EQUIPMENT Choose fuel type from drop down menu Input area (ft2) Input time available (work days)  MIXING EQUIPMENT Choose fuel type from drop down menu Choose fuel type from drop down menu Input area (ft2) Input time available (work days)  MIXING EQUIPMENT Choose fuel type from drop down menu Choose horsepower range from drop down menu Choose horsepower range from drop down menu Input operative from drop down menu Choose horsepower range from drop down menu Input operative from drop down menu Choose horsepower range from drop down menu Input operative from drop down menu Input operative from drop down menu Choose horsepower range from drop down menu Input operative from drop down menu Choose horsepower range from drop down menu Input operative from drop down menu Choose horsepower range from drop down menu Input operative from drop down menu Choose horsepower range from drop down menu Input operative from drop down menu Choose horsepower range from drop down menu Input operative from drop down menu Input operative from drop down menu Choose horsepower range from drop down menu Input operative from drop down menu Input operative from drop down menu Choose horsepower range from drop down menu Input operative from drop down menu Input operative from drop down menu Input operative from drop down menu Choose horsepower range from drop down menu Input operative from drop down menu Input operative from drop down menu Input operative from drop down menu Choose horsepower range from drop down menu Input operative from drop down menu Input op | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soll<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1                                                                                                                                                  | Gasoline<br>O to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>Mixer 2                                                                                                                                         | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4                                                                                                                         | Gasoline<br>O to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5                                                                                                                    | Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6                                                                                                     |
| Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose fuel type from drop down menu<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input volume (yd3)<br>Input production rate (yd3/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline                                                                                                                         | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>Mixer 2<br>Gasoline                                                                                                                             | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4<br>Gasoline                                                                                                             | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5<br>Gasoline                                                                                                        | Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6<br>Gasoline                                                                                         |
| Choose horsepower range from drop down menu Input operating hours (hr)  AGRICULTURAL EQUIPMENT Choose fuel type from drop down menu Input area to till (acre) Choose soil condition from drop down menu Choose soil type from drop down menu Input time available (work days) Input depth of tillage (in)  CAPPING EQUIPMENT Choose fuel type from drop down menu Choose fuel type from drop down menu Input area (ft2) Input time available (work days) MIXING EQUIPMENT Choose fuel type from drop down menu Choose fuel type from drop down menu Input time available (work days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline                                                                                                                         | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>Mixer 2<br>Gasoline                                                                                                                             | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4<br>Gasoline                                                                                                             | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5<br>Gasoline                                                                                                        | Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6<br>Gasoline                                                                                         |
| Choose horsepower range from drop down menu Input operating hours (hr)  AGRICULTURAL EQUIPMENT Choose fuel type from drop down menu Input area to till (acre) Choose soil condition from drop down menu Choose soil condition from drop down menu Input time available (work days) Input depth of tillage (in)  CAPPING EQUIPMENT Choose stell type from drop down menu Input time available (work days) MIXING EQUIPMENT Choose fuel type from drop down menu Choose horsepower range from drop down menu Input time available (work days) MIXING EQUIPMENT Choose horsepower range from drop down menu Input time available (work days)  MIXING EQUIPMENT Choose fuel type from drop down menu Input area (ft2) Input time available (work days)  MIXING EQUIPMENT Choose horsepower range from drop down menu Input volume (yd3) Input production ate (yd3/hr) Input setimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)  INTERNAL COMBUSTION ENGINES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>1 to 3<br>Logasoline<br>1 to 3<br>Engine 1                                                                                                               | Gasoline<br>O to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>1 to 3<br>1 to 3<br>Engine 2                                                                                                                    | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Engine 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>1 to 3<br>Engine 4                                                                                                              | Gasoline O to 1 Tillage Tractor 5 Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline 1 to 3 I to 3 Engine 5 Engine 5                                                                                                                       | Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>1 to 3<br>1 to 3<br>Engine 6                                                                                |
| Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Input troeuction rate (yd3/hr)<br>Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gasoline 0 to 1  Tillage Tractor 1 Gasoline  Firm untilled soil Clay Soil  Equipment 1 Roller Gasoline  Mixer 1 Gasoline 1 to 3  Engine 1 Diesel 25                                                                                                                                     | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>Mixer 2<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>25                                                                                       | Gasoline<br>0 to 1<br>7illage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Engine 3<br>Diesel<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>25                                                                       | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5<br>Gasoline<br>1 to 3                                                                                              | Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3                                                                               |
| Choose horsepower range from drop down menu Input operating hours (hr)  AGRICULTURAL EQUIPMENT  Choose fuel type from drop down menu Input area to till (acre) Choose soil condition from drop down menu Choose soil type from drop down menu Choose soil type from drop down menu Choose stabilization equipment type from drop down menu Choose stabilization equipment type from drop down menu Choose fuel type from drop down menu Input area (ft2) Input time available (work days)  MIXING EQUIPMENT Choose horsepower range from drop down menu Input value (yd3)/hr) Input production rate (yd3/hr) Input restimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)  INTERNAL COMBUSTION ENGINES Choose fuel type from drop down menu Input selexity for more from drop down menu Input selexity for more from drop down menu Input selexity for more form drop down menu Input selexity form from drop down menu Input selexity form from drop down menu Input selexity form drop down menu Input selexity | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>Engine 1<br>Diesel                                                                                         | Gasoline O to 1 Tillage Tractor 2 Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel                                                                                                                                    | Gasoline<br>0 to 1<br>7illage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Lissel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel                                                                | Gasoline O to 1 Tillage Tractor 5 Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline 1 to 3 I to 3 Engine 5 Engine 5                                                                                                                       | Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>1 to 3<br>1 to 3<br>Engine 6                                                                                |
| Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu<br>Input retuiction rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input type consumption rate (gal/hr or sc/hr)<br>Input operating hours (hr)<br>OTHER FUELED EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gasoline 0 to 1  Tillage Tractor 1 Gasoline  Firm untilled soil Clay Soil  Equipment 1 Roller Gasoline  Mixer 1 Gasoline 1 to 3  Engine 1 Diesel 25 596 Fuel 1                                                                                                                          | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>25<br>814<br>Fuel 2                                                                                             | Gasoline<br>0 to 1<br>7illage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>25<br>166<br>Fuel 4                                                      | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>1 to 3<br>Engine 5<br>Diesel<br>Fuel 5                                                                                     | Gasoline<br>0 to 1<br>7illage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6                                            |
| Choose horsepower range from drop down menu Input operating hours (hr)  AGRICULTURAL EQUIPMENT  Choose fuel type from drop down menu Input area to till (acre) Choose soil condition from drop down menu Choose soil type from drop down menu Input time available (work days) Input depth of tillage (in)  CAPPING EQUIPMENT  Choose stabilization equipment type from drop down menu Choose stabilization equipment type from drop down menu Input area available (work days) Input depth of tillage (in)  CAPPING EQUIPMENT  Choose fuel type from drop down menu Input area (ft2) Input time available (work days)  MIXING EQUIPMENT  Choose fuel type from drop down menu Choose horsepower range from drop down menu Input volume (yd3) Input production rate (yd3/hr) Input production rate (yd3/hr) Input stimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)  INTERNAL COMBUSTION ENGINES Choose fuel type from drop down menu Input fuel consumption rate (gal/hr or scf/hr) Input operating hours (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>Engine 1<br>Diesel<br>25<br>596                                                                            | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>Mixer 2<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>25<br>814                                                                                | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Engine 3<br>Diesel<br>85<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>25<br>166                                                                | Gasoline 0 to 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                       | Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel                                            |
| Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose tuel type from drop down menu<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Choose forsepower range from drop down menu<br>Choose forsepower range from drop down menu<br>Input ovlume (yd3)<br>Input production rate (yd3/hr)<br>Input selimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input operating hours (hr)<br>OTHER FUELED EOUIPMENT<br>Choose fuel type from drop down menu<br>Input volume (yd3)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input type form drop down menu<br>Input volume (scf for Natural gas, gallons for all others)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>Engine 1<br>Diesel<br>25<br>596<br>Fuel 1<br>Natural gas                                                   | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>Mixer 2<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>25<br>814<br>Fuel 2<br>Natural gas                                                       | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Engine 3<br>Diesel<br>85<br>38<br>Fuel 3<br>Natural gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>25<br>166<br>Fuel 4<br>Natural gas                          | Gasoline O to 1 Tillage Tractor 5 Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas                                                                                            | Gasoline<br>0 to 1<br>7illage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6<br>Natural gas                   |
| Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Input production rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input fuel consumption rate (gal/hr or scf/hr)<br>Input production (fr)<br>OTHER FUELED EQUIPMENT<br>Choose fuel type from drop down menu<br>Input volume (scf for Natural gas, gallons for all others)<br>OPERATOR LABOR<br>Choose cocupation from drop-down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>Engine 1<br>Diesel<br>25<br>596<br>Fuel 1<br>Natural gas                                                                | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>25<br>814<br>Fuel 2<br>Natural gas<br>Occupation 2<br>Construction laborers                        | Gasoline<br>0 to 1<br>7illage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Engine 3<br>Diesel<br>85<br>38<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>25<br>166<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers        | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>1 to 3<br>Engine 5<br>Diesel<br>Fuel 5                                                                                     | Gasoline<br>0 to 1<br>7illage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6                                            |
| Choose horsepower range from drop down menu         Input operating hours (hr)         AGRICULTURAL EOUIPMENT         Choose fuel type from drop down menu         Input area to till (acre)         Choose soil condition from drop down menu         Choose soil condition from drop down menu         Input area to till (acre)         Choose soil condition from drop down menu         Input time available (work days)         Input depth of tillage (in)         CAPPING EQUIPMENT         Choose fuel type from drop down menu         Choose fuel type from drop down menu         Input area (ft2)         Input time available (work days)         MIXING EQUIPMENT         Choose fuel type from drop down menu         Choose fuel type from drop down menu         Choose fuel type from drop down menu         Input traduction rate (yd3/hr)         Input production rate (yd3/hr)         Input production rate (yd3/hr)         Input toel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)         INTERNAL COMBUSTION ENGINES         Choose fuel type from drop down menu         Input toel consumption rate (gal/hr) or scf/hr)         Input operating hours (hr)         Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>Engine 1<br>Diesel<br>25<br>596<br>Fuel 1<br>Natural gas<br>Occupation 1<br>Construction laborers<br>4768  | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>1<br>Mixer 2<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>25<br>814<br>Fuel 2<br>Natural gas<br>Occupation 2<br>Construction laborers<br>3256 | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>1 to 3<br>Mixer 3<br>Gasoline<br>1 to 3<br>Diesel<br>85<br>38<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers<br>152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>25<br>166<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers<br>664 | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>1<br>Mixer 5<br>Gasoline<br>1 to 3<br>Engine 5<br>Diesel<br>Fuel 5<br>Natural gas<br>Occupation 5<br>Construction laborers | Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6<br>Natural gas<br>Occupation 6<br>Construction laborers |
| Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EOUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose stuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Input production rate (yd3/hr)<br>Input production rate (yd3/hr)<br>Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input fuel consumption rate (gal/hr or scf/hr)<br>Input getting hours (hr)<br>OTHER FUELDE EQUIPMENT<br>Choose fuel type from drop down menu<br>Input volume (scf for Natural gas, gallons for all others)<br>OPERATOR LABOR<br>Choose cocupation from drop-down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>Engine 1<br>Diesel<br>25<br>596<br>Fuel 1<br>Natural gas                                                                | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>25<br>814<br>Fuel 2<br>Natural gas<br>Occupation 2<br>Construction laborers                        | Gasoline<br>0 to 1<br>7illage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Engine 3<br>Diesel<br>85<br>38<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>25<br>166<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers        | Gasoline O to 1 O to 1 Tillage Tractor 5 Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas Occupation 5                                                                        | Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6<br>Natural gas<br>Occupation 6                          |
| Choose horsepower range from drop down menu         Input operating hours (hr)         AGRICULTURAL EQUIPMENT         Choose fuel type from drop down menu         Input area to till (acre)         Choose soil condition from drop down menu         Choose soil condition from drop down menu         Choose soil condition from drop down menu         Input time available (work days)         Input depth of tillage (in)         CAPPING EQUIPMENT         Choose stabilization equipment type from drop down menu         Choose fuel type from drop down menu         Input time available (work days)         MIXING EQUIPMENT         Choose fuel type from drop down menu         Input trime available (work days)         MIXING EQUIPMENT         Choose fuel type from drop down menu         Input production rate (yd3/hr)         Input production rate (yd3/hr)         Input trop trace from drop down menu         Input toel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)         INTERNAL COMBUSTION ENGINES         Choose fuel type from drop down menu         Input tuel consumption rate (g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>Engine 1<br>Diesel<br>25<br>596<br>Fuel 1<br>Natural gas<br>Coccupation 1<br>Construction laborers<br>4768 | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>1<br>Mixer 2<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>25<br>814<br>Fuel 2<br>Natural gas<br>Occupation 2<br>Construction laborers<br>3256 | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>1 to 3<br>Mixer 3<br>Gasoline<br>1 to 3<br>Diesel<br>85<br>38<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers<br>152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>25<br>166<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers<br>664 | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>1<br>Mixer 5<br>Gasoline<br>1 to 3<br>Engine 5<br>Diesel<br>Fuel 5<br>Natural gas<br>Occupation 5<br>Construction laborers | Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6<br>Natural gas<br>Occupation 6<br>Construction laborers |
| Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil condition from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stallization equipment type from drop down menu<br>Choose fuel type from drop down menu<br>Input area (ft2)<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Choose forsepower range from drop down menu<br>Choose forsepower range from drop down menu<br>Input setimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input topic ansumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input type torosumption rate (gal/hr) or scf/hr)<br>Input operating hours (hr)<br>OTHER FUELED EQUIPMENT<br>Choose fuel type from drop down menu<br>Input volume (scf for Natural gas, galions for all others)<br>OPERATOR LABOR<br>Choose occupation from drop-down menu<br>Input total time worked onsite (hours)<br>LABORATORY ANALYSIS<br>Input dollars spent on laboratory analysis (\$)<br>OTHER KNOWN ONSITE ACTIVITIES<br>Input energy usage (MMBTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>Engine 1<br>Diesel<br>25<br>596<br>Fuel 1<br>Natural gas<br>Occupation 1<br>Construction laborers<br>4768  | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>1<br>Mixer 2<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>25<br>814<br>Fuel 2<br>Natural gas<br>Occupation 2<br>Construction laborers<br>3256 | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>1 to 3<br>Mixer 3<br>Gasoline<br>1 to 3<br>Diesel<br>85<br>38<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers<br>152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>25<br>166<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers<br>664 | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>1<br>Mixer 5<br>Gasoline<br>1 to 3<br>Engine 5<br>Diesel<br>Fuel 5<br>Natural gas<br>Occupation 5<br>Construction laborers | Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6<br>Natural gas<br>Occupation 6<br>Construction laborers |
| Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose soil condition from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose stuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input volume (yd3)<br>Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input volume (set for Natural gas, gallons for all others)<br>OPERATOR LABOR<br>Choose occupation from drop-down menu<br>Input total time worked onsite (hours)<br>LABORATORY ANALYSIS<br>Input dollars spent on laboratory analysis (\$)<br>OTHER KNOWN ONSITE ACTIVITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>Engine 1<br>Diesel<br>25<br>596<br>Fuel 1<br>Natural gas<br>Coccupation 1<br>Construction laborers<br>4768 | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>1<br>Mixer 2<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>25<br>814<br>Fuel 2<br>Natural gas<br>Occupation 2<br>Construction laborers<br>3256 | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>1 to 3<br>Mixer 3<br>Gasoline<br>1 to 3<br>Diesel<br>85<br>38<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers<br>152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>25<br>166<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers<br>664 | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>1<br>Mixer 5<br>Gasoline<br>1 to 3<br>Engine 5<br>Diesel<br>Fuel 5<br>Natural gas<br>Occupation 5<br>Construction laborers | Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6<br>Natural gas<br>Occupation 6<br>Construction laborers |

| Input N2O emission (metric ton CO2 e) |  |
|---------------------------------------|--|
| Input CH4 emission (metric ton CO2 e) |  |
| Input NOx emission (metric ton)       |  |
| Input SOx emission (metric ton)       |  |
| Input PM10 emission (metric ton)      |  |
| Input fatality risk                   |  |
| Input injury risk                     |  |

| RESIDUE DISPOSAL/RECYCLING                                                        | Soil Residue               | Residual Water             | Material Residue           | Other Residuals            | Other Residuals            | Other Residuals            |
|-----------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?  | No                         | No                         | No                         | No                         | No                         | No                         |
| Input weight of the waste transported to<br>landfill or recycling per trip (tons) | 25                         |                            |                            |                            |                            |                            |
| Choose fuel used from drop down menu                                              | Diesel                     | Gasoline                   | Gasoline                   | Gasoline                   | Gasoline                   | Gasoline                   |
| Input total number of trips                                                       | 3260                       |                            |                            |                            |                            |                            |
| Input number of miles per trip                                                    | 250                        |                            |                            |                            |                            |                            |
|                                                                                   |                            |                            |                            |                            |                            |                            |
| ANDFILL OPERATIONS                                                                | Operation 1                | Operation 2                | Operation 3                | Operation 4                | Operation 5                | Operation 6                |
| Choose landfill type for waste disposal                                           | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              |
| Input amount of waste disposed in landfill (tons)                                 | 73174                      |                            |                            |                            |                            |                            |
| Input landfill methane emissions (metric tons CH4)                                |                            |                            |                            |                            |                            |                            |
|                                                                                   |                            |                            |                            |                            |                            |                            |
| HERMAL/CATALYTIC OXIDIZERS*                                                       | Oxidizer 1                 | Oxidizer 2                 | Oxidizer 3                 | Oxidizer 4                 | Oxidizer 5                 | Oxidizer 6                 |
| Choose oxidizer type from drop down menu                                          | Simple Thermal<br>Oxidizer |
| Choose fuel type from drop down menu                                              | Natural gas                |
| Input waste gas flow rate (scfm)                                                  |                            |                            |                            |                            |                            |                            |
| Input time running (hours)                                                        |                            |                            |                            |                            |                            |                            |
| Input waste gas inlet temperature (F)                                             |                            |                            |                            |                            |                            |                            |
|                                                                                   |                            |                            |                            |                            |                            |                            |

| WATER CONSUMPTION                                                      | Treatment System 1 | Treatment System 2 | Treatment System 3 | Treatment System 4 | Treatment System 5 | Treatment System 6 |
|------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Input total water consumed from potable water treatment facility (gal) |                    |                    |                    |                    |                    |                    |
| Input total water disposed to wastewater treatment facility (gal)      | 2956000            |                    |                    |                    |                    |                    |
|                                                                        |                    |                    |                    |                    |                    |                    |
| ONSITE LAND AND WATER RESOURCE CONSUMPTION                             | Entire Site 1      | Entire Site 2      | Entire Site 3      | Entire Site 4      | Entire Site 5      | Entire Site 6      |
| Input volume of topsoil brought to site (cubic yards)                  |                    |                    |                    |                    |                    |                    |
| Input volume of groundwater or surface water lost (gal)                |                    |                    |                    |                    |                    |                    |

#### BASELINE INFORMATION

| LONGTERM MONITORING COST AND DURATION             | Entire Site |
|---------------------------------------------------|-------------|
| Input total longterm monitoring cost (\$)         | 945,793     |
| Input duration of longterm monitoring (unit time) | 1.0         |

## MATERIAL PRODUCTION

| VELL MATERIALS                                                    | Well Type 1       | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6      |
|-------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|
| Input number of wells                                             |                   |                   |                   |                   |                   |                  |
| Input depth of wells (ft)                                         |                   |                   |                   |                   |                   |                  |
| Choose specific material schedule from drop down menu             | Sch 40 PVC        | Sch 40 PVC       |
| Choose well diameter (in) from drop down menu                     | 1/8               | 1/8               | 1/8               | 1/8               | 1/8               | 1/8              |
|                                                                   |                   |                   |                   |                   |                   |                  |
| REATMENT CHEMICALS & MATERIALS                                    | Treatment 1       | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6      |
| Input number of injection points                                  |                   |                   |                   |                   |                   |                  |
| Choose material type from drop down menu                          | Hydrogen Peroxide | Hydrogen Peroxid |
| Input amount of material injected at each point (pounds dry mass) |                   |                   |                   |                   |                   |                  |
| Input number of injections per injection point                    |                   |                   |                   |                   |                   |                  |
|                                                                   |                   |                   |                   |                   |                   |                  |
| REATMENT MEDIA                                                    | Treatment 1       | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6      |
| Input weight of media used (lbs)                                  |                   |                   |                   |                   |                   |                  |
| Choose media type from drop down menu                             | Virgin GAC        | Virgin GAC       |
|                                                                   |                   |                   |                   |                   |                   |                  |
| CONSTRUCTION MATERIALS                                            | Material 1        | Material 2        | Material 3        | Material 4        | Material 5        | Material 6       |
| Choose material type from drop down menu                          | HDPE Liner        | HDPE Liner       |
| Input area of material (ft2)                                      |                   |                   |                   |                   |                   |                  |
| Input depth of material (ft)                                      |                   |                   |                   |                   |                   |                  |
|                                                                   |                   |                   |                   |                   |                   |                  |
| /ELL DECOMMISSIONING                                              | Well Type 1       | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6      |
| Input number of wells                                             |                   |                   |                   |                   |                   |                  |
| Input depth of wells (ft)                                         |                   |                   |                   |                   |                   |                  |
| Input well diameter (in)                                          |                   |                   |                   |                   |                   |                  |
| Choose material from drop down menu                               | Soil              | Soil              | Soil              | Soil              | Soil              | Soil             |
|                                                                   |                   |                   |                   |                   |                   |                  |
| ULK MATERIAL QUANTITIES                                           | Material 1        | Material 2        | Material 3        | Material 4        | Material 5        | Material 6       |
| Choose material from drop down menu                               | Acetic Acid       | Acetic Acid      |
| Choose units of material quantity from drop down menu             | pounds            | pounds            | pounds            | pounds            | pounds            | pounds           |
| Input material guantity                                           |                   |                   |                   |                   |                   |                  |

#### TRANSPORTATION

| PERSONNEL TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
|------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose vehicle type from drop down menu*                                                       | Cars           | Cars           | Cars           | Cars           | Cars           | Cars           |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input distance traveled per trip (miles)                                                       |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input estimated vehicular fuel economy (mi/gal) (Input only if known for the vehicle selected, |                |                |                |                |                |                |
| otherwise a default will be used by the tool)                                                  |                |                |                |                |                |                |
| *For vehicle type 'Other' please enter values in Table 2b in the Look Up Table tab.            |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - AIR                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input number of flights taken                                                                  |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - RAIL                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Choose vehicle type from drop down menu                                                        | Intercity rail |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input total distance traveled (miles) with a given load. Add return trip(s) with no load in a  |                |                |                |                |                |                |
| separate column if applicable.                                                                 |                |                |                |                |                |                |
| Input weight of equipment transported per truck load (tons)                                    |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - AIR                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input weight of equipment transported (tons)                                                   |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - RAIL                                                                | Tain 4         | Trin 0         | Trin 0         | Trin 4         | Tain C         | Trin C         |
| EQUIPMENT TRANSPORTATION - RAIL<br>Input distance traveled (miles)                             | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles) Input weight of load (tons)                                    |                |                |                |                |                | <u> </u>       |
| input weight or load (tons)                                                                    |                | I              | I              |                | I              | ·              |
| EQUIPMENT TRANSPORTATION - WATER                                                               | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (mile)                                                                 | i ip i         | 1110 2         | inh 2          | 1110 4         | 1105           | 1110.0         |
| Input distance raveled (mile)                                                                  |                |                |                |                |                | <u> </u>       |
| input weight of load (tons)                                                                    |                | 1              | 1              |                | 1              | ·              |

| EARTHWORK                                                                         | Equipment 1 | Equipment 2            | Equipment 3 | Equipment 4            | Equipment 5            | Equipment 6            |
|-----------------------------------------------------------------------------------|-------------|------------------------|-------------|------------------------|------------------------|------------------------|
| Choose earthwork equipment type from drop down menu                               | Dozer       | Dozer                  | Dozer       | Dozer                  | Dozer                  | Dozer                  |
| Choose fuel type from drop down menu                                              | Diesel      | Diesel                 | Diesel      | Diesel                 | Diesel                 | Diesel                 |
| Input volume of material to be removed (yd3)                                      |             |                        |             |                        |                        |                        |
| Will DIESEL-run equipment be retrofitted with a particulate reduction technology? | No          | No                     | No          | No                     | No                     | No                     |
|                                                                                   |             |                        |             |                        |                        |                        |
| DRILLING                                                                          | Event 1     |                        | E           |                        |                        |                        |
| DRILLING                                                                          | Event       | Event 2                | Event 3     | Event 4                | Event 5                | Event 6                |
| Input number of drilling locations                                                | Event       | Event 2                | Event 3     | Event 4                | Event 5                | Event 6                |
|                                                                                   | Direct Push | Event 2<br>Direct Push | Direct Push | Event 4<br>Direct Push | Event 5<br>Direct Push | Event 6<br>Direct Push |
| Input number of drilling locations                                                |             |                        |             |                        |                        |                        |

