Remedial Action Progress Report

Former Lockheed Electronics Company 1301 Route 22 West Watchung, New Jersey

ISRA Case No. 90038

Prepared by:

TRC 57 East Willow Street Millburn, New Jersey 07041

October 2006

TABLE OF CONTENTS

	TABLE OF CONTENTS	
Section No.	<u>Title</u> <u>P</u>	Page No.
1.0	INTRODUCTION	1
2.0	 GROUND WATER MONITORING AND SAMPLING ACTIVITIES 2.1 September/October 2005 Ground Water Sampling Event 2.1.1 Water-Level Measurements (September/October 2005) 2.1.2 Ground Water Sample Collection (September/October 2005) 2.1.3 Summary of Ground Water Results (September/October 2005) 2.2 March 2006 Ground Water Sampling Event 2.2.1 Water-Level Measurements (March 2006) 2.2.2 Ground Water Sample Collection (March 2006) 2.2.3 Summary of Ground Water Results (March 2006) 	,
3.0	 SURFACE WATER MONITORING AND SAMPLING ACTIVITIES 3.1 Surface Water Monitoring and Sampling 3.2 Summary of Surface Water Results 	5 5 5
4.0	SYSTEM PERFORMANCE MONITORING AND SAMPLING	6
5.0	CONCLUSIONS	7

<u>Figure No.</u>	Title
1	Site Location Map
2	Site Plan
3	Shallow Zone Contour Map (9/7/05)
4	Intermediate Zone Contour Map (9/7/05)
5	Deep Zone Contour Map (9/7/05)
6	Shallow Zone Contour Map (3/6/06)
7	Intermediate Zone Contour Map (3/6/06)
8	Deep Zone Contour Map (3/6/06)
9	Quarterly Ground Water Sampling Results September 2003 – March 2006
10	Surface Water Sampling Results July 2003 – March 2006

LIST OF FIGURES

LIST OF TABLES

Table No.	Title
1	Revised Water Monitoring & Sampling Schedule
2	Ground Water Elevation Data
3	Hydrostratigraphic Classification
4	Ground Water Analytical Results-September/October 2005 and March 2006
5	Historical TCE Concentrations in Ground Water
6	Surface Water Analytical Results-July 2005 through March 2006
7	Historical TCE Concentrations at Stream Locations
8	System Performance Summary

LIST OF APPENDICES

<u>Appendix</u>	Title
А	Contour Map Reporting Forms
В	Plots of TCE Concentrations Versus Time for Selected Monitoring Wells
С	Stream Sampling Field Measurements
D	Plots of TCE Concentrations Versus Time for Stream Locations

LIST OF ATTACHMENTS

Surface Water Laboratory Data Package (STL Job C196)-July 2005
Surface Water Laboratory Data Package (STL Job D781)-August 2005
Ground Water and Surface Water Laboratory Data Package (STL Job F147)-September 2005
Ground Water and Surface Water Laboratory Data Package (STL Job H260)-October 2005
Surface Water Laboratory Data Package (STL Job J388)-November 2005
Ground Water and Surface Water Laboratory Data Package (STL Job O318)-March 2006

Ground Water Laboratory Data Package (STL Job O861)-March 2006

CERTIFICATION

The following certification shall be signed as follows:

- **1.** For a corporation, by a principal executive officer of at least the level of vice president;
- 2. For a partnership or sole proprietorship, by a general partner or the proprietor, respectively, or;
- **3.** For a municipality, State, Federal or other public agency, by either a principal executive officer or ranking elected official.
- 4. For persons other than 1 through 3 above, by the person with legal responsibility for the site.

"I certify under penalty of law that I have personally examined and am familiar with the information submitted herein and all attached documents, and that based on my inquiry of those individuals immediately responsible for obtaining the information, to the best of my knowledge, I believe that the submitted information is true, accurate and complete. I am aware that there are significant civil penalties for knowingly submitting false, inaccurate or incomplete information and that I am committing a crime of the fourth degree if I make a written false statement which I do not believe to be true. I am aware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties."

Type/Printed Name	Title	
Signature		
<i>c</i> <u> </u>		
Company		
	Sworn to and subscribe	ed before me on this
		of October 2006.
	Notary	[seal]

1.0 INTRODUCTION

TRC Environmental Corporation (TRC) has prepared this Remedial Action Progress Report (RAPR) for the former Lockheed Electronics Company (LEC) site in Watchung, New Jersey (The site is now operating as the Watchung Square Mall). Figure 1 is a portion of the USGS Chatham, NJ 7.5 Minute Quadrangle depicting the site location, local topography, surface drainage, and cultural patterns.

A ground water extraction system (GWES) was activated on July 17, 2003. Ground water is pumped from extraction well RW-1, located on North Drive in North Plainfield, at an approximate rate of 130 gallons per minute (gpm). In addition, shallow ground water is extracted intermittently from an interceptor trench located on New Jersey Department of Transportation (NJDOT)-owned land on the northeast corner of Route 22 and North Drive. Extracted ground water is treated by granular activated carbon in a treatment plant located on the NJDOT-owned land adjacent to North Drive, and discharged to Crab Brook in accordance with NJPDES permit No. NJ0105899G. The GWES has worked almost continuously from start-up and has functioned as designed.

An extensive monitoring well network has delineated a ground water plume comprised primarily of TCE in the local bedrock aquifer and shallow unconsolidated sediments in certain locations. There are currently 42 active monitoring wells and piezometers associated with this project in the Boroughs of Watchung and North Plainfield, all of which are installed as either well couplets or triplets to evaluate the vertical distribution of contaminants. A site plan has been provided (Figure 2) to show the location of the monitoring wells, piezometers, extraction well, interceptor trench, and treatment plant, along with other area features.

The last progress report, submitted in October 2005, presented data collected through June 2005. Several sampling activities have occurred since the last report submittal. Quarterly ground water sampling and monthly stream sampling were reduced to semi-annually as approved by the NJDEP in December 2005. The approved sampling schedule is provided as Table 1. Section 2 of this report presents the results of the semiannual ground water sampling events conducted in September/October 2005 and March 2006. Results from the July through November 2005 and March 2006 stream sampling events are presented in Section 3. Section 4 contains monthly system performance results and provides an overview of the GWES.

2.0 GROUND WATER MONITORING AND SAMPLING ACTIVITIES

2.1 September/October 2005 Ground Water Sampling Event

A ground water monitoring and sampling event was conducted in September 2005 in accordance with the sampling schedule presented in Table 1. Several wells (MW-549A, MW-549B, and MW-506B) could not be sampled during the September 2005 event due to obstructions and were sampled in October 2005. Results for the sampling events are presented in the sections below.

2.1.1 Water-Level Measurements (September/October 2005)

Water level measurements were collected on September 7, 2005 in selected monitoring wells associated with the Site. Table 2 provides depth to water (DTW) measurements and water level elevations for this sampling event.

The water level elevations were used to prepare ground water contour maps. Ground water flow directions for the water table (overburden/shallow bedrock) zone, the intermediate bedrock zone, and the deeper bedrock zone are depicted on Figures 3 through 5, using the hydrostratigraphic classification presented in Table 3. The ground water elevation for extraction well RW-1 was included on both the shallow and intermediate zone contour maps. These figures indicate that ground water in the bedrock enters the former LEC site from the east, flows across the site to the southwest, and then trends in a more southerly direction toward Crab Brook and beyond. Ground water flow in the shallow and intermediate zones has been altered significantly since the continuous pumping at extraction well RW-1 began in July 2003. A cone of depression is apparent around extraction well RW-1 in both of these zones. In the deeper zone, the effect of pumping is less pronounced and ground water flows south towards Crab Brook and beyond. Contour Map Reporting Forms are presented in Appendix A.

2.1.2 Ground Water Sample Collection (September/October 2005)

Analytical results for the ground water samples collected during this quarterly event are provided in Table 4, and a summary table of historical results for contaminants of concern is provided in Table 5. Concentrations that exceed NJDEP Ground Water Quality Criteria (New Jersey Administrative Code 7:9-6) are highlighted in Table 4. The complete ground water laboratory data packages are included as separate attachments along with the required NJDEP electronic deliverables. Sampling results for the monitoring event are discussed in Section 2.3.

At each sampled well location, TRC collected the samples from the passive diffusion bags (PDBs) at selected intervals in the wells and filled the appropriate bottleware for analysis of volatile organic

compounds (VOC+10) using EPA Method 624+10. The samples were submitted to STL Edison (STL) for analysis.

2.1.3 Summary of Ground Water Results (September/October 2005)

The highest TCE concentrations reported during this event were in on-site wells MW-549A and MW-549B with concentrations of $1,100 \mu g/L$ in well MW-549A and $1,300 \mu g/L$ in well MW-549B. These two wells are located closest to the former source area and are hydraulically upgradient from the pumping wells. Off-site wells MW-502B, MW-506A, MW-507A, MW-550B, and P-522A all contained TCE concentrations in excess of $200 \mu g/L$. These wells are located closest to the pumping well RW-1, within the plume. Downgradient well clusters, including the MW-544 and MW-545 wells, reported single digit or non-detectable concentrations of TCE, the contaminant of concern for the Lockheed site.

Historical TCE results for the sampled wells are presented in Table 5, and Figure 6 illustrates TCE and other detected VOC concentrations from the sampled wells since the GWES became operational. Historical TCE concentrations versus time plots are presented in Appendix D for selected wells. The plume and compliance wells were sampled during this quarter. The plume wells are located near the former source area or directly downgradient and influenced the most by the active pumping at extraction well RW-1. General decreasing trends since pumping began in July 2003 were observed in most plume wells with some concentration fluctuations. The wells designated as compliance wells have also exhibited a decreasing trend in TCE concentrations.

Particularly notable is well MW-502B, located south of the extraction well at the intersection of North Drive and Route 22. Concentrations of TCE have decreased in this well from greater than 1,000 μ g/L before pumping to less than 400 μ g/L. Well MW-506A, located on North Drive north of the extraction well, has also demonstrated a pronounced decreasing trend. These wells are within the cone of depression formed by the extraction well and provide a good indication of the cross-section of the plume directly impacted by the pumping program.

Other contaminants, including chloroform, tetrachloroethene (PCE), 1,1- Dichloroethane, cis-1,2dichloroethene (cis-1,2-DCE) and trans-1,2-dichloroethene (trans-1,2-DCE), were detected in some of the sampled wells at relatively low concentrations. PCE, ethanes, and aromatic hydrocarbons are not associated with the LEC plume. Most of the off-site monitoring wells are located near major roadways, on streets and parking lots, and the data indicate that there are other VOC sources degrading ground water quality in the general vicinity of the LEC plume.

2.2 March 2006 Ground Water Sampling Event

A ground water monitoring and sampling event was conducted in March 2006 in accordance with the sampling schedule presented in Table 1. This event included wells sampled on an annual basis. Results for the sampling events are presented in the sections below.

2.2.1 Water-Level Measurements (March 2006)

Water level measurements were collected on March 6, 2006 in selected monitoring wells associated with the Site. Table 2 provides depth to water (DTW) measurements and water level elevations for this sampling event. Ground water elevation maps are provided in Figures 6, 7 and 8. The Contour Map Reporting Forms are presented in Appendix A.

The ground water flow pattern for the March event is similar to the September event, and is consistent with the last several years of ground water elevation data. Aside from elevation differences associated with precipitation patterns, the ground water flow regime is strongly influenced by the pumping well and has not changed over the last several years of system operation.

2.2.2 Ground Water Sample Collection (March 2006)

Analytical results for the ground water samples collected during this quarterly event are provided in Table 4, and a summary table of historical results for contaminants of concern is provided in Table 5. Concentrations that exceed NJDEP Ground Water Quality Criteria (New Jersey Administrative Code 7:9-6) are highlighted in Table 4. The complete ground water laboratory data packages are included as separate attachments along with the required NJDEP electronic deliverables. Sampling results for the monitoring event are discussed in Section 2.2.3.

2.2.3 Summary of Ground Water Results (March 2006)

The highest TCE concentrations reported during this event were in source wells MW-549A (990 μ g/L) and MW-549B (1,400 μ g/L). Concentrations of contaminants in the other sampled wells are consistent with the September results.

3.0 SURFACE WATER MONITORING AND SAMPLING ACTIVITIES

3.1 Surface Water Monitoring and Sampling

From July 2005 through November 2005, surface water samples were collected monthly from five locations: SW-1, SW-2, SW-3, SW-4, and SW-12. However, during the August and September events, no sample was collected from location SW-1 since there was no running water. The locations are presented on Figure 2. During each sampling event, stream flow measurements were collected at these locations to estimate stream discharge volume. Field measurements and calculations for stream flow are presented in Appendix C.

The surface water samples were submitted to STL and analyzed for VOC+10 using EPA Method 624+10. The surface water analytical results are presented in Table 6 and on Figure 7. The monthly laboratory data packages for the surface water samples are included as separate attachments to this report, along with the required NJDEP electronic deliverables.

3.2 Summary of Surface Water Results

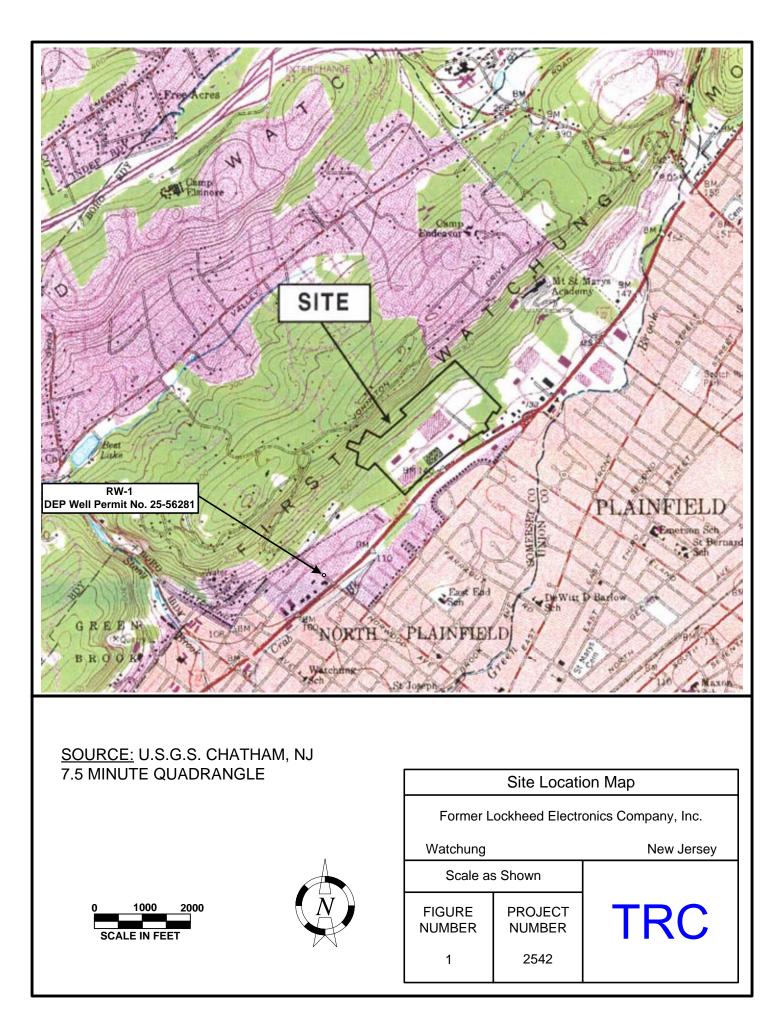
Historical TCE results for the five surface water locations are presented in Table 7 and on Figure 7. After the GWES was activated in July 2003, significant decreases in TCE concentrations at sampling locations SW-2, SW-3 and SW-4 were observed as shown on graphs of historical TCE concentrations versus time (Appendix D). The most significant decrease in TCE concentrations occurred at location SW-2, which illustrates that pumping at extraction RW-1 well is controlling discharge of ground water containing TCE to Crab Brook. TCE concentrations in surface water locations SW-2, SW-3, and SW-4 were non-detect during this monitoring period. These stream locations are all directly downgradient of the pumping well, and within the cone of depression formed by the pumping well along bedrock strike.