| TRENCHING<br>Choose fuel type from drop down menu                                                                                                                          | Trencher 1<br>Gasoline       | Trencher 2<br>Gasoline       | Trencher 3<br>Gasoline       | Trencher 4<br>Gasoline       | Trencher 5<br>Gasoline       | Trencher 6<br>Gasoline       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Choose horsepower range from drop down menu                                                                                                                                | 1 to 3                       |
| Input operating hours (hr)                                                                                                                                                 |                              |                              |                              |                              |                              |                              |
| For each pump, select only one of the three methods to calculate energy and GHG emissions<br>Enter "0" for all user input values for unused pump columns or unused methods |                              |                              |                              |                              |                              |                              |
| PUMP OPERATION                                                                                                                                                             | Pump 1                       | Pump 2                       | Pump 3                       | Pump 4                       | Pump 5                       | Pump 6                       |
| Choose method from drop down<br>Method 1 - ELECTRICAL USAGE IS KNOWN                                                                                                       | Method 1                     |
| Input pump electrical usage (KWh)                                                                                                                                          | 0                            | 0                            | 0                            | 0                            | 0                            | 0                            |
| Method 2 - PUMP HEAD IS KNOWN                                                                                                                                              |                              |                              |                              |                              |                              |                              |
| Input flow rate (gpm)                                                                                                                                                      | 0                            | 0                            | 0                            | 0                            | 0                            | 0                            |
| Input total head (ft)<br>Input number of pumps operating                                                                                                                   | 0                            | 0                            | 0                            | 0                            | 0                            | 0                            |
| Input operating time for each pump (hrs)                                                                                                                                   | 0<br>0.51                    | 0<br>0.51                    | 0<br>0.51                    | 0<br>0.51                    | 0<br>0.51                    | 0<br>0.51                    |
| Pump efficiency times motor efficiency (default already present, user override possible)<br>Input specific gravity (default already present, user override possible)       | 1                            | 1                            | 1                            | 1                            | 1                            | 1                            |
| Method 3 - NAME PLATE SPECIFICATIONS ARE KNOWN                                                                                                                             |                              |                              |                              |                              |                              |                              |
| Input pump horsepower (hp)                                                                                                                                                 | 0                            | 0                            | 0                            | 0                            | 0                            | 0                            |
| Input number of pumps operating<br>Input operating time for each pump (hrs)                                                                                                | 0                            | 0                            | 0                            | 0                            | 0                            | 0                            |
| Input pump load (default already present, user override possible)                                                                                                          | 0.85                         | 0.85                         | 0.85                         | 0.85                         | 0.85                         | 0.85                         |
| Input pump motor efficiency (default already present, user override possible)                                                                                              | 0.85                         | 0.85                         | 0.85                         | 0.85                         | 0.85                         | 0.85                         |
| Region                                                                                                                                                                     | DEOF                         | DEOE                         | DEOE                         | DEOE                         | DEOE                         | DEOE                         |
| Electricity Region                                                                                                                                                         | RFCE                         | RFCE                         | RFCE                         | RFCE                         | RFCE                         | RFCE                         |
| DIESEL AND GASOLINE PUMPS                                                                                                                                                  | Pump 1                       | Pump 2                       | Pump 3                       | Pump 4                       | Pump 5                       | Pump 6                       |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                        | Gasoline<br>2-Stroke: 0 to 1 |
| Equipment operating hours (hrs)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the pump selected,                                              |                              |                              |                              |                              |                              |                              |
| otherwise a default will be used by the tool)                                                                                                                              |                              |                              |                              |                              |                              |                              |
| For each type of equipment, select only one of the methods to calculate energy and GHG emissions                                                                           |                              |                              |                              |                              |                              |                              |
| Enter "0" for all user input values for unused equipment columns or unused methods                                                                                         | _                            |                              |                              |                              | _                            |                              |
| BLOWER, COMPRESSOR, MIXER, AND OTHER EQUIPMENT<br>Choose type of equipment from drop down                                                                                  | Equipment 1<br>Blower        | Equipment 2<br>Blower        | Equipment 3<br>Blower        | Equipment 4<br>Blower        | Equipment 5<br>Blower        | Equipment 6<br>Blower        |
| Choose method from drop down                                                                                                                                               | Method 1                     |
| Method 1 - NAME PLATE SPECIFICATIONS ARE KNOWN Input equipment horsepower (hp)                                                                                             | 0                            | 0                            | 0                            | 0                            | 0                            | 0                            |
| Input number of equipments operating                                                                                                                                       | 0                            | 0                            | 0                            | 0                            | 0                            | 0                            |
| Input operating time for each equipment (hrs)<br>Input equipment load (default already present, user override possible)                                                    | 0.85                         | 0<br>0.85                    | 0<br>0.85                    | 0<br>0.85                    | 0<br>0.85                    | 0<br>0.85                    |
| Input motor efficiency (default already present, user override possible)                                                                                                   | 0.85                         | 0.85                         | 0.85                         | 0.85                         | 0.85                         | 0.85                         |
| Method 2 - ELECTRICAL USAGE IS KNOWN                                                                                                                                       |                              |                              |                              |                              |                              |                              |
| Input equipment electrical usage, if known (kWh)                                                                                                                           | 0                            | 0                            | 0                            | 0                            | 0                            | 0                            |
| Region                                                                                                                                                                     |                              |                              |                              |                              | 2505                         |                              |
| Electricity Region                                                                                                                                                         | RFCE                         | RFCE                         | RFCE                         | RFCE                         | RFCE                         | RFCE                         |
| GENERATORS                                                                                                                                                                 | Generator 1                  | Generator 2                  | Generator 3                  | Generator 4                  | Generator 5                  | Generator 6                  |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                        | Gasoline<br>0 to 1           |
| Input operating hours (hr)                                                                                                                                                 |                              |                              |                              |                              |                              |                              |
| AGRICULTURAL EQUIPMENT                                                                                                                                                     | Tillage Tractor 1            | Tillage Tractor 2            | Tillage Tractor 3            | Tillage Tractor 4            | Tillage Tractor 5            | Tillage Tractor 6            |
| Choose fuel type from drop down menu<br>Input area to till (acre)                                                                                                          | Gasoline                     | Gasoline                     | Gasoline                     | Gasoline                     | Gasoline                     | Gasoline                     |
| Choose soil condition from drop down menu                                                                                                                                  | Firm untilled soil           |
| Choose soil type from drop down menu<br>Input time available (work days)                                                                                                   | Clay Soil                    |
| Input depth of tillage (in)                                                                                                                                                |                              |                              |                              |                              |                              |                              |
| CAPPING EQUIPMENT                                                                                                                                                          | Equipment 1                  | Equipment 2                  | Equipment 3                  | Equipment 4                  | Equipment 5                  | Equipment 6                  |
| Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu                                                                            | Roller                       | Roller                       | Roller<br>Gasoline           | Roller                       | Roller                       | Roller                       |
| Input area (ft2)                                                                                                                                                           | Gasoline                     | Gasoline                     | Gasoline                     | Gasoline                     | Gasoline                     | Gasoline                     |
| Input time available (work days)                                                                                                                                           |                              |                              |                              |                              |                              |                              |
| MIXING EQUIPMENT                                                                                                                                                           | Mixer 1                      | Mixer 2                      | Mixer 3                      | Mixer 4                      | Mixer 5                      | Mixer 6                      |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                        | Gasoline<br>1 to 3           |
| Input volume (yd3)                                                                                                                                                         |                              |                              |                              |                              |                              |                              |
| Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,                                              | <u> </u>                     |                              |                              | <u> </u>                     |                              |                              |
| otherwise a default will be used by the tool)                                                                                                                              | L                            | l                            | l                            |                              |                              |                              |
| INTERNAL COMBUSTION ENGINES                                                                                                                                                | Engine 1                     | Engine 2                     | Engine 3                     | Engine 4                     | Engine 5                     | Engine 6                     |
| Choose fuel type from drop down menu                                                                                                                                       | Diesel                       | Diesel                       | Diesel                       | Diesel                       | Diesel                       | Diesel                       |
| Input fuel consumption rate (gal/hr or scf/hr)<br>Input operating hours (hr)                                                                                               | 5<br>126                     |                              |                              |                              | <u> </u>                     |                              |
| OTHER FUELED EQUIPMENT                                                                                                                                                     | Fuel 1                       | Fuel 2                       | Fuel 3                       | Fuel 4                       | Fuel 5                       | Fuel 6                       |
| Choose fuel type from drop down menu                                                                                                                                       | Natural gas                  |
| Input volume (scf for Natural gas, gallons for all others)                                                                                                                 |                              |                              |                              |                              | I                            |                              |
| OPERATOR LABOR                                                                                                                                                             | Occupation 1                 | Occupation 2                 | Occupation 3                 | Occupation 4                 | Occupation 5                 | Occupation 6                 |
| Choose occupation from drop-down menu<br>Input total time worked onsite (hours)                                                                                            | Construction laborers<br>378 | Construction laborers        |
|                                                                                                                                                                            |                              |                              |                              |                              |                              |                              |
| LABORATORY ANALYSIS                                                                                                                                                        | Analysis 1                   | Analysis 2                   | Analysis 3                   | Analysis 4                   | Analysis 5                   | Analysis 6                   |
| Input dollars spent on laboratory analysis (\$)                                                                                                                            |                              |                              |                              |                              |                              |                              |
| Input dollars spent on laboratory analysis (\$)                                                                                                                            |                              |                              |                              |                              |                              |                              |
| Input dollars spent on laboratory analysis (\$)<br>OTHER KNOWN ONSITE ACTIVITIES                                                                                           | Entire Site                  |                              |                              |                              |                              |                              |
| Input dollars spent on laboratory analysis (\$)                                                                                                                            | Entire Site                  |                              |                              |                              |                              |                              |

| Input N2O emission (metric ton CO2 e) |  |
|---------------------------------------|--|
| Input CH4 emission (metric ton CO2 e) |  |
| Input NOx emission (metric ton)       |  |
| Input SOx emission (metric ton)       |  |
| Input PM10 emission (metric ton)      |  |
| Input fatality risk                   |  |
| Input injury risk                     |  |

| ESIDUE DISPOSAL/RECYCLING                                                        | Soil Residue   | Residual Water | Material Residue | Other Residuals | Other Residuals | Other Residuals |
|----------------------------------------------------------------------------------|----------------|----------------|------------------|-----------------|-----------------|-----------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? | No             | No             | No               | No              | No              | No              |
| Input weight of the waste transported to                                         |                |                |                  |                 |                 |                 |
| landfill or recycling per trip (tons)                                            |                |                |                  |                 |                 |                 |
| Choose fuel used from drop down menu                                             | Gasoline       | Gasoline       | Gasoline         | Gasoline        | Gasoline        | Gasoline        |
| Input total number of trips                                                      |                |                |                  |                 |                 |                 |
| Input number of miles per trip                                                   |                |                |                  |                 |                 |                 |
|                                                                                  |                |                |                  |                 |                 |                 |
| ANDFILL OPERATIONS                                                               | Operation 1    | Operation 2    | Operation 3      | Operation 4     | Operation 5     | Operation 6     |
| Choose landfill type for waste disposal                                          | Non-Hazardous  | Non-Hazardous  | Non-Hazardous    | Non-Hazardous   | Non-Hazardous   | Non-Hazardous   |
| Input amount of waste disposed in landfill (tons)                                |                |                |                  |                 |                 |                 |
| Input landfill methane emissions (metric tons CH4)                               |                |                |                  |                 |                 |                 |
|                                                                                  |                |                |                  |                 |                 |                 |
| HERMAL/CATALYTIC OXIDIZERS*                                                      | Oxidizer 1     | Oxidizer 2     | Oxidizer 3       | Oxidizer 4      | Oxidizer 5      | Oxidizer 6      |
| Choose oxidizer type from drop down menu                                         | Simple Thermal | Simple Thermal | Simple Thermal   | Simple Thermal  | Simple Thermal  | Simple Thermal  |
|                                                                                  | Oxidizer       | Oxidizer       | Oxidizer         | Oxidizer        | Oxidizer        | Oxidizer        |
| Choose fuel type from drop down menu                                             | Natural gas    | Natural gas    | Natural gas      | Natural gas     | Natural gas     | Natural gas     |
| Input waste gas flow rate (scfm)                                                 |                |                |                  |                 |                 |                 |
| Input time running (hours)                                                       |                |                |                  |                 |                 |                 |
| Input waste gas inlet temperature (F)                                            |                |                |                  |                 |                 |                 |
| Input contaminant concentration (ppmV)                                           |                |                |                  |                 |                 |                 |
| *(Electric blowers are included in the analysis)                                 |                | •              | •                |                 | -               | -               |

| WATER CONSUMPTION                                                      | Treatment System 1 | Treatment System 2 | Treatment System 3 | Treatment System 4 | Treatment System 5 | Treatment System 6 |
|------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Input total water consumed from potable water treatment facility (gal) |                    |                    |                    |                    |                    |                    |
| Input total water disposed to wastewater treatment facility (gal)      |                    |                    |                    |                    |                    |                    |
|                                                                        |                    |                    |                    |                    |                    |                    |
| ONSITE LAND AND WATER RESOURCE CONSUMPTION                             | Entire Site 1      | Entire Site 2      | Entire Site 3      | Entire Site 4      | Entire Site 5      | Entire Site 6      |
| Input volume of topsoil brought to site (cubic yards)                  |                    |                    |                    |                    |                    |                    |
| Input volume of groundwater or surface water lost (gal)                |                    |                    |                    |                    |                    |                    |

| SITE INFORMATION               |                        |
|--------------------------------|------------------------|
| User Name and Date             | Tetra Tech - July 2012 |
| Site Name                      | Middle River Complex   |
| Remedial Alternative Name      | MRC-Combined           |
| Alternative File Name (will be |                        |
| used in graphics and as file   |                        |
| name; avoid invalid            | Alt4I                  |
| characters, e.g. ? : " / \ <   |                        |
| >   * )                        |                        |
| Choose electricity region      | RFCE                   |

Do you want to reload a previously saved remedial alternative in the SiteWise input sheet? RA\_Alt5\_NoFR\_1 \\eciseafile\groups\SedMgmt -Refresh List

Yes

Reset all input values on all worksheets to default

Reset All Values on All Sheets

-= Status =-

Done Loading!









Sitewise I ool for Green and Sustainable Remediation has been developed jointly by United States (US) Navy, United States Army Corps of Engineers (USACE), and Battelle. This tool is made available on an as-is basis without guarantee or warranty of any kind, express or implied. The US Navy, USACE, Battelle, the authors, and the reviewers accept no liability resulting from the use of this tool or its documentation; nor does the above warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof. Implementation of SiteWise<sup>™</sup> tool and interpretation or use of the results provided by the tool are the sole responsibility of the user. The tool is provided free of charge for everyone to use, but is not supported in any way by the US Navy, USACE, or Battelle.

#### BASELINE INFORMATION

| REMEDIAL ACTION CONSTRUCTION COST                  | Entire Site |
|----------------------------------------------------|-------------|
| Input total remedial action construction cost (\$) | 21,090,719  |

## MATERIAL PRODUCTION

| /ELL MATERIALS                                                    | Well Type 1       | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6      |
|-------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|
| Input number of wells                                             |                   |                   |                   |                   |                   |                  |
| Input depth of wells (ft)                                         |                   |                   |                   |                   |                   |                  |
| Choose specific material schedule from drop down menu             | Sch 40 PVC        | Sch 40 PVC       |
| Choose well diameter (in) from drop down menu                     | 1/8               | 1/8               | 1/8               | 1/8               | 1/8               | 1/8              |
|                                                                   |                   |                   |                   |                   |                   |                  |
| REATMENT CHEMICALS & MATERIALS                                    | Treatment 1       | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6      |
| Input number of injection points                                  |                   |                   |                   |                   |                   |                  |
| Choose material type from drop down menu                          | Hydrogen Peroxide | Hydrogen Peroxic |
| Input amount of material injected at each point (pounds dry mass) |                   |                   |                   |                   |                   |                  |
| Input number of injections per injection point                    |                   |                   |                   |                   |                   |                  |
|                                                                   |                   |                   |                   |                   |                   |                  |
| REATMENT MEDIA                                                    | Treatment 1       | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6      |
| Input weight of media used (lbs)                                  |                   |                   |                   |                   |                   |                  |
| Choose media type from drop down menu                             | Virgin GAC        | Virgin GAC       |
|                                                                   |                   |                   |                   |                   |                   |                  |
| ONSTRUCTION MATERIALS                                             | Material 1        | Material 2        | Material 3        | Material 4        | Material 5        | Material 6       |
| Choose material type from drop down menu                          | HDPE Liner        | HDPE Liner       |
| Input area of material (ft2)                                      |                   |                   |                   |                   |                   |                  |
| Input depth of material (ft)                                      |                   |                   |                   |                   |                   |                  |
|                                                                   |                   |                   |                   |                   |                   |                  |
| ELL DECOMMISSIONING                                               | Well Type 1       | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6      |
| Input number of wells                                             |                   |                   |                   |                   |                   |                  |
| Input depth of wells (ft)                                         |                   |                   |                   |                   |                   |                  |
| Input well diameter (in)                                          |                   |                   |                   |                   |                   |                  |
| Choose material from drop down menu                               | Soil              | Soil              | Soil              | Soil              | Soil              | Soil             |
|                                                                   |                   |                   |                   |                   |                   |                  |
| ULK MATERIAL QUANTITIES                                           | Material 1        | Material 2        | Material 3        | Material 4        | Material 5        | Material 6       |
| Choose material from drop down menu                               | Acetic Acid       | Acetic Acid      |
| Choose units of material quantity from drop down menu             | pounds            | pounds            | pounds            | pounds            | pounds            | pounds           |
| Input material quantity                                           |                   |                   |                   |                   |                   |                  |

#### TRANSPORTATION

| PERSONNEL TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
|------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose vehicle type from drop down menu*                                                       | Cars           | Cars           | Cars           | Cars           | Cars           | Cars           |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input distance traveled per trip (miles)                                                       |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input estimated vehicular fuel economy (mi/gal) (Input only if known for the vehicle selected, |                |                |                |                |                |                |
| otherwise a default will be used by the tool)                                                  |                |                |                |                |                |                |
| *For vehicle type 'Other' please enter values in Table 2b in the Look Up Table tab.            |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - AIR                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input number of flights taken                                                                  |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - RAIL                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Choose vehicle type from drop down menu                                                        | Intercity rail |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input total distance traveled (miles) with a given load. Add return trip(s) with no load in a  |                |                |                |                |                |                |
| separate column if applicable.                                                                 |                |                |                |                |                |                |
| Input weight of equipment transported per truck load (tons)                                    |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - AIR                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input weight of equipment transported (tons)                                                   |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - RAIL                                                                | Tain 4         | Trin 0         | Trin 0         | Trin 4         | Tain C         | Trin C         |
| EQUIPMENT TRANSPORTATION - RAIL<br>Input distance traveled (miles)                             | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles) Input weight of load (tons)                                    |                |                |                |                |                | <u> </u>       |
| input weight or load (tons)                                                                    |                | I              | I              |                | I              | ·              |
| EQUIPMENT TRANSPORTATION - WATER                                                               | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (mile)                                                                 | i ip i         | 1110 2         | inh 2          | 1110 4         | 1105           | 1110.0         |
| Input distance raveled (mile)                                                                  |                |                |                |                |                | <u> </u>       |
| input weight of load (tons)                                                                    |                | 1              | 1              |                | 1              | ·              |

| EARTHWORK                                                                         | Equipment 1    | Equipment 2    | Equipment 3 | Equipment 4 | Equipment 5 | Equipment 6 |
|-----------------------------------------------------------------------------------|----------------|----------------|-------------|-------------|-------------|-------------|
| Choose earthwork equipment type from drop down menu                               | Loader/Backhoe | Loader/Backhoe | Dozer       | Dozer       | Dozer       | Dozer       |
| Choose fuel type from drop down menu                                              | Diesel         | Diesel         | Diesel      | Diesel      | Diesel      | Diesel      |
| Input volume of material to be removed (yd3)                                      | 62,890         | 19,300         |             |             |             |             |
| Will DIESEL-run equipment be retrofitted with a particulate reduction technology? | No             | No             | No          | No          | No          | No          |
|                                                                                   |                |                |             |             |             |             |
| DRILLING                                                                          | Event 1        | Event 2        | Event 3     | Event 4     | Event 5     | E A         |
|                                                                                   |                |                |             |             | Lvent J     | Event 6     |
| Input number of drilling locations                                                |                |                |             |             | Lvent 5     | Event 6     |
|                                                                                   | Direct Push    | Direct Push    | Direct Push | Direct Push | Direct Push | Direct Push |
| Input number of drilling locations                                                | Direct Push    |                |             |             |             |             |

|              | Choose fuel type from drop down menu                                                                                                                                 | Diesel                           | 25                               | Diesel<br>85                     | 25                               | Diesel                           | Diesel                           |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| INTERNAL (   | COMBUSTION ENGINES<br>Choose fuel type from drop down menu                                                                                                           | Engine 1<br>Diesel               | Engine 2<br>Diesel               | Engine 3<br>Diesel               | Engine 4<br>Diesel               | Engine 5<br>Diesel               | Engine 6<br>Diesel               |
|              | Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)                         |                                  |                                  |                                  |                                  |                                  |                                  |
|              | Input volume (yd3)<br>Input production rate (yd3/hr)                                                                                                                 |                                  |                                  |                                  |                                  |                                  |                                  |
| MIXING EQU   | JIPMENT<br>Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                       | Mixer 1<br>Gasoline<br>1 to 3    | Mixer 2<br>Gasoline<br>1 to 3    | Mixer 3<br>Gasoline<br>1 to 3    | Mixer 4<br>Gasoline<br>1 to 3    | Mixer 5<br>Gasoline<br>1 to 3    | Mixer 6<br>Gasoline<br>1 to 3    |
| MINING       | Input time available (work days)                                                                                                                                     |                                  |                                  |                                  | F#*                              |                                  |                                  |
|              | Choose fuel type from drop down menu<br>Input area (ft2)                                                                                                             | Gasoline                         | Gasoline                         | Gasoline                         | Gasoline                         | Gasoline                         | Gasoline                         |
| CAPPING E    | Choose stabilization equipment type from drop down menu                                                                                                              | Equipment 1<br>Roller            | Equipment 2<br>Roller            | Equipment 3<br>Roller            | Equipment 4<br>Roller            | Equipment 5<br>Roller            | Equipment 6<br>Roller            |
|              | Input depth of tillage (in)                                                                                                                                          |                                  |                                  |                                  |                                  | İ                                |                                  |
|              | Choose soil conduion nom and down menu<br>Choose soil type from drop down menu<br>Input time available (work days)                                                   | Clay Soil                        |
|              | Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soli condition from drop down menu                                                       | Gasoline<br>Firm untilled soil   |
| AGRICULTU    | IRAL EQUIPMENT                                                                                                                                                       | Tillage Tractor 1                | Tillage Tractor 2                | Tillage Tractor 3                | Tillage Tractor 4                | Tillage Tractor 5                | Tillage Tractor 6                |
|              | Choose horsepower range from drop down menu<br>Input operating hours (hr)                                                                                            | 0 to 1                           |
| GENERATO     | Choose fuel type from drop down menu                                                                                                                                 | Generator 1<br>Gasoline          | Generator 2<br>Gasoline          | Generator 3<br>Gasoline          | Generator 4<br>Gasoline          | Generator 5<br>Gasoline          | Generator 6<br>Gasoline          |
| 051          | Electricity Region                                                                                                                                                   | RFCE                             | RFCE                             | RFCE                             | RFCE                             | RFCE                             | RFCE                             |
| Region       |                                                                                                                                                                      |                                  |                                  |                                  |                                  |                                  |                                  |
| Method 2 - E | LECTRICAL USAGE IS KNOWN<br>Input equipment electrical usage, if known (kWh)                                                                                         | 0                                | 0                                | 0                                | 0                                | 0                                | 0                                |
|              | Input equipment load (default already present, user overhee possible)                                                                                                | 0.85                             | 0.85                             | 0.85                             | 0.85                             | 0.85                             | 0.85                             |
|              | Input number or equipments operating<br>Input operating time for each equipment (hrs)<br>Input equipment load (default already present, user override possible)      | 0                                | 0                                | 0 0 0.85                         | 0 0.85                           | 0                                | 0                                |
| weinoù 1 - N | IAME PLATE SPECIFICATIONS ARE KNOWN Input equipment horsepower (hp) Input number of equipments operating                                                             | 0                                | 0                                | 0                                | 0                                | 0                                | 0                                |
| Mothed 4     | Choose type of equipment from drop down<br>Choose method from drop down                                                                                              | Blower<br>Method 1               |
|              | all user input values for unused equipment columns or unused methods OMPRESSOR, MIXER, AND OTHER EQUIPMENT                                                           | Equipment 1                      | Equipment 2                      | Equipment 3                      | Equipment 4                      | Equipment 5                      | Equipment 6                      |
|              | e of equipment, select only one of the methods to calculate energy and GHG emissions                                                                                 |                                  |                                  |                                  |                                  |                                  |                                  |
|              | Input estimated fuel consumption rate (gal/hr) (Input only if known for the pump selected,<br>otherwise a default will be used by the tool)                          |                                  |                                  |                                  |                                  |                                  |                                  |
|              | Choose horsepower range from drop down menu<br>Equipment operating hours (hrs)                                                                                       | 2-Stroke: 0 to 1                 |
| DIESEL AND   | O GASOLINE PUMPS<br>Choose fuel type from drop down menu                                                                                                             | Pump 1<br>Gasoline               | Pump 2<br>Gasoline               | Pump 3<br>Gasoline               | Pump 4<br>Gasoline               | Pump 5<br>Gasoline               | Pump 6<br>Gasoline               |
| Region       | Electricity Region                                                                                                                                                   | RFCE                             | RFCE                             | RFCE                             | RFCE                             | RFCE                             | RFCE                             |
| Region       | Input pump motor efficiency (default already present, user override possible)                                                                                        | 0.85                             | 0.85                             | 0.85                             | 0.85                             | 0.85                             | 0.85                             |
|              | Input operating time for each pump (hrs)<br>Input pump load (default already present, user override possible)                                                        | 0                                | 0                                | 0 0.85                           | 0                                | 0                                | 0                                |
|              | Input pump horsepower (hp) Input number of pumps operating                                                                                                           | 0                                | 0                                | 0                                | 0                                | 0                                | 0                                |
| Method 3 - N | IAME PLATE SPECIFICATIONS ARE KNOWN                                                                                                                                  |                                  |                                  |                                  |                                  |                                  |                                  |
|              | Pump efficiency times motor efficiency (default already present, user override possible)<br>Input specific gravity (default already present, user override possible) | 0.51                             | 0.51                             | 0.51                             | 0.51<br>1                        | 0.51                             | 0.51                             |
|              | Input total need (t)<br>Input number of pumps operating<br>Input operating time for each pump (hrs)                                                                  | 0                                | 0                                | 0                                | 0                                | 0                                | 0                                |
| Method 2 - P | Input flow rate (gpm) Input flow rate (gpm) Input total head (ft)                                                                                                    | 0                                | 0                                | 0                                | 0                                | 0                                | 0                                |
| Mothod 2 P   | Input pump electrical usage (KWh)                                                                                                                                    | 0                                | 0                                | 0                                | 0                                | 0                                | 0                                |
| Method 1 - E | Choose method from drop down ELECTRICAL USAGE IS KNOWN                                                                                                               | Method 1                         |
| PUMP OPER    |                                                                                                                                                                      | Pump 1                           | Pump 2                           | Pump 3                           | Pump 4                           | Pump 5                           | Pump 6                           |
|              | mp, select only one of the three methods to calculate energy and GHG emissions                                                                                       |                                  |                                  |                                  |                                  |                                  |                                  |
|              | Choose horsepower range from drop down menu<br>Input operating hours (hr)                                                                                            | 1 to 3                           | 1 to 3                           | 1 10 3                           | 1 10 3                           | 1 to 3                           | 1 10 3                           |
|              | Choose fuel type from drop down menu<br>Choose homopower concerned from drop down menu                                                                               | Trencher 1<br>Gasoline<br>1 to 3 | Trencher 2<br>Gasoline<br>1 to 3 | Trencher 3<br>Gasoline<br>1 to 3 | Trencher 4<br>Gasoline<br>1 to 3 | Trencher 5<br>Gasoline<br>1 to 3 | Trencher 6<br>Gasoline<br>1 to 3 |

| Input N2O emission (metric ton CO2 e) |  |
|---------------------------------------|--|
| Input CH4 emission (metric ton CO2 e) |  |
| Input NOx emission (metric ton)       |  |
| Input SOx emission (metric ton)       |  |
| Input PM10 emission (metric ton)      |  |
| Input fatality risk                   |  |
| Input injury risk                     |  |

| ESIDUE DISPOSAL/RECYCLING                                                         | Soil Residue               | Residual Water             | Material Residue           | Other Residuals            | Other Residuals            | Other Residuals            |
|-----------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?  | No                         | No                         | No                         | No                         | No                         | No                         |
| Input weight of the waste transported to<br>landfill or recycling per trip (tons) | 25                         |                            |                            |                            |                            |                            |
| Choose fuel used from drop down menu                                              | Diesel                     | Gasoline                   | Gasoline                   | Gasoline                   | Gasoline                   | Gasoline                   |
| Input total number of trips                                                       | 4200                       |                            |                            |                            |                            |                            |
| Input number of miles per trip                                                    | 250                        |                            |                            |                            |                            |                            |
|                                                                                   |                            |                            |                            |                            |                            |                            |
| ANDFILL OPERATIONS                                                                | Operation 1                | Operation 2                | Operation 3                | Operation 4                | Operation 5                | Operation 6                |
| Choose landfill type for waste disposal                                           | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              |
| Input amount of waste disposed in landfill (tons)                                 | 94335                      |                            |                            |                            |                            |                            |
| Input landfill methane emissions (metric tons CH4)                                |                            |                            |                            |                            |                            |                            |
|                                                                                   |                            |                            |                            |                            |                            |                            |
| HERMAL/CATALYTIC OXIDIZERS*                                                       | Oxidizer 1                 | Oxidizer 2                 | Oxidizer 3                 | Oxidizer 4                 | Oxidizer 5                 | Oxidizer 6                 |
| Choose oxidizer type from drop down menu                                          | Simple Thermal<br>Oxidizer |
| Choose fuel type from drop down menu                                              | Natural gas                |
| Input waste gas flow rate (scfm)                                                  |                            |                            |                            |                            |                            |                            |
| Input time running (hours)                                                        |                            |                            |                            |                            |                            |                            |
| Input waste gas inlet temperature (F)                                             |                            |                            |                            |                            |                            |                            |
|                                                                                   |                            |                            |                            |                            |                            |                            |

| WATER CONSUMPTION                                                      | Treatment System 1 | Treatment System 2 | Treatment System 3 | Treatment System 4 | Treatment System 5 | Treatment System 6 |
|------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Input total water consumed from potable water treatment facility (gal) |                    |                    |                    |                    |                    |                    |
| Input total water disposed to wastewater treatment facility (gal)      | 3811000            |                    |                    |                    |                    |                    |
|                                                                        |                    |                    |                    |                    |                    |                    |
| ONSITE LAND AND WATER RESOURCE CONSUMPTION                             | Entire Site 1      | Entire Site 2      | Entire Site 3      | Entire Site 4      | Entire Site 5      | Entire Site 6      |
| Input volume of topsoil brought to site (cubic yards)                  |                    |                    |                    |                    |                    |                    |
| Input volume of groundwater or surface water lost (gal)                |                    |                    |                    |                    |                    |                    |

#### BASELINE INFORMATION

| LONGTERM MONITORING COST AND DURATION             | Entire Site |
|---------------------------------------------------|-------------|
| Input total longterm monitoring cost (\$)         | 624,256     |
| Input duration of longterm monitoring (unit time) | 1.0         |

# MATERIAL PRODUCTION

| VELL MATERIALS                                                    | Well Type 1       | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6      |
|-------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|
| Input number of wells                                             |                   |                   |                   |                   |                   |                  |
| Input depth of wells (ft)                                         |                   |                   |                   |                   |                   |                  |
| Choose specific material schedule from drop down menu             | Sch 40 PVC        
| Choose well diameter (in) from drop down menu                     | 1/8               | 1/8               | 1/8               | 1/8               | 1/8               | 1/8              |
|                                                                   |                   |                   |                   |                   |                   |                  |
| REATMENT CHEMICALS & MATERIALS                                    | Treatment 1       | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6      |
| Input number of injection points                                  |                   |                   |                   |                   |                   |                  |
| Choose material type from drop down menu                          | Hydrogen Peroxide | Hydrogen Peroxid |
| Input amount of material injected at each point (pounds dry mass) |                   |                   |                   |                   |                   |                  |
| Input number of injections per injection point                    |                   |                   |                   |                   |                   |                  |
|                                                                   |                   |                   |                   |                   |                   |                  |
| REATMENT MEDIA                                                    | Treatment 1       | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6      |
| Input weight of media used (lbs)                                  |                   |                   |                   |                   |                   |                  |
| Choose media type from drop down menu                             | Virgin GAC        
|                                                                   |                   |                   |                   |                   |                   |                  |
| CONSTRUCTION MATERIALS                                            | Material 1        | Material 2        | Material 3        | Material 4        | Material 5        | Material 6       |
| Choose material type from drop down menu                          | HDPE Liner        
| Input area of material (ft2)                                      |                   |                   |                   |                   |                   |                  |
| Input depth of material (ft)                                      |                   |                   |                   |                   |                   |                  |
|                                                                   |                   |                   |                   |                   |                   |                  |
| /ELL DECOMMISSIONING                                              | Well Type 1       | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6      |
| Input number of wells                                             |                   |                   |                   |                   |                   |                  |
| Input depth of wells (ft)                                         |                   |                   |                   |                   |                   |                  |
| Input well diameter (in)                                          |                   |                   |                   |                   |                   |                  |
| Choose material from drop down menu                               | Soil              | Soil              | Soil              | Soil              | Soil              | Soil             |
|                                                                   |                   |                   |                   |                   |                   |                  |
| ULK MATERIAL QUANTITIES                                           | Material 1        | Material 2        | Material 3        | Material 4        | Material 5        | Material 6       |
| Choose material from drop down menu                               | Acetic Acid       
| Choose units of material quantity from drop down menu             | pounds            | pounds            | pounds            | pounds            | pounds            | pounds           |
| Input material guantity                                           |                   |                   |                   |                   |                   |                  |

#### TRANSPORTATION

| PERSONNEL TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
|------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose vehicle type from drop down menu*                                                       | Cars           | Cars           | Cars           | Cars           | Cars           | Cars           |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input distance traveled per trip (miles)                                                       |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input estimated vehicular fuel economy (mi/gal) (Input only if known for the vehicle selected, |                |                |                |                |                |                |
| otherwise a default will be used by the tool)                                                  |                |                |                |                |                |                |
| *For vehicle type 'Other' please enter values in Table 2b in the Look Up Table tab.            |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - AIR                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input number of flights taken                                                                  |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - RAIL                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Choose vehicle type from drop down menu                                                        | Intercity rail |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input total distance traveled (miles) with a given load. Add return trip(s) with no load in a  |                |                |                |                |                |                |
| separate column if applicable.                                                                 |                |                |                |                |                |                |
| Input weight of equipment transported per truck load (tons)                                    |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - AIR                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input weight of equipment transported (tons)                                                   |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - RAIL                                                                | Tain 4         | Trin 0         | Trin 0         | Trin 4         | Tain C         | Trin C         |
| EQUIPMENT TRANSPORTATION - RAIL<br>Input distance traveled (miles)                             | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles) Input weight of load (tons)                                    |                |                |                |                |                | <u> </u>       |
| input weight or load (tons)                                                                    |                | I              | I              |                | I              | ·              |
| EQUIPMENT TRANSPORTATION - WATER                                                               | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (mile)                                                                 | i ip i         | 1110 2         | inh 2          | 1110 4         | 110.2          | 1110.0         |
| Input distance raveied (mile)                                                                  |                |                |                |                |                | <u> </u>       |
| input weight of load (tons)                                                                    |                | 1              | 1              |                | 1              | ·              |

| EARTHWORK                                                                         | Equipment 1 | Equipment 2            | Equipment 3 | Equipment 4            | Equipment 5            | Equipment 6            |
|-----------------------------------------------------------------------------------|-------------|------------------------|-------------|------------------------|------------------------|------------------------|
| Choose earthwork equipment type from drop down menu                               | Dozer       | Dozer                  | Dozer       | Dozer                  | Dozer                  | Dozer                  |
| Choose fuel type from drop down menu                                              | Diesel      | Diesel                 | Diesel      | Diesel                 | Diesel                 | Diesel                 |
| Input volume of material to be removed (yd3)                                      |             |                        |             |                        |                        |                        |
| Will DIESEL-run equipment be retrofitted with a particulate reduction technology? | No          | No                     | No          | No                     | No                     | No                     |
|                                                                                   |             |                        |             |                        |                        |                        |
| DRILLING                                                                          | Event 1     |                        | E           |                        |                        |                        |
| DRILLING                                                                          | Event       | Event 2                | Event 3     | Event 4                | Event 5                | Event 6                |
| Input number of drilling locations                                                | Event       | Event 2                | Event 3     | Event 4                | Event 5                | Event 6                |
|                                                                                   | Direct Push | Event 2<br>Direct Push | Direct Push | Event 4<br>Direct Push | Event 5<br>Direct Push | Event 6<br>Direct Push |
| Input number of drilling locations                                                |             |                        |             |                        |                        |                        |

| TRENCHING<br>Choose fuel two from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Trencher 1                                                                                                                                                                                                                                                                          | Trencher 2                                                                                                                                                                                                                    | Trencher 3                                                                                                                                                                                                                                 | Trencher 4                                                                                                                                                                                                                                 | Trencher 5                                                                                                                                                                                                                                           | Trencher 6                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gasoline<br>1 to 3                                                                                                                                                                                                                                                                  | Gasoline<br>1 to 3                                                                                                                                                                                                            | Gasoline<br>1 to 3                                                                                                                                                                                                                         | Gasoline<br>1 to 3                                                                                                                                                                                                                         | Gasoline<br>1 to 3                                                                                                                                                                                                                                   | Gasoline<br>1 to 3                                                                                                                                                                                                                                                  |
| Input operating hours (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     |
| For each pump, select only one of the three methods to calculate energy and GHG emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     |
| Enter "0" for all user input values for unused pump columns or unused methods PUMP OPERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pump 1                                                                                                                                                                                                                                                                              | Pump 2                                                                                                                                                                                                                        | Pump 3                                                                                                                                                                                                                                     | Pump 4                                                                                                                                                                                                                                     | Pump 5                                                                                                                                                                                                                                               | Pump 6                                                                                                                                                                                                                                                              |
| Choose method from drop down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Method 1                                                                                                                                                                                                                                                                            | Method 1                                                                                                                                                                                                                      | Method 1                                                                                                                                                                                                                                   | Method 1                                                                                                                                                                                                                                   | Method 1                                                                                                                                                                                                                                             | Method 1                                                                                                                                                                                                                                                            |
| Method 1 - ELECTRICAL USAGE IS KNOWN<br>Input pump electrical usage (KWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     |
| Method 2 - PUMP HEAD IS KNOWN<br>Input flow rate (gpm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                   |
| Input total head (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                   |
| Input number of pumps operating<br>Input operating time for each pump (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                   |
| Pump efficiency times motor efficiency (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.51                                                                                                                                                                                                                                                                                | 0.51                                                                                                                                                                                                                          | 0.51                                                                                                                                                                                                                                       | 0.51                                                                                                                                                                                                                                       | 0.51                                                                                                                                                                                                                                                 | 0.51                                                                                                                                                                                                                                                                |
| Input specific gravity (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                   |
| Method 3 - NAME PLATE SPECIFICATIONS ARE KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>^</u>                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                   |
| Input pump horsepower (hp)<br>Input number of pumps operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                   |
| Input operating time for each pump (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                   | 0 0.85                                                                                                                                                                                                                        | 0<br>0.85                                                                                                                                                                                                                                  | 0<br>0.85                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                    | 0<br>0.85                                                                                                                                                                                                                                                           |
| Input pump load (default already present, user override possible)<br>Input pump motor efficiency (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.85                                                                                                                                                                                                                                                                                | 0.85                                                                                                                                                                                                                          | 0.85                                                                                                                                                                                                                                       | 0.85                                                                                                                                                                                                                                       | 0.85                                                                                                                                                                                                                                                 | 0.85                                                                                                                                                                                                                                                                |
| Desien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     |
| Region<br>Electricity Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RFCE                                                                                                                                                                                                                                                                                | RFCE                                                                                                                                                                                                                          | RFCE                                                                                                                                                                                                                                       | RFCE                                                                                                                                                                                                                                       | RFCE                                                                                                                                                                                                                                                 | RFCE                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dumm 4                                                                                                                                                                                                                                                                              | Dumme A                                                                                                                                                                                                                       | Prove C                                                                                                                                                                                                                                    | Promo é                                                                                                                                                                                                                                    | Promo 6                                                                                                                                                                                                                                              | Dumme A                                                                                                                                                                                                                                                             |
| DIESEL AND GASOLINE PUMPS<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pump 1<br>Gasoline                                                                                                                                                                                                                                                                  | Pump 2<br>Gasoline                                                                                                                                                                                                            | Pump 3<br>Gasoline                                                                                                                                                                                                                         | Pump 4<br>Gasoline                                                                                                                                                                                                                         | Pump 5<br>Gasoline                                                                                                                                                                                                                                   | Pump 6<br>Gasoline                                                                                                                                                                                                                                                  |
| Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-Stroke: 0 to 1                                                                                                                                                                                                                                                                    | 2-Stroke: 0 to 1                                                                                                                                                                                                              | 2-Stroke: 0 to 1                                                                                                                                                                                                                           | 2-Stroke: 0 to 1                                                                                                                                                                                                                           | 2-Stroke: 0 to 1                                                                                                                                                                                                                                     | 2-Stroke: 0 to 1                                                                                                                                                                                                                                                    |
| Equipment operating hours (hrs)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the pump selected,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     |
| otherwise a default will be used by the tool)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                            | l                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                     |
| For each type of equipment, select only one of the methods to calculate energy and GHG emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     |
| Enter "0" for all user input values for unused equipment columns or unused methods<br>BLOWER, COMPRESSOR, MIXER, AND OTHER EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Equipment 1                                                                                                                                                                                                                                                                         | Equipment 0                                                                                                                                                                                                                   | Equipreent 0                                                                                                                                                                                                                               | Equipment 4                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                      | Equipment                                                                                                                                                                                                                                                           |
| Choose type of equipment from drop down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Blower                                                                                                                                                                                                                                                                              | Equipment 2<br>Blower                                                                                                                                                                                                         | Equipment 3<br>Blower                                                                                                                                                                                                                      | Equipment 4<br>Blower                                                                                                                                                                                                                      | Equipment 5<br>Blower                                                                                                                                                                                                                                | Equipment 6<br>Blower                                                                                                                                                                                                                                               |
| Choose method from drop down<br>Method 1 - NAME PLATE SPECIFICATIONS ARE KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Method 1                                                                                                                                                                                                                                                                            | Method 1                                                                                                                                                                                                                      | Method 1                                                                                                                                                                                                                                   | Method 1                                                                                                                                                                                                                                   | Method 1                                                                                                                                                                                                                                             | Method 1                                                                                                                                                                                                                                                            |
| Input equipment horsepower (hp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                   |
| Input number of equipments operating<br>Input operating time for each equipment (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                   |
| Input equipment load (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.85                                                                                                                                                                                                                                                                                | 0.85                                                                                                                                                                                                                          | 0.85                                                                                                                                                                                                                                       | 0.85                                                                                                                                                                                                                                       | 0.85                                                                                                                                                                                                                                                 | 0.85                                                                                                                                                                                                                                                                |
| Input motor efficiency (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.85                                                                                                                                                                                                                                                                                | 0.85                                                                                                                                                                                                                          | 0.85                                                                                                                                                                                                                                       | 0.85                                                                                                                                                                                                                                       | 0.85                                                                                                                                                                                                                                                 | 0.85                                                                                                                                                                                                                                                                |
| Method 2 - ELECTRICAL USAGE IS KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     |
| Input equipment electrical usage, if known (kWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                   |
| Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                             |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                     |
| Electricity Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RFCE                                                                                                                                                                                                                                                                                | RFCE                                                                                                                                                                                                                          | RFCE                                                                                                                                                                                                                                       | RFCE                                                                                                                                                                                                                                       | RFCE                                                                                                                                                                                                                                                 | RFCE                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     |
| GENERATORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Generator 1                                                                                                                                                                                                                                                                         | Generator 2                                                                                                                                                                                                                   | Generator 3                                                                                                                                                                                                                                | Generator 4                                                                                                                                                                                                                                | Generator 5                                                                                                                                                                                                                                          | Generator 6                                                                                                                                                                                                                                                         |
| GENERATORS<br>Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Generator 1<br>Gasoline<br>0 to 1                                                                                                                                                                                                                                                   | Generator 2<br>Gasoline<br>0 to 1                                                                                                                                                                                             | Generator 3<br>Gasoline<br>0 to 1                                                                                                                                                                                                          | Generator 4<br>Gasoline<br>0 to 1                                                                                                                                                                                                          | Generator 5<br>Gasoline<br>0 to 1                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                     |
| Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gasoline                                                                                                                                                                                                                                                                            | Gasoline                                                                                                                                                                                                                      | Gasoline                                                                                                                                                                                                                                   | Gasoline                                                                                                                                                                                                                                   | Gasoline                                                                                                                                                                                                                                             | Generator 6<br>Gasoline                                                                                                                                                                                                                                             |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gasoline                                                                                                                                                                                                                                                                            | Gasoline                                                                                                                                                                                                                      | Gasoline                                                                                                                                                                                                                                   | Gasoline                                                                                                                                                                                                                                   | Gasoline                                                                                                                                                                                                                                             | Generator 6<br>Gasoline                                                                                                                                                                                                                                             |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>ACRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gasoline<br>0 to 1                                                                                                                                                                                                                                                                  | Gasoline<br>0 to 1                                                                                                                                                                                                            | Gasoline<br>0 to 1                                                                                                                                                                                                                         | Gasoline<br>0 to 1                                                                                                                                                                                                                         | Gasoline<br>0 to 1                                                                                                                                                                                                                                   | Generator 6<br>Gasoline<br>0 to 1                                                                                                                                                                                                                                   |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gasoline<br>0 to 1<br>Tillage Tractor 1                                                                                                                                                                                                                                             | Gasoline<br>0 to 1<br>Tillage Tractor 2                                                                                                                                                                                       | Gasoline<br>0 to 1<br>Tillage Tractor 3                                                                                                                                                                                                    | Gasoline<br>0 to 1<br>Tillage Tractor 4                                                                                                                                                                                                    | Gasoline<br>0 to 1<br>Tillage Tractor 5                                                                                                                                                                                                              | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6                                                                                                                                                                                                              |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>ACRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (are)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline                                                                                                                                                                                                                                 | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline                                                                                                                                                                           | Gasoline 0 to 1 Tillage Tractor 3 Gasoline                                                                                                                                                                                                 | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline                                                                                                                                                                                        | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline                                                                                                                                                                                                  | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline                                                                                                                                                                                                  |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil                                                                                                                                                                                                           | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil                                                                                                                                                     | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil                                                                                                                                                                  | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil                                                                                                                                                                  | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil                                                                                                                                                                            | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil                                                                                                                                                                            |
| Choose fuel type from drop down menu Choose horsepower range from drop down menu Input operating hours (hr) AGRICULTURAL EQUIPMENT Choose fuel type from drop down menu Input area to till (aree) Choose soil condition from drop down menu Choose soil type from drop down menu Input time available (work days) Input depth of tillage (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                                                                              | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                        | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                                     | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                                     | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                                               | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                                               |
| Choose fuel type from drop down menu Choose horsepower range from drop down menu Input operating hours (hr) AGRICULTURAL EOUIPMENT Choose fuel type from drop down menu Input area to till (acre) Choose soil condition from drop down menu Choose soil type from drop down menu Input time available (work days) Input depth of tillage (in) CAPPING EOUIPMENT Choose stabilization equipment type from drop down menu Choose stabilization equipment type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 1<br>Roller                                                                                                                                                                     | Gasoline 0 to 1 Tillage Tractor 2 Gasoline Firm untilled soil Clay Soil Equipment 2 Roller                                                                                                                                    | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3<br>Roller                                                                                                                            | Gasoline 0 to 1 Tillage Tractor 4 Gasoline Firm untilled soil Clay Soil Equipment 4 Roller                                                                                                                                                 | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller                                                                                                                                      | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller                                                                                                                                      |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>ACRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (are)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Choose tuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 1                                                                                                                                                                               | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2                                                                                                                         | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3                                                                                                                                      | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4                                                                                                                                      | Gasoline<br>O to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5                                                                                                                                                | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6                                                                                                                                                |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 1<br>Roller                                                                                                                                                                     | Gasoline 0 to 1 Tillage Tractor 2 Gasoline Firm untilled soil Clay Soil Equipment 2 Roller                                                                                                                                    | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3<br>Roller                                                                                                                            | Gasoline 0 to 1 Tillage Tractor 4 Gasoline Firm untilled soil Clay Soil Equipment 4 Roller                                                                                                                                                 | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller                                                                                                                                      | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller                                                                                                                                      |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>ACRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (are)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose suel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline                                                                                                                                                         | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline                                                                                                   | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline                                                                                                                | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline                                                                                                                | Gasoline<br>O to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline                                                                                                                          | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline                                                                                                                          |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>ACRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (are)<br>Choose soil condition from drop down menu<br>Choose soil condition from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline                                                                                                                     | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>Mixer 2<br>Gasoline                                                                            | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline                                                                            | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4<br>Gasoline                                                                                         | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5<br>Gasoline                                                                                                   | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6<br>Gasoline                                                                                                   |
| Choose fuel type from drop down menu Choose horsepower range from drop down menu Input operating hours (hr)  AGRICULTURAL EQUIPMENT Choose fuel type from drop down menu Input area to till (are) Choose soil condition from drop down menu Choose soil type from drop down menu Input time available (work days) Input depth of tillage (in)  CAPPING EQUIPMENT Choose stabilization equipment type from drop down menu Choose stabilization equipment type from drop down menu Input area (ft2) Input time available (work days) Input time available (work days) MIXING EQUIPMENT Choose fuel type from drop down menu | Gasoline 0 to 1 Tillage Tractor 1 Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1                                                                                                                                                                         | Gasoline<br>O to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>Mixer 2                                                                                        | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3                                                                                                     | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4                                                                                                     | Gasoline<br>O to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5                                                                                                               | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6                                                                                                               |
| Choose fuel type from drop down menu Choose horsepower range from drop down menu Input operating hours (hr)  ACRICULTURAL EQUIPMENT Choose fuel type from drop down menu Input area to till (are). Choose soil condition from drop down menu Choose soil type from drop down menu Input time available (work days) Input depth of tillage (in) CAPPING EQUIPMENT Choose stabilization equipment type from drop down menu Choose fuel type from drop down menu Choose stabilization equipment type from drop down menu Choose fuel type from drop down menu Input area (ft2) Input time available (work days) MIXING EQUIPMENT Choose fuel type from drop down menu Input time available (work days) MIXING EQUIPMENT Choose fuel type from drop down menu Choose horsepower range from drop down menu Choose horsepower range from drop down menu Choose horsepower range from drop down menu Choose fuel type from drop down menu Choose fuel type from drop down menu Choose horsepower range from drop down menu Choose horsepower range from drop down menu Choose horsepower range from drop down menu                                                                                                                                                                                                                         | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline                                                                                                                     | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>Mixer 2<br>Gasoline                                                                            | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline                                                                            | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4<br>Gasoline                                                                                         | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5<br>Gasoline                                                                                                   | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6<br>Gasoline                                                                                                   |
| Choose fuel type from drop down menu Choose horsepower range from drop down menu Input operating hours (hr) AGRICULTURAL EQUIPMENT Choose fuel type from drop down menu Input area to till (acre) Choose soil condition from drop down menu Choose soil type from drop down menu Input time available (work days) Input depth of tillage (in) CAPPING EQUIPMENT Choose stabilization equipment type from drop down menu Choose fuel type from drop down menu Input time available (work days) Input depth of tillage (in) CAPPING EQUIPMENT Choose fuel type from drop down menu Input area (ft2) Input time available (work days) MIXING EQUIPMENT Choose fuel type from drop down menu Choose fuel type from drop down menu Input area (ft2) Input time available (work days) MIXING EQUIPMENT Choose horsepower range from drop down menu Choose horsepower range from drop down menu Input voime (vd3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline                                                                                                                     | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>Mixer 2<br>Gasoline                                                                            | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline                                                                            | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4<br>Gasoline                                                                                         | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5<br>Gasoline                                                                                                   | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6<br>Gasoline                                                                                                   |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>ACRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (are)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Input readuction rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gasoline 0 to 1 Tillage Tractor 1 Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3                                                                                                                                                         | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>Mixer 2<br>Gasoline<br>1 to 3                                                                  | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3                                                                               | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3                                                                               | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5<br>Gasoline<br>1 to 3                                                                                         | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3                                                                                         |
| Choose fuel type from drop down menu Choose horsepower range from drop down menu Input operating hours (hr)  AGRICULTURAL EQUIPMENT Choose Suel type from drop down menu Input area to till (acre) Choose soil condition from drop down menu Choose soil type from drop down menu Input time available (work days) Input depth of tillage (in) CAPPING EQUIPMENT Choose stabilization equipment type from drop down menu Choose fuel type from drop down menu Input area (ft2) Input area (ft2) Input time available (work days) MIXING EQUIPMENT Choose fuel type from drop down menu Choose sols borsepower range from drop down menu Input time available (work days) MIXING EQUIPMENT Choose fuel type from drop down menu Choose horsepower range from drop down menu Input volume (vd3) Input reduction rate (yd3/hr) Input selimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline                                                                                                                     | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>Mixer 2<br>Gasoline                                                                            | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline                                                                            | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4<br>Gasoline                                                                                         | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5<br>Gasoline                                                                                                   | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6<br>Gasoline                                                                                                   |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>ACRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (are)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Input troduction rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input teiconsumption rate (gal/hr or scf/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gasoline 0 to 1 Tillage Tractor 1 Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 5                                                                                                                                       | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>1 to 3<br>Engine 2                                                                             | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Engine 3                                                                   | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>1 to 3<br>Engine 4                                                                                          | Gasoline O to 1 Tillage Tractor 5 Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3 Engine 5 Engine 5                                                                                                        | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Engine 6                                                                             |
| Choose fuel type from drop down menu Choose horsepower range from drop down menu Input operating hours (hr)  ACRICULTURAL EQUIPMENT Choose fuel type from drop down menu Input area to till (are) Choose soil type from drop down menu Choose soil type from drop down menu Input time available (work days) Input depth of tillage (in) CAPPING EQUIPMENT Choose stabilization equipment type from drop down menu Choose stabilization equipment type from drop down menu Input area (ft2) Input time available (work days) MIXING EQUIPMENT Choose fuel type from drop down menu Input area (ft2) Input time available (work days) MIXING EQUIPMENT Choose fuel type from drop down menu Choose stabilization equipment type from drop down menu Input area (ft2) Input time available (work days) MIXING EQUIPMENT Choose fuel type from drop down menu Input volume (yd3) Input production rate (yd3hr) Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool) INTERNAL COMBUSTION ENGINES Choose fuel type from drop down menu Input stimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>Engine 1<br>Diesel                                                                                                  | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>1 to 3<br>Engine 2                                                                             | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Engine 3                                                                   | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>1 to 3<br>Engine 4                                                                                          | Gasoline O to 1 Tillage Tractor 5 Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3 Engine 5 Engine 5                                                                                                        | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Engine 6                                                                             |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (are)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose tuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Input roduction rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input type type from drop down menu<br>Input tue consumption rate (gal/hr or sc/hr)<br>Input operating hours (hr)<br>OTHER FUELED EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gasoline 0 to 1  Tillage Tractor 1 Gasoline Firm untilled soil Clay Soil  Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3  Engine 1 Diesel 5 40 Fuel 1                                                                                                                          | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>Mixer 2<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>Fuel 2                                  | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Engine 3<br>Diesel<br>Fuel 3                                               | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>Fuel 4                                               | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>1 to 3<br>Engine 5<br>Diesel<br>Fuel 5                                                                                | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>1 to 3<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6                                                         |
| Choose fuel type from drop down menu Choose horsepower range from drop down menu Input operating hours (hr)  ACRICULTURAL EQUIPMENT Choose fuel type from drop down menu Input area to till (are) Choose soil type from drop down menu Choose soil type from drop down menu Input time available (work days) Input depth of tillage (in) CAPPING EQUIPMENT Choose stabilization equipment type from drop down menu Choose stabilization equipment type from drop down menu Input area (ft2) Input time available (work days) MIXING EQUIPMENT Choose fuel type from drop down menu Input area (ft2) Input time available (work days) MIXING EQUIPMENT Choose fuel type from drop down menu Choose stabilization equipment type from drop down menu Input area (ft2) Input time available (work days) MIXING EQUIPMENT Choose fuel type from drop down menu Input volume (yd3) Input production rate (yd3hr) Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool) INTERNAL COMBUSTION ENGINES Choose fuel type from drop down menu Input stimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>Engine 1<br>Diesel<br>5<br>40                                                                                       | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>Mixer 2<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel                                            | Gasoline<br>0 to 1<br>7illage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Engine 3<br>Diesel                                            | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel                                                         | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5<br>Gasoline<br>1 to 3<br>Engine 5<br>Diesel                                                                   | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel                                                                   |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (are).<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Input roduction rate (yd3/hr)<br>Input production rate (yd3/hr)<br>Input stimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input type type from drop down menu<br>Input uperating hours (hr)<br>OTHER FUELED EQUIPMENT<br>Choose fuel type from drop down menu<br>Input volume (scf for Natural gas, gallons for all others)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gasoline 0 to 1  Tillage Tractor 1 Gasoline  Firm untilled soil Clay Soil  Equipment 1 Roller Gasoline  Mixer 1 Gasoline 1 to 3  Engine 1 Diesel 5 40  Fuel 1 Natural gas                                                                                                           | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>Mixer 2<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>Fuel 2<br>Natural gas                   | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Engine 3<br>Diesel<br>Fuel 3<br>Natural gas                                | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>Fuel 4<br>Natural gas                   | Gasoline O to 1 Tillage Tractor 5 Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas                                                                                       | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>1 to 3<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6<br>Natural gas                                          |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (are)<br>Choose soil type from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu<br>Input area (ft2)<br>Input area (ft2)<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Choose horsepower range from drop down menu<br>Input semated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input fuel consumption rate (gal/hr) or scf/hr)<br>Input operating hours (hr)<br>OTHER FUELED EQUIPMENT<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gasoline 0 to 1  Tillage Tractor 1 Gasoline Firm untilled soil Clay Soil  Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3  Engine 1 Diesel 5 40 Fuel 1 Natural gas Occupation 1 Construction laborers                                                                           | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>Mixer 2<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>Fuel 2                                  | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>Mixer 3<br>Gasoline<br>1 to 3<br>Engine 3<br>Diesel<br>Fuel 3                                               | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>Fuel 4                                               | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>1 to 3<br>Engine 5<br>Diesel<br>Fuel 5                                                                                | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>1 to 3<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6                                                         |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose soil condition from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil condition from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Choose horsepower range from drop down menu<br>Input volume (yd3)<br>Input production rate (yd3/hr)<br>Input semated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input uel consumption rate (gal/hr) or sd/hr)<br>Input operating hours (hr)<br>OTHER FUELED EQUIPMENT<br>Choose fuel type from drop down menu<br>Input volume (scf for Natural gas, gallons for all others)<br>OPERATOR LABOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gasoline<br>0 to 1<br>7illage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>1 to 3<br>Engine 1<br>Diesel<br>5<br>40<br>Fuel 1<br>Natural gas                                                                                     | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>Fuel 2<br>Natural gas<br>Occupation 2             | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>1 to 3<br>Diesel<br>Engine 3<br>Diesel<br>Fuel 3<br>Natural gas<br>Occupation 3                | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>Fuel 4<br>Natural gas<br>Occupation 4                | Gasoline O to 1  Tillage Tractor 5 Gasoline Firm untilled soil Clay Soil  Equipment 5 Roller Gasoline  Mixer 5 Gasoline 1 to 3  Engine 5 Diesel Fuel 5 Natural gas Occupation 5                                                                      | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6<br>Natural gas                                          |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>ACRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (are)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Input production rate (yd3/hr)<br>Input production rate (yd3/hr)<br>Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input fuel consumption rate (gal/hr or scf/hr)<br>Input operating hours (hr)<br>OTHER FUELED EQUIPMENT<br>Choose coupation from drop down menu<br>Input volume (scf for Natural gas, gallons for all others)<br>OPERATOR LABOR<br>Choose fuel type from drop down menu<br>Input total time worked onsite (hours)<br>LABORATORY ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gasoline 0 to 1  Tillage Tractor 1 Gasoline Firm untilled soil Clay Soil  Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3  Engine 1 Diesel 5 40 Fuel 1 Natural gas Occupation 1 Construction laborers                                                                           | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>Fuel 2<br>Natural gas<br>Occupation 2             | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>1 to 3<br>Diesel<br>Engine 3<br>Diesel<br>Fuel 3<br>Natural gas<br>Occupation 3                | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>Mixer 4<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>Fuel 4<br>Natural gas<br>Occupation 4                | Gasoline O to 1  Tillage Tractor 5 Gasoline Firm untilled soil Clay Soil  Equipment 5 Roller Gasoline  Mixer 5 Gasoline 1 to 3  Engine 5 Diesel Fuel 5 Natural gas Occupation 5                                                                      | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6<br>Natural gas                                          |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (are)<br>Choose soil type from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Chooses fuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Input volume (yd3)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENCINES<br>Choose fuel type from drop down menu<br>Input tuel consumption rate (gal/hr or scf/hr)<br>Input top operating hours (hr)<br>OTHER FUELED EQUIPMENT<br>Choose fuel type from drop down menu<br>Input volume (scf for Natural gas, gallons for all others)<br>OPERATOR LABOR<br>Choose cocupation from drop-down menu<br>Input total time worked onsite (hours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>Engine 1<br>Diesel<br>5<br>40<br>Fuel 1<br>Natural gas<br>Occupation 1<br>Construction laborers<br>120 | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>Fuel 2<br>Natural gas<br>Occupation 2<br>Construction laborers | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>1 to 3<br>Engine 3<br>Diesel<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5<br>Gasoline<br>1 to 3<br>Engine 5<br>Diesel<br>Fuel 5<br>Natural gas<br>Occupation 5<br>Construction laborers | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6<br>Natural gas<br>Occupation 6<br>Construction laborers |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>ACRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (are)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Input production rate (yd3/hr)<br>Input production rate (yd3/hr)<br>Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input fuel consumption rate (gal/hr or scf/hr)<br>Input operating hours (hr)<br>OTHER FUELED EQUIPMENT<br>Choose coupation from drop down menu<br>Input volume (scf for Natural gas, gallons for all others)<br>OPERATOR LABOR<br>Choose fuel type from drop down menu<br>Input total time worked onsite (hours)<br>LABORATORY ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>Engine 1<br>Diesel<br>5<br>40<br>Fuel 1<br>Natural gas<br>Occupation 1<br>Construction laborers<br>120 | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>Fuel 2<br>Natural gas<br>Occupation 2<br>Construction laborers | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>1 to 3<br>Engine 3<br>Diesel<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5<br>Gasoline<br>1 to 3<br>Engine 5<br>Diesel<br>Fuel 5<br>Natural gas<br>Occupation 5<br>Construction laborers | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6<br>Natural gas<br>Occupation 6<br>Construction laborers |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (are)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Input readuction rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu<br>Input type consumption rate (gal/hr or scf/hr)<br>Input operating hours (hr)<br>OTHER FUELED EQUIPMENT<br>Choose sculation from drop down menu<br>Input volume (scf for Natural gas, gallons for all others)<br>OPERATOR LABOR<br>Choose scupation from drop-down menu<br>Input total time worked onsite (hours)<br>LABORATORY ANALYSIS<br>Input dollars spent on laboratory analysis (\$)<br>OTHER KNOWN ONSITE ACTIVITIES<br>Input energy usage (MMBTU)                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>Engine 1<br>Diesel<br>5<br>40<br>Fuel 1<br>Natural gas<br>Occupation 1<br>Construction laborers<br>120              | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>Fuel 2<br>Natural gas<br>Occupation 2<br>Construction laborers | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>1 to 3<br>Engine 3<br>Diesel<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5<br>Gasoline<br>1 to 3<br>Engine 5<br>Diesel<br>Fuel 5<br>Natural gas<br>Occupation 5<br>Construction laborers | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6<br>Natural gas<br>Occupation 6<br>Construction laborers |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu<br>Input operating hours (hr)<br>AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (aree)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>CAPPING EQUIPMENT<br>Choose stabilization equipment type from drop down menu<br>Choose fuel type from drop down menu<br>Input area (ft2)<br>Input time available (work days)<br>MIXING EQUIPMENT<br>Choose fuel type from drop down menu<br>Choose fuel type from drop down menu<br>Input area (ft2)<br>Input production rate (yd3/hr)<br>Input production rate (yd3/hr)<br>Input production rate (yd3/hr)<br>Input getimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected,<br>otherwise a default will be used by the tool)<br>INTERNAL COMBUSTION ENGINES<br>Chooses fuel type from drop down menu<br>Input tuel consumption rate (gal/hr) or sc/hr)<br>Input getimated fuel onsumption rate (gal/hr) or sc/hr)<br>Input operating hours (hr)<br>OTHER FUELED EQUIPMENT<br>Chooses occupation from drop down menu<br>Input volume (scf for Natura] gas, gallons for all others)<br>OPERATOR LABOR<br>Chooses occupation from drop-down menu<br>Input total time worked onsite (hours)<br>LABORATORY ANALYSIS<br>Input dollars spent on laboratory analysis (\$)<br>OTHER KNOWN ONSITE ACTIVITIES                                                                                                                                                                                                                                                                                                                                                                                                                                | Gasoline<br>0 to 1<br>Tillage Tractor 1<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1<br>Gasoline<br>1 to 3<br>Engine 1<br>Diesel<br>5<br>40<br>Fuel 1<br>Natural gas<br>Occupation 1<br>Construction laborers<br>120              | Gasoline<br>0 to 1<br>Tillage Tractor 2<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 2<br>Roller<br>Gasoline<br>1 to 3<br>Engine 2<br>Diesel<br>Fuel 2<br>Natural gas<br>Occupation 2<br>Construction laborers | Gasoline<br>0 to 1<br>Tillage Tractor 3<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline<br>1 to 3<br>Engine 3<br>Diesel<br>Fuel 3<br>Natural gas<br>Occupation 3<br>Construction laborers | Gasoline<br>0 to 1<br>Tillage Tractor 4<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline<br>1 to 3<br>Engine 4<br>Diesel<br>Fuel 4<br>Natural gas<br>Occupation 4<br>Construction laborers | Gasoline<br>0 to 1<br>Tillage Tractor 5<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5<br>Gasoline<br>1 to 3<br>Engine 5<br>Diesel<br>Fuel 5<br>Natural gas<br>Occupation 5<br>Construction laborers | Generator 6<br>Gasoline<br>0 to 1<br>Tillage Tractor 6<br>Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>1 to 3<br>Engine 6<br>Diesel<br>Fuel 6<br>Natural gas<br>Occupation 6<br>Construction laborer                         |