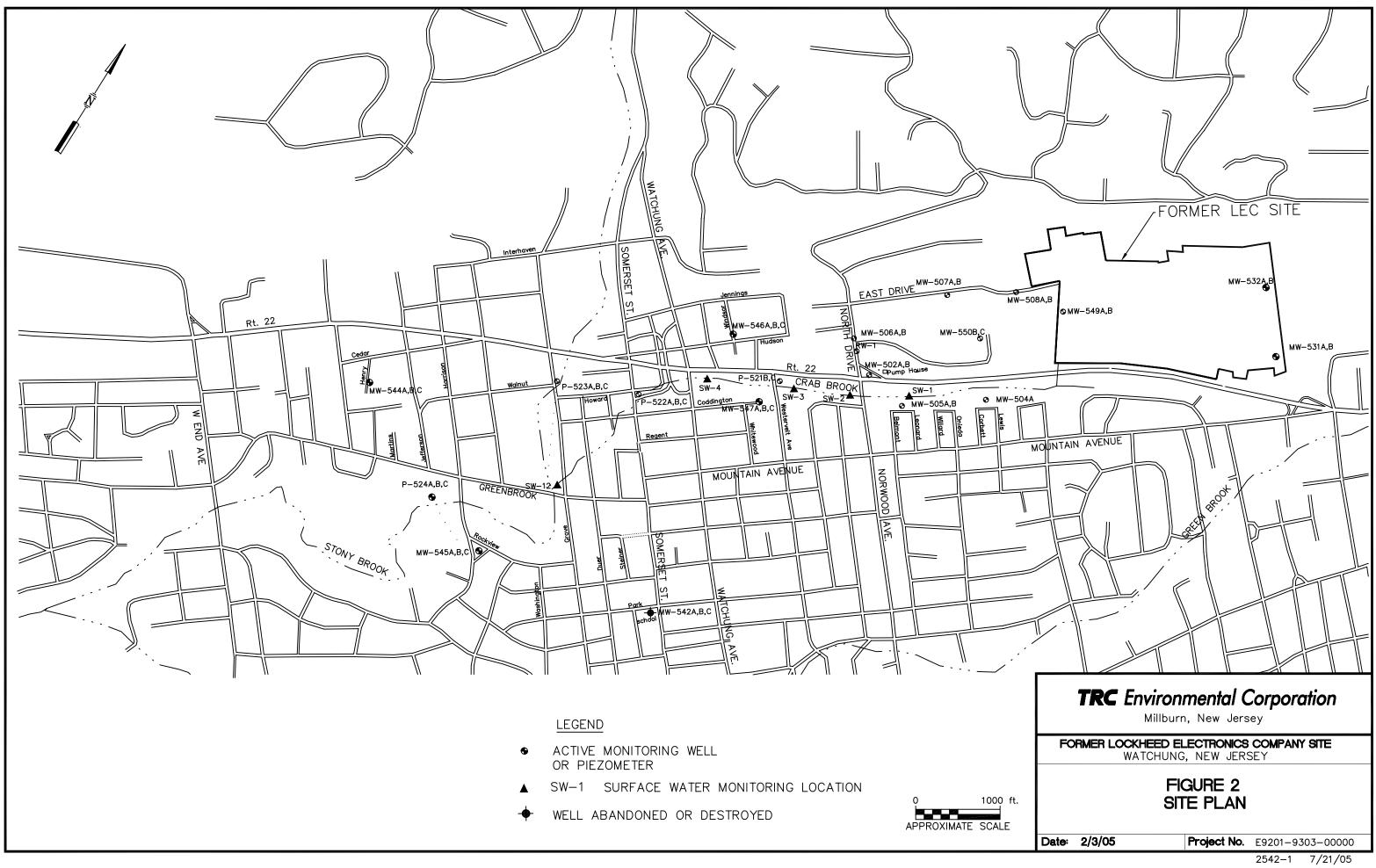
The sample collected at location SW-12 is at the confluence of Crab Brook and Green Brook, almost 4,000 feet southwest of the pumping well. In addition to TCE, other contaminants such as PCE, cis-1,2-DCE, and cis-1,3-Dichloropropene have been detected at this location; none of these contaminants have been associated with the LEC site. The PCE/TCE ratios reported in samples collected from location SW-12 have been generally consistent since sampling began, and suggest the presence of a PCE source in this area. The approved revised monitoring plan eliminates this sampling point due to the presence of other sources and the distance from the Lockheed site.

4.0 SYSTEM PERFORMANCE MONITORING AND SAMPLING

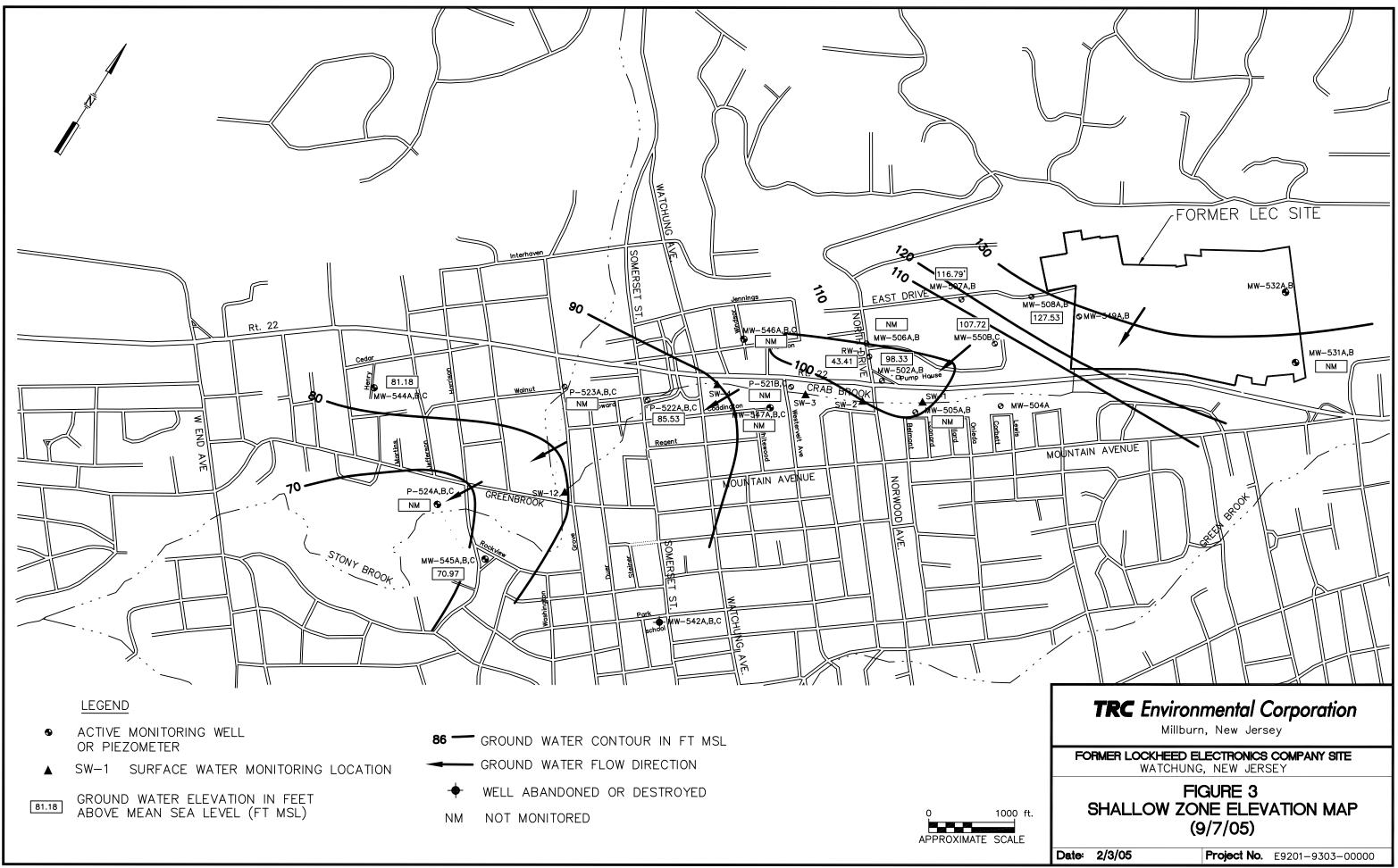
Ground water is pumped continuously from extraction well RW-1 at an average rate of approximately 130 gpm. The interceptor trench has a sump with a pump which is controlled by a level sensor. When the water level in the trench rises, the pump is started and remains on until the level declines. Normally, the cone of depression formed by the extraction well maintains a low water level and the pump in the interceptor trench is off; heavy precipitation is generally the trigger for this pump.

The discharge to Crab Brook is monitored pursuant to NJPDES permit No. J0105899G. The original permit was an individual permit which required monthly effluent samples, to be analyzed for VOC+10, lead, chemical oxygen demand (COD) and total suspended solids (TSS). In addition, the NJPDES permit also required quarterly sampling for whole effluent toxicity testing (conducted by Aquatic Laboratory Services, Inc.). In June 2005 the individual NJPDES permit was revoked and reissued as a General Remediation Permit; as a result, the effluent sampling requirements have been reduced from monthly to quarterly. The whole effluent toxicity testing has also been reduced from two species to one species. In addition to the quarterly NJPDES sampling, TRC continues to collect monthly performance samples to evaluate system performance and ensure compliance with discharge requirements. No effluent sample has ever reported an exceedance for any permit requirement.

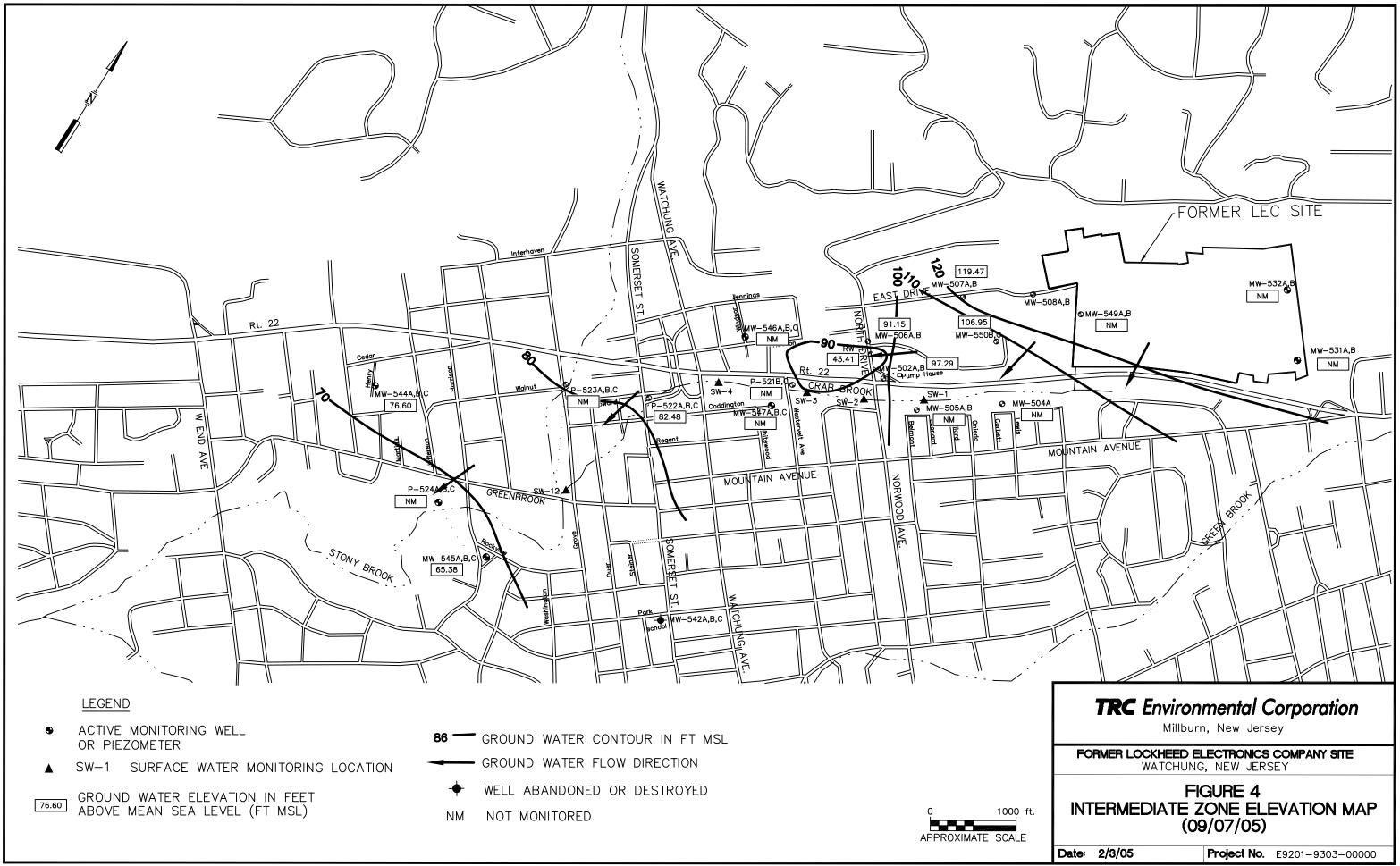

Performance sampling results are presented in Table 8. Influent TCE concentrations for this reporting period ranged from 180 μ g/L in February 2006 to 360 μ g/L in June and July 2005. Initial concentrations during the pumping test on the extraction well were nearly 1,000 μ g/L. Effluent TCE concentrations have never exceeded 1.0 μ g/L during the reporting period, which is well below the NJPDES permit limit for TCE of 5.4 μ g/L.