| Input N2O emission (metric ton CO2 e) |  |
|---------------------------------------|--|
| Input CH4 emission (metric ton CO2 e) |  |
| Input NOx emission (metric ton)       |  |
| Input SOx emission (metric ton)       |  |
| Input PM10 emission (metric ton)      |  |
| Input fatality risk                   |  |
| Input injury risk                     |  |

| ESIDUE DISPOSAL/RECYCLING                                                        | Soil Residue   | Residual Water | Material Residue | Other Residuals | Other Residuals | Other Residuals |
|----------------------------------------------------------------------------------|----------------|----------------|------------------|-----------------|-----------------|-----------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? | No             | No             | No               | No              | No              | No              |
| Input weight of the waste transported to                                         |                |                |                  |                 |                 |                 |
| landfill or recycling per trip (tons)                                            |                |                |                  |                 |                 |                 |
| Choose fuel used from drop down menu                                             | Gasoline       | Gasoline       | Gasoline         | Gasoline        | Gasoline        | Gasoline        |
| Input total number of trips                                                      |                |                |                  |                 |                 |                 |
| Input number of miles per trip                                                   |                |                |                  |                 |                 |                 |
|                                                                                  |                |                |                  |                 |                 |                 |
| ANDFILL OPERATIONS                                                               | Operation 1    | Operation 2    | Operation 3      | Operation 4     | Operation 5     | Operation 6     |
| Choose landfill type for waste disposal                                          | Non-Hazardous  | Non-Hazardous  | Non-Hazardous    | Non-Hazardous   | Non-Hazardous   | Non-Hazardous   |
| Input amount of waste disposed in landfill (tons)                                |                |                |                  |                 |                 |                 |
| Input landfill methane emissions (metric tons CH4)                               |                |                |                  |                 |                 |                 |
|                                                                                  |                |                |                  |                 |                 |                 |
| HERMAL/CATALYTIC OXIDIZERS*                                                      | Oxidizer 1     | Oxidizer 2     | Oxidizer 3       | Oxidizer 4      | Oxidizer 5      | Oxidizer 6      |
| Choose oxidizer type from drop down menu                                         | Simple Thermal | Simple Thermal | Simple Thermal   | Simple Thermal  | Simple Thermal  | Simple Thermal  |
|                                                                                  | Oxidizer       | Oxidizer       | Oxidizer         | Oxidizer        | Oxidizer        | Oxidizer        |
| Choose fuel type from drop down menu                                             | Natural gas    | Natural gas    | Natural gas      | Natural gas     | Natural gas     | Natural gas     |
| Input waste gas flow rate (scfm)                                                 |                |                |                  |                 |                 |                 |
| Input time running (hours)                                                       |                |                |                  |                 |                 |                 |
| Input waste gas inlet temperature (F)                                            |                |                |                  |                 |                 |                 |
| Input contaminant concentration (ppmV)                                           |                |                |                  |                 |                 |                 |
| *(Electric blowers are included in the analysis)                                 |                | •              | •                |                 | -               | -               |

| WATER CONSUMPTION                                                      | Treatment System 1 | Treatment System 2 | Treatment System 3 | Treatment System 4 | Treatment System 5 | Treatment System 6 |
|------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Input total water consumed from potable water treatment facility (gal) |                    |                    |                    |                    |                    |                    |
| Input total water disposed to wastewater treatment facility (gal)      |                    |                    |                    |                    |                    |                    |
|                                                                        |                    |                    |                    |                    |                    |                    |
| ONSITE LAND AND WATER RESOURCE CONSUMPTION                             | Entire Site 1      | Entire Site 2      | Entire Site 3      | Entire Site 4      | Entire Site 5      | Entire Site 6      |
| Input volume of topsoil brought to site (cubic yards)                  |                    |                    |                    |                    |                    |                    |
| Input volume of groundwater or surface water lost (gal)                |                    |                    |                    |                    |                    |                    |

| SITE INFORMATION               |                        |  |  |  |
|--------------------------------|------------------------|--|--|--|
| User Name and Date             | Tetra Tech - July 2012 |  |  |  |
| Site Name                      | Middle River Complex   |  |  |  |
| Remedial Alternative Name      | MRC-Combined           |  |  |  |
| Alternative File Name (will be |                        |  |  |  |
| used in graphics and as file   |                        |  |  |  |
| name; avoid invalid            | Alt4J                  |  |  |  |
| characters, e.g. ? : " / \ <   |                        |  |  |  |
| >   * )                        |                        |  |  |  |
| Choose electricity region      | RFCE                   |  |  |  |

Do you want to reload a previously saved remedial alternative in the SiteWise input sheet? RA\_Alt7\_NoFR\_1 \\eciseafile\groups\SedMgmt -Refresh List

Yes

Reset all input values on all worksheets to default

Reset All Values on All Sheets

-= Status =-

Done Loading!









Sitewise I ool for Green and Sustainable Remediation has been developed jointly by United States (US) Navy, United States Army Corps of Engineers (USACE), and Battelle. This tool is made available on an as-is basis without guarantee or warranty of any kind, express or implied. The US Navy, USACE, Battelle, the authors, and the reviewers accept no liability resulting from the use of this tool or its documentation; nor does the above warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof. Implementation of SiteWise<sup>™</sup> tool and interpretation or use of the results provided by the tool are the sole responsibility of the user. The tool is provided free of charge for everyone to use, but is not supported in any way by the US Navy, USACE, or Battelle.

#### BASELINE INFORMATION

| REMEDIAL ACTION CONSTRUCTION COST                  | Entire Site |
|----------------------------------------------------|-------------|
| Input total remedial action construction cost (\$) | 21,466,151  |

## MATERIAL PRODUCTION

| VELL MATERIALS                                                    | Well Type 1       | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6      |
|-------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|
| Input number of wells                                             |                   |                   |                   |                   |                   |                  |
| Input depth of wells (ft)                                         |                   |                   |                   |                   |                   |                  |
| Choose specific material schedule from drop down menu             | Sch 40 PVC        
| Choose well diameter (in) from drop down menu                     | 1/8               | 1/8               | 1/8               | 1/8               | 1/8               | 1/8              |
|                                                                   |                   | ·                 |                   |                   |                   |                  |
| REATMENT CHEMICALS & MATERIALS                                    | Treatment 1       | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6      |
| Input number of injection points                                  |                   |                   |                   |                   |                   |                  |
| Choose material type from drop down menu                          | Hydrogen Peroxide | Hydrogen Peroxic |
| Input amount of material injected at each point (pounds dry mass) |                   |                   |                   |                   |                   |                  |
| Input number of injections per injection point                    |                   |                   |                   |                   |                   |                  |
|                                                                   |                   | •                 |                   |                   |                   |                  |
| REATMENT MEDIA                                                    | Treatment 1       | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6      |
| Input weight of media used (lbs)                                  |                   |                   |                   |                   |                   |                  |
| Choose media type from drop down menu                             | Virgin GAC        
|                                                                   |                   |                   |                   |                   |                   |                  |
| ONSTRUCTION MATERIALS                                             | Material 1        | Material 2        | Material 3        | Material 4        | Material 5        | Material 6       |
| Choose material type from drop down menu                          | HDPE Liner        
| Input area of material (ft2)                                      |                   |                   |                   |                   |                   |                  |
| Input depth of material (ft)                                      |                   |                   |                   |                   |                   |                  |
|                                                                   |                   |                   |                   |                   |                   |                  |
| ELL DECOMMISSIONING                                               | Well Type 1       | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6      |
| Input number of wells                                             |                   |                   |                   |                   |                   |                  |
| Input depth of wells (ft)                                         |                   |                   |                   |                   |                   |                  |
| Input well diameter (in)                                          |                   |                   |                   |                   |                   |                  |
| Choose material from drop down menu                               | Soil              | Soil              | Soil              | Soil              | Soil              | Soil             |
|                                                                   |                   |                   |                   |                   |                   |                  |
| ULK MATERIAL QUANTITIES                                           | Material 1        | Material 2        | Material 3        | Material 4        | Material 5        | Material 6       |
| Choose material from drop down menu                               | Acetic Acid       
| Choose units of material quantity from drop down menu             | pounds            | pounds            | pounds            | pounds            | pounds            | pounds           |
| Input material quantity                                           |                   |                   |                   |                   |                   |                  |

#### TRANSPORTATION

| PERSONNEL TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
|------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose vehicle type from drop down menu*                                                       | Cars           | Cars           | Cars           | Cars           | Cars           | Cars           |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input distance traveled per trip (miles)                                                       |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input estimated vehicular fuel economy (mi/gal) (Input only if known for the vehicle selected, |                |                |                |                |                |                |
| otherwise a default will be used by the tool)                                                  |                |                |                |                |                |                |
| *For vehicle type 'Other' please enter values in Table 2b in the Look Up Table tab.            |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - AIR                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input number of flights taken                                                                  |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - RAIL                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Choose vehicle type from drop down menu                                                        | Intercity rail |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input total distance traveled (miles) with a given load. Add return trip(s) with no load in a  |                |                |                |                |                |                |
| separate column if applicable.                                                                 |                |                |                |                |                |                |
| Input weight of equipment transported per truck load (tons)                                    |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - AIR                                                                 | Tain 4         | Trip 2         | Trin 0         | Trin 4         | Trin C         | Trip 6         |
| EQUIPMENT TRANSPORTATION - AIR<br>Input distance traveled (miles)                              | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | rip 6          |
|                                                                                                |                |                |                |                |                |                |
| Input weight of equipment transported (tons)                                                   |                |                | l              | l              |                |                |
| EQUIPMENT TRANSPORTATION - RAIL                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                | 1 qui          | inp z          | inp 3          | 11/P 4         | inh 2          | 1110           |
| Input distance daveled (miles)                                                                 |                |                |                |                |                |                |
| input weight of road (tens)                                                                    |                | 1              | 1              | 1              | 1              | 1              |
| EQUIPMENT TRANSPORTATION - WATER                                                               | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
|                                                                                                |                | 1111112        |                |                | inip 5         | inp o          |
| Input distance traveled (mile)                                                                 |                |                |                |                |                |                |

| EARTHWORK                                                                         | Equipment 1    | Equipment 2    | Equipment 3    | Equipment 4 | Equipment 5 | Equipment 6 |
|-----------------------------------------------------------------------------------|----------------|----------------|----------------|-------------|-------------|-------------|
| Choose earthwork equipment type from drop down menu                               | Loader/Backhoe | Loader/Backhoe | Loader/Backhoe | Dozer       | Dozer       | Dozer       |
| Choose fuel type from drop down menu                                              | Diesel         | Diesel         | Diesel         | Diesel      | Diesel      | Diesel      |
| Input volume of material to be removed (yd3)                                      | 62,890         | 19,300         | 110            |             |             |             |
| Will DIESEL-run equipment be retrofitted with a particulate reduction technology? | No             | No             | No             | No          | No          | No          |
|                                                                                   |                |                |                |             |             |             |
| DRILLING                                                                          | Event 1        | Event 2        | Event 3        | Event 4     | Event 5     | Event 6     |
|                                                                                   |                |                |                |             |             | Lvento      |
| Input number of drilling locations                                                |                |                |                |             | Lionto      | Evento      |
| Input number of drilling locations<br>Choose drilling method from drop down menu  | Direct Push    | Direct Push    | Direct Push    | Direct Push | Direct Push | Direct Push |
|                                                                                   | Direct Push    | Direct Push    | Direct Push    | Direct Push |             |             |

| Choose fuel type from drop down menu Input volume (scf for Natural gas, gallons for all others) OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Occu<br>Construc               | pation 1 Occupation<br>ion laborers Construction lab<br>144 4196 |                                    | Occupation 4 s Construction laborers 840 | Occupation 5<br>Construction laborers<br>72 | Occupation 6<br>Construction laborers |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------|------------------------------------|------------------------------------------|---------------------------------------------|---------------------------------------|
| Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                                                  |                                    |                                          |                                             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | ratural ya                                                       | i Naturai yas                      | Hatarai yas                              | Hatarai yas                                 | Hutural yas                           |
| OTHER FUELED EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | iel 1 Fuel 2<br>ral gas Natural ga                               | Fuel 3<br>Natural gas              | Fuel 4<br>Natural gas                    | Fuel 5<br>Natural gas                       | Fuel 6<br>Natural gas                 |
| Input fuel consumption rate (gal/hr or scf/hr)<br>Input operating hours (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                | 25 25<br>768 1049                                                | 85<br>49                           | 25<br>210                                | 25<br>18                                    |                                       |
| INTERNAL COMBUSTION ENGINES<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D                              | gine 1 Engine 2<br>esel Diesel                                   | Engine 3<br>Diesel                 | Engine 4<br>Diesel                       | Engine 5<br>Diesel                          | Engine 6<br>Diesel                    |
| otherwise a default will be used by the tool)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                                                  |                                    |                                          |                                             |                                       |
| Input volume (yd3)<br>Input production rate (yd3/hr)<br>Input estimated fuel consumption rate (gal/hr) (Input only i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f known for the mixer selected |                                                                  |                                    |                                          |                                             |                                       |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | to 3 1 to 3                                                      | Gasoline<br>1 to 3                 | Gasoline<br>1 to 3                       | Gasoline<br>1 to 3                          | Gasoline<br>1 to 3                    |
| MIXING EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | xer 1 Mixer 2                                                    | Mixer 3                            | Mixer 4                                  | Mixer 5                                     | Mixer 6                               |
| Input area (ft2)<br>Input time available (work days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                                                                  |                                    |                                          |                                             |                                       |
| Choose stabilization equipment type from drop down men<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | u R                            | oller Roller<br>soline Gasoline                                  | Roller<br>Gasoline                 | Roller<br>Gasoline                       | Roller<br>Gasoline                          | Roller<br>Gasoline                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Faui                           | oment 1 Equipment                                                | 2 Equipment 3                      | Equipment 4                              | Equipment 5                                 | Equipment 6                           |
| Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | y Soil Clay Soil                                                 | Clay Soil                          | Clay Soil                                | Clay Soil                                   | Clay Soil                             |
| Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | ntilled soil Firm untilled                                       |                                    | Firm untilled soil                       | Firm untilled soil                          | Firm untilled soil                    |
| AGRICULTURAL EQUIPMENT<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | Tractor 1 Tillage Tractor<br>soline Gasoline                     | or 2 Tillage Tractor 3<br>Gasoline | Tillage Tractor 4<br>Gasoline            | Tillage Tractor 5<br>Gasoline               | Tillage Tractor 6<br>Gasoline         |
| Input operating hours (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                                                                  |                                    |                                          |                                             |                                       |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | soline Gasoline<br>to 1 0 to 1                                   | Gasoline<br>0 to 1                 | Gasoline<br>0 to 1                       | Gasoline<br>0 to 1                          | Gasoline<br>0 to 1                    |
| GENERATORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | erator 1 Generator                                               |                                    | Generator 4                              | Generator 5                                 | Generator 6                           |
| Region<br>Electricity Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R                              | FCE RFCE                                                         | RFCE                               | RFCE                                     | RFCE                                        | RFCE                                  |
| Input equipment electrical usage, if known (kWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | 0 0                                                              | 0                                  | 0                                        | 0                                           | 0                                     |
| Method 2 - ELECTRICAL USAGE IS KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | 0.65                                                             | 0.00                               | 0.00                                     | 0.00                                        | 0.00                                  |
| Input operaning unne tor each equipment (hrs)<br>Input equipment load (default already present, user overrid<br>Input motor efficiency (default already present, user overri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                | .85 0.85<br>.85 0.85                                             | 0.85                               | 0.85                                     | 0.85                                        | 0.85                                  |
| Input equipment horsepower (hp)<br>Input number of equipments operating<br>Input operating time for each equipment (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 0 0<br>0 0<br>0 0                                                | 0 0 0 0                            | 0                                        | 0 0 0 0                                     | 0 0 0 0                               |
| Choose method from drop down<br>Method 1 - NAME PLATE SPECIFICATIONS ARE KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Me                             | thod 1 Method 1                                                  | Method 1                           | Method 1                                 | Method 1                                    | Method 1                              |
| BLOWER, COMPRESSOR, MIXER, AND OTHER EQUIPMENT<br>Choose type of equipment from drop down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B                              | oment 1 Equipment                                                | Blower                             | Equipment 4<br>Blower                    | Equipment 5<br>Blower                       | Equipment 6<br>Blower                 |
| For each type of equipment, select only one of the methods to calcul<br>Enter "0" for all user input values for unused equipment columns or<br>DECLARD COLLEGATION COL | inused methods                 |                                                                  |                                    |                                          |                                             | -                                     |
| otherwise a default will be used by the tool)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                                                  |                                    |                                          |                                             |                                       |
| Equipment operating hours (hrs)<br>Input estimated fuel consumption rate (gal/hr) (Input only i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f known for the pump selected, |                                                                  |                                    |                                          |                                             |                                       |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ga                             | soline Gasoline<br>ke: 0 to 1 2-Stroke: 0 t                      | Gasoline                           | Gasoline<br>2-Stroke: 0 to 1             | Gasoline<br>2-Stroke: 0 to 1                | Gasoline<br>2-Stroke: 0 to 1          |
| DIESEL AND GASOLINE PUMPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | mp 1 Pump 2                                                      | Pump 3                             | Pump 4                                   | Pump 5                                      | Pump 6                                |
| Region<br>Electricity Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R                              | FCE RFCE                                                         | RFCE                               | RFCE                                     | RFCE                                        | RFCE                                  |
| Input pump motor efficiency (default already present, decivernation per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | .85 0.85                                                         | 0.85                               | 0.85                                     | 0.85                                        | 0.85                                  |
| Input number of pumps operating<br>Input operating time for each pump (hrs)<br>Input pump load (default already present, user override po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ussible)                       | 0 0<br>0 0<br>.85 0.85                                           | 0                                  | 0<br>0<br>0.85                           | 0<br>0<br>0.85                              | 0 0.85                                |
| Input pump horsepower (hp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | 0 0<br>0 0                                                       | 0                                  | 0                                        | 0                                           | 0                                     |
| Input specific gravity (default already present, user overrid<br>Method 3 - NAME PLATE SPECIFICATIONS ARE KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e possible)                    | 1 1                                                              | 1                                  | 1                                        | 1                                           | 1                                     |
| Input operating time for each pump (hrs)<br>Pump efficiency times motor efficiency (default already pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | 0 0<br>.51 0.51                                                  | 0.51                               | 0                                        | 0 0.51 1                                    | 0<br>0.51                             |
| Input total head (ft)<br>Input number of pumps operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 0 0<br>0 0                                                       | 0                                  | 0                                        | 0                                           | 0                                     |
| Method 2 - PUMP HEAD IS KNOWN<br>Input flow rate (gpm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | 0 0                                                              | 0                                  | 0                                        | 0                                           | 0                                     |
| Input pump electrical usage (KWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                | 0 0                                                              | 0                                  | 0                                        | 0                                           | 0                                     |
| Choose method from drop down<br>Method 1 - ELECTRICAL USAGE IS KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | thod 1 Method 1                                                  | Method 1                           | Method 1                                 | Method 1                                    | Method 1                              |
| Enter "of roll user input values for unused pump columns or unuse<br>PUMP OPERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ed methods                     | mp 1 Pump 2                                                      | Pump 3                             | Pump 4                                   | Pump 5                                      | Pump 6                                |
| For each pump, select only one of the three methods to calculate en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ergy and GHG emissions         |                                                                  |                                    |                                          | <b>П</b>                                    |                                       |
| Input operating hours (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | to 3 1 to 3                                                      | Gasoline<br>1 to 3                 | Gasoline<br>1 to 3                       | Gasoline<br>1 to 3                          | Gasoline<br>1 to 3                    |
| Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                              | Coooline Coooline                                                | 2 Trencher 3                       | Trencher 4                               | Trencher 5                                  | Trencher 6                            |