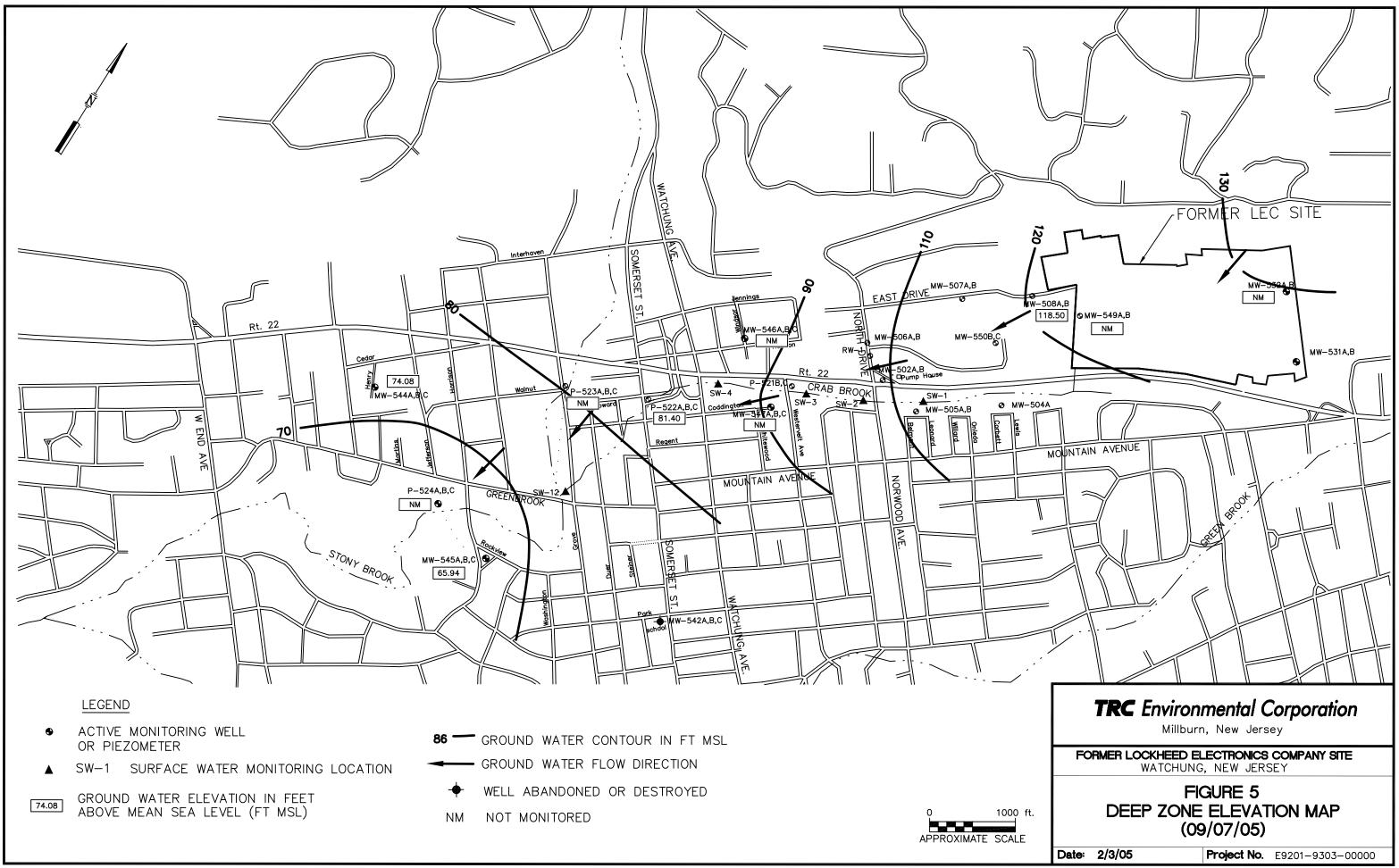

5.0 CONCLUSIONS

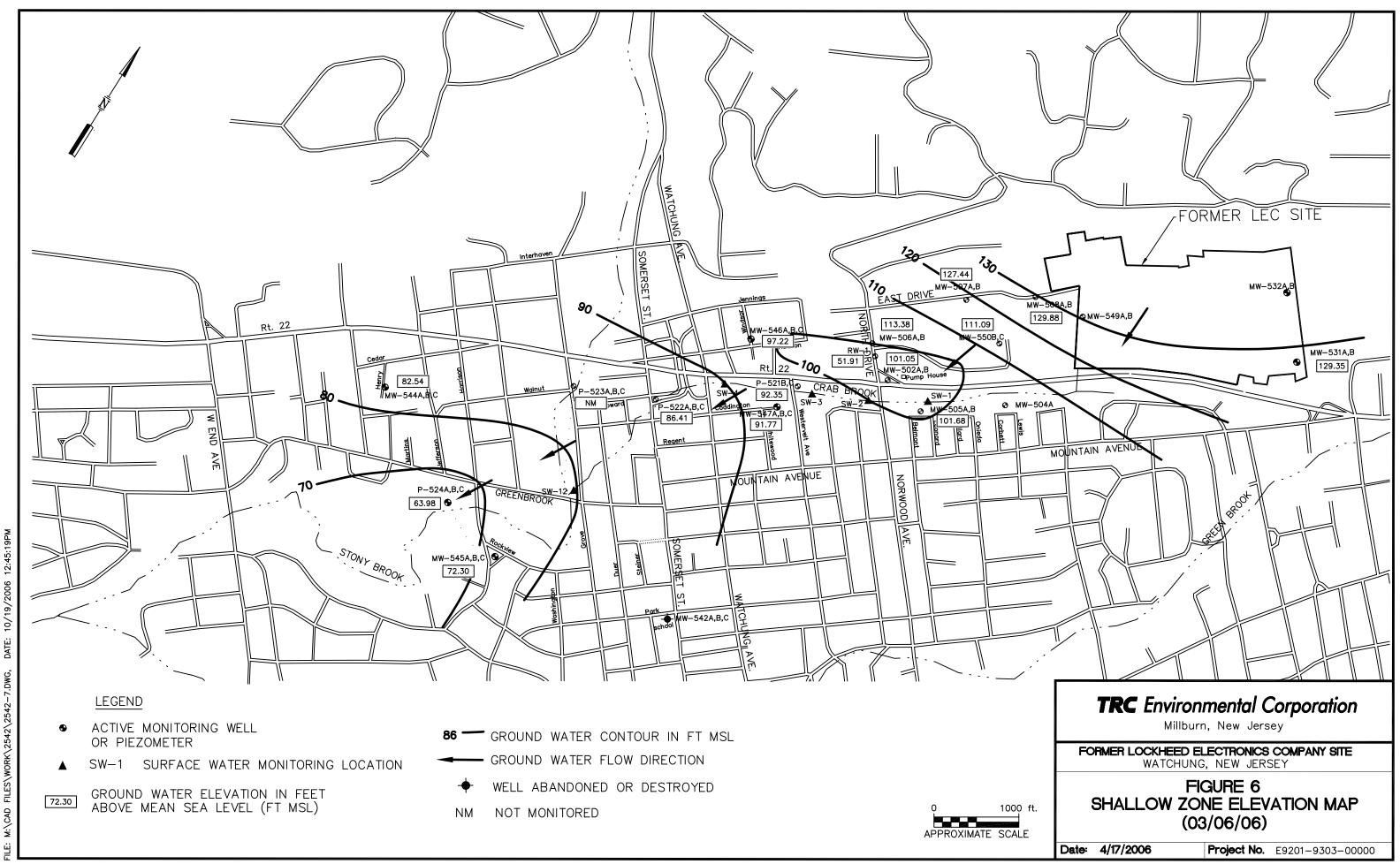
Based upon the information provided in this progress report, the ground water extraction system at the former Lockheed site continues to function as designed. The discharge of contaminated ground water to Crab Brook is negligible, the ground water plume is being captured by the treatment system, and concentrations of contaminants are generally continuing to decline. The treatment plant is operating efficiently and no discharge permit limits have been exceeded.


The next annual report will be submitted in May 2007, and will cover monitoring and remedial activities through March 2007.

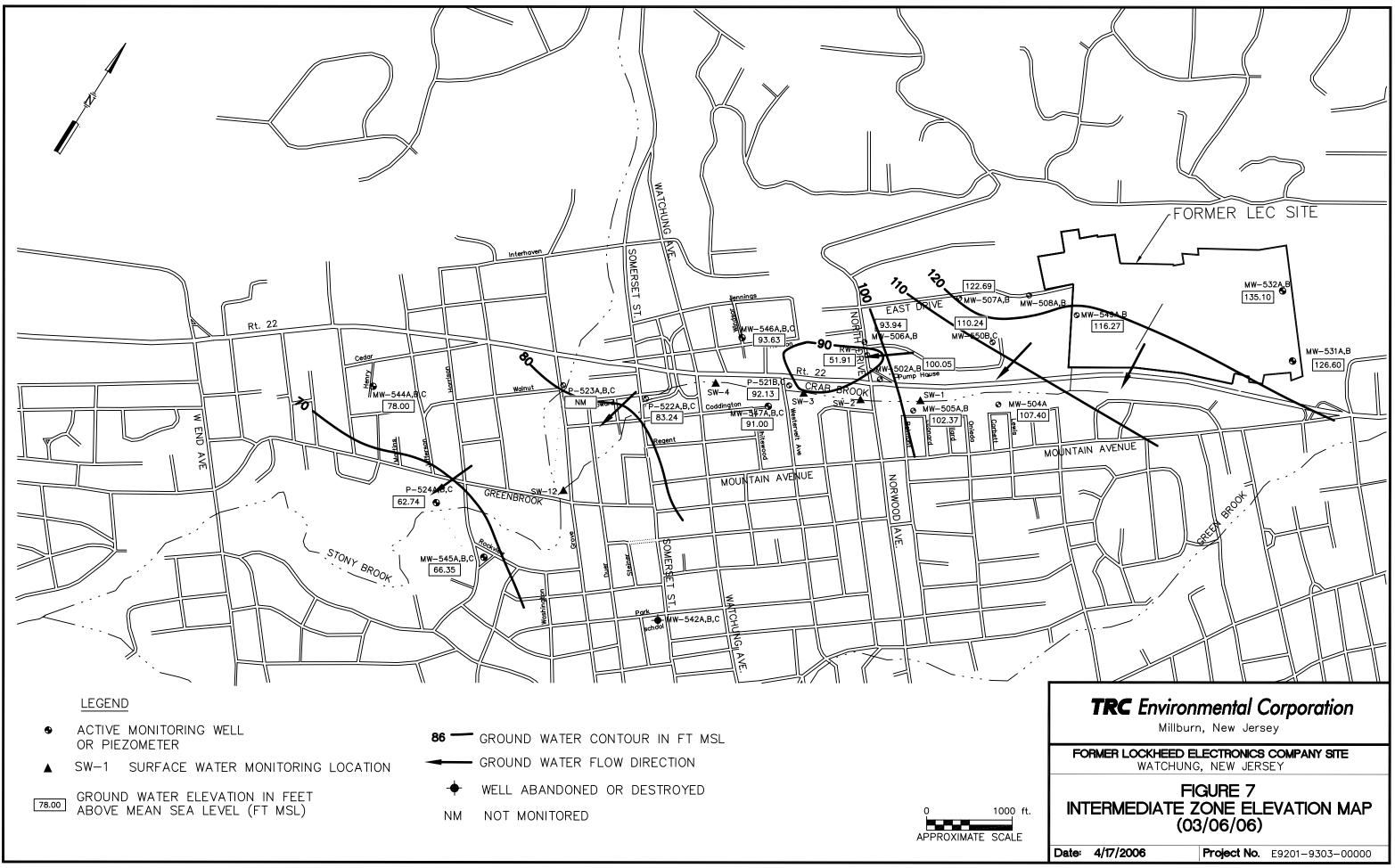
FIGURES

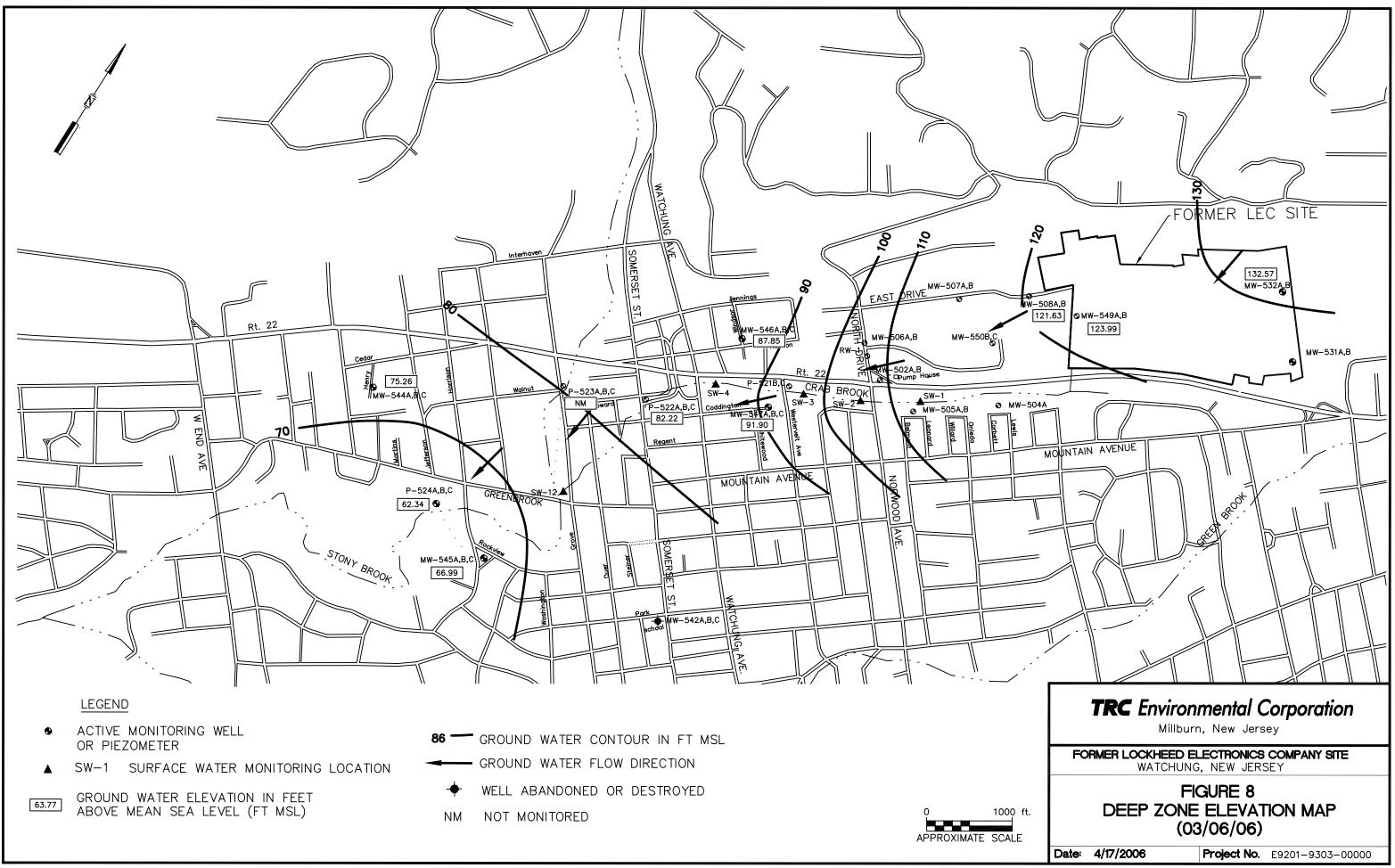


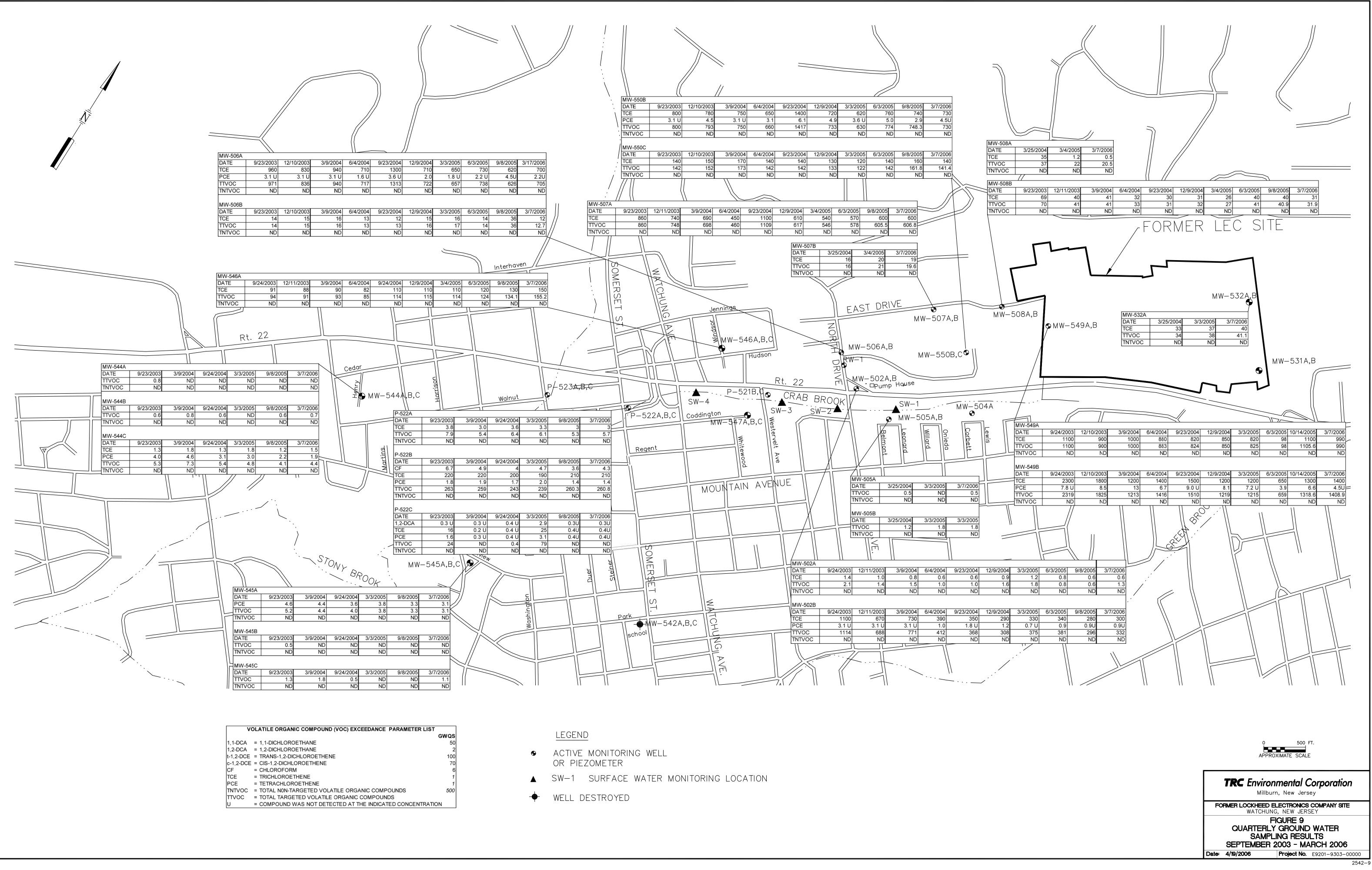


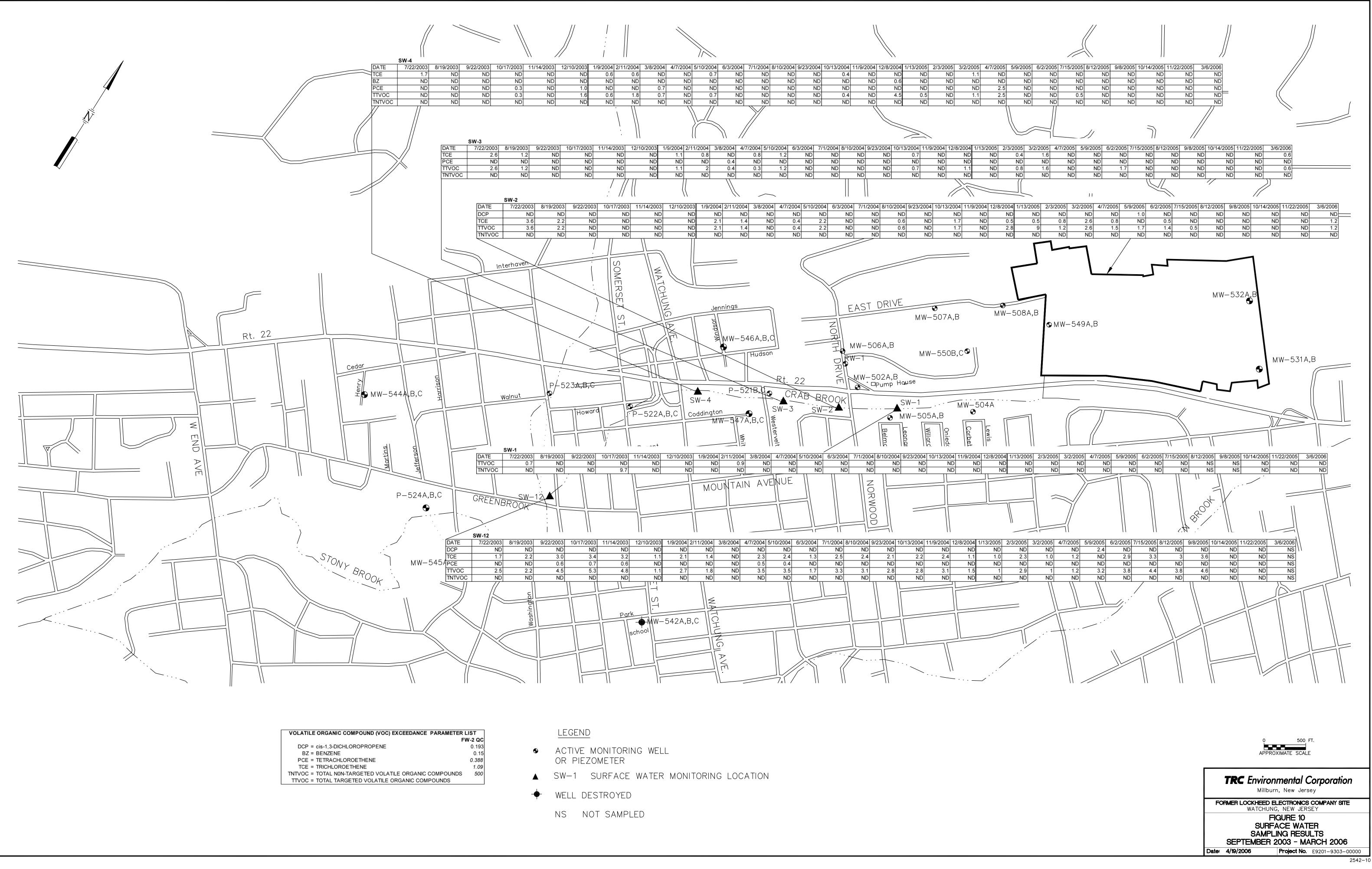


GWE-SHALLOW-090705 7/27/05


GWE-INTERMEDIATE-090705




7


Ľ.

FILE: M:\CAD FILES\WORK\2542\2542-8.DWG, DATE: 10/19/2006 12:46:32PM

TABLES

TABLE 1 WATER MONITORING & SAMPLING SCHEDULE FORMER LEC SITE WATCHUNG, NEW JERSEY

P	ROPOSED SAMPLING LOCATIONS	SAMPLING MONTH	ANALYTICAL PARAMETERS
Surface Water:	SW-1, SW-2, SW-3, SW-4	March/September	VOC+10
Plume Wells:	505A,B; 507B; 508A; 532A 502A,B; 506A,B; 507A; 508B; 546A; 549B,C; 550B,C P522A,B,C; 544A,B,C; 545A,B,C	March March/September March/September	VOC+10

TABLE 2 GROUND WATER ELEVATION DATA FORMER LEC SITE WATCHUNG, NEW JERSEY

			Septembe	er 7, 2005	March	6, 2006
Monitoring Well	Well Depths ft. (bgs)	TOC Elevation ft. (MSL)	Depth to Water	GW Elevation ft. (MSL)	Depth to Water	GW Elevation ft. (MSL)
MW-501A	75.5	120.90	MISSING	NA	MISSING	NA
MW-501B	19	121.07	MISSING	NA	MISSING	NA
MW-502A	75.5	103.89	6.60	97.29	3.84	100.05
MW-502B	19	103.85	5.52	98.33	2.8	101.05
MW-503A	73	110.26	MISSING	NA	MISSING	NA
MW-503B	24.4	110.58	MISSING	NA	MISSING	NA
MW-504A	76.5	112.10	MISSING	NA	4.70	107.40
MW-504B	19.8	112.09	MISSING	NA	MISSING	NA
MW-505A	75	103.85/108.27	NM	NA	5.40	102.87
MW-505B	20	103.73/107.73	NM	NA	6.05	101.68
MW-506A	96.3	122.22	31.07	91.15	28.28	93.94
MW-506B	25	121.28	NM	NA	7.90	113.38
MW-507A	151	176.39	56.92	119.47	53.70	122.69
MW-507B	60	176.39	76.39 59.60 116.79 48		48.95	127.44
MW-508A	263	186.85	68.35	118.50	65.22	121.63
MW-508B	68	187.13	59.60	127.53	57.25	129.88
MW-509A	423	231.30	MISSING	NA	MISSING	NA
MW-509B	84	230.77	MISSING	NA	MISSING	NA
MW-510A	201	182.22	MISSING	NA	MISSING	NA
MW-510B	70	182.17	MISSING	NA	MISSING	NA
PZ-521B	100.26	99.84	NM	NM NA		92.13
PZ-521C	15.5	100.07	NM	NM NA		92.35
PZ-522A	197	93.85	12.45	81.40	11.63	82.22
PZ-522B	100	93.78	11.30	82.48	10.54	83.24
PZ-522C	17.5	93.78	8.25	85.53	7.37	86.41
PZ-523A	199	94.13	NM	NA	NM	NA
PZ-523B	103	94.05	NM	NA	12.1	81.95
PZ-523C	14	93.91	NM	NA	NM	NA
PZ-524A	199	68.12/68.33	NM	NA	4.35	63.98
PZ-524B	99	67.86/68.39	NM	NA	5.65	62.74
PZ-524C	15	67.78/67.29	NM	NA	4.95	62.34
MW-531A	142.2	138.43	NM	NA	11.83	126.60
MW-531B	47.9	138.46	NM	NA	9.11	129.35
MW-532A	250	186.55	NM	NA	53.98	132.57
MW-532B	102.7	185.35	NM	NA	50.25	135.10
MW-542A	200	99.65	MISSING	NA	MISSING	NA
MW-542B	100	99.71	MISSING	NA	MISSING	NA
MW-542C	33	99.57	MISSING	NA	MISSING	NA

TABLE 2 GROUND WATER ELEVATION DATA FORMER LEC SITE WATCHUNG, NEW JERSEY

	•		Septembe	er 7, 2005	March	6, 2006
Monitoring Well	Well Depths ft. (bgs)	TOC Elevation ft. (MSL)	L. Depth to Water GW Elevation ft. (MSL) Depth to Water		GW Elevation ft. (MSL)	
MW-544A	197	85.81	11.73	74.08	10.55	75.26
MW-544B	100	86.00	9.40	76.60	8.00	78.00
MW-544C	23	86.04	4.86	81.18	3.5	82.54
MW-545A	197	85.69	19.75	65.94	18.7	66.99
MW-545B	92	85.80	20.42	65.38	19.45	66.35
MW-545C	35	85.75	14.78	70.97	13.45	72.30
MW-546A	200	106.55	NM	NA	18.70	87.85
MW-546B	100	107.06	NM	NA	19.45	87.61
MW-546C	31	108.16 NM		NA	13.45	94.71
MW-547A	200	98.33/98.17	NM	NA	7.27	90.90
MW-547B	100	98.46/98.25	NM	NA	7.25	91.00
MW-547C	22	98.32	NM	NM NA		91.77
MW-549A	215	179.31	NM	NA	55.32	123.99
MW-549B	115	179.77	NM	NA	63.50	116.27
MW-549C	73.5	179.41	NM	NA	NM	NA
MW-550B	101	132.56	25.61	106.95	22.32	110.24
MW-550C	50	132.13	24.41	107.72	21.04	111.09
RW-1	150	110.91	67.5	43.41	59.00	51.91

LEGEND PZ - Piezometer

bgs - Below Ground Surface

TOC - Top of Casing

RW- Extraction Well

MISSING- Well has been destroyed and unable to be located NM- Not Measured

Note: Wells MW-505A and B, PZ-524A, B,

and C, and MW-547A and B were

resurveyed on September 7, 2004 after

they were repaired. Top of casing

TABLE 3 HYDROSTRATIGRAPHIC WELL CLASSIFICATION **Former LEC Site** Watchung, New Jersey

Shallow	Intermediate	Deep
Wells	Wells	Wells
501 B	501 A	508 A
502 B	502 A	P 522 A
503 B	503 A	P 523 A
504 B	504 A	P 524 A
505 B	505 A	532 A
506 B	506 A	542 A
507 B	507 A	544 A
508 B	510 A	545 A
509 B	P 521 B	546 A
510 B	P 522 B	547 A
P 521 C	P 523 B	548 A*
P 522 C	P 524 B	549 A
P 523 C	531 A	
P 524 C	532 B	
531 B	542 B	
542 C	544 B	
544 C	545 B	
545 C	546 B	
546 C	547 B	
547 C	548 B*	
548 C*	549 B	
549 C	549 B	
550 C	550 B	

NOTES: strike-through indicates well is missing or abandoned.