| Input N2O emission (metric ton CO2 e) |  |
|---------------------------------------|--|
| Input CH4 emission (metric ton CO2 e) |  |
| Input NOx emission (metric ton)       |  |
| Input SOx emission (metric ton)       |  |
| Input PM10 emission (metric ton)      |  |
| Input fatality risk                   |  |
| Input injury risk                     |  |

| ESIDUE DISPOSAL/RECYCLING                                                         | Soil Residue               | Residual Water             | Material Residue           | Other Residuals            | Other Residuals            | Other Residuals            |
|-----------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?  | No                         | No                         | No                         | No                         | No                         | No                         |
| Input weight of the waste transported to<br>landfill or recycling per trip (tons) | 25                         |                            |                            |                            |                            |                            |
| Choose fuel used from drop down menu                                              | Diesel                     | Gasoline                   | Gasoline                   | Gasoline                   | Gasoline                   | Gasoline                   |
| Input total number of trips                                                       | 4200                       |                            |                            |                            |                            |                            |
| Input number of miles per trip                                                    | 250                        |                            |                            |                            |                            |                            |
|                                                                                   |                            |                            |                            |                            |                            |                            |
| ANDFILL OPERATIONS                                                                | Operation 1                | Operation 2                | Operation 3                | Operation 4                | Operation 5                | Operation 6                |
| Choose landfill type for waste disposal                                           | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              | Non-Hazardous              |
| Input amount of waste disposed in landfill (tons)                                 | 94335                      |                            |                            |                            |                            |                            |
| Input landfill methane emissions (metric tons CH4)                                |                            |                            |                            |                            |                            |                            |
|                                                                                   |                            |                            |                            |                            |                            |                            |
| HERMAL/CATALYTIC OXIDIZERS*                                                       | Oxidizer 1                 | Oxidizer 2                 | Oxidizer 3                 | Oxidizer 4                 | Oxidizer 5                 | Oxidizer 6                 |
| Choose oxidizer type from drop down menu                                          | Simple Thermal<br>Oxidizer |
| Choose fuel type from drop down menu                                              | Natural gas                |
| Input waste gas flow rate (scfm)                                                  |                            |                            |                            |                            |                            |                            |
| Input time running (hours)                                                        |                            |                            |                            |                            |                            |                            |
| Input waste gas inlet temperature (F)                                             |                            |                            |                            |                            |                            |                            |
|                                                                                   |                            |                            |                            |                            |                            |                            |

| WATER CONSUMPTION                                                      | Treatment System 1 | Treatment System 2 | Treatment System 3 | Treatment System 4 | Treatment System 5 | Treatment System 6 |
|------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Input total water consumed from potable water treatment facility (gal) |                    |                    |                    |                    |                    |                    |
| Input total water disposed to wastewater treatment facility (gal)      | 3811000            |                    |                    |                    |                    |                    |
|                                                                        |                    |                    |                    |                    |                    |                    |
| ONSITE LAND AND WATER RESOURCE CONSUMPTION                             | Entire Site 1      | Entire Site 2      | Entire Site 3      | Entire Site 4      | Entire Site 5      | Entire Site 6      |
| Input volume of topsoil brought to site (cubic yards)                  |                    |                    |                    |                    |                    |                    |
| Input volume of groundwater or surface water lost (gal)                |                    |                    |                    |                    |                    |                    |

#### BASELINE INFORMATION

| LONGTERM MONITORING COST AND DURATION             | Entire Site |
|---------------------------------------------------|-------------|
| Input total longterm monitoring cost (\$)         | 593,014     |
| Input duration of longterm monitoring (unit time) | 1.0         |

## MATERIAL PRODUCTION

| VELL MATERIALS                                                    | Well Type 1       | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6      |
|-------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|
| Input number of wells                                             |                   |                   |                   |                   |                   |                  |
| Input depth of wells (ft)                                         |                   |                   |                   |                   |                   |                  |
| Choose specific material schedule from drop down menu             | Sch 40 PVC        
| Choose well diameter (in) from drop down menu                     | 1/8               | 1/8               | 1/8               | 1/8               | 1/8               | 1/8              |
|                                                                   |                   |                   |                   |                   |                   |                  |
| REATMENT CHEMICALS & MATERIALS                                    | Treatment 1       | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6      |
| Input number of injection points                                  |                   |                   |                   |                   |                   |                  |
| Choose material type from drop down menu                          | Hydrogen Peroxide | Hydrogen Peroxid |
| Input amount of material injected at each point (pounds dry mass) |                   |                   |                   |                   |                   |                  |
| Input number of injections per injection point                    |                   |                   |                   |                   |                   |                  |
|                                                                   |                   |                   |                   |                   |                   |                  |
| REATMENT MEDIA                                                    | Treatment 1       | Treatment 2       | Treatment 3       | Treatment 4       | Treatment 5       | Treatment 6      |
| Input weight of media used (lbs)                                  |                   |                   |                   |                   |                   |                  |
| Choose media type from drop down menu                             | Virgin GAC        
|                                                                   |                   |                   |                   |                   |                   |                  |
| CONSTRUCTION MATERIALS                                            | Material 1        | Material 2        | Material 3        | Material 4        | Material 5        | Material 6       |
| Choose material type from drop down menu                          | HDPE Liner        
| Input area of material (ft2)                                      |                   |                   |                   |                   |                   |                  |
| Input depth of material (ft)                                      |                   |                   |                   |                   |                   |                  |
|                                                                   |                   |                   |                   |                   |                   |                  |
| /ELL DECOMMISSIONING                                              | Well Type 1       | Well Type 2       | Well Type 3       | Well Type 4       | Well Type 5       | Well Type 6      |
| Input number of wells                                             |                   |                   |                   |                   |                   |                  |
| Input depth of wells (ft)                                         |                   |                   |                   |                   |                   |                  |
| Input well diameter (in)                                          |                   |                   |                   |                   |                   |                  |
| Choose material from drop down menu                               | Soil              | Soil              | Soil              | Soil              | Soil              | Soil             |
|                                                                   |                   |                   |                   |                   |                   |                  |
| ULK MATERIAL QUANTITIES                                           | Material 1        | Material 2        | Material 3        | Material 4        | Material 5        | Material 6       |
| Choose material from drop down menu                               | Acetic Acid       
| Choose units of material quantity from drop down menu             | pounds            | pounds            | pounds            | pounds            | pounds            | pounds           |
| Input material guantity                                           |                   |                   |                   |                   |                   |                  |

#### TRANSPORTATION

| PERSONNEL TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
|------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose vehicle type from drop down menu*                                                       | Cars           | Cars           | Cars           | Cars           | Cars           | Cars           |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input distance traveled per trip (miles)                                                       |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input estimated vehicular fuel economy (mi/gal) (Input only if known for the vehicle selected, |                |                |                |                |                |                |
| otherwise a default will be used by the tool)                                                  |                |                |                |                |                |                |
| *For vehicle type 'Other' please enter values in Table 2b in the Look Up Table tab.            |                |                | •              |                | •              |                |
| PERSONNEL TRANSPORTATION - AIR                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
| Input number of flights taken                                                                  |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| PERSONNEL TRANSPORTATION - RAIL                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Choose vehicle type from drop down menu                                                        | Intercity rail |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input number of trips taken                                                                    |                |                |                |                |                |                |
| Input number of travelers                                                                      |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - ROAD                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?               | No             | No             | No             | No             | No             | No             |
| Choose fuel used from drop down menu                                                           | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       | Gasoline       |
| Input total distance traveled (miles) with a given load. Add return trip(s) with no load in a  |                |                |                |                |                |                |
| separate column if applicable.                                                                 |                |                |                |                |                |                |
| Input weight of equipment transported per truck load (tons)                                    |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - AIR                                                                 | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input weight of equipment transported (tons)                                                   |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - RAIL                                                                | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (miles)                                                                |                |                |                |                |                |                |
| Input weight of load (tons)                                                                    |                |                |                |                |                |                |
|                                                                                                |                |                |                |                |                |                |
| EQUIPMENT TRANSPORTATION - WATER                                                               | Trip 1         | Trip 2         | Trip 3         | Trip 4         | Trip 5         | Trip 6         |
| Input distance traveled (mile)                                                                 |                |                |                |                |                |                |
| Input weight of load (tons)                                                                    |                |                |                |                |                |                |

| EARTHWORK                                                                         | Equipment 1 | Equipment 2 | Equipment 3 | Equipment 4 | Equipment 5 | Equipment 6 |
|-----------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Choose earthwork equipment type from drop down menu                               | Dozer       | Dozer       | Dozer       | Dozer       | Dozer       | Dozer       |
| Choose fuel type from drop down menu                                              | Diesel      | Diesel      | Diesel      | Diesel      | Diesel      | Diesel      |
| Input volume of material to be removed (yd3)                                      |             |             |             |             |             |             |
| Will DIESEL-run equipment be retrofitted with a particulate reduction technology? | No          | No          | No          | No          | No          | No          |
|                                                                                   |             |             |             |             |             |             |
| DRILLING                                                                          | Event 1     | Event 2     | Event 3     | Event 4     | Event 5     | Event 6     |
|                                                                                   |             |             |             |             |             |             |
| Input number of drilling locations                                                |             |             |             |             |             |             |
| Input number of drilling locations<br>Choose drilling method from drop down menu  | Direct Push |
|                                                                                   | Direct Push |