*Monitoring well cluster 548 was abandoned in September 1999

Sampling Date Ground Waterx 99/2005 <th>Sample ID</th> <th></th> <th>MW-502A</th> <th>MW-502B</th> <th>MW-506A</th> <th>MW-507A</th> <th>MW-508B</th> <th>MW-544A</th> <th>MW-544B</th> <th>MW-544C</th> <th>MW-545A</th> <th>MW-545B</th>	Sample ID		MW-502A	MW-502B	MW-506A	MW-507A	MW-508B	MW-544A	MW-544B	MW-544C	MW-545A	MW-545B
Matrix Quality WATER	Lab Sample Number	New Jersey	667591	667592	667588	667589	667590	667599	667600	667601	667597	667598
Dituition Factor Criteria 1.0	Sampling Date	Ground Water	9/8/2005	9/8/2005	9/8/2005	9/8/2005	9/8/2005	9/8/2005	9/8/2005	9/8/2005	9/8/2005	9/8/2005
Units ug/L ug/L </th <th>Matrix</th> <th>Quality</th> <th>WATER</th>	Matrix	Quality	WATER									
Vick TLE COMPOUNDS (GCMS) 02 03 <th03< th=""> 03 0</th03<>	Dilution Factor	Criteria	1.0	1.0	1.0	1.0	-	1.0	1.0	1.0	1.0	1.0
Chloromethane 30 0.3 U 0.6 U 2.9 U 1.4 U 0.3 U	Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Bromembane 10 0.3 U 0.6 U 2.2 U 1.6 U 0.3 U <	VOLATILE COMPOUNDS (GC/MS)											
Viny Chondie 5 0.3 U 0.6 U 2.8 U 1.4 U 0.3 U	Chloromethane	30	0.3 U	0.6 U	2.9 U	1.4 U	0.3 U	0.3 U	0.3 U		0.3 U	0.3
Chioreshane (100 0.2 U 0.5 U 2.4 U 1.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.5 U	Bromomethane	10	0.3 U	0.6 U	3.2 U	1.6 U	0.3					
Methylen Chloride 3 0.5 1.0 5.1 2.6 0.5 0.2	Vinyl Chloride	5	0.3 U	0.6 U	2.8 U	1.4 U	0.3 U	0.3 U	0.3 U		0.3 U	
Tirchforoduromenhane 0.2 U 0.7 U 0.7 U 0.2 U <th0.2 th="" u<=""> 0.2 U 0.2 U<td>Chloroethane</td><td>100</td><td>0.2 U</td><td>0.5 U</td><td>2.4 U</td><td>1.2 U</td><td>0.2 U</td><td>0.2 U</td><td>0.2 U</td><td></td><td>0.2 U</td><td>0.2</td></th0.2>	Chloroethane	100	0.2 U	0.5 U	2.4 U	1.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2
1.1-Dicklorentheme 2 0.4 U 0.7 U 3.5 U 1.8 U 0.4 U 0.3 U 0.4 U	Methylene Chloride	3	0.5 U	1.0 U	5.1 U	2.6 U	0.5					
1,1-Dichloroethane 50 0.3 U 0.4 U	Trichlorofluoromethane		0.2 U	0.5 U	2.5 U	1.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.2
trans-12-Dichloreethene 100 0.4 U 0.9 U 4.3 U 2.2 U 0.4 U 0.3 U<		2						0.4 U				
cis-1,2-Dichloroethane 70 0.4 U 16 6.0 5.5 0.4 U 0.4 U 0.7 0.4 U 0.4 U Chloroform 6 0.5 U 0.3 U <	1,1-Dichloroethane	50	0.3 U	0.6 U	3.2 U	1.6 U	0.3 U	0.3 U	0.3 U		0.3 U	0.3
Chlorodrm 6 0.5 U 1.0 U 5.2 U 2.6 U 0.9 U 0.5 U 0.2 U <th0.2 th="" u<=""> <th0< td=""><td>trans-1,2-Dichloroethene</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th0<></th0.2>	trans-1,2-Dichloroethene											
1,2-Dichloroethane 2 0.3 U 0.6 U 2.9 U 1.4 U 0.3 U	cis-1,2-Dichloroethene	70	0.4 U	16	6.0	5.5	0.4 U	0.4 U	0.4 U		0.4 U	
1,1-Trichloroethane 30 0.3 U 0.7 U 3.4 U 1.7 U 0.3 U <th0.3 th="" u<=""></th0.3>	Chloroform	6	0.5 U			2.6 U	0.9	0.5 U	0.5 U		0.5 U	
Carbon Tetrachloride 2 0.3 U 0.6 U 3.1 U 1.6 U 0.3 U		2										
Bromodichloromethane 1 0.3 U 0.6 U 3.2 U 1.6 U 0.3 U <td></td> <td>30</td> <td>0.3 U</td> <td></td> <td></td> <td></td> <td>0.3 U</td> <td>0.3 U</td> <td></td> <td></td> <td>0.3 U</td> <td></td>		30	0.3 U				0.3 U	0.3 U			0.3 U	
1,2-Dichloropropane 1 0.3 U 0.6 U 2.9 U 1.4 U 0.3 U 0.2 U 0.3 U		2										
cis-1,3-Dichloropropene 0.2 U 0.2 U 0.5 U 2.4 U 1.2 U 0.2 U 0.4 U 0.3 U 0.		1										
Trichloroethene10.6280620600400.4 U0.61.20.4 U0.4Dibromochloromethane100.3 U0.3 U0.5 U2.7 U1.4 U0.3 U0.4		1										
Dibromochloromethane100.3 U0.3 U0.	cis-1,3-Dichloropropene											
1,1,2-Trichloroethane 3 0.3 U 0.7 U 3.3 U 1.6 U 0.3 U <td>Trichloroethene</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Trichloroethene	1					-					
Benzene10.3 U0.7 U3.3 U1.6 U0.3 U0.2 U0.2 U0.2 U0.2 U0.2 U0.4 U0.3 U0.4 U0.		10										
trans-1,3-Dichloropropene0.2 U0.5 U2.4 U1.2 U0.2 U0.4 U <td>1,1,2-Trichloroethane</td> <td>3</td> <td></td>	1,1,2-Trichloroethane	3										
2-Chloroethyl Vinyl Ether 100 0.4 U 0.8 U 4.2 U 2.1 U 0.4 U 0.	Benzene	1										
Bromoform 4 0.2 U 0.4 U 2.2 U 1.1 U 0.2 U 0.4 U 0.4 U 0.4 U 0.4 U 0.3 U 0.4 U <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
Tetrachloroethene 1 0.4 U 0.9 U 4.5 U 2.2 U 0.4 U 0.4 U 0.4 U 2.2 U 0.4 U 0.3 U 0.4 U		100										
1,1,2,2-Tetrachloroethane 1 0.3 U 0.7 U 3.4 U 1.7 U 0.3 U 0.4		4										
Toluene 1000 0.4 U 0.8 U 4.0 U 2.0 U 0.4 U <t< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		1										
Chlorobenzene 50 0.4 U 0.9 U 4.5 U 2.2 U 0.4 U 0.5 U 0.4 U		1										
Ethylbenzene 700 0.5 U 0.9 U 4.6 U 2.3 U 0.5 U 0.6 U 0.4 U												
Xylene (Total) 1000 0.4 U 0.8 U 3.8 U 1.9 U 0.4 U	Chlorobenzene											
Total Confident Conc. VOAs (s) 0.6 296 626 605.5 40.9 ND 0.6 4.1 3.3 ND												
	Xylene (Total)	1000										
Total Estimated Conc. VOA TICs (s) 500 ND												
	Total Estimated Conc. VOA TICs (s)	500	ND									

Notes:

ug/L - micrograms/Liter

U - The compound was not detected at the indicated concentration

NA - No applicable criteria

VOCs - Volatile Organic Compounds

TICs - Tenetatively Identified Compounds

Sample ID		MW-545C	MW-546A	MW-550B	MW-550C	P-522A	P-522B	P-522C	MW549A	MW549B
Lab Sample Number	New Jersey	667599	667593	667587	667586	667594	667595	667596	677752	677753
Sampling Date	Ground Water	9/8/2005	9/8/2005	9/8/2005	9/8/2005	9/8/2005	9/8/2005	9/8/2005	10/14/2005	10/14/2005
Matrix	Quality	WATER	WATER							
Dilution Factor	Criteria	1.0	1.0	1.0	1.0	1.0	1.0	1.0	10.0	10.0
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)										
Chloromethane	30 U	0.3 U	0.3 U	1.4 U	0.3 U	0.3 U	0.6 U	0.3 U	2.9 U	2.9 U
Bromomethane	10 U	0.3 U	0.3 U	1.6 U	0.3 U	0.3 U	0.6 U	0.3 U	3.2 U	3.2 U
Vinyl Chloride	5 U	0.3 U	0.3 U	1.4 U	0.3 U	0.3 U	0.6 U	0.3 U	2.8 U	2.8 U
Chloroethane	100 U	0.2 U	0.2 U	1.2 U	0.2 U	0.2 U	0.5 U	0.2 U	2.4 U	2.4 U
Methylene Chloride	3 U	0.5 U	0.5 U	2.6 U	0.5 U	0.5 U	1.0 U	0.5 U	5.1 U	5.1 U
Trichlorofluoromethane	U	0.2 U	0.2 U	1.2 U	0.2 U	0.2 U	0.5 U	0.2 U	2.5 U	2.5 U
1,1-Dichloroethene	2 U	0.4 U	0.4 U	1.8 U	0.4 U	0.4 U	0.7 U	0.4 U	3.5 U	3.5 U
1,1-Dichloroethane	50 U	0.3 U	0.3 U	1.6 U	0.3 U	0.3 U	2.3	0.3 U	3.2 U	3.2 U
trans-1,2-Dichloroethene	100 U	0.4 U	0.4 U	2.2 U	0.4 U	0.4 U	0.9 U	0.4 U	4.3 U	4.3 U
cis-1,2-Dichloroethene	70 U	0.4 U	0.8	5.4	1.8	0.4 U	43	0.4 U	5.6	12
Chloroform	6 U	0.5 U	3.3	2.6 U	0.5 U	2.3	3.6	0.5 U	5.2 U	5.2 U
1,2-Dichloroethane	2 U	0.3 U	0.3 U	1.4 U	0.3 U	0.3 U	0.6 U	0.3 U	2.9 U	2.9 U
1,1,1-Trichloroethane	30 U	0.3 U	0.3 U	1.7 U	0.3 U	0.3 U	0.7 U	0.3 U	3.4 U	3.4 U
Carbon Tetrachloride	2 U	0.3 U	0.3 U	1.6 U	0.3 U	0.3 U	0.6 U	0.3 U	3.1 U	3.1 U
Bromodichloromethane	1 U	0.3 U	0.3 U	1.6 U	0.3 U	0.3 U	0.6 U	0.3 U	3.2 U	3.2 U
1,2-Dichloropropane	1 U	0.3 U	0.3 U	1.4 U	0.3 U	0.3 U	0.6 U	0.3 U	2.9 U	2.9 U
cis-1,3-Dichloropropene	U	0.2 U	0.2 U	1.2 U	0.2 U	0.2 U	0.5 U	0.2 U	2.4 U	2.4 U
Trichloroethene	1 U	0.4 U	130	740	160	3.0	210	0.4 U	1100	1300
Dibromochloromethane	10 U	0.3 U	0.3 U	1.4 U	0.3 U	0.3 U	0.5 U	0.3 U	2.7 U	2.7 U
1,1,2-Trichloroethane	3 U	0.3 U	0.3 U	1.6 U	0.3 U	0.3 U	0.7 U	0.3 U	3.3 U	3.3 U
Benzene	1 U	0.3 U	0.3 U	1.6 U	0.3 U	0.3 U	0.7 U	0.3 U	3.3 U	3.3 U
trans-1,3-Dichloropropene	U	0.2 U	0.2 U	1.2 U	0.2 U	0.2 U	0.5 U	0.2 U	2.4 U	2.4 U
2-Chloroethyl Vinyl Ether	100 U	0.4 U	0.4 U	2.1 U	0.4 U	0.4 U	0.8 U	0.4 U	4.2 U	4.2 U
Bromoform	4 U	0.2 U	0.2 U	1.1 U	0.2 U	0.2 U	0.4 U	0.2 U	2.2 U	2.2 U
Tetrachloroethene	1 U	0.4 U	0.4 U	2.9	0.4 U	0.4 U	1.4	0.4 U	4.5 U	6.6
1,1,2,2-Tetrachloroethane	1 U	0.3 U	0.3 U	1.7 U	0.3 U	0.3 U	0.7 U	0.3 U	3.4 U	3.4 U
Toluene	1000 U	0.4 U	0.4 U	2.0 U	0.4 U	0.4 U	0.8 U	0.4 U	4 U	4 U
Chlorobenzene	50 U	0.4 U	0.4 U	2.2 U	0.4 U	0.4 U	0.9 U	0.4 U	4.5 U	4.5 U
Ethylbenzene	700 U	0.5 U	0.5 U	2.3 U	0.5 U	0.5 U	0.9 U	0.5 U	4.6 U	4.6 U
Xylene (Total)	1000 U	0.4 U	0.4 U	1.9 U	0.4 U	0.4 U	0.8 U	0.4 U	3.8 U	3.8 U
Total Confident Conc. VOAs (s)		ND	134.1	748.3	161.8	5.3	260.3	ND	1105.6	1318.6
Total Estimated Conc. VOA TICs (s)	500	ND	ND							

Notes:

ug/L - micrograms/Liter

U - The compound was not detected at the indicated concentration

NA - No applicable criteria

VOCs - Volatile Organic Compounds

TICs - Tenetatively Identified Compounds

Sampling Date Gro	ew Jersey ound Water	677754						FB030706		MW-508B	MW-549B
	ound Water	00.	714112	714113	714114	714115	714116	714117	714118	714119	714120
	Junu Water	10/14/2005	3/7/2006	3/7/2006	3/7/2006	3/7/2006	3/7/2006	3/7/2006	3/7/2006	3/7/2006	3/7/2006
Matrix	Quality	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Dilution Factor	Criteria	1.0	1.0	1.0	10.0	5.0	1.0	1.0	1.0	1.0	10.0
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)											
Chloromethane	30	0.3 U	0.3 U	0.3 U	2.9 U	1.4 U	0.3 U	0.3 U	0.3 U	0.3 U	2.9
Bromomethane	10	0.3 U	0.3 U	0.3 U	3.2 U	1.6 U	0.3 U	0.3 U	0.3 U	0.3 U	3.2
Vinyl Chloride	5	0.3 U	0.3 U	0.3 U	2.8 U	1.4 U	0.3 U	0.3 U	0.3 U	0.3 U	2.8
Chloroethane	100	0.2 U	0.2 U	0.2 U	2.4 U	1.2 U	0.2 U	0.2 U	0.2 U	0.2 U	2.4
Methylene Chloride	3	0.5 U	0.5 U	0.5 U	5.1 U	2.6 U	0.5 U	0.5 U	0.5 U	0.5 U	5.1
Trichlorofluoromethane		0.2 U	0.2 U	0.2 U	2.5 U	1.2 U	0.2 U	0.2 U	0.2 U	0.2 U	2.5
1,1-Dichloroethene	2	0.4 U	0.4 U	0.4 U	3.5 U	1.8 U	0.4 U	0.4 U	0.4 U	0.4 U	3.5
1,1-Dichloroethane	50	0.3 U	0.3 U	0.3 U	3.2 U	1.6 U	0.3 U	0.3 U	0.3 U	0.3 U	3.2
trans-1,2-Dichloroethene	100	0.4 U	0.4 U	0.4 U	4.3 U	2.2 U	0.4 U	0.4 U	0.4 U	0.4 U	4.3
cis-1,2-Dichloroethene	70	0.4 U	0.4 U	1.4	4.3 U	6.8	0.4 U	0.4 U	20	0.4 U	8.9
Chloroform	6	0.5 U	0.7	0.5 U	5.2 U	2.6 U	0.6	0.5 U	0.5 U	0.9	5.2
1,2-Dichloroethane	2	0.3 U	0.3 U	0.3 U	2.9 U	1.4 U	0.3 U	0.3 U	0.3 U	0.3 U	2.9
1,1,1-Trichloroethane	30	0.3 U	0.3 U	0.3 U	3.4 U	1.7 U	0.3 U	0.3 U	0.3 U	0.3 U	3.4
Carbon Tetrachloride	2	0.3 U	0.3 U	0.3 U	3.1 U	1.6 U	0.3 U	0.3 U	0.3 U	0.3 U	3.1
Bromodichloromethane	1	0.3 U	0.3 U	0.3 U	3.2 U	1.6 U	0.3 U	0.3 U	0.3 U	0.3 U	3.2
1,2-Dichloropropane	1	0.3 U	0.3 U	0.3 U	2.9 U	1.4 U	0.3 U	0.3 U	0.3 U	0.3 U	2.9
cis-1,3-Dichloropropene		0.2 U	0.2 U	0.2 U	2.4 U	1.2 U	0.2 U	0.2 U	0.2 U	0.2 U	2.4
Trichloroethene	1	36	12	140	730	600	19	0.4 U	0.5	31	1400
Dibromochloromethane	10	0.3 U	0.3 U	0.3 U	2.7 U	1.4 U	0.3 U	0.3 U	0.3 U	0.3 U	2.7
1,1,2-Trichloroethane	3	0.3 U	0.3 U	0.3 U	3.3 U	1.6 U	0.3 U	0.3 U	0.3 U	0.3 U	3.3
Benzene	1	0.3 U	0.3 U	0.3 U	3.3 U	1.6 U	0.3 U	0.3 U	0.3 U	0.3 U	3.3
trans-1,3-Dichloropropene		0.2 U	0.2 U	0.2 U	2.4 U	1.2 U	0.2 U	0.2 U	0.2 U	0.2 U	2.4
2-Chloroethyl Vinyl Ether	100	0.4 U	0.4 U	0.4 U	4.2 U	2.1 U	0.4 U	0.4 U	0.4 U	0.4 U	4.2
Bromoform	4	0.2 U	0.2 U	0.2 U	2.2 U	1.1 U	0.2 U	0.2 U	0.2 U	0.2 U	2.2
Tetrachloroethene	1	0.4 U	0.4 U	0.4 U	4.5 U	2.2 U	0.4 U	0.4 U	0.4 U	0.4 U	4.5
1,1,2,2-Tetrachloroethane	1	0.3 U	0.3 U	0.3 U	3.4 U	1.7 U	0.3 U	0.3 U	0.3 U	0.3 U	3.4
Toluene	1000	0.4 U	0.4 U	0.4 U	4.0 U	2.0 U	0.4 U	0.4 U	0.4 U	0.4 U	4
Chlorobenzene	50	0.4 U	0.4 U	0.4 U	4.5 U	2.2 U	0.4 U	0.4 U	0.4 U	0.4 U	4.5
Ethylbenzene	700	0.5 U	0.5 U	0.5 U	4.6 U	2.3 U	0.5 U	0.5 U	0.5 U	0.5 U	4.6
Xylene (Total)	1000	0.4 U	0.4 U	0.4 U	3.8 U	1.9 U	0.4 U	0.4 U	0.4 U	0.4 U	3.8
Total Confident Conc. VOAs (s)		36	12.7	141.4	730	606.8	19.6	0	20.5	31.9	1408.9
Total Estimated Conc. VOA TICs (s)	500	ND	0	0	0	0	0	0	0	0	0

Notes:

ug/L - micrograms/Liter

U - The compound was not detected at the indicated concentration

NA - No applicable criteria

VOCs - Volatile Organic Compounds

TICs - Tenetatively Identified Compounds

Lab Sample Number		MW-549A	MW-532A	MW-502B	MW-502A	MW-546A	MW-505B	MW-505A	P-522A	P-522B
Lab Sample Number	New Jersey	714121	714122	714123	714124	714125	714126	714127	714128	714129
Sampling Date	Ground Water	3/7/2006	3/7/2006	3/7/2006	3/7/2006	3/7/2006	3/7/2006	3/7/2006	3/7/2006	3/7/2006
Matrix	Quality	WATER								
Dilution Factor	Criteria	10.0	1.0	2.0	1.0	1.0	1.0	1.0	1.0	2.0
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)										
Chloromethane	30 U	J 2.9 U	0.3 U	0.6 U	0.3 U	0.6 U				
Bromomethane	10 U	J 3.2 U	0.3 U	0.6 U	0.3 U	0.6 U				
Vinyl Chloride	5 U	J 2.8 U	0.3 U	0.6 U	0.3 U	0.6 U				
Chloroethane	100 U	J 2.4 U	0.2 U	0.5 U	0.2 U	0.5 U				
Methylene Chloride	3 U	J 5.1 U	0.5 U	1.0 U	0.5 U	1 U				
Trichlorofluoromethane	U	J 2.5 U	0.2 U	0.5 U	0.2 U	0.5 U				
1,1-Dichloroethene	2 U		0.4 U	0.7 U	0.4 U	0.7 U				
1,1-Dichloroethane	50 U	J 3.2 U	0.3 U	0.6 U	0.3 U	2.2				
trans-1,2-Dichloroethene	100 U	4.3 U	0.4 U	0.9 U	0.4 U	1.9				
cis-1,2-Dichloroethene	70	4.3 U	0.4 U	32	0.4 U	1.2	0.4 U	0.4 U	0.4 U	41
Chloroform	6 U	J 5.2 U	0.5 U	1.0 U	0.7	4.0	1.8	0.5	2.7	4.3
1,2-Dichloroethane	2 U	J 2.9 U	0.3 U	0.6 U	0.3 U	0.6 U				
1,1,1-Trichloroethane	30 U	J 3.4 U	0.3 U	0.7 U	0.3 U	0.7 U				
Carbon Tetrachloride	2 U	J 3.1 U	0.3 U	0.6 U	0.3 U	0.6 U				
Bromodichloromethane	1 U	J 3.2 U	0.3 U	0.6 U	0.3 U	0.6 U				
1,2-Dichloropropane	1 U	J 2.9 U	0.3 U	0.6 U	0.3 U	0.6 U				
cis-1,3-Dichloropropene	U	J 2.4 U	0.2 U	0.5 U	0.2 U	0.5 U				
Trichloroethene	1	990	40	300	0.6	150	0.4 U	0.4 U	3.0	210
Dibromochloromethane	10 U	J 2.7 U	0.3 U	0.5 U	0.3 U	0.5 U				
1,1,2-Trichloroethane	3 U	J 3.3 U	0.3 U	0.7 U	0.3 U	0.7 U				
Benzene	1 U	J 3.3 U	0.3 U	0.7 U	0.3 U	0.7 U				
trans-1,3-Dichloropropene	U	J 2.4 U	0.2 U	0.5 U	0.2 U	0.5 U				
2-Chloroethyl Vinyl Ether	100 U	4.2 U	0.4 U	0.8 U	0.4 U	0.8 U				
Bromoform	4 U	J 2.2 U	0.2 U	0.4 U	0.2 U	0.4 U				
Tetrachloroethene	1 U	4.5 U	1.1	0.9 U	0.4 U	1.4				
1,1,2,2-Tetrachloroethane	1 U	J 3.4 U	0.3 U	0.7 U	0.3 U	0.7 U				
Toluene	1000 U		0.4 U	0.8 U	0.4 U	0.8 U				
Chlorobenzene	50 U		0.4 U	0.9 U	0.4 U	0.9 U				
Ethylbenzene	700 U		0.5 U	0.9 U	0.5 U	0.9 U				
Xylene (Total)	1000 U		0.4 U	0.8 U	0.4 U	0.8 U				
Total Confident Conc. VOAs (s)		990	41.1	332.0	1.3	155.2	1.8	0.5	5.7	260.8
Total Estimated Conc. VOA TICs (s)	500	0	0	0	0	0	0	0	0	0

Notes:

ug/L - micrograms/Liter

U - The compound was not detected at the indicated concentration

NA - No applicable criteria

VOCs - Volatile Organic Compounds

TICs - Tenetatively Identified Compounds Bold - Concentration exceeds NJ Ground Water Quality Criteria

Sample ID		P-522C	MW-545A	MW-545B	MW-545C	MW-544C	MW-544B	MW-544A	MW506A
Lab Sample Number	New Jersey	714130	714131	714132	714133	714134	714135	714136	717219
Sampling Date	Ground Water	3/7/2006	3/7/2006	3/7/2006	3/7/2006	3/7/2006	3/7/2006	3/7/2006	03/17/06
Matrix	Quality	WATER							
Dilution Factor	Criteria	1.0	1.0	1	1	1	1	1	5.0
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)									
Chloromethane	30	0.3 U	1.4 U						
Bromomethane	10	0.3 U	1.6 U						
Vinyl Chloride	5	0.3 U	1.4 U						
Chloroethane	100	0.2 U	1.2 U						
Methylene Chloride	3	0.5 U	2.6 U						
Trichlorofluoromethane		0.2 U	1.2 U						
1,1-Dichloroethene	2	0.4 U	1.8 U						
1,1-Dichloroethane	50	0.3 U	1.6 U						
trans-1,2-Dichloroethene	100	0.4 U	2.2 U						
cis-1,2-Dichloroethene	70	0.4 U	0.4 U	0.4 U	0.4 U	1	0.4 U	0.4 U	5.0
Chloroform	6	0.5 U	0.5 U	0.5 U	1.1	0.5 U	0.5 U	0.5 U	2.6 U
1,2-Dichloroethane	2	0.3 U	1.4 U						
1,1,1-Trichloroethane	30	0.3 U	1.7 U						
Carbon Tetrachloride	2	0.3 U	1.6 U						
Bromodichloromethane	1	0.3 U	1.6 U						
1,2-Dichloropropane	1	0.3 U	1.4 U						
cis-1,3-Dichloropropene		0.2 U	1.2 U						
Trichloroethene	1	0.4 U	0.4 U	0.4 U	0.4 U	1.5	0.7	0.4 U	700
Dibromochloromethane	10	0.3 U	1.4 U						
1,1,2-Trichloroethane	3	0.3 U	1.6 U						
Benzene	1	0.3 U	1.6 U						
trans-1,3-Dichloropropene		0.2 U	1.2 U						
2-Chloroethyl Vinyl Ether	100	0.4 U	2.1 U						
Bromoform	4	0.2 U	1.1 U						
Tetrachloroethene	1	0.4 U	3.1	0.4 U	0.4 U	1.9	0.4 U	0.4 U	2.2 U
1,1,2,2-Tetrachloroethane	1	0.3 U	1.7 U						
Toluene	1000	0.4 U	2.0 U						
Chlorobenzene	50	0.4 U	2.2 U						
Ethylbenzene	700	0.5 U	2.3 U						
Xylene (Total)	1000	0.4 U	1.9 U						
Total Confident Conc. VOAs (s)		0	3.1	0	1.1	4.4	0.7	0	705
Total Estimated Conc. VOA TICs (s)	500	0	0	0	0	0	0	0	0

Notes:

ug/L - micrograms/Liter

U - The compound was not detected at the indicated concentration

NA - No applicable criteria

VOCs - Volatile Organic Compounds

TICs - Tenetatively Identified Compounds

TABLE 5 HISTORICAL TCE CONCENTRATIONS IN GROUND WATER FORMER LEC SITE WATCHUNG, NEW JERSEY

						•			•			•					•			1 D
Sample Date	Well #	TCE Concentration	Units	Q	Sample Date	Well #	TCE Concentration	Units	Q	Sample Date	Well #	TCE Concentration	Units	Q	Sample Date	Well #	TCE Concentration	Units	Q	Sample Date
08/13/93 10/22/93	MW-502A MW-502A	5	ug/L ug/L		08/11/93 10/19/93	MW-505B MW-505B	<gwqs <gwqs< td=""><td>ug/L ug/L</td><td>UU</td><td>10/21/93 04/27/94</td><td>MW-507A MW-507A</td><td>730</td><td>ug/L ug/L</td><td></td><td>08/13/93</td><td>MW-508B MW-508B</td><td>960 860</td><td>ug/L ug/L</td><td></td><td>11/09/99</td></gwqs<></gwqs 	ug/L ug/L	UU	10/21/93 04/27/94	MW-507A MW-507A	730	ug/L ug/L		08/13/93	MW-508B MW-508B	960 860	ug/L ug/L		11/09/99
04/27/94	MW-502A	1.6	ug/L ug/L		04/26/94	MW-505B	<gwqs< td=""><td>ug/L</td><td>U</td><td>11/11/94</td><td>MW-507A</td><td>1210</td><td>ug/L</td><td></td><td>04/29/94</td><td>MW-508B</td><td>630</td><td>ug/L ug/L</td><td>J</td><td>03/25/03</td></gwqs<>	ug/L	U	11/11/94	MW-507A	1210	ug/L		04/29/94	MW-508B	630	ug/L ug/L	J	03/25/03
11/09/94	MW-502A	2.02	ug/L		11/08/94	MW-505B	<gwqs< td=""><td>ug/L</td><td>U</td><td>06/01/95</td><td>MW-507A</td><td>1100</td><td>ug/L</td><td></td><td>04/29/94</td><td>MW-508B</td><td>640</td><td>ug/L</td><td>J</td><td>09/23/03</td></gwqs<>	ug/L	U	06/01/95	MW-507A	1100	ug/L		04/29/94	MW-508B	640	ug/L	J	09/23/03
06/01/95 03/30/96	MW-502A MW-502A	2.3 2.5	ug/L ug/L		05/31/95 04/02/96	MW-505B MW-505B	<gwqs 1.1</gwqs 	ug/L ug/L	U	04/01/96 09/26/97	MW-507A MW-507A	930 1200	ug/L ug/L	DJ	11/11/94 06/02/95	MW-508B MW-508B	1120 943	ug/L ug/L		03/09/04 09/24/04
03/30/96	MW-502A	2.9	ug/L		09/23/97	MW-505B	<gwqs< td=""><td>ug/L</td><td>U</td><td>05/02/98</td><td>MW-507A</td><td>1100</td><td>ug/L</td><td></td><td>04/02/96</td><td>MW-508B</td><td>1600</td><td>ug/L</td><td>J</td><td>03/03/05</td></gwqs<>	ug/L	U	05/02/98	MW-507A	1100	ug/L		04/02/96	MW-508B	1600	ug/L	J	03/03/05
09/27/97	MW-502A	7.8	ug/L		09/24/98	MW-505B	<gwqs< td=""><td>ug/L</td><td>U</td><td>05/02/98</td><td>MW-507A</td><td>1100</td><td>ug/L</td><td></td><td>09/26/97</td><td>MW-508B</td><td>320</td><td>ug/L</td><td></td><td>09/08/05</td></gwqs<>	ug/L	U	05/02/98	MW-507A	1100	ug/L		09/26/97	MW-508B	320	ug/L		09/08/05
05/02/98 09/25/98	MW-502A MW-502A	5.2 7.9	ug/L ug/L		11/09/99 11/20/02	MW-505B MW-505B	<gwqs <gwqs< td=""><td>ug/L ug/L</td><td>U U</td><td>09/26/98 11/11/99</td><td>MW-507A MW-507A</td><td>1200 970</td><td>ug/L ug/L</td><td></td><td>05/02/98 09/25/98</td><td>MW-508B MW-508B</td><td>360 210</td><td>ug/L ug/L</td><td></td><td>11/09/99 11/18/02</td></gwqs<></gwqs 	ug/L ug/L	U U	09/26/98 11/11/99	MW-507A MW-507A	1200 970	ug/L ug/L		05/02/98 09/25/98	MW-508B MW-508B	360 210	ug/L ug/L		11/09/99 11/18/02
11/12/99	MW-502A	5.9	ug/L ug/L		03/25/03	MW-505B	<gwqs< td=""><td>ug/L</td><td>U</td><td>11/21/02</td><td>MW-507A</td><td>140</td><td>ug/L</td><td></td><td>11/11/99</td><td>MW-508B</td><td>670</td><td>ug/L ug/L</td><td></td><td>03/25/03</td></gwqs<>	ug/L	U	11/21/02	MW-507A	140	ug/L		11/11/99	MW-508B	670	ug/L ug/L		03/25/03
11/21/02	MW-502A	3.1	ug/L		03/25/04	MW-505B	<gwqs< td=""><td>ug/L</td><td>U</td><td>03/26/03</td><td>MW-507A</td><td>630</td><td>ug/L</td><td></td><td>11/21/02</td><td>MW-508B</td><td>120</td><td>ug/L</td><td></td><td>09/23/03</td></gwqs<>	ug/L	U	03/26/03	MW-507A	630	ug/L		11/21/02	MW-508B	120	ug/L		09/23/03
03/25/03 06/25/03	MW-502A MW-502A	2.5 2.7	ug/L ug/L		03/03/05	MW-505B MW-505B	<gwqs <gwqs< td=""><td>ug/L ug/L</td><td>U</td><td>06/25/03 09/23/03</td><td>MW-507A MW-507A</td><td>770 860</td><td>ug/L ug/L</td><td></td><td>03/26/03 06/25/03</td><td>MW-508B MW-508B</td><td>73 58</td><td>ug/L</td><td></td><td>03/09/04 09/24/04</td></gwqs<></gwqs 	ug/L ug/L	U	06/25/03 09/23/03	MW-507A MW-507A	770 860	ug/L ug/L		03/26/03 06/25/03	MW-508B MW-508B	73 58	ug/L		03/09/04 09/24/04
09/24/03	MW-502A	1.4	ug/L ug/L		08/11/93	MW-506A	1700	ug/L ug/L	0	12/11/03	MW-507A	740	ug/L ug/L		09/23/03	MW-508B	69	ug/L ug/L		03/03/05
12/11/03	MW-502A	1.0	ug/L		10/19/93	MW-506A	1800	ug/L		03/09/04	MW-507A	690	ug/L		12/11/03	MW-508B	40	ug/L		09/08/05
03/09/04	MW-502A	0.8	ug/L		04/26/94	MW-506A	1200	ug/L		06/04/04	MW-507A	450	ug/L		03/09/04	MW-508B	41	ug/L		11/09/99
06/04/04 09/23/04	MW-502A MW-502A	0.6 0.6	ug/L ug/L		04/26/94 11/11/94	MW-506A MW-506A	1300 1990	ug/L ug/L		09/23/04 12/09/04	MW-507A MW-507A	1100 610	ug/L ug/L		06/04/04 09/23/04	MW-508B MW-508B	32 30	ug/L ug/L		11/19/02 03/25/03
12/09/04	MW-502A	0.9	ug/L		11/11/94	MW-506A	2020	ug/L		03/04/05	MW-507A	540	ug/L		12/09/04	MW-508B	31	ug/L		06/25/03
03/03/05 06/03/05	MW-502A MW-502A	1.2 0.8	ug/L		06/01/95 06/01/95	MW-506A MW-506A	1650 1690	ug/L		06/03/05 09/08/05	MW-507A MW-507A	570 600	ug/L		03/04/05 06/03/05	MW-508B MW-508B	26 40	ug/L		09/24/03 12/11/03
09/08/05	MW-502A MW-502A	0.8	ug/L ug/L		04/01/95	MW-506A MW-506A	1890	ug/L ug/L	DJ	03/07/06	MW-507A MW-507A	600	ug/L ug/L		09/08/05	MW-508B MW-508B	40	ug/L ug/L		03/09/04
03/07/06	MW-502A	0.6	ug/L		09/25/97	MW-506A	1600	ug/L		08/13/93	MW-507B	130	ug/L		03/07/06	MW-508B	31	ug/L		06/04/04
08/13/93	MW-502B	1200	ug/L		09/25/97	MW-506A	1700	ug/L		10/21/93	MW-507B	100	ug/L		11/28/95	MW-532A	30	ug/L		09/24/04
08/13/93 10/22/93	MW-502B MW-502B	930 1300	ug/L ug/L		04/30/98 09/24/98	MW-506A MW-506A	1400 1400	ug/L ug/L		05/02/94 11/11/94	MW-507B MW-507B	79 145	ug/L ug/L		01/16/96 03/28/96	MW-532A MW-532A	31 18	ug/L ug/L		12/09/04 03/04/05
10/22/93	MW-502B	1300	ug/L ug/L		11/08/99	MW-506A	1700	ug/L ug/L		06/02/95	MW-507B	145	ug/L ug/L		09/23/97	MW-532A MW-532A	39	ug/L ug/L		06/03/05
04/27/94	MW-502B	1200	ug/L		11/19/02	MW-506A	1000	ug/L		04/01/96	MW-507B	70	ug/L	DJ	04/28/98	MW-532A	34	ug/L		09/08/05
11/09/94	MW-502B	1700	ug/L		03/24/03	MW-506A	850	ug/L		09/26/97	MW-507B	80	ug/L		09/22/98	MW-532A	30	ug/L		11/21/02
06/01/95 04/02/96	MW-502B MW-502B	1510 1300	ug/L ug/L	DJ	06/25/03 09/23/03	MW-506A MW-506A	1000 960	ug/L ug/L		05/02/98 09/26/98	MW-507B MW-507B	64 43	ug/L ug/L		11/10/99 11/20/02	MW-532A MW-532A	32 37	ug/L ug/L		03/26/03 06/25/03
09/28/97	MW-502B	1400	ug/L ug/L	DJ	12/10/03	MW-506A	830	ug/L ug/L		11/11/99	MW-507B	93	ug/L ug/L		03/27/03	MW-532A MW-532A	26	ug/L ug/L		09/24/03
05/02/98	MW-502B	1300	ug/L		03/09/04	MW-506A	940	ug/L		11/21/02	MW-507B	45	ug/L		03/25/04	MW-532A	33	ug/L		12/10/03
09/25/98 09/25/98	MW-502B MW-502B	1300 1300	ug/L ug/L		06/04/04 09/23/04	MW-506A MW-506A	710 1300	ug/L ug/L		03/26/03 03/25/04	MW-507B MW-507B	20 16	ug/L ug/L		03/03/05 03/07/06	MW-532A MW-532A	37 40	ug/L ug/L		03/09/04 06/04/04
11/12/99	MW-502B	1500	ug/L		12/09/04	MW-506A	710	ug/L ug/L		03/04/05	MW-507B	20	ug/L		11/09/99	MW-544A	<gwqs< td=""><td>ug/L ug/L</td><td>U</td><td>09/23/04</td></gwqs<>	ug/L ug/L	U	09/23/04
11/21/02	MW-502B	1000	ug/L		03/03/05	MW-506A	650	ug/L		03/07/06	MW-507B	19	ug/L		11/18/02	MW-544A	<gwqs< td=""><td>ug/L</td><td>U</td><td>12/09/04</td></gwqs<>	ug/L	U	12/09/04
03/25/03 06/25/03	MW-502B MW-502B	920 1100	ug/L ug/L		06/03/05 09/08/05	MW-506A MW-506A	730 620	ug/L ug/L		10/25/93 05/02/94	MW-508A MW-508A	30 35	ug/L ug/L		03/24/03 09/23/03	MW-544A MW-544A	0.5 0.8 *	ug/L		03/03/05 06/03/05
09/24/03	MW-502B	1100	ug/L ug/L		03/17/06	MW-506A	700	ug/L ug/L		11/12/94	MW-508A	36.8	ug/L ug/L		03/09/04	MW-544A	<gwqs< td=""><td>ug/L ug/L</td><td>U</td><td>10/14/05</td></gwqs<>	ug/L ug/L	U	10/14/05
12/11/03	MW-502B	670	ug/L		08/11/93	MW-506B	18	ug/L		06/03/95	MW-508A	38.4	ug/L		09/24/04	MW-544A	<gwqs< td=""><td>ug/L</td><td>Ŭ</td><td>11/21/02</td></gwqs<>	ug/L	Ŭ	11/21/02
03/09/04	MW-502B	730	ug/L		10/20/93	MW-506B	48	ug/L	J	04/02/96	MW-508A	32	ug/L	J	03/03/05	MW-544A	0.4	ug/L	U	03/26/03
06/04/04 09/23/04	MW-502B MW-502B	390 350	ug/L ug/L		04/26/94 11/11/94	MW-506B MW-506B	18 19	ug/L ug/L		04/02/96 09/26/97	MW-508A MW-508A	38 35	ug/L ug/L	J	09/08/05 03/07/06	MW-544A MW-544A	0.4	ug/L ug/L	U	06/25/03 09/24/03
12/09/04	MW-502B	290	ug/L		06/01/95	MW-506B	40.4	ug/L		05/02/98	MW-508A	34	ug/L		11/09/99	MW-544B	0.4	ug/L ug/L	U	12/10/03
03/03/05	MW-502B	330	ug/L		04/01/96	MW-506B	25	ug/L	J	09/25/98	MW-508A	33	ug/L		11/18/02	MW-544B	0.5	ug/L		03/09/04
06/03/05 09/08/05	MW-502B MW-502B	340 280	ug/L ug/L		09/25/97 04/30/98	MW-506B MW-506B	34 26	ug/L ug/L		11/11/99 11/21/02	MW-508A MW-508A	34 13	ug/L ug/L		03/24/03 09/23/03	MW-544B MW-544B	0.8 0.6	ug/L ug/L		06/04/04 09/23/04
03/07/06	MW-502B	300	ug/L ug/L		04/30/98	MW-506B	20	ug/L		03/26/03	MW-508A	30	ug/L		03/09/04	MW-544B	0.8	ug/L ug/L		12/09/04
08/11/93	MW-505A	<gwqs< td=""><td>ug/L</td><td>U</td><td>09/24/98</td><td>MW-506B</td><td>32</td><td>ug/L</td><td></td><td>03/25/04</td><td>MW-508A</td><td>35</td><td>ug/L</td><td></td><td>09/24/04</td><td>MW-544B</td><td>0.6</td><td>ug/L</td><td></td><td>03/03/05</td></gwqs<>	ug/L	U	09/24/98	MW-506B	32	ug/L		03/25/04	MW-508A	35	ug/L		09/24/04	MW-544B	0.6	ug/L		03/03/05
10/19/93 04/26/94	MW-505A MW-505A	<gwqs <gwqs< td=""><td>ug/L ug/L</td><td>U U</td><td>11/08/99 11/19/02</td><td>MW-506B MW-506B</td><td>50 74</td><td>ug/L ug/L</td><td></td><td>03/04/05 03/07/06</td><td>MW-508A MW-508A</td><td>1.2 0.5</td><td>ug/L ug/L</td><td></td><td>03/03/05 09/08/05</td><td>MW-544B MW-544B</td><td>0.4</td><td>ug/L ug/L</td><td>UU</td><td>06/03/05</td></gwqs<></gwqs 	ug/L ug/L	U U	11/08/99 11/19/02	MW-506B MW-506B	50 74	ug/L ug/L		03/04/05 03/07/06	MW-508A MW-508A	1.2 0.5	ug/L ug/L		03/03/05 09/08/05	MW-544B MW-544B	0.4	ug/L ug/L	UU	06/03/05
11/08/94	MW-505A	<gwqs< td=""><td>ug/L ug/L</td><td>U</td><td>03/24/03</td><td>MW-506B</td><td>24</td><td>ug/L ug/L</td><td></td><td>05/07/00</td><td>1010-50071</td><td>0.5</td><td>ug/L</td><td></td><td>03/07/06</td><td>MW-544B</td><td>0.6</td><td>ug/L ug/L</td><td>0</td><td>11/21/02</td></gwqs<>	ug/L ug/L	U	03/24/03	MW-506B	24	ug/L ug/L		05/07/00	1010-50071	0.5	ug/L		03/07/06	MW-544B	0.6	ug/L ug/L	0	11/21/02
05/31/95	MW-505A	<gwqs< td=""><td>ug/L</td><td>U</td><td>06/25/03</td><td>MW-506B</td><td>12</td><td>ug/L</td><td></td><td></td><td></td><td></td><td></td><td></td><td>11/09/99</td><td>MW-544C</td><td>4.9</td><td>ug/L</td><td></td><td>Nov-02</td></gwqs<>	ug/L	U	06/25/03	MW-506B	12	ug/L							11/09/99	MW-544C	4.9	ug/L		Nov-02
04/02/96 09/23/97	MW-505A MW-505A	<gwqs <gwqs< td=""><td>ug/L</td><td>J U</td><td>09/23/03 12/10/03</td><td>MW-506B MW-506B</td><td>14 15</td><td>ug/L</td><td></td><td></td><td></td><td></td><td></td><td></td><td>11/18/02 03/24/03</td><td>MW-544C MW-544C</td><td>1.7 0.4</td><td>ug/L</td><td></td><td>Mar-03 Sep-03</td></gwqs<></gwqs 	ug/L	J U	09/23/03 12/10/03	MW-506B MW-506B	14 15	ug/L							11/18/02 03/24/03	MW-544C MW-544C	1.7 0.4	ug/L		Mar-03 Sep-03
09/23/97	MW-505A MW-505A	<gwqs <gwqs< td=""><td>ug/L ug/L</td><td>U</td><td>03/09/04</td><td>MW-506B MW-506B</td><td>15</td><td>ug/L ug/L</td><td></td><td></td><td></td><td></td><td></td><td></td><td>03/24/03</td><td>MW-544C MW-544C</td><td>0.4</td><td>ug/L ug/L</td><td></td><td>Dec-03</td></gwqs<></gwqs 	ug/L ug/L	U	03/09/04	MW-506B MW-506B	15	ug/L ug/L							03/24/03	MW-544C MW-544C	0.4	ug/L ug/L		Dec-03
11/09/99	MW-505A	<gwqs< td=""><td>ug/L</td><td>U</td><td>06/04/04</td><td>MW-506B</td><td>13</td><td>ug/L</td><td></td><td></td><td></td><td></td><td></td><td></td><td>03/09/04</td><td>MW-544C</td><td>1.8</td><td>ug/L</td><td></td><td>Mar-04</td></gwqs<>	ug/L	U	06/04/04	MW-506B	13	ug/L							03/09/04	MW-544C	1.8	ug/L		Mar-04
11/20/02 03/25/03	MW-505A MW-505A	<gwqs <gwqs< td=""><td>ug/L</td><td>U U</td><td>09/23/04 12/09/04</td><td>MW-506B MW-506B</td><td>12 15</td><td>ug/L</td><td></td><td></td><td></td><td></td><td></td><td></td><td>09/24/04 03/03/05</td><td>MW-544C MW-544C</td><td>1.3 1.8</td><td>ug/L</td><td></td><td>Jun-04 Sep-04</td></gwqs<></gwqs 	ug/L	U U	09/23/04 12/09/04	MW-506B MW-506B	12 15	ug/L							09/24/04 03/03/05	MW-544C MW-544C	1.3 1.8	ug/L		Jun-04 Sep-04
03/25/04	MW-505A	<gwqs <gwqs< td=""><td>ug/L ug/L</td><td>U</td><td>03/03/05</td><td>MW-506B</td><td>15</td><td>ug/L ug/L</td><td></td><td></td><td></td><td></td><td></td><td></td><td>09/08/05</td><td>MW-544C MW-544C</td><td>1.8</td><td>ug/L ug/L</td><td></td><td>Dec-04</td></gwqs<></gwqs 	ug/L ug/L	U	03/03/05	MW-506B	15	ug/L ug/L							09/08/05	MW-544C MW-544C	1.8	ug/L ug/L		Dec-04
03/03/05	MW-505A	<gwqs< td=""><td>ug/L</td><td>U</td><td>06/03/05</td><td>MW-506B</td><td>14</td><td>ug/L</td><td></td><td></td><td></td><td></td><td></td><td></td><td>03/07/06</td><td>MW-544C</td><td>1.5</td><td>ug/L</td><td></td><td>Mar-05</td></gwqs<>	ug/L	U	06/03/05	MW-506B	14	ug/L							03/07/06	MW-544C	1.5	ug/L		Mar-05
03/07/06	MW-505A	<gwqs< td=""><td>ug/L</td><td>U</td><td>10/01/05</td><td>MW-506B</td><td>36</td><td>ug/L</td><td></td><td></td><td></td><td></td><td></td><td></td><td>11/09/99</td><td>MW-545A</td><td>0</td><td>ug/L</td><td>U</td><td>Jun-05</td></gwqs<>	ug/L	U	10/01/05	MW-506B	36	ug/L							11/09/99	MW-545A	0	ug/L	U	Jun-05
					03/07/06	MW-506B	12	ug/L		l					11/18/02 03/25/03	MW-545A MW-545A	0.2 0.4	ug/L ug/L		Sep-05
															03/23/03	MW-545A MW-545A	0.4	ug/L ug/L	U	l
															03/09/04	MW-545A	0	ug/L	Ũ	l
GWQS for TCE= 1 Bold		n exceeds NJ Ground \		ity Criteria											09/24/04 03/03/05	MW-545A MW-545A	0.4 0.4	ug/L ug/L	U U	1
BOID		well has either been aband													09/08/05	MW-545A	0.4	ug/L ug/L	U	1
	 micrograms/Li 	iter													03/07/06	MW-545A	0.4	ug/L	U	l
D	 Concentration 	reported at dilution																		