|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Trencher 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trencher 2                                                                                                                                                                     | Trencher 3                                                                                                                                                                    | Trencher 4                                                                                                                                                                | Trencher 5                                                                                                                                               | Trencher 6                                                                                                                                                      |                                                                                                                                           |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|                                                       | Choose fuel type from drop down menu<br>Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gasoline<br>1 to 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gasoline<br>1 to 3                                                                                                                                                             | Gasoline<br>1 to 3                                                                                                                                                            | Gasoline<br>1 to 3                                                                                                                                                        | Gasoline<br>1 to 3                                                                                                                                       | Gasoline<br>1 to 3                                                                                                                                              |                                                                                                                                           |
|                                                       | Input operating hours (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                                                                 |                                                                                                                                           |
|                                                       | np, select only one of the three methods to calculate energy and GHG emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                                                                 |                                                                                                                                           |
| Enter "0" for a<br>PUMP OPER                          | all user input values for unused pump columns or unused methods<br>ATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pump 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pump 2                                                                                                                                                                         | Pump 3                                                                                                                                                                        | Pump 4                                                                                                                                                                    | Pump 5                                                                                                                                                   | Pump 6                                                                                                                                                          |                                                                                                                                           |
| Mothod 1 E                                            | Choose method from drop down<br>LECTRICAL USAGE IS KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Method 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Method 1                                                                                                                                                                       | Method 1                                                                                                                                                                      | Method 1                                                                                                                                                                  | Method 1                                                                                                                                                 | Method 1                                                                                                                                                        |                                                                                                                                           |
| Metriod 1 - Et                                        | Input pump electrical usage (KWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                              | 0                                                                                                                                                                             | 0                                                                                                                                                                         | 0                                                                                                                                                        | 0                                                                                                                                                               |                                                                                                                                           |
| Method 2 - Pl                                         | UMP HEAD IS KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                                                                 |                                                                                                                                           |
|                                                       | Input flow rate (gpm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                              | 0                                                                                                                                                                             | 0                                                                                                                                                                         | 0                                                                                                                                                        | 0                                                                                                                                                               |                                                                                                                                           |
|                                                       | Input total head (ft) Input number of pumps operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                              | 0                                                                                                                                                                             | 0                                                                                                                                                                         | 0                                                                                                                                                        | 0                                                                                                                                                               |                                                                                                                                           |
|                                                       | Input operating time for each pump (hrs)<br>Pump efficiency times motor efficiency (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>0.51                                                                                                                                                                      | 0<br>0.51                                                                                                                                                                     | 0.51                                                                                                                                                                      | 0.51                                                                                                                                                     | 0<br>0.51                                                                                                                                                       |                                                                                                                                           |
|                                                       | Input specific gravity (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                              | 1                                                                                                                                                                             | 1                                                                                                                                                                         | 1                                                                                                                                                        | 1                                                                                                                                                               |                                                                                                                                           |
| Method 3 - N                                          | AME PLATE SPECIFICATIONS ARE KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                                                                 |                                                                                                                                           |
|                                                       | Input pump horsepower (hp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                              | 0                                                                                                                                                                             | 0                                                                                                                                                                         | 0                                                                                                                                                        | 0                                                                                                                                                               |                                                                                                                                           |
|                                                       | Input number of pumps operating<br>Input operating time for each pump (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                              | 0                                                                                                                                                                             | 0                                                                                                                                                                         | 0                                                                                                                                                        | 0                                                                                                                                                               |                                                                                                                                           |
|                                                       | Input pump load (default already present, user override possible)<br>Input pump motor efficiency (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.85<br>0.85                                                                                                                                                                   | 0.85<br>0.85                                                                                                                                                                  | 0.85                                                                                                                                                                      | 0.85                                                                                                                                                     | 0.85                                                                                                                                                            |                                                                                                                                           |
|                                                       | inpat pamp motor omolonoy (aonaak anoday procent, ador o romao pooliolo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                                           | 0.00                                                                                                                                                                          | 0.00                                                                                                                                                                      | 0.00                                                                                                                                                     | 0.00                                                                                                                                                            |                                                                                                                                           |
| Region                                                | Electricity Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RFCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RFCE                                                                                                                                                                           | RFCE                                                                                                                                                                          | RFCE                                                                                                                                                                      | RFCE                                                                                                                                                     | RFCE                                                                                                                                                            |                                                                                                                                           |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                                                                 |                                                                                                                                           |
| DIESEL AND                                            | OGASOLINE PUMPS<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pump 1<br>Gasoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pump 2<br>Gasoline                                                                                                                                                             | Pump 3<br>Gasoline                                                                                                                                                            | Pump 4<br>Gasoline                                                                                                                                                        | Pump 5<br>Gasoline                                                                                                                                       | Pump 6<br>Gasoline                                                                                                                                              |                                                                                                                                           |
|                                                       | Choose horsepower range from drop down menu<br>Equipment operating hours (hrs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-Stroke: 0 to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-Stroke: 0 to 1                                                                                                                                                               | 2-Stroke: 0 to 1                                                                                                                                                              | 2-Stroke: 0 to 1                                                                                                                                                          | 2-Stroke: 0 to 1                                                                                                                                         | 2-Stroke: 0 to 1                                                                                                                                                |                                                                                                                                           |
|                                                       | Input estimated fuel consumption rate (gal/hr) (Input only if known for the pump selected,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                                                                 |                                                                                                                                           |
|                                                       | otherwise a default will be used by the tool)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                                                                 |                                                                                                                                           |
|                                                       | e of equipment, select only one of the methods to calculate energy and GHG emissions<br>all user input values for unused equipment columns or unused methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                                                                 |                                                                                                                                           |
|                                                       | OMPRESSOR, MIXER, AND OTHER EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Equipment 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Equipment 2                                                                                                                                                                    | Equipment 3                                                                                                                                                                   | Equipment 4                                                                                                                                                               | Equipment 5                                                                                                                                              | Equipment 6                                                                                                                                                     |                                                                                                                                           |
|                                                       | Choose type of equipment from drop down<br>Choose method from drop down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Blower<br>Method 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Blower<br>Method 1                                                                                                                                                             | Blower<br>Method 1                                                                                                                                                            | Blower<br>Method 1                                                                                                                                                        | Blower<br>Method 1                                                                                                                                       | Blower<br>Method 1                                                                                                                                              |                                                                                                                                           |
| Method 1 - N                                          | AME PLATE SPECIFICATIONS ARE KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                                                                 |                                                                                                                                           |
|                                                       | Input equipment horsepower (hp) Input number of equipments operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                              | 0                                                                                                                                                                             | 0                                                                                                                                                                         | 0                                                                                                                                                        | 0                                                                                                                                                               |                                                                                                                                           |
|                                                       | Input operating time for each equipment (hrs)<br>Input equipment load (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>0.85                                                                                                                                                                      | 0<br>0.85                                                                                                                                                                     | 0 0.85                                                                                                                                                                    | 0                                                                                                                                                        | 0 0.85                                                                                                                                                          |                                                                                                                                           |
|                                                       | Input motor efficiency (default already present, user override possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.85                                                                                                                                                                           | 0.85                                                                                                                                                                          | 0.85                                                                                                                                                                      | 0.85                                                                                                                                                     | 0.85                                                                                                                                                            |                                                                                                                                           |
| Method 2 - El                                         | LECTRICAL USAGE IS KNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                                                                 |                                                                                                                                           |
|                                                       | Input equipment electrical usage, if known (kWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                              | 0                                                                                                                                                                             | 0                                                                                                                                                                         | 0                                                                                                                                                        | 0                                                                                                                                                               |                                                                                                                                           |
| Region                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                                           | 1                                                                                                                                                        |                                                                                                                                                                 |                                                                                                                                           |
|                                                       | Electricity Region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RFCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RFCE                                                                                                                                                                           | RFCE                                                                                                                                                                          | RFCE                                                                                                                                                                      | RFCE                                                                                                                                                     | RFCE                                                                                                                                                            |                                                                                                                                           |
| GENERATOR                                             | RS<br>Choose fuel type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Generator 1<br>Gasoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Generator 2<br>Gasoline                                                                                                                                                        | Generator 3<br>Gasoline                                                                                                                                                       | Generator 4<br>Gasoline                                                                                                                                                   | Generator 5<br>Gasoline                                                                                                                                  | Generator 6<br>Gasoline                                                                                                                                         |                                                                                                                                           |
|                                                       | Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 to 1                                                                                                                                                                         | 0 to 1                                                                                                                                                                        | 0 to 1                                                                                                                                                                    | 0 to 1                                                                                                                                                   | 0 to 1                                                                                                                                                          |                                                                                                                                           |
|                                                       | Input operating hours (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                                                                 |                                                                                                                                           |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                                                                 |                                                                                                                                           |
| AGRICULTU                                             | RAL EQUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tillage Tractor 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tillage Tractor 2                                                                                                                                                              | Tillage Tractor 3                                                                                                                                                             | Tillage Tractor 4                                                                                                                                                         | Tillage Tractor 5                                                                                                                                        | Tillage Tractor 6                                                                                                                                               |                                                                                                                                           |
| AGRICULTU                                             | RAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (acre)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gasoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gasoline                                                                                                                                                                       | Gasoline                                                                                                                                                                      | Gasoline                                                                                                                                                                  | Gasoline                                                                                                                                                 | Gasoline                                                                                                                                                        |                                                                                                                                           |
| AGRICULTU                                             | RAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gasoline<br>Firm untilled soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gasoline<br>Firm untilled soil                                                                                                                                                 | Gasoline<br>Firm untilled soil                                                                                                                                                | Gasoline<br>Firm untilled soil                                                                                                                                            | Gasoline<br>Firm untilled soil                                                                                                                           | Gasoline<br>Firm untilled soil                                                                                                                                  |                                                                                                                                           |
| AGRICULTU                                             | RAL EQUIPMENT<br>Chose fuel type from drop down menu<br>Input area to till (acre)<br>Choses soil condition from drop down menu<br>Choses soil type from drop down menu<br>Input time available (work days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gasoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gasoline                                                                                                                                                                       | Gasoline                                                                                                                                                                      | Gasoline                                                                                                                                                                  | Gasoline                                                                                                                                                 | Gasoline                                                                                                                                                        |                                                                                                                                           |
| AGRICULTU                                             | RAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (arer)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gasoline<br>Firm untilled soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gasoline<br>Firm untilled soil                                                                                                                                                 | Gasoline<br>Firm untilled soil                                                                                                                                                | Gasoline<br>Firm untilled soil                                                                                                                                            | Gasoline<br>Firm untilled soil                                                                                                                           | Gasoline<br>Firm untilled soil                                                                                                                                  |                                                                                                                                           |
| AGRICULTUI                                            | RAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (acre)<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)<br>DUIPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gasoline Firm untilled soil Clay Soil Equipment 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gasoline Firm untilled soil Clay Soil Equipment 2                                                                                                                              | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3                                                                                                                    | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4                                                                                                                | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5                                                                                               | Casoline Firm untilled soil Clay Soil Equipment 6                                                                                                               |                                                                                                                                           |
|                                                       | RAL EQUIPMENT<br>Choose fuel type from drop down menu<br>Input area to till (acre).<br>Choose soil condition from drop down menu<br>Choose soil type from drop down menu<br>Input time available (work days)<br>Input depth of tillage (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                    | Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                                   | Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                               | Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                              | Gasoline<br>Firm untilled soil<br>Clay Soil                                                                                                                     |                                                                                                                                           |
|                                                       | RAL EQUIPMENT     Choses fuel type from drop down menu     Input area to till (acre)     Choses soil condition from drop down menu     Choses soil type from drop down menu     Input time available (work days)     Input depth of tillage (in)     DUIPMENT     Choses stabilization equipment type from drop down menu     Choses fuel type from drop down menu     Choses fuel type from drop down menu     Input area (fiz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller                                                                                                                       | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller                                                                                                                      | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller                                                                                                      | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller                                                                                                 | Casoline Firm untilled soil Clay Soil Equipment 6 Roller                                                                                                        |                                                                                                                                           |
| CAPPING EC                                            | RAL EQUIPMENT         Choose fuel type from drop down menu         Input area to till (arer)         Choose soil condition from drop down menu         Choose soil type from drop down menu         Input time available (work days)         Input depth of tillage (in)         2UIPMENT         Choose stabilization equipment type from drop down menu         Choose stabilization equipment type from drop down menu         Choose stabilization equipment type from drop down menu         Input area (ft2)         Input time available (work days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline                                                                                                              | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 3<br>Roller<br>Gasoline                                                                                              | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller<br>Gasoline                                                                                          | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline                                                                         | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline                                                                                |                                                                                                                                           |
|                                                       | RAL EQUIPMENT         Choose fuel type from drop down menu         Input area to till (arer)         Choose soil condition from drop down menu         Choose soil type from drop down menu         Input time available (work days)         Input depth of tillage (in)         2UIPMENT         Choose stabilization equipment type from drop down menu         Choose stabilization equipment type from drop down menu         Choose stabilization equipment type from drop down menu         Input area (ft2)         Input time available (work days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller                                                                                                                       | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller                                                                                                                      | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 4<br>Roller                                                                                                      | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller                                                                                                 | Casoline Firm untilled soil Clay Soil Equipment 6 Roller                                                                                                        |                                                                                                                                           |
| CAPPING EC                                            | RAL EQUIPENT         Choose fuel type from drop down menu         Input area to till (arer)         Choose soil condition from drop down menu         Choose soil type from drop down menu         Input time available (work days)         Input depth of tillage (in)         2UIPMENT         Choose stabilization equipment type from drop down menu         Choose stabilization equipment type from drop down menu         Input time available (work days)         IPMENT         Choose fuel type from drop down menu         Input time available (work days)         IPMENT         Choose huel type from drop down menu         Choose horsepower range from drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 1<br>Roller<br>Gasoline<br>Mixer 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2                                                                                                      | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3                                                                                                     | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4                                                                                                 | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5                                                              | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 6<br>Roller<br>Gasoline<br>Mixer 6                                                                     |                                                                                                                                           |
| CAPPING EC                                            | RAL EQUIPMENT         Choose fuel type from drop down menu         Input area to till (aree).         Choose soil condition from drop down menu         Choose soil condition from drop down menu         Input depth of tillage (in)         DUIPMENT         Choose stabilization equipment type from drop down menu         Choose stabilization equipment type from drop down menu         Choose stabilization equipment type from drop down menu         Input area (ft2)         Input time available (work days)         JIPMENT         Choose fuel type from drop down menu         Choose fuel type from drop down menu         Input trea (ft2)         Input troute (vd3)         Input tordurction rate (vd3/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline                                                                                             | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline                                                                                            | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline                                                                                        | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5<br>Gasoline                                                  | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline                                                                              |                                                                                                                                           |
| CAPPING EC                                            | RAL EQUIPRENT     Choose fuel type from drop down menu     Input area to till (arer)     Choose soil condition from drop down menu     Choose soil condition from drop down menu     Input time available (work days)     Input depth of tillage (in)     DUIPMENT     Choose stabilization equipment type from drop down menu     Input area (ft2)     Input time available (work days)  IIPMENT     Choose fuel type from drop down menu     Input time available (work days) IIPMENT     Choose fuel type from drop down menu     Input time available (work days) IIPMENT     Choose fuel type from drop down menu     Input time available (work days) IIPMENT     Choose forsepower range from drop down menu     Input volume (yd3)     Input production rate (yd3/hr)     Input set (yd3/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline                                                                                             | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline                                                                                            | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline                                                                                        | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5<br>Gasoline                                                  | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline                                                                              |                                                                                                                                           |
| CAPPING EC                                            | RAL EQUIPMENT         Choose fuel type from drop down menu         Input area to till (aree).         Choose soil condition from drop down menu         Choose soil condition from drop down menu         Input depth of tillage (in)         2UIPMENT         Choose stabilization equipment type from drop down menu         Choose stabilization equipment type from drop down menu         Choose tabilization equipment type from drop down menu         Choose tuel type from drop down menu         Input area (ft2)         Input time available (work days)         JIPMENT         Choose fuel type from drop down menu         Choose horsepower range from drop down menu         Choose horsepower range from drop down menu         Input volume (vd3)         Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3                                                                                      | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3                                                                                     | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3                                                                                 | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3                                                                | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3                                                                       |                                                                                                                                           |
| CAPPING EC                                            | RAL EQUIPRENT     Choose fuel type from drop down menu     Input area to till (arer)     Choose soil condition from drop down menu     Choose soil condition from drop down menu     Input time available (work days)     Input depth of tillage (in)     DUIPMENT     Choose stabilization equipment type from drop down menu     Input area (ft2)     Input time available (work days)  IIPMENT     Choose fuel type from drop down menu     Input time available (work days) IIPMENT     Choose fuel type from drop down menu     Input time available (work days) IIPMENT     Choose fuel type from drop down menu     Input time available (work days) IIPMENT     Choose forsepower range from drop down menu     Input volume (yd3)     Input production rate (yd3/hr)     Input set (yd3/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gasoline Firm untilled soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline                                                                                             | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline                                                                                            | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline                                                                                        | Gasoline<br>Firm untilled soil<br>Clay Soil<br>Equipment 5<br>Roller<br>Gasoline<br>Mixer 5<br>Gasoline                                                  | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline                                                                              |                                                                                                                                           |
| CAPPING EC                                            | RAL EQUIPMENT         Choose fuel type from drop down menu         Input area to till (aree).         Choose soil condition from drop down menu         Choose soil condition from drop down menu         Input depth of tillage (in)         2UIPMENT         Choose stabilization equipment type from drop down menu         Input area (ft2)         Input time available (work days)         JIPMENT         Choose huel type from drop down menu         Choose huel type from drop down menu         Input tooluction rate (yd3/hr)         Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)         CMBUSTION ENGINES         Choose fuel type from drop down menu         Input Led consumption rate (gal/hr) or scf/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2                                                                             | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3                                                                            | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline 1 to 3 Engine 4                                                                                         | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline 1 to 3 1 to 3 Engine 5                                                                 | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6                                                              |                                                                                                                                           |
| CAPPING EC                                            | RAL EQUIPMENT         Choose fuel type from drop down menu         Input area to till (are).         Choose soil condition from drop down menu         Choose soil condition from drop down menu         Input time available (work days)         Input depth of tillage (in)         DUIPMENT         Choose stabilization equipment type from drop down menu         Choose stabilization equipment type from drop down menu         Choose fuel type from drop down menu         Input area (ft2)         Input time available (work days)         JIPMENT         Choose fuel type from drop down menu         Choose fuel type from drop down menu         Input area (ft2)         Input ordure area (ft2)         Input ordure area (ft2)         Input rolume (yd3)         Input volume (yd3)         Input tordure in rate (yd3/hr)         Input tordure in rate (yd3/hr)         Input tordure in rate (yd3/hr)         Input tordure till bype from drop down menu         Choose fuel type from drop down menu         Choose fuel type from drop down menu         Input tordure on rate (yd3/hr)         Input tordure type from drop down menu         Choose fuel type from drop down menu         Input fuel consumption rate (gal/hr or scf/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 5 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel                                                                      | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3 Diesel                                                                     | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel                                                                 | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3 Engine 5 Diesel                                                | Casoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel                                                       |                                                                                                                                           |
| CAPPING EC                                            | RAL EQUIPMENT         Choose fuel type from drop down menu         Input area to till (aree).         Choose soil condition from drop down menu         Choose soil condition from drop down menu         Input depth of tillage (in)         2UIPMENT         Choose stabilization equipment type from drop down menu         Input area (ft2)         Input time available (work days)         JIPMENT         Choose huel type from drop down menu         Choose huel type from drop down menu         Input tooluction rate (yd3/hr)         Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)         CMBUSTION ENGINES         Choose fuel type from drop down menu         Input Led consumption rate (gal/hr) or scf/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2                                                                             | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3                                                                            | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline 1 to 3 Engine 4                                                                                         | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline 1 to 3 1 to 3 Engine 5                                                                 | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6                                                              |                                                                                                                                           |
| CAPPING EC                                            | RAL EQUIPMENT         Choose fuel type from drop down menu         Input area to till (aree).       Choose soil condition from drop down menu         Choose soil type from drop down menu       Input depth of tillage (in)         UIPMENT         Choose stabilization equipment type from drop down menu         Choose stabilization equipment type from drop down menu         Choose stabilization equipment type from drop down menu         Choose tuel type from drop down menu         Input time available (work days)         JIPMENT         Choose huel type from drop down menu         Input troduction rate (yd3/hr)         Input setimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)         Combustion rate (yd3/hr)         Input setimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)         Combustion rate (gal/hr) or sc/hr)         Input uper form drop down menu         Input uper form drop down menu         Input uper consumption rate (gal/hr or sc/hr)         Input uper form drop down menu         Input uper form drop down menu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 5 30 Fuel 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel Fuel 2                                                               | Gasoline Firm untilled soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3 Diesel Fuel 3                                                              | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel Fuel 4                                                          | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3 Engine 5 Diesel Fuel 5                                         | Casoline  Firm untilled soil Clay Soil  Equipment 6 Roller Gasoline  Mixer 6 Gasoline 1 to 3  Engine 6 Diesel  Fuel 6                                           |                                                                                                                                           |
| CAPPING EC                                            | RAL EQUIPMENT         Choose fuel type from drop down menu         Input area to till (arer)         Choose soil condition from drop down menu         Input time available (work days)         Input depth of tillage (in)         2UIPMENT         Choose stabilization equipment type from drop down menu         Input time available (work days)         Input area (ft2)         Input time available (work days)         Input area (ft2)         Input time available (work days)         IPMENT         Choose fuel type from drop down menu         Input time available (work days)         IPMENT         Choose fuel type from drop down menu         Input production rate (yd3/hr)         Input production rate (yd3/hr)         Input production rate (yd3/hr)         Input tolume (yd3)         OMBUSTION ENCINES         Choose fuel type from drop down menu         Input tel consumption rate (gal/hr or scf/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 5 30 Fuel 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel Fuel 2 Natural gas Occupation 2                                      | Gasoline  Firm untilled soil  Clay Soil  Equipment 3  Roller  Gasoline  Mixer 3  Gasoline  1 to 3  Engine 3  Diesel  Fuel 3  Natural gas  Occupation 3                        | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel Fuel 4                                                          | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas Occupation 5                | Casoline  Firm untilled soil Clay Soil  Equipment 6 Roller Gasoline  Mixer 6 Gasoline 1 to 3  Engine 6 Diesel  Fuel 6                                           |                                                                                                                                           |
| CAPPING EC                                            | RAL EQUIPERIT         Choose fuel type from drop down menu         Input area to till (aree).       Choose soil condition from drop down menu         Choose soil condition from drop down menu       Choose soil type from drop down menu         Input depth of tillage (in)       DUIPMENT         Choose stabilization equipment type from drop down menu       Choose stabilization equipment type from drop down menu         Choose fuel type from drop down menu       Input area (ft2)         Input time available (work days)       IPMENT         Choose fuel type from drop down menu       Choose fuel type from drop down menu         Input area (ft2)       Input only if work days)         IIPMENT       Choose horsepower range from drop down menu         Input volume (vd3)       Input production rate (yd3/hr)         Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)         Choose fuel type from drop down menu         Input fuel consumption rate (gal/hr) or scf/hr)         Input operating hours (hr)         LED EQUIPMENT         Choose fuel type from drop down menu         Input volume (scf for Natural gas, gallons for all others)         LABOR         Choose fuel type from drop down menu <td cols<="" td=""><td>Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 5 30 Fuel 1 Natural gas Occupation 1 Construction laborers</td><td>Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel Fuel 2 Natural gas</td><td>Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3 Diesel Fuel 3 Natural gas</td><td>Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel Fuel 4 Natural gas</td><td>Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas</td><td>Casoline Firm untilled soil Clay Soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas</td></td>                                                                                                                                                                                                                              | <td>Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 5 30 Fuel 1 Natural gas Occupation 1 Construction laborers</td> <td>Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel Fuel 2 Natural gas</td> <td>Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3 Diesel Fuel 3 Natural gas</td> <td>Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel Fuel 4 Natural gas</td> <td>Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas</td> <td>Casoline Firm untilled soil Clay Soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas</td>                                                           | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 5 30 Fuel 1 Natural gas Occupation 1 Construction laborers | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel Fuel 2 Natural gas                                                  | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 3 Roller Gasoline Mixer 3 Gasoline 1 to 3 Engine 3 Diesel Fuel 3 Natural gas                                    | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel Fuel 4 Natural gas                             | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas                                    | Casoline Firm untilled soil Clay Soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas    |
| CAPPING EC                                            | RAL EQUIPMENT         Choose fuel type from drop down menu         Input area to till (are)       Choose soil condition from drop down menu         Choose soil condition from drop down menu       Input time available (work days)         Input depth of tillage (in)       DUIPMENT         Choose stabilization equipment type from drop down menu       Choose stabilization equipment type from drop down menu         Choose stabilization equipment type from drop down menu       Input area (fi2)         Input area (fi2)       Input area (fi2)         Input time available (work days)       DUIPMENT         Choose fuel type from drop down menu       Choose fuel type from drop down menu         Input area (fi2)       Input area (fi2)         Input type duction rate (yd3/hr)       Input production rate (yd3/hr)         Input estimated fuel consumption rate (gal/hr) (input only if known for the mixer selected, otherwise a default will be used by the tool)         COMBUSTION ENCINES         Choose fuel type from drop down menu         Input fuel consumption rate (gal/hr or scf/hr)       Input operating hours (hr)         Input volume (scf for Natural gas, gallons for all others)       LABOR         Choose eccupation from drop-down menu         Input total time worked onsite (hours)       Differencondition from streedonsite (hours) <td>Gasoline Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 5 30 Fuel 1 Natural gas Occupation 1 Construction laborers 90</td> <td>Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel Fuel 2 Natural gas Occupation 2 Construction laborers</td> <td>Gasoline  Firm untilled soil  Clay Soil  Equipment 3  Roller  Gasoline  Mixer 3  Gasoline  1 to 3  Engine 3  Diesel  Fuel 3  Natural gas  Occupation 3  Construction laborers</td> <td>Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel Fuel 4 Natural gas Occupation 4 Construction laborers</td> <td>Gasoline Firm untilled soll Clay Soll Clay Soll Equipment 5 Roller Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas Occupation 5 Construction laborers</td> <td>Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas Occupation 6 Construction laborers</td> | Gasoline Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 5 30 Fuel 1 Natural gas Occupation 1 Construction laborers 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel Fuel 2 Natural gas Occupation 2 Construction laborers                | Gasoline  Firm untilled soil  Clay Soil  Equipment 3  Roller  Gasoline  Mixer 3  Gasoline  1 to 3  Engine 3  Diesel  Fuel 3  Natural gas  Occupation 3  Construction laborers | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel Fuel 4 Natural gas Occupation 4 Construction laborers | Gasoline Firm untilled soll Clay Soll Clay Soll Equipment 5 Roller Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas Occupation 5 Construction laborers | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas Occupation 6 Construction laborers |                                                                                                                                           |
| CAPPING EC                                            | RAL EQUIPERIT         Choose fuel type from drop down menu         Input area to till (aree).       Choose soil condition from drop down menu         Choose soil condition from drop down menu       Choose soil type from drop down menu         Input depth of tillage (in)       DUIPMENT         Choose stabilization equipment type from drop down menu       Choose stabilization equipment type from drop down menu         Choose fuel type from drop down menu       Input area (ft2)         Input time available (work days)       IPMENT         Choose fuel type from drop down menu       Choose fuel type from drop down menu         Input area (ft2)       Input only if work days)         IIPMENT       Choose horsepower range from drop down menu         Input volume (vd3)       Input production rate (yd3/hr)         Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)         Choose fuel type from drop down menu         Input fuel consumption rate (gal/hr) or scf/hr)         Input operating hours (hr)         LED EQUIPMENT         Choose fuel type from drop down menu         Input volume (scf for Natural gas, gallons for all others)         LABOR         Choose fuel type from drop down menu <td cols<="" td=""><td>Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 5 30 Fuel 1 Natural gas Occupation 1 Construction laborers</td><td>Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel Fuel 2 Natural gas Occupation 2</td><td>Gasoline  Firm untilled soil  Clay Soil  Equipment 3  Roller  Gasoline  Mixer 3  Gasoline  1 to 3  Engine 3  Diesel  Fuel 3  Natural gas  Occupation 3</td><td>Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel Fuel 4 Natural gas Occupation 4</td><td>Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas Occupation 5</td><td>Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas Occupation 6</td></td>                                                                                                                                                                    | <td>Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 5 30 Fuel 1 Natural gas Occupation 1 Construction laborers</td> <td>Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel Fuel 2 Natural gas Occupation 2</td> <td>Gasoline  Firm untilled soil  Clay Soil  Equipment 3  Roller  Gasoline  Mixer 3  Gasoline  1 to 3  Engine 3  Diesel  Fuel 3  Natural gas  Occupation 3</td> <td>Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel Fuel 4 Natural gas Occupation 4</td> <td>Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas Occupation 5</td> <td>Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas Occupation 6</td> | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 5 30 Fuel 1 Natural gas Occupation 1 Construction laborers | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel Fuel 2 Natural gas Occupation 2                                     | Gasoline  Firm untilled soil  Clay Soil  Equipment 3  Roller  Gasoline  Mixer 3  Gasoline  1 to 3  Engine 3  Diesel  Fuel 3  Natural gas  Occupation 3                    | Gasoline Firm untilled soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel Fuel 4 Natural gas Occupation 4                | Gasoline Firm untilled soil Clay Soil Equipment 5 Roller Gasoline Mixer 5 Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas Occupation 5                       | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas Occupation 6 |
|                                                       | RAL EQUIPMENT         Choose fuel type from drop down menu         Input area to till (are).       Choose soil condition from drop down menu         Choose soil condition from drop down menu       Input time available (work days)         Input depth of tillage (in)       DUIPMENT         Choose stabilization equipment type from drop down menu       Choose stabilization equipment type from drop down menu         Choose stabilization equipment type from drop down menu       Input area (ft2)         Input area (ft2)       Input area (ft2)         Input time available (work days)       Input area (ft2)         Input rolume (yd3)       Input rolume (yd3)         Input volume (yd3)       Input setimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)         COMBUSTION ENCINES         Choose fuel type from drop down menu         Input fuel consumption rate (gal/hr or scf/hr)       Input operating hours (hr)         LEDE OUIPMENT         Choose fuel type from drop down menu         Input volume (scf for Natural gas, galions for all others)       EABOR         Choose fuel type from drop down menu         Input volume (scf for Natural gas, galions for all others)       EXENCE          Schose occupation from drop-down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 5 30 Fuel 1 Natural gas Occupation 1 Construction laborers 90 Analysis 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel Fuel 2 Natural gas Occupation 2 Construction laborers                | Gasoline  Firm untilled soil  Clay Soil  Equipment 3  Roller  Gasoline  Mixer 3  Gasoline  1 to 3  Engine 3  Diesel  Fuel 3  Natural gas  Occupation 3  Construction laborers | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel Fuel 4 Natural gas Occupation 4 Construction laborers | Gasoline Firm untilled soll Clay Soll Clay Soll Equipment 5 Roller Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas Occupation 5 Construction laborers | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas Occupation 6 Construction laborers |                                                                                                                                           |
|                                                       | RAL EQUIPMENT         Choose fuel type from drop down menu         Input area to till (are).       Choose soil condition from drop down menu         Choose soil condition from drop down menu       Choose soil condition from drop down menu         Input depth of tillage (in)       Input depth of tillage (in)         2UIPMENT       Choose stabilization equipment type from drop down menu         Choose fuel type from drop down menu       Input area (ft2)         Input area (ft2)       Input time available (work days)         IIPMENT       Choose fuel type from drop down menu         Choose fuel type from drop down menu       Choose horsepower range from drop down menu         Input ordure (yd3)       Input estimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)         Choose fuel type from drop down menu       Input fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)         CMBUSTION ENGINES       Choose fuel type from drop down menu         Input fuel consumption rate (gal/hr or sc/ihr)       Input operating hours (hr)         LED EQUIPMENT       Choose fuel type from drop down menu         Input volume (scf for Natural gas, gallons for all others)       Input total time worked onsite (hours)         RY ANALYSIS       XANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gasoline Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 5 30 Fuel 1 Natural gas Occupation 1 Construction laborers 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel Fuel 2 Natural gas Occupation 2 Construction laborers                | Gasoline  Firm untilled soil  Clay Soil  Equipment 3  Roller  Gasoline  Mixer 3  Gasoline  1 to 3  Engine 3  Diesel  Fuel 3  Natural gas  Occupation 3  Construction laborers | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel Fuel 4 Natural gas Occupation 4 Construction laborers | Gasoline Firm untilled soll Clay Soll Clay Soll Equipment 5 Roller Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas Occupation 5 Construction laborers | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas Occupation 6 Construction laborers |                                                                                                                                           |
| CAPPING EQU<br>MIXING EQU<br>INTERNAL C<br>OTHER FUEL | RAL EQUIPMENT         Choose fuel type from drop down menu         Input area to till (aree).         Choose soil condition from drop down menu         Choose soil condition from drop down menu         Input depth of tillage (in) <b>DUIPMENT</b> Choose stabilization equipment type from drop down menu         Choose stabilization equipment type from drop down menu         Choose stabilization equipment type from drop down menu         Choose fuel type from drop down menu         Input area (ft2)         Input tarea (ft2)         Input tore available (work days)         IIPMENT         Choose fuel type from drop down menu         Choose fuel type from drop down menu         Input volume (yd3)         Input stimated fuel consumption rate (gal/hr) (Input only if known for the mixer selected, otherwise a default will be used by the tool)         CMBUSTION ENCINES         Choose fuel type from drop down menu         Input toel consumption rate (gal/hr or scf/hr)         Input operating hours (hr)         Input outume (scf for Natural gas, gallons for all others)         LABOR         Choose cocupation from drop-down menu         Input total time worked onsite (hours)         RY ANALYSIS         Input dollars spent on laboratory analysis (\$) <t< td=""><td>Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 5 30 Fuel 1 Natural gas Occupation 1 Construction laborers 90 Analysis 1</td><td>Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel Fuel 2 Natural gas Occupation 2 Construction laborers</td><td>Gasoline  Firm untilled soil  Clay Soil  Equipment 3  Roller  Gasoline  Mixer 3  Gasoline  1 to 3  Engine 3  Diesel  Fuel 3  Natural gas  Occupation 3  Construction laborers</td><td>Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel Fuel 4 Natural gas Occupation 4 Construction laborers</td><td>Gasoline Firm untilled soll Clay Soll Clay Soll Equipment 5 Roller Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas Occupation 5 Construction laborers</td><td>Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas Occupation 6 Construction laborers</td></t<>                                                                        | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 1 Roller Gasoline Mixer 1 Gasoline 1 to 3 Engine 1 Diesel 5 30 Fuel 1 Natural gas Occupation 1 Construction laborers 90 Analysis 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gasoline Firm untilled soil Clay Soil Equipment 2 Roller Gasoline Mixer 2 Gasoline 1 to 3 Engine 2 Diesel Fuel 2 Natural gas Occupation 2 Construction laborers                | Gasoline  Firm untilled soil  Clay Soil  Equipment 3  Roller  Gasoline  Mixer 3  Gasoline  1 to 3  Engine 3  Diesel  Fuel 3  Natural gas  Occupation 3  Construction laborers | Gasoline Firm untilled soil Clay Soil Clay Soil Equipment 4 Roller Gasoline Mixer 4 Gasoline 1 to 3 Engine 4 Diesel Fuel 4 Natural gas Occupation 4 Construction laborers | Gasoline Firm untilled soll Clay Soll Clay Soll Equipment 5 Roller Gasoline 1 to 3 Engine 5 Diesel Fuel 5 Natural gas Occupation 5 Construction laborers | Gasoline Firm untilled soil Clay Soil Equipment 6 Roller Gasoline Mixer 6 Gasoline 1 to 3 Engine 6 Diesel Fuel 6 Natural gas Occupation 6 Construction laborers |                                                                                                                                           |

| Input N2O emission (metric ton CO2 e) |  |
|---------------------------------------|--|
| Input CH4 emission (metric ton CO2 e) |  |
| Input NOx emission (metric ton)       |  |
| Input SOx emission (metric ton)       |  |
| Input PM10 emission (metric ton)      |  |
| Input fatality risk                   |  |
| Input injury risk                     |  |

| ESIDUE DISPOSAL/RECYCLING                                                        | Soil Residue   | Residual Water | Material Residue | Other Residuals | Other Residuals | Other Residuals |
|----------------------------------------------------------------------------------|----------------|----------------|------------------|-----------------|-----------------|-----------------|
| Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? | No             | No             | No               | No              | No              | No              |
| Input weight of the waste transported to                                         |                |                |                  |                 |                 |                 |
| landfill or recycling per trip (tons)                                            |                |                |                  |                 |                 | ļ               |
| Choose fuel used from drop down menu                                             | Gasoline       | Gasoline       | Gasoline         | Gasoline        | Gasoline        | Gasoline        |
| Input total number of trips                                                      |                |                |                  |                 |                 |                 |
| Input number of miles per trip                                                   |                |                |                  |                 |                 |                 |
|                                                                                  |                |                |                  |                 |                 |                 |
| ANDFILL OPERATIONS                                                               | Operation 1    | Operation 2    | Operation 3      | Operation 4     | Operation 5     | Operation 6     |
| Choose landfill type for waste disposal                                          | Non-Hazardous  | Non-Hazardous  | Non-Hazardous    | Non-Hazardous   | Non-Hazardous   | Non-Hazardous   |
| Input amount of waste disposed in landfill (tons)                                |                |                |                  |                 |                 |                 |
| Input landfill methane emissions (metric tons CH4)                               |                |                |                  |                 |                 |                 |
|                                                                                  |                |                |                  |                 |                 |                 |
| HERMAL/CATALYTIC OXIDIZERS*                                                      | Oxidizer 1     | Oxidizer 2     | Oxidizer 3       | Oxidizer 4      | Oxidizer 5      | Oxidizer 6      |
| Choose oxidizer type from drop down menu                                         | Simple Thermal | Simple Thermal | Simple Thermal   | Simple Thermal  | Simple Thermal  | Simple Thermal  |
|                                                                                  | Oxidizer       | Oxidizer       | Oxidizer         | Oxidizer        | Oxidizer        | Oxidizer        |
| Choose fuel type from drop down menu                                             | Natural gas    | Natural gas    | Natural gas      | Natural gas     | Natural gas     | Natural gas     |
| Input waste gas flow rate (scfm)                                                 |                |                |                  |                 |                 |                 |
| Input time running (hours)                                                       |                |                |                  |                 |                 |                 |
| Input waste gas inlet temperature (F)                                            |                |                |                  |                 |                 |                 |
| Input contaminant concentration (ppmV)                                           |                |                |                  |                 |                 |                 |
| *(Electric blowers are included in the analysis)                                 |                |                |                  |                 |                 |                 |

| WATER CONSUMPTION                                                      | Treatment System 1 | Treatment System 2 | Treatment System 3 | Treatment System 4 | Treatment System 5 | Treatment System 6 |
|------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Input total water consumed from potable water treatment facility (gal) |                    |                    |                    |                    |                    |                    |
| Input total water disposed to wastewater treatment facility (gal)      |                    |                    |                    |                    |                    |                    |
|                                                                        |                    |                    |                    |                    |                    |                    |
| ONSITE LAND AND WATER RESOURCE CONSUMPTION                             | Entire Site 1      | Entire Site 2      | Entire Site 3      | Entire Site 4      | Entire Site 5      | Entire Site 6      |
| Input volume of topsoil brought to site (cubic yards)                  |                    |                    |                    |                    |                    |                    |
| Input volume of groundwater or surface water lost (gal)                |                    |                    |                    |                    |                    |                    |

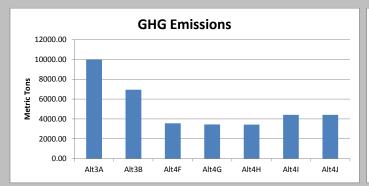
# ATTACHMENT 2

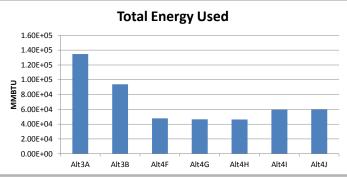
# ENVIRONMENTAL FOOTPRINT OF REMEDIAL ALTERNATIVES

| Remedial Alternatives | GHG Emissions | Total energy Used | Water    | NO <sub>x</sub> emissions | SO <sub>x</sub> Emissions | PM <sub>10</sub> Emissions | Accident             | Accident           |
|-----------------------|---------------|-------------------|----------|---------------------------|---------------------------|----------------------------|----------------------|--------------------|
| Remedial Alternatives | metric ton    | MMBTU             | gallons  | metric ton                | metric ton                | metric ton                 | <b>Risk Fatality</b> | <b>Risk Injury</b> |
| Alt3A                 | 9994.49       | 1.35E+05          | 0.00E+00 | 2.77E+01                  | 8.37E+00                  | 4.01E+01                   | 2.10E-02             | 2.09E+00           |
| Alt3B                 | 6964.27       | 9.40E+04          | 0.00E+00 | 1.93E+01                  | 5.83E+00                  | 2.79E+01                   | 1.46E-02             | 1.45E+00           |
| Alt4F                 | 3572.62       | 4.78E+04          | 0.00E+00 | 1.06E+01                  | 2.87E+00                  | 1.38E+01                   | 7.28E-03             | 7.43E-01           |
| Alt4G                 | 3462.23       | 4.66E+04          | 0.00E+00 | 9.81E+00                  | 2.86E+00                  | 1.37E+01                   | 7.20E-03             | 7.22E-01           |
| Alt4H                 | 3440.66       | 4.64E+04          | 0.00E+00 | 9.65E+00                  | 2.86E+00                  | 1.37E+01                   | 7.21E-03             | 7.26E-01           |
| Alt4I                 | 4425.10       | 5.97E+04          | 0.00E+00 | 1.24E+01                  | 3.68E+00                  | 1.76E+01                   | 9.25E-03             | 9.26E-01           |
| Alt4J                 | 4430.09       | 5.97E+04          | 0.00E+00 | 1.24E+01                  | 3.68E+00                  | 1.76E+01                   | 9.26E-03             | 9.27E-01           |

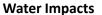
# Additional Sustainability Metrics

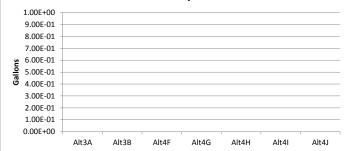
| Remedial Alternatives | Non-Hazardous<br>Waste Landfill<br>Space | Hazardous Waste<br>Landfill Space | Topsoil<br>Consumption | Costing  | Lost Hours -<br>Injury | Final Cost with<br>Footprint<br>Reduction |
|-----------------------|------------------------------------------|-----------------------------------|------------------------|----------|------------------------|-------------------------------------------|
|                       | tons                                     | tons                              | cubic yards            | \$       |                        | \$                                        |
| Alt3A                 | 214692.00                                | 0.00E+00                          | 0.00E+00               | 4.42E+07 | 1.67E+01               | 4.42E+07                                  |
| Alt3B                 | 149321.00                                | 0.00E+00                          | 0.00E+00               | 3.19E+07 | 1.16E+01               | 3.19E+07                                  |
| Alt4F                 | 73174.00                                 | 0.00E+00                          | 0.00E+00               | 2.14E+07 | 5.94E+00               | 2.14E+07                                  |
| Alt4G                 | 73174.00                                 | 0.00E+00                          | 0.00E+00               | 1.95E+07 | 5.78E+00               | 1.95E+07                                  |
| Alt4H                 | 73174.00                                 | 0.00E+00                          | 0.00E+00               | 1.82E+07 | 5.81E+00               | 1.82E+07                                  |
| Alt4I                 | 94335.00                                 | 0.00E+00                          | 0.00E+00               | 2.20E+07 | 7.41E+00               | 2.20E+07                                  |
| Alt4J                 | 94335.00                                 | 0.00E+00                          | 0.00E+00               | 2.22E+07 | 7.42E+00               | 2.22E+07                                  |

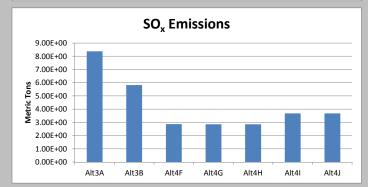

# Relative Impact


| Remedial Alternatives | GHG Emissions | Energy Usage | Water Usage | NOx emissions | SOx Emissions | PM10 Emissions | *Accident<br>Risk Fatality | *Accident<br>Risk Injury | Community<br>Impacts | Resources<br>Lost |
|-----------------------|---------------|--------------|-------------|---------------|---------------|----------------|----------------------------|--------------------------|----------------------|-------------------|
| Alt3A                 | High          | High         | Low         | High          | High          | High           | High                       | High                     | user select          | user select       |
| Alt3B                 | Medium        | Medium       | Low         | Medium        | Medium        | Medium         | Medium                     | Medium                   | user select          | user select       |
| Alt4F                 | Medium        | Medium       | Low         | Medium        | Medium        | Medium         | Medium                     | Medium                   | user select          | user select       |
| Alt4G                 | Medium        | Medium       | Low         | Medium        | Medium        | Medium         | Medium                     | Medium                   | user select          | user select       |
| Alt4H                 | Medium        | Medium       | Low         | Medium        | Medium        | Medium         | Medium                     | Medium                   | user select          | user select       |
| Alt4I                 | Medium        | Medium       | Low         | Medium        | Medium        | Medium         | Medium                     | Medium                   | user select          | user select       |
| Alt4J                 | Medium        | Medium       | Low         | Medium        | Medium        | Medium         | Medium                     | Medium                   | user select          | user select       |

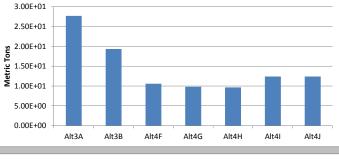
## Relative Impact (User Override)

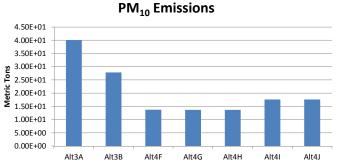

| Remedial Alternatives | GHG Emissions | Energy Usage | Water Usage | NOx emissions | SOx Emissions | PM10 Emissions | *Accident<br>Risk Fatality | *Accident<br>Risk Injury | Community<br>Impacts | Resources<br>Lost |
|-----------------------|---------------|--------------|-------------|---------------|---------------|----------------|----------------------------|--------------------------|----------------------|-------------------|
| Alt3A                 | High          | High         | Low         | High          | High          | High           | High                       | High                     | user select          | user select       |
| Alt3B                 | Medium        | Medium       | Low         | Medium        | Medium        | Medium         | Medium                     | Medium                   | user select          | user select       |
| Alt4F                 | Medium        | Medium       | Low         | Medium        | Medium        | Medium         | Medium                     | Medium                   | user select          | user select       |
| Alt4G                 | Medium        | Medium       | Low         | Medium        | Medium        | Medium         | Medium                     | Medium                   | user select          | user select       |
| Alt4H                 | Medium        | Medium       | Low         | Medium        | Medium        | Medium         | Medium                     | Medium                   | user select          | user select       |
| Alt4I                 | Medium        | Medium       | Low         | Medium        | Medium        | Medium         | Medium                     | Medium                   | user select          | user select       |
| Alt4J                 | Medium        | Medium       | Low         | Medium        | Medium        | Medium         | Medium                     | Medium                   | user select          | user select       |


\*Accident Risk is an estimate of how many accidents may occur. This risk is not the same as Cancer Risk, which is the probability (for a single person) of getting cancer. Accident risk is not comparable to Cancer Risk due to inherent fundamental differences.





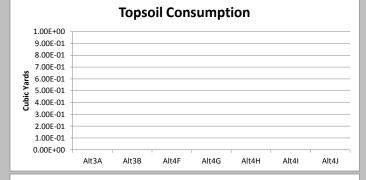


NO<sub>x</sub> Emissions



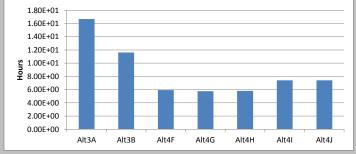




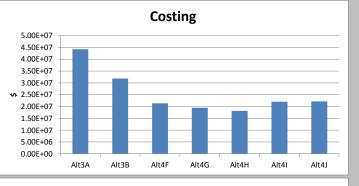




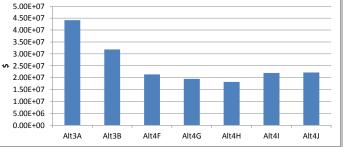









1.00E+00 9.00E-01 8.00E-01 7.00E-01 6.00E-01 5.00E-01 4.00E-01 3.00E-01 2.00E-01 1.00E-01 0.00E+00 Alt3A Alt3B Alt4F Alt4G Alt4H Alt4I Alt4J



**Final Cost with Footprint Reduction** 



#### **Hazardous Waste Landfill Space**

## APPENDIX G—CRITERIUM DECISION PLUS® ANALYSIS

## TABLE OF CONTENTS

| APPENDIX | G CRITERIUM DECISION PLUS ANALYSIS | G-1 |
|----------|------------------------------------|-----|
| G.1      | INTRODUCTION                       | G-1 |
| G.2      | METHODOLOGY FOR CDP ANALYSIS       | G-1 |
| G.3      | SENSITIVITY ANALYSIS               | G-2 |
| G.4      | REFERENCES                         | G-7 |

# ATTACHMENT 1 CDP FRAMEWORK FOR DETAILED ANALYSIS OF ALTERNATIVES

## LIST OF TABLES

| Table G-1. | CDP Analysis Output Scores | . G-4 | 4 |
|------------|----------------------------|-------|---|
|------------|----------------------------|-------|---|

### LIST OF FIGURES

| Figure G-1. | Sensitivity Analysis – Capital Cost C                                   | <b>3-5</b> |
|-------------|-------------------------------------------------------------------------|------------|
| Figure G-2. | Sensitivity Analysis – Treatment, Energy Use, Protection of Community C | <b>3-6</b> |

# APPENDIX G Criterium Decision Plus Analysis

## G.1 INTRODUCTION

Multi-parameter analysis tools are developed based on the multi-criteria decision analysis which offers a scientifically sound decision framework for management of contaminated sediments. This method is useful because relative performance of each alternative with respect to each CERCLA evaluation criterion (i.e., threshold, balancing, and modifying criteria) including environmental benefits, impacts, risks, economics, and stakeholder participation can be incorporated into the comparative analysis.

This appendix presents the methodology and sensitivity analysis for multi-criteria comparative evaluation for MRC Site remedial alternatives. The analysis and the comparative evaluation are presented in Section 7 of this FS. A multi-parameter analysis tool, Criterium Decision Plus<sup>®</sup> (CDP) was utilized to provide a means of weighting and scoring of the remedial alternatives. CDP is a decision analysis tool utilizing decision-making techniques such as Analytical Hierarchy Process (AHP) and the Multiattribute Utility Theory using the Simple Multiattribute Rating Technique (SMART) incorporated into the tool (InfoHarvest, 2001).

### G.2 METHODOLOGY FOR CDP ANALYSIS

The methodology for multi-criteria comparative analysis follows Lockheed Martin's Planning Manual for Environmental Remediation (Lockheed Martin, 2012).

In order to build the decision hierarchy and incorporate all the decision factors, each of the CERCLA evaluation criteria are represented by one or more individual metrics. To account for those metrics, up to three levels of evaluation criteria were established: Level 1 criteria are the major balancing and modifying criteria; Level 2 criteria have factors considered in evaluation of Level 1 criteria; and Level 3 has further subcomponent factors to evaluate the Level 2 criteria. The framework for comparative evaluation of alternatives is based on the framework provided in Lockheed Martin's Planning Manual included in Attachment 1.

### G.3 SENSITIVITY ANALYSIS

After completion of the initial CDP analysis, sensitivity runs were performed to assess the robustness of the scoring and ranking. Sensitivity curves are utilized to determine if there are any cases where only slight changes (i.e., under 10 percent) in the criteria weights would cause a change in the score sufficient enough to change the ranking of alternatives. If that is the case, the weighting of such particular criteria is revisited and the ranking of the alternatives are re-assessed.

Sensitivity analysis was performed based on the output scores of the CDP analysis. The output scores of the analysis are provided in Table G-1. The difference of the scores between the best scored alternative, Alternative 4G (0.634) and the second runner up alternative, Alternative 4J (0.631) are calculated at the last column of Table G-1. In this column, positive numbers indicate that Alternative 4G performs better than Alternative 4J; the negative numbers indicate otherwise. For the range of the positive numbers, the criteria corresponding to a difference of 0.002 and above were identified to perform the sensitivity analysis because these criteria have the greatest potential influence on the outcome of the decision. These criteria are destruction of hazardous constituents through treatment, capital cost, protection of community during construction, and energy use.

Figure G-1 shows the sensitivity analysis of capital cost. The top graph shows the existing analysis output where the priority value correlated to the weighting factor of the capital cost is 0.8. The graph below shows the change necessary in the priority value so that Alternative 4J becomes best scored alternative. The new priority value to make the ranking of Alternative 4J higher than 4G is 0.7, which indicates that capital cost is moderately important as opposed to the original analysis where capital cost is critical with a priority value 0.8. It is concluded that change in the criteria weight would not change the decision score sufficient enough to change the ranking of the alternatives because the difference between the priority values is larger than 10%. Similar methodology was followed to assess the sensitivity of other criteria (i.e. destruction of hazardous constituents through treatment, protection of community during construction, and energy use). Sensitivity curves of these criteria are shown in Figure G-2. These curves show that Alternative 4G and 4J either overlaps or goes parallel, and a 10% change in weighting would not

make any difference in the decision score. This sensitivity analysis concludes that Alternative 4G is a robust alternative to be selected as the recommended alternative in this FS.

#### Table G-1. CDP Analysis Output Scores

|                                        | 3A.      | 4G.<br>Removal, | 4H.      | 3B.        | 41.   |               | 4F. Partial |              |         |          |
|----------------------------------------|----------|-----------------|----------|------------|-------|---------------|-------------|--------------|---------|----------|
|                                        | Complete | Insitu,         | Removal, | Removal at |       | 4J. Removal+, |             |              | Model   | Alt 4G-  |
| Lowest Level                           | Removal  | MNR             | MNR      | CPC, DHC   | MNR   | Insitu, MNR   |             | 1. No Action | Weights | Alt.4J   |
| Impacts on Water Resources             | 0        | 0.66            | 0.66     | 0.3        | 0.56  | 0.56          | 0.66        | 1            | 0.014   | 0.0014   |
| Destruction of Hazardous Constituents  | 0        | 0.2             | 0        | 0          | 0     | 0.1           | 0.2         | 0            | 0.043   | 0.0043   |
| GHG emissions                          | 0        | 0.65            | 0.66     | 0.3        | 0.56  | 0.56          | 0.64        | 1            | 0.007   | 0.00063  |
| Capital                                | 0        | 0.58            | 0.61     | 0.28       | 0.52  | 0.51          | 0.54        | 1            | 0.104   | 0.00728  |
| Protect Community                      | 0        | 0.7             | 0.8      | 0          | 0.6   | 0.6           | 0.7         | 1            | 0.023   | 0.0023   |
| Obtaining Other Approvals              | 0.5      | 0.75            | 0.75     | 0.5        | 0.75  | 0.75          | 0.25        | 1            | 0.047   | 0        |
| Irreversibility of Treatment           | 0        | 1               | 0        | 0          | 0     | 1             | 1           | 0            | 0.043   | 0        |
| Constructabilty                        | 0.5      | 0.7             | 0.75     | 0.57       | 0.69  | 0.67          | 0.65        | 1            | 0.032   | 0.00096  |
| Effectiveness of Monitoring            | 1        | 0.75            | 0.75     | 1          | 0.75  | 0.75          | 0.75        | 0            | 0.047   | 0        |
| OM&M                                   | 1        | 0               | 0.13     | 1          | 0.41  | 0.45          | 0.06        | 1            | 0.026   | -0.0117  |
| Adaptability to Modify/Update          | 1        | 0               | 1        | 1          | 1     | 0             | 0           | 1            | 0.016   | 0        |
| Energy Use                             | 0        | 0.65            | 0.66     | 0.3        | 0.56  | 0.56          | 0.65        | 1            | 0.043   | 0.00387  |
| Time to achieve RAOs                   | 1        | 0.96            | 0.75     | 1          | 0.96  | 0.99          | 1           | 0            | 0.035   | -0.00105 |
| Residual Potential Risk                | 0.97     | 0.78            | 0.73     | 0.97       | 0.82  | 0.83          | 0.81        | 0.17         | 0.025   | -0.00125 |
| Availability of Experts and Technology | 1        | 1               | 1        | 1          | 1     | 1             | 1           | 1            | 0.032   | 0        |
| Technology Reliability                 | 0.9      | 0.6             | 0.74     | 0.9        | 0.8   | 0.78          | 0.86        | 0            | 0.05    | -0.009   |
| State and Local Agency                 | 0.06     | 0.09            | 0.04     | 0.07       | 0.09  | 0.1           | 0.05        | 0            | 0.065   | -0.00065 |
| Achievement of RAO 1, 2                | 1        | 1               | 0.91     | 1          | 1     | 1             | 1           | 0.46         | 0.05    | 0        |
| Achievement of RAO 3                   | 1        | 0.93            | 0.82     | 1          | 0.89  | 0.93          | 1           | 0.6          | 0.05    | 0        |
| PM emissions                           | 0        | 0.66            | 0.66     | 0.3        | 0.56  | 0.56          | 0.66        | 1            | 0.007   | 0.0007   |
| SOx emissions                          | 0        | 0.66            | 0.66     | 0.3        | 0.56  | 0.56          | 0.66        | 1            | 0.011   | 0.0011   |
| NOx emissions                          | 0        | 0.65            | 0.65     | 0.3        | 0.55  | 0.55          | 0.62        | 1            | 0.004   | 0.0004   |
| Minimize Environmental Impacts         | 0        | 0.8             | 0.8      | 0          | 0.7   | 0.7           | 0.6         | 1            | 0.012   | 0.0012   |
| Protect Construction Workers           | 0        | 0.7             | 0.8      | 0          | 0.6   | 0.6           | 0.7         | 1            | 0.017   | 0.0017   |
| Community                              | 0.5      | 0.8             | 0.3      | 0.5        | 0.8   | 0.8           | 0.7         | 0            | 0.065   | 0        |
| Risk Mitigation                        | 0.5      | 0.5             | 0.5      | 0.5        | 0.5   | 0.5           | 0.5         | 0.5          | 0.037   | 0        |
| Corporate Brand                        | 0.5      | 0.5             | 0.5      | 0.5        | 0.5   | 0.5           | 0.5         | 0.5          | 0.075   | 0        |
| Cost Volatility                        | 0.5      | 0.5             | 0.5      | 0.5        | 0.5   | 0.5           | 0.5         | 0.5          | 0.019   | 0        |
| Results                                | 0.465    | 0.634           | 0.563    | 0.523      | 0.597 | 0.631         | 0.613       | 0.518        |         |          |

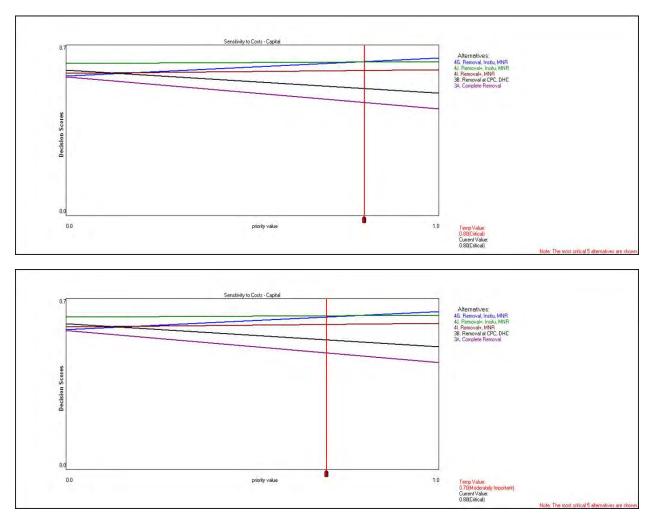
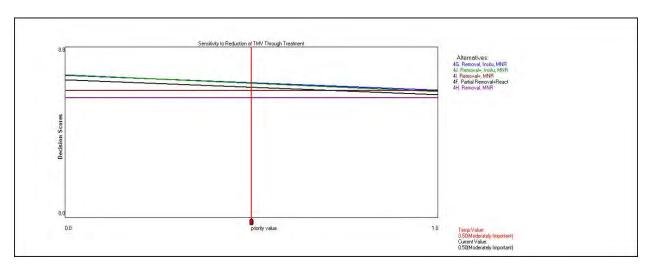
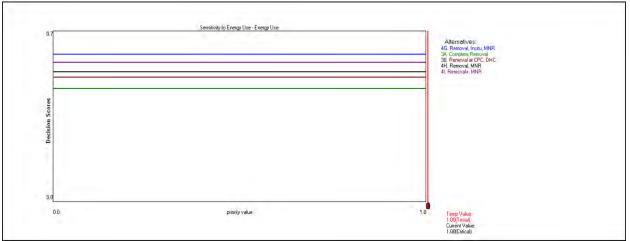





Figure G-1. Sensitivity Analysis – Capital Cost





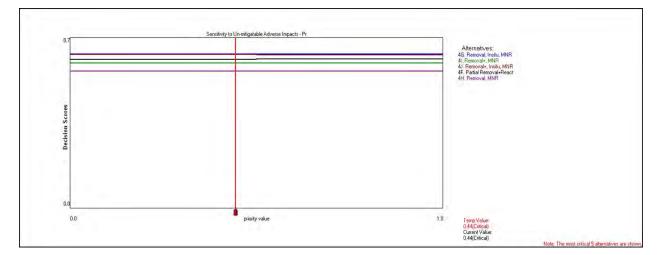



Figure G-2. Sensitivity Analysis – Treatment, Energy Use, Protection of Community

### G.4 REFERENCES

- InfoHarvest, Inc. 2001. Criterium Decision Plus. The Complete Decision Formulation, Analysis, and Presentation for Windows Version 3.0 User's Guide Tutorial. Seattle, Washington.
- Lockheed Martin. 2012. Planning Manual for Environmental Remediation for EESH Management and Project Teams. Version H. Final Draft. May 2, 2012. Lockheed Martin Corporation Energy, Environment, Safety & Health.

## **ATTACHMENT 1**

## CDP FRAMEWORK FOR DETAILED ANALYSIS OF ALTERNATIVES

| TABLE 6.3                                           |
|-----------------------------------------------------|
| CDP FRAMEWORK FOR DETAILED ANALYSIS OF ALTERNATIVES |

| <b>CRITERIA</b> LEVELS (and typical weights, maximum = 100) |                                 |     |                                  |                                                             |     |              |                                   |     |                                  |
|-------------------------------------------------------------|---------------------------------|-----|----------------------------------|-------------------------------------------------------------|-----|--------------|-----------------------------------|-----|----------------------------------|
|                                                             | LEVEL 1                         | Wt  | <b>Contribution</b> <sup>1</sup> | LEVEL 2                                                     | Wt  | Contribution | LEVEL 3                           | Wt  | <b>Contribution</b> <sup>1</sup> |
|                                                             |                                 |     |                                  | Prevent Human Health Risks                                  | 100 | 5.0%         |                                   |     | 5.0%                             |
|                                                             | Long-Term                       | 100 | 17 (0)                           | Minimize Ecological Risks                                   | 100 | 5.0%         |                                   |     | 5.0%                             |
|                                                             | Effectiveness and<br>Permanence | 100 | 17.6%                            | Residual Potential Risk (Assuming Remedy Failure)           | 50  | 2.6%         |                                   |     | 2.6%                             |
|                                                             | I el manence                    |     |                                  | Technology Reliability                                      | 100 | 5.0%         |                                   |     | 5.0%                             |
|                                                             | Reduction of TMV through        | 50  | 8.8%                             | Destruction of Hazardous Constituents                       | 50  | 4.4%         |                                   |     | 4.4%                             |
|                                                             | Treatment                       | 50  | 0.070                            | Irreversibility of Treatment                                | 50  | 4.4%         |                                   |     | 4.4%                             |
|                                                             |                                 |     |                                  | Time to Achieve RAOs                                        | 50  | 3.5%         |                                   |     | 3.5%                             |
|                                                             |                                 |     |                                  | Un-mitigatable Adverse Impacts During Construction and OM&M |     |              | Protect Community                 | 100 | 2.4%                             |
|                                                             | Short-Term<br>Effectiveness     | 50  | 8.8%                             |                                                             | 75  | 5.3%         | Protect Construction<br>Workers   | 75  | 1.8%                             |
| Balancing                                                   |                                 |     |                                  |                                                             |     |              | Minimize<br>Environmental Impacts | 50  | 1.2%                             |
| Criteria                                                    | Implementability                | 100 | 17.6%                            | Obtaining Other Approvals                                   | 75  | 4.8%         |                                   |     | 4.8%                             |
|                                                             |                                 |     |                                  | Constructability                                            | 50  | 3.2%         |                                   |     | 3.2%                             |
|                                                             |                                 |     |                                  | Availability of Experts and Technology                      | 50  | 3.2%         |                                   |     | 3.2%                             |
|                                                             |                                 |     |                                  | Adaptability to Modify/Update as Necessary                  | 25  | 1.6%         |                                   |     | 1.6%                             |
|                                                             |                                 |     |                                  | Effectiveness of Monitoring                                 | 75  | 4.8%         |                                   |     | 4.8%                             |
|                                                             |                                 | 50  |                                  | Energy Use                                                  | 75  | 4.4%         |                                   |     | 4.4%                             |
|                                                             |                                 |     | 8.8%                             | Air Emissions                                               |     | 2.9%         | GHG Emissions                     | 50  | 0.7%                             |
|                                                             | Environmental <sup>2</sup>      |     |                                  |                                                             | 50  |              | NO <sub>x</sub> Emissions         | 25  | 0.4%                             |
|                                                             | Environmental                   |     |                                  |                                                             | 50  |              | SO <sub>x</sub> Emissions         | 75  | 1.1%                             |
|                                                             |                                 |     |                                  |                                                             |     |              | PM <sub>10</sub> Emissions        | 50  | 0.7%                             |
|                                                             |                                 |     |                                  | Impacts on Water Resources                                  | 25  | 1.5%         |                                   |     | 1.5%                             |
|                                                             | Costs <sup>3</sup>              | 75  | 13.2%                            | Capital                                                     | 50  | 6.6%         |                                   |     | 6.6%                             |
|                                                             | Costs                           | 75  | 13.2%                            | Long Term OM&M                                              | 50  | 6.6%         |                                   |     | 6.6%                             |
|                                                             | Acceptance                      | 75  | 12 5%                            | State and Local Agency                                      | 50  | 6.2%         |                                   |     | 6.2%                             |
|                                                             | Acceptance                      | 15  | 12.5%                            | Community                                                   | 50  | 6.2%         |                                   |     | 6.2%                             |
| Modifying                                                   | Corporato                       |     |                                  | Risk Mitigation                                             | 50  | 3.6%         |                                   |     | 3.6%                             |
|                                                             | Corporate<br>Considerations     | 75  | 12.5%                            | Corporate Brand                                             | 100 | 7.1%         |                                   |     | 7.1%                             |
|                                                             | Considerations                  |     |                                  | Cost Volatility                                             | 25  | 1.8%         |                                   |     | 1.8%                             |
| Total                                                       |                                 |     | 100%                             |                                                             |     | 100%         |                                   |     | 100%                             |

<sup>1</sup> Calculated by CDP from the weights
 <sup>2</sup> Score alternatives for these criteria using output obtained from SiteWise to determine energy uses, emission rates and impacts on water resources.
 <sup>3</sup> Score alternatives for these criteria using the results of the Detailed Analysis Level Cost Estimate

Required only for the Detailed Analysis of Alternatives

GHG Greenhouse Gases OM&M Operations, Maintenance & Monitoring RAOs Remedial Action Objectives TMV Toxicity, Mobility and Volume (of hazardous constituents) NO<sub>x</sub> Nitrous Oxides  $PM_{10}$ Particulate matter greater than 10 micron SO<sub>x</sub> Sulfer Oxides

# TABLE 6.4 CDP SCORING GUIDELINES – DETAILED

| LEVEL 1                                  | LEVEL 2 CRITERIA                         | BASIS FOR ESTABLISHING<br>QUALITATIVE AND QUANTITATIVE<br>SCORING TEMPLATES                         | LEVEL 3 CRITERIA | COMMENTS |
|------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------|----------|
| VESS                                     | Prevent Human Health Risks               | Levels of risk mitigation to protect Human Health                                                   |                  |          |
| LONG-TERM EFFECTIVENESS                  | Minimize Ecological Risks                | Levels of risk mitigation to protect Ecological<br>Receptors                                        |                  |          |
| G-TERM EI                                | Residual Potential Risk                  | Potential exposure pathways to remaining COCs                                                       |                  |          |
| TON                                      | Technology Reliability                   | Success in achieving RAOs                                                                           |                  |          |
| REDUCTION OF<br>TMV THROUGH<br>TREATMENT | Destruction of Hazardous<br>Constituents | Estimated amount of destruction or stabilization of COCs. Destruction is preferred to stabilization |                  |          |

= Required only for the Detailed Analysis of Alternatives.

COCsConstituents of ConcernOM&MOperations, Maintenance & MonitoringTMVToxicity, Mobility and Volume

Greenhouse Gas Pump and Treat

GHG

P&T

NPVNet Present ValueRAOsRemedial Action Objectives

# TABLE 6.4 CDP SCORING GUIDELINES – DETAILED

| LEVEL 1                     | LEVEL 2 CRITERIA                                                  | BASIS FOR ESTABLISHING<br>QUALITATIVE AND QUANTITATIVE<br>SCORING TEMPLATES                                                   | LEVEL 3 CRITERIA                  | COMMENTS                                                                                              |
|-----------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------|
|                             | Irreversibility of Treatment                                      | Potential for COCs to re-occur after remedy implementation <sup>1</sup>                                                       |                                   |                                                                                                       |
| И<br>SS                     | Time to Achieve RAOs                                              | Relative time from start of remedy<br>implementation to completion of remedy<br>compared to Alternative with the longest time |                                   |                                                                                                       |
| SHORT-TERM<br>EFFECTIVENESS | Un-mitigatable Adverse<br>Impacts During Construction<br>and OM&M | Relative impacts to Human Health and<br>Ecological Receptors (i.e. compared to<br>Alternative with the highest impact)        | Protect Community                 | Relative impacts to Human Health<br>(i.e., compared to Alternative with<br>the highest impact)        |
| SHOR<br>EFFEC               |                                                                   |                                                                                                                               | Protect Construction<br>Workers   | Relative impacts to Human Health<br>(i.e., compared to Alternative with<br>the highest impact)        |
|                             |                                                                   |                                                                                                                               | Minimize<br>Environmental Impacts | Relative impacts to Ecological<br>Receptors (i.e. compared to<br>Alternative with the highest impact) |

- = Required only for the Detailed Analysis of Alternatives.
- COCsConstituents of ConcernGHGOM&MOperations, Maintenance & MonitoringP&TTMVToxicity, Mobility and VolumeP&T

NPVNet Present ValueRAOsRemedial Action Objectives

Greenhouse Gas

Pump and Treat

<sup>&</sup>lt;sup>1</sup> For example, re-solution of adsorbed COCs after Pump and Treat is completed.

### TABLE 6.4 **CDP SCORING GUIDELINES – DETAILED**

| X                | Obtain Other Approvals                         | Number and difficulty in obtaining permits and<br>approvals from agencies not related to the remedy<br>approval (e.g. from local cities and counties,<br>transportation agencies, water purveyors, etc.),<br>relative to the most difficult Alternative |                            |                                                                              |
|------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------|
| IMPLEMENTABILITY | Constructability                               | Levels of sophistication of construction oversight<br>and planning relative to the most complex<br>Alternative                                                                                                                                          |                            |                                                                              |
|                  | Availability of Experts and<br>Technology      | Accessibility <sup>2</sup> of special expertise and equipment that is required                                                                                                                                                                          |                            |                                                                              |
|                  | Adaptability to<br>Modify/Update, as necessary | Ease with which changes can be made compared to the least adaptable Alternative                                                                                                                                                                         |                            |                                                                              |
|                  | Effectiveness of Monitoring                    | Reliability of assessing Alternative performance by monitoring                                                                                                                                                                                          |                            |                                                                              |
| IAL              | Energy Use                                     | Estimated amount of energy use                                                                                                                                                                                                                          |                            | For detailed analysis, use output from the SiteWise <sup>TM</sup> model runs |
| ENVIRONMENTAL    |                                                |                                                                                                                                                                                                                                                         | GHG Emissions              | For the detailed analysis, expand the                                        |
|                  | Air Emissions                                  | Toxic and GHG emissions                                                                                                                                                                                                                                 | NO <sub>X</sub> Emissions  | Level 2 criterion into these for Level<br>3 criteria. Use output from the    |
|                  | AII LIIIISSIOIIS                               |                                                                                                                                                                                                                                                         | SO <sub>x</sub> Emissions  | SiteWise <sup>TM</sup> model runs to score<br>Alternatives                   |
| E                |                                                |                                                                                                                                                                                                                                                         | PM <sub>10</sub> Emissions | Anematives                                                                   |

GHG

COCs Constituents of Concern

OM&M Operations, Maintenance & Monitoring

P&T

Toxicity, Mobility and Volume TMV

Greenhouse Gas Pump and Treat

NPV Net Present Value **Remedial Action Objectives** RAOs

<sup>&</sup>lt;sup>2</sup> Accessibility means technology and/or expertise could be mobilized and utilized with short notice, i.e., days or weeks.

<sup>=</sup> Required only for the Detailed Analysis of Alternatives.

|                             | Impacts on Water Resources | Relative (percentage) amount of water consumed                                   | For detailed analysis, use output from<br>the SiteWise <sup>TM</sup> model runs to score<br>Alternatives. Modify as necessary<br>and as discussed in text (end of<br>Section 6.8). |
|-----------------------------|----------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COSTS                       | Capital                    | NPV \$s                                                                          |                                                                                                                                                                                    |
| CO                          | OM&M                       | NPV \$s                                                                          |                                                                                                                                                                                    |
| ACCEPTANCE                  | State and Local Agency     | Level of acceptability relative to the least acceptable Alternative              |                                                                                                                                                                                    |
| ACCEP                       | Community                  | Level of acceptability relative to the least acceptable Alternative              |                                                                                                                                                                                    |
| E<br>IONS                   | Risk Mitigation            | Extent to which Lockheed Martin's exposure to liability is limited               |                                                                                                                                                                                    |
| CORPORATE<br>CONSIDERATIONS | Corporate Brand            | Extent to which Lockheed Martin's Corporate<br>Brand will be negatively impacted |                                                                                                                                                                                    |
|                             | Cost Volatility            | Relative cost volatility compared to the highest volatility Alternative          |                                                                                                                                                                                    |

# TABLE 6.4CDP SCORING GUIDELINES – DETAILED

= Required only for the Detailed Analysis of Alternatives.

COCsConstituents of ConcernOM&MOperations, Maintenance & MonitoringTMVToxicity, Mobility and Volume

Greenhouse Gas Pump and Treat

GHG

P&T

NPVNet Present ValueRAOsRemedial Action Objectives

APPENDIX H—RESPONSE TO MDE, EPA AND PUBLIC COMMENTS



Martin O'Malley Governor

Anthony G. Brown Lieutenant Governor

April 17, 2013

Thomas D. Blackman Project Lead, Environmental Remediation Lockheed Martin Corporation 6801 Rockledge Drive, MP: CCT 246 Bethesda, MD 20817

Re: Comments on Sediment Feasibility Study adjacent to Middle River Complex Middle River, MD

Dear Mr. Blackman:

The Maryland Department of the Environment's CHS Enforcement Section ("the Section") has completed its review of the Feasibility Study for the Remediation of Sediment adjacent to the Lockheed Martin Middle River Complex, submitted on December 17, 2012 on behalf of Lockheed Martin Corporation (LMC). In the attached document, the Section has provided its comments and has identified issues that require further consideration and/or modification.

If you have any questions regarding the comments, please call me or Mark Mank at (410)-537-3493. Otherwise, we will await your written response.

Sincerely,

arthur O'Comele

Arthur O'Connell, Chief State Assessment and Remediation Division

AOC:

Encl. cc: Mr. Mark Williams, MAA Mr. Horacio Tablada Mr. James Carroll Mr. Brian Dietz Mr. Mark Mank Ms. Anuradha Mohanty Robert M. Summers, Ph.D.

Secretary

## MDE Comments on Tetra Tech's December 2012 Feasibility Study for the Remediation of Sediments Adjacent to Lockheed Martin Middle River Complex, Middle River, Maryland

#### **General Comments:**

- Lockheed has verbally communicated that additional characterization activities will occur in portions of Cow Penn Creek to more clearly define the bounds of future remedial activities. Please confirm this intent, submit all appropriate characterization plans and results and include these results in the forthcoming Design Phase Report for the Remediation of Sediments.
- 2. Given the projected extensive remedial activities that will occur in Darkhead Cove the following characterization activities may be necessary prior to implementing remedial actions. PAHs are present in areas throughout Darkhead and particularly along Wilson Point Road and the MRC. The Department requests Lockheed and Martin State Airport (MSA) collect additional sediment samples from storm water discharge points along Wilson Point Road to confirm whether on not current discharges continue to contribute PAH contamination to sediment within Darkhead Cove.

#### **Specific Comments:**

- 3. *Executive Summary, page ES-1*; Please include as an ARAR Environmental Article 7-222 of the Annotated Code of Maryland which authorizes the hazardous Substance Response Plan.
- 4. *Site Background Current Conditions, page 2-8*; Please provide additional comments regarding the statement indicating potential MRC influences approximately 4000 feet south of MRC.
- 5. 2.6.2 Baseline Ecological Risk Assessment, page 2-25; PAHs cannot be eliminated based upon the assertion that they may represent typical urban runoff when they have been retained as a primary COC for human health within RAO 1 and RAO 2. Please clarify this position and determine whether additional revisions regarding RAO 3 are necessary.
- 6. 3.4.2 Development of Ecological PRGs, page 3-12; Please revise or confirm the lead background concentration (198 mg/kg) as it appears to contradict the supporting table.

Response to MDE Comments on Tetra Tech's December 2012 Feasibility Study for the Remediation of Sediments Adjacent to Lockheed Martin Middle River Complex, Middle River, Maryland

#### **General Comments:**

 Lockheed has verbally communicated that additional characterization activities will occur in portions of Cow Pen Creek to more clearly define the bounds of future remedial activities. Please confirm this intent, submit all appropriate characterization plans and results and include these results in the forthcoming Design Phase Report for the Remediation of Sediments.

**Response:** Lockheed Martin confirms that additional characterization activities will occur in Cow Penn Creek and Dark Head Cove in summer 2013 to more clearly define the bounds of future remedial activities. Lockheed Martin will submit the Sediment Remedy Design Investigation Work Plan to MDE for its review. The results of the sampling will be incorporated into the remedial design.

2. Given the projected extensive remedial activities that will occur in Dark Head Cove the following characterization activities may be necessary prior to implementing remedial actions. PAHs are present in areas throughout Dark Head Cove and particularly along Wilson Point Road and the MRC. The Department requests Lockheed and Martin State Airport (MSA) collect additional sediment samples from storm water discharge points along Wilson Point Road to confirm whether or not current discharges continue to contribute PAH contamination to sediment within Dark Head Cove.

**Response:** Lockheed Martin is coordinating with MSA to collect sediment samples from storm water discharge points along Wilson Point. Lockheed Martin has also included additional sediment sampling from storm drains discharging to Dark Head Cove and Cow Pen Creek into the Sediment Remedy Design Investigation Work Plan. Sampling locations and procedures will be detailed in the Sediment Remedy Design Investigation Work Plan.

#### **Specific Comments:**

3. *Executive Summary, page ES-1;* Please include as an ARAR Environmental Article 7-222 of the Annotated Code of Maryland which authorizes the hazardous Substance Response Plan.

**Response:** Reference to the Environmental Article 7-222 was included into page ES-1 and Section 1.1. The referenced article is a governing state regulation and not considered as a federal or state chemical-specific or location-specific ARAR. Therefore, it is not added to the ARAR tables in Section 3.

4. *Site Background Current Conditions, page 2-8*; Please provide additional comments regarding the statement indicating potential MRC influences approximately 4000 feet south of MRC.

**Response:** Lockheed Martin has further reviewed the background data in question (presented in the first several pages of the Site Characterization Report, Appendix C, Tables C-1 through C-

4). Some of the metals concentrations detected at the Middle River location do appear to be elevated when compared to concentrations reported for the Bowleys Quarters and Marshy Point locations. However, a comparison of Middle River location data to regional data collected by the USEPA and NOAA indicates that data for the Middle River location likely reflect regional background conditions and the developed nature of the area surrounding the MRC. (USEPA/NOAA regional data are presented for select metals in Table 3-4 of the report.) Consequently, the referenced paragraph on page 2-8 was revised to indicate that data from this sampling location appeared to be somewhat elevated when compared to data from other site-specific background sampling locations and the data from the Middle River location was excluded from the background dataset. Please see below how the referenced paragraph will be revised.

Sediment analytical data from this sampling location appeared to be somewhat elevated when compared to sediment concentration data from other site-specific background sampling locations. However, based on comparisons to regional sediment data, available as a consequence of investigations conducted by the USEPA and NOAA, the sediment concentrations detected at the referenced Middle River location may simply reflect regional background conditions and the developed nature of the area surrounding the MRC. Conservatively, the sediment analytical data from the Middle River location were excluded from the background dataset.

5. 2.6.2 Baseline Ecological Risk Assessment, page 2-25; PAHs cannot be eliminated based upon the assertion that they may represent typical urban runoff when they have been retained as a primary COC for human health within RAO 1 and RAO 2. Please clarify this position and determine whether additional revisions regarding RAO 3 are necessary.

**Response:** Total PAHs were eliminated as COCs for ecological receptors primarily because the potential risks to benthic macroinvertebrates were only limited to a few locations so PAHs are not ecological risk drivers for the site. Although the fact that most site concentrations were lower than reference concentrations was another line of evidence presented in the ERA, it is not needed to justify why ecological PRGs were not developed for PAHs. Therefore, the reference to background concentrations will be eliminated from the fourth paragraph in Section 2.6.2 of the FS. Please see below how the referenced paragraph will be revised. Also, no changes are needed to RAO 3.

However, risks to benthic macroinvertebrates from PAHs in the sediment are not expected to drive the cleanup at the site because potential risks were generally low, with very few exceptions, and the sediment benchmark for ecological receptors is much greater than it is for humans. As shown on Figure 2-16, the PEC for total PAHs (22,800 ug/kg) is only exceeded at a few locations. All of these locations have concentrations of other chemicals that exceed ecological PRGs (primarily cadmium and PCBs). Therefore, PAHs are not risk drivers for determining clean up, so they are not retained as risk-driver COCs for ecological receptors and ecological PRGs were not developed for PAHs.

6. *3.4.2 Development of Ecological PRGs, page 3-12;* Please revise or confirm the lead background concentration (198 mg/kg) as it appears to contradict the supporting table.

**Response:** The concentration in the supporting table is correct; corrected the value on page 3-12 to 190 mg/kg.



#### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION III 1650 Arch Street Philadelphia, Pennsylvania 19103-2029

May 15, 2013

Tom Blackman Lockheed Martin Corporation MP: CCT-246 6801 Rockledge Drive Bethesda, MD 20817

Dear Mr. Blackman:

The U.S. Environmental Protection Agency (EPA) has reviewed the corrective measure study for PCBs, as provided in the December 17, 2012 report titled *Feasibility Study for the Remediation of Sediments Adjacent to Lockheed Martin Middle River Complex*. The EPA has no comments on the recommended remedial alternative, and looks forward to receive a Toxic Substances Control Act (TSCA) Risk-based Disposal Approval (RBDA) Application for the treatment, cleanup, and disposal of PCB remediation waste at Lockheed Martin Middle River Complex.

Sincerely,

Sharon D. Kenny Remedial Project Manager U.S. EPA Region III 1650 Arch St. – 3LC40 Philadelphia, PA 19103

cc:

 $\mathfrak{O}$ 

Jim Carroll, MDE

#### Public Comments Related to the Sediment Feasibility Study, Middle River Complex, Lockheed Martin

#### Written comments submitted:

1. Dan and Donna Doerfer, Wilson Point Civic Improvement Association: Lockheed Martin should create a 100 ft. buffer along the shore next to the Middle River Complex with trees and native plantings to reduce runoff.

Response: Lockheed Martin will have to meet the requirements of the Maryland Department of Environment's (MDE) tidal and non-tidal wetlands permits. During the sediment remedy design and permitting process, Lockheed Martin will endeavor to balance the desire for a buffer with future use of the site.

2. Al Fischer: I liked what I seen and heard at my first meeting. I like the proposed cleanup activities. I would like to propose a motto, like a contractor we have here in Baltimore. He says: If you're not happy (the public) we're not done.

#### Response: Acknowledged.

#### Verbal comments as presented:

#### 1.31.13 Civic Association Leaders Briefing:

Allen Robertson: There's an unused crumbling access road that runs parallel to (the Cow Pen Creek) stream, plus part of an old parking lot that's used for storage, with storage just being placed elsewhere, that could be dedicated for perhaps a 300' Critical Area easement to this, and help that whole environment. And that's what I would be suggesting as a comment.

#### Response: Acknowledged.

Bob Bendler: Is there any way to expedite the implementation process? I mean you've got 2 years for design and permitting, and then you don't start anything until 2015. I mean it seems to be that this is important enough for the permitting people to give a higher priority by permitting so we can get some actual work started sooner than 2015.

Response: Lockheed Martin will provide contact information for the various permitting agencies upon submittal of the sediment remedy design documents and permit applications. Lockheed Martin encourages interested parties to express their desire for expediting the required permits.

Allen Robertson: The stream up behind school and going towards Eastern Avenue tends to be where this is eroding the most – is there any action to take to recreate more marshland, or with the Gunpowder Conservancy to create land to come out of the Martin area, to prevent more of the sediment going back into the, covering what you're doing? Or possibly with Baltimore County, because they remediation funds from other companies, taking up wetlands, funds to reestablish that, that wouldn't be a cost to Martin's, but it would have to be done on their property, because Hawthorne doesn't have any room to do any of that mitigation.

Response: Sediment runoff management will be employed during remediation and will be a significant consideration in restoration at the completion of the remediation project. Lockheed Martin will have to meet the requirements of MDE's tidal and non-tidal wetlands permits and will endeavor to balance the

desire for a buffer with future use of the site. Lockheed Martin can only address efforts for additional sediment runoff management on its own property.

Rocky Jones: Okay, ... the process that you designated to do, do you think that it has any concern with the agencies that you have to deal with? Can we help?

Response: Lockheed Martin has briefed many of the permitting entities on the scope of the project and has not identified any objections. Lockheed Martin will provide contact information for the various permitting agencies upon submittal of the sediment remedy design documents and permit applications. Lockheed Martin encourages interested parties to express their desire for expediting the required permits.

#### Comments provided during the discussion regarding leaving the Voluntary Cleanup Program:

Bob Bendler: If it was cleaned up to the industrial level and you pursued industrial redevelopment, or development in the various blocks, would the current Chesapeake Bay Critical Area laws, buffers, and setbacks and so forth on the wetlands and water and so forth, do they apply to that new development? So, maybe I'm being overly optimistic; so we're saying a lot of that impervious surface that goes right up to the lagoon and up to Cow Pen Creek, that impervious would have to be removed, and Chesapeake Critical area would leave that as green space? From Wilson Point standpoint, I won't speak for Hawthorne, we would look favorably on anything that would return that waterfront to its natural state.

Response: Lockheed Martin will have to meet the requirements of the Maryland Department of Environment's (MDE) tidal and non-tidal wetlands permits including the requirements of the Chesapeake Bay Critical Areas law. Lockheed Martin understands the desire for additional -pervious surfaces and will endeavor to balance the desire for a buffer with future use of the site.

#### 2.28.13 Public Information Session:

Unidentified Gentleman 1: This shoreline from back here along through here, there are trees that are growing along the bank hanging out over the water that provide shade that large-mouth bass and other species of fish like to get under the shade on hot summer days. If you're working along that shoreline, there's also rocks and things along that edge, bass, and other species that are structure oriented fish, in other words they will move up there and hang out where those rocks are, or where those trees are laying in the water, we call them laydowns; those are prime habitat for large-mouth bass. And if you go in there and work along that shoreline, and from the slides that I've seen, you are going to go in there and try and clean that all out, and make it nice and smooth, and the fish aren't going to like that at all. So you come along and tear down their homes and not leave a field there for them to live in. So are you going to do any remediation to put back structure?

Response: Some form of habitat restoration and/or improvements is expected to be part of the remedial design. Lockheed Martin will have to meet the requirements of the U.S. Fish and Wildlife service, Maryland Fishery Resources office, Maryland Department of Natural Resources as well as MDE's Tidal and Non-tidal Wetlands group. Any input from other organizations such as Gunpowder Conservancy will be considered throughout the project's design process.

Scott Sewell, Conservation Director of the Maryland Bass Nation; President of Middle River Bass Anglers, and I own shoreline on Middle River: Like you have areas here, there and there, it just seems odd that all these other areas have contaminants, but all of a sudden we have a little area here with nothing. It seems to me the proper thing to do is go ahead and do the whole thing.

Response: Additional data collection is planned in the areas in question as part of a pre-design characterization effort. This will confirm the presence or absence of contaminants in these areas and across the width of the creek and allow Lockheed Martin to finalize the remediation plans.

That may look ugly to some people, but to people who really know what certain species like, they know what looks good to one person is supporting the real habitat they live in. Second thing – There's a lot of SAV - submerged aquatic vegetation – in Cow Pen Creek – that whole creek's been full of it now for the last couple of years. I'm sure you guys know this, once you're done, are you going to do anything to put SAV back in the areas that you've removed it from?

Response: Some form of habitat restoration and/or improvements is expected to be part of the remedial design. Lockheed Martin will have to meet the requirements of the U.S. Fish and Wildlife service, Maryland Fishery Resources office, Maryland Department of Natural Resources as well as MDE's Tidal and Non-tidal Wetlands group.

Unidentified Gentleman 2: Why are you trucking it out instead of barging it out?

Response: The selected contractor will do additional evaluation of this during the final design and procurement. However, the final destination of the removed material is at an upland landfill rather than a marine location (called a controlled aquatic disposal site). Therefore, the removed sediment will require dewatering and transportation in trucks. The use of a barge would likely add additional handling steps.

Marsha Ayres: You showed the process that goes through the U.S. government and then the state and then down to Baltimore County, does that work from top down or do some of the things happen at the state level while the U.S. is working on it, or is it they have to do this one first? It seems it's very important to speed the process up, since you have to go to so many agencies.

Response: Many of the permit requests and considerations will proceed in parallel. Lockheed Martin has briefed many of the permitting entities on the scope of the project and has not identified any objections. Lockheed Martin will provide contact information for the various permitting agencies upon submittal of the sediment remedy design documents and permit applications. Lockheed Martin encourages interested parties to express their desire for expediting the required permits.

Bill Hurt: You can't dredge something without bringing something back up. You can't do it. I mean you're going to spread the contamination.

Response: Acknowledged. Sediment removal does result in temporary resuspension. Engineering controls like silt curtains and operational controls (e.g., slower dredging) will be employed in deep water and some of the work in Cow Pen Creek may occur "in the dry". Water quality monitoring will also be employed during dredging to ensure that temporary resuspension and turbidity does not exceed water quality criteria to be established by the MDE. At the completion of removal a layer of clean material will

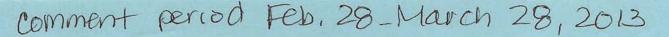
be placed over the dredged sediment surface. The net result is removal of contaminant mass from the water body and cleaner sediments on the surface.

Scott Sewell: (Pointing out) There is a drain that comes out right about there (from Martin State Airport) and the areas where the sediment has built up and it wasn't natural along there, are you going to remove that sediment, to a natural depth along there? In that corner – very shallow, there's a lot of sediment built up and it's very shallow.

*Response:* Sediment removal is planned in the area of Dark Head Cove near the Martin State Airport outfall where significant sediment accumulation has occurred.

#### 3.1.13 meeting with Baltimore County Department of Environmental Remediation officials:

Tom Vidmar: The County would stand with the community requesting that anything to improve run-off would be considered positive.


Response: Lockheed Martin will have to meet the requirements of the Maryland Department of Environment's (MDE) tidal and non-tidal wetlands permits. During the sediment remedy design and permitting process, Lockheed Martin will endeavor to balance the desire for a buffer with future use of the site.

Pat Farr: A reduced buffer requirement could reduce requirements for variance later on (with development).

Response: Lockheed Martin will have to meet the requirements of the Maryland Department of Environment's (MDE) tidal and non-tidal wetlands permits. During the sediment remedy design and permitting process, Lockheed Martin will endeavor to balance the desire for a buffer with future use of the site.

Pat Farr: For bass habitat, remedial options should be proposed in a mitigation plan.

Response: Some form of habitat restoration and/or improvements is expected to be part of the remedial design. Lockheed Martin will have to meet the requirements of the U.S. Fish and Wildlife service, Maryland Fishery Resources office, Maryland Department of Natural Resources as well as MDE's Tidal and Non-tidal Wetlands group.



## **Comment or Evaluation Form**

Lockheed Martin, the Maryland Department of the Environment, and the U.S. Environmental Protection Agency are interested in your comments or suggestions on this topic. There are several ways you can provide comments. They include:

- Attending public meetings and giving your comments directly
- > Returning this comment form to the registration table during or following the meeting
- > Returning this comment form or other written comments to the address on the back
- Commenting by electronic mail to darrylkay@aol.com
- Calling (888) 340-2006 and leaving a voice mail message

## **Comments:**

Please share any comments or suggestions you may have on the Sediments Feasibility Study and proposed cleanup activities:

LOCKHEED MARTIN SHOULD CREATE A 100 FT. BUFFER ALONG THE SHORE NERT TO THE MIDDLE PIVER COMPLEX WITH TREES AND NATIVE PLANTINGS TO REDUCE RUNOFE

Do you have any suggestions to share on the other topics?

Thank you for your input. Please use additional sheets if necessary and attach them to this form.

| OPTIONAL INFORMATION: + DONNA<br>Name: DAN DOBRFER |                               |
|----------------------------------------------------|-------------------------------|
| Name: DAN DOBRFER                                  | _ Add me to your mailing list |
| Organization: WPCIA                                | Take me off your mailing list |
| Address: 1914 WILSON PT                            |                               |
| City: MIDDLE State: MD Zip: 21220 Email address:   | docutena                      |
| Phone Number: 443-463 -5556 Fax No.                | Venizon. Nel                  |

Comment period Feb. 28 - March 28, 2013

## **Comment or Evaluation Form**

Lockheed Martin, the Maryland Department of the Environment, and the U.S. Environmental Protection Agency are interested in your comments or suggestions on this topic. There are several ways you can provide comments. They include:

- > Attending public meetings and giving your comments directly
- Returning this comment form to the registration table during or following the meeting
- Returning this comment form or other written comments to the address on the back
- Commenting by electronic mail to darrylkay@aol.com
- Calling (888) 340-2006 and leaving a voice mail message

## **Comments:**

Please share any comments or suggestions you may have on the Sediments Feasibility Study and proposed

cleanup activities: I LIKED WHAT I SEEN AND HEARD AT My FIRST MEETING. I LIKE THE PROPOSEd CLEANUPACTIVITIES. I Would LIKE TO PROPOSE A MOTTO, LIKE A CONTRACTOR WE HAVE HERE IN BALTI, HE SAYS ; If your NOT HAPPY (THE PUBLIC) WERE NOT DONE.

Do you have any suggestions to share on the other topics?

Thank you for your input. Please use additional sheets if necessary and attach them to this form.

**OPTIONAL INFORMATION:** Add me to your mailing list Name: Take me off your mailing list Organizat Mr. Al Fischer 109 Conestoga Rd Middle River, MD 21220 Address: Email address: ALBASS MANFISCHER @ qmAil.Comm City: p: Phone Number: Fax No.