GWQS for TCE= 1 Bold- Concentration exceeds NJ Ground Water Quality Criteria Indicates that well has either been abandoned or destroyed ug/L - micrograms/Lite D - Concentration reported at dilution J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value. Represents the highest concentration of the bags sampled on that date. Q - Qualifiers U - The compound was not detected at the indicated concentration

Well #	TCE Concentration	Units	Q		Samp
MW-545B	<gwqs< td=""><td>ug/L</td><td>U</td><td></td><td>11/2</td></gwqs<>	ug/L	U		11/2
MW-545B	<gwqs< td=""><td>ug/L</td><td>U</td><td></td><td>03/2</td></gwqs<>	ug/L	U		03/2
MW-545B	<gwqs< td=""><td>ug/L</td><td>U</td><td></td><td>06/2</td></gwqs<>	ug/L	U		06/2
MW-545B	<gwqs< td=""><td>ug/L</td><td>U</td><td></td><td>09/2</td></gwqs<>	ug/L	U		09/2
MW-545B MW-545B	<gwqs 0.4</gwqs 	ug/L	U U		12/1 03/0
MW-545B	0.4	ug/L ug/L	U		06/0
MW-545B	0.4	ug/L	Ŭ		09/2
MW-545C	<gwqs< td=""><td>ug/L</td><td>U</td><td></td><td>12/0</td></gwqs<>	ug/L	U		12/0
MW-545C	<gwqs< td=""><td>ug/L</td><td>U</td><td></td><td>03/0</td></gwqs<>	ug/L	U		03/0
MW-545C	<gwqs< td=""><td>ug/L</td><td>U</td><td></td><td>06/0</td></gwqs<>	ug/L	U		06/0
MW-545C	<gwqs< td=""><td>ug/L</td><td>U</td><td></td><td>09/0</td></gwqs<>	ug/L	U		09/0
MW-545C	<gwqs< td=""><td>ug/L</td><td>U U</td><td></td><td>11/1</td></gwqs<>	ug/L	U U		11/1
MW-545C MW-545C	0.4	ug/L	U		12/1
MW-545C MW-545C	0.4	ug/L ug/L	U		03/3 09/2
MW-546A	130	ug/L	0		05/0
MW-546A	120	ug/L			09/2
MW-546A	120	ug/L			11/1
MW-546A	150	ug/L			11/1
MW-546A	91	ug/L			03/2
MW-546A	88 90	ug/L			09/2
MW-546A MW-546A	90 82	ug/L			03/0
MW-546A MW-546A	82 110	ug/L			03/0
MW-546A MW-546A	110	ug/L ug/L			03/0
MW-546A	110	ug/L ug/L			12/1
MW-546A	120	ug/L			03/3
MW-546A	130	ug/L			09/2
MW-549A	760	ug/L			09/2
MW-549A	760	ug/L			05/0
MW-549A	1200 1100	ug/L			09/2
MW-549A MW-549A	900	ug/L ug/L			11/1 11/1
MW-549A	1000	ug/L ug/L			03/2
MW-549A	880	ug/L			09/2
MW-549A	820	ug/L			03/0
MW-549A	850	ug/L			09/2
MW-549A	820	ug/L			03/0
MW-549A	98	ug/L			09/0
MW-549A MW-549B	1100	ug/L	_		11/1 12/1
MW-549B MW-549B	1900	ug/L ug/L			03/3
MW-549B	2800	ug/L			09/2
MW-549B	2300	ug/L			05/0
MW-549B	1800	ug/L			09/2
MW-549B	1200	ug/L			11/1
MW-549B	1400	ug/L			11/1
MW-549B MW-549B	1500 1200	ug/L ug/L			03/2 09/2
MW-549B MW-549B	1200	ug/L ug/L			03/0
MW-549B	650	ug/L ug/L			09/2
MW-549B	1300	ug/L			03/0
MW-549C	2600	ug/L			09/0
MW-550B	440	ug/L		1.	
MW-550B	870	ug/L			
MW-550B MW-550B	800 780	ug/L			
MW-550B MW-550B	780	ug/L ug/L			
MW-550B	650	ug/L ug/L			
MW-550B	1400	ug/L			
MW-550B	720	ug/L			
MW-550B	620	ug/L			
MW-550B	760	ug/L			
MW-550B	740	ug/L			

n	Units	Q	Sample Date	Well #	TCE Concentration	Units	Q
	ug/L	U	11/21/02	MW-550C	77	ug/L	
	ug/L	U	03/26/03	MW-550C	130	ug/L	
	ug/L	U	06/25/03	MW-550C	180	ug/L	
	ug/L	U	09/23/03	MW-550C	140	ug/L	
	ug/L	U	12/10/03	MW-550C	150	ug/L	
	ug/L	U U	03/09/04 06/04/04	MW-550C MW-550C	170 140	ug/L ug/L	
	ug/L ug/L	U	09/23/04	MW-550C MW-550C	140	ug/L ug/L	
		~		MW-550C		-	
	ug/L	U U	12/09/04 03/03/05	MW-550C MW-550C	130 120	ug/L	
	ug/L ug/L	U	06/03/05	MW-550C	120	ug/L ug/L	
	ug/L ug/L	U	09/08/05	MW-550C	140	ug/L ug/L	
	ug/L ug/L	U	11/10/94	P-522A	2.2	ug/L	-
	ug/L ug/L	U	12/14/94	P-522A	4.8	ug/L ug/L	
	ug/L	U	03/31/96	P-522A	0.4	ug/L	J
	ug/L ug/L	U	09/27/97	P-522A	0.4	ug/L ug/L	J
	ug/L	U	05/01/98	P-522A	1.8	ug/L	5
	ug/L ug/L		09/26/98	P-522A	1.0	ug/L ug/L	
	ug/L ug/L		11/10/99	P-522A	0.9	ug/L ug/L	
	ug/L		11/19/02	P-522A	1.6	ug/L	
	ug/L		03/25/03	P-522A	14	ug/L	
	ug/L		09/23/03	P-522A	3.8	ug/L	
	ug/L		03/09/04	P-522A	3.0	ug/L	
	ug/L		09/24/04	P-522A	3.6	ug/L	
	ug/L		03/03/05	P-522A	3.3	ug/L	
	ug/L		09/08/05	P-522A	3.0	ug/L	
	ug/L		12/14/94	P-522B	157	ug/L	Ī
	ug/L		03/31/96	P-522B	230	ug/L	
	ug/L		09/27/97	P-522B	180	ug/L	
	ug/L		09/27/97	P-522B	190	ug/L	
	ug/L		05/01/98	P-522B	140	ug/L	
	ug/L		09/27/98	P-522B	180	ug/L	
	ug/L		11/10/99	P-522B	200	ug/L	
	ug/L		11/19/02	P-522B	120	ug/L	
	ug/L		03/25/03	P-522B	160	ug/L	
	ug/L		09/23/03	P-522B	220	ug/L	
	ug/L		03/09/04	P-522B	220	ug/L	
	ug/L		09/24/04	P-522B	200	ug/L	
	ug/L		03/03/05	P-522B	190	ug/L	
	ug/L		09/08/05	P-522B	210	ug/L	
	ug/L		11/10/94	P-522C	18.6	ug/L	
	ug/L		12/13/94	P-522C	20.9	ug/L	
	ug/L		03/31/96	P-522C	50	ug/L	
	ug/L		09/27/97	P-522C	6.1 67	ug/L	
	ug/L		05/01/98 09/27/98	P-522C P-522C	67 16	ug/L	1
	ug/L		09/27/98	P-522C P-522C	16	ug/L	1
	ug/L		11/10/99	P-522C P-522C	12 17	ug/L	1
	ug/L ug/L		03/25/03	P-522C P-522C	22	ug/L ug/L	1
	ug/L ug/L		09/23/03	P-522C P-522C	16	ug/L ug/L	1
	ug/L ug/L		03/09/04	P-522C	0.2	ug/L ug/L	U
	ug/L ug/L		09/24/04	P-522C	0.2	ug/L ug/L	U
	ug/L ug/L		03/03/05	P-522C	25	ug/L ug/L	
			09/08/05	P-522C	0.4	ug/ L	U

TABLE 6 SURFACE WATER ANALYTICAL RESULTS - JULY 2005 THROUGH MARCH 2006 FORMER LEC SITE WATCHUNG, NEW JERSEY

Sample ID	New Jersey	TB	FB	SW-1	SW-2	SW-3	SW-4	SW-12
Lab Sample Number	Fresh Water - 2	652533	652532	652529	652528	652527	652531	652530
Sampling Date	Quality	07/15/05	07/15/05	07/15/05	07/15/05	07/15/05	07/15/05	07/15/05
Matrix	Criteria	WATER						
Dilution Factor		1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)								
Chloromethane	NA	0.3 U						
Bromomethane	48.4	0.3 U						
Vinyl Chloride	0.083	0.3 U						
Chloroethane	NA	0.2 U						
Methylene Chloride	2.49	0.5 U						
Trichlorofluoromethane	NA	0.2 U						
1,1-Dichloroethene	4.81	0.4 U						
1,1-Dichloroethane	NA	0.3 U						
trans-1,2-Dichloroethene	592	0.4 U						
cis-1,2-Dichloroethene	NA	0.4 U	0.4 U	0.4 U	0.5	0.4 U	0.5	1.1
Chloroform	5.67	0.5 U						
1,2-Dichloroethane	0.291	0.3 U						
1,1,1-Trichloroethane	127	0.3 U						
Carbon Tetrachloride	0.363	0.3 U						
Bromodichloromethane	0.266	0.3 U						
1,2-Dichloropropane	NA	0.3 U						
cis-1,3-Dichloropropene	0.193	0.2 U						
Trichloroethene	1.09	0.4 U	3.3					
Dibromochloromethane	72.6	0.3 U						
1,1,2-Trichloroethane	13.5	0.3 U						
Benzene	0.15	0.3 U						
trans-1,3-Dichloropropene	0.193	0.2 U						
2-Chloroethyl Vinyl Ether	NA	0.4 U						
Bromoform	4.38	0.2 U						
Tetrachloroethene	0.388	0.4 U						
1,1,2,2-Tetrachloroethane	1.72	0.3 U						
Toluene	7440	0.4 U						
Chlorobenzene	22.0	0.4 U						
Ethylbenzene	3030	0.5 U						
Xylene (Total)	NA	0.4 U						
Total Confident Conc. VOAs (s)		ND	ND	ND	0.5	ND	0.5	4.4
Total Estimated Conc. VOA TICs (s)		ND						

micrograms/Liter

The compound was not detected at the indicated concentration No applicable Criteria Volatile Organic Compounds Tentatively Identified Compounds Concentration exceeds Fresh Water Quality Criteria The numbers in italics are NJ Fresh Water Quality Criteria.

Sample ID	New Jersey	ТВ	FB	SW-2	SW-3	SW-4	SW-12
Lab Sample Number	Fresh Water - 2	660290	660289	660294	660293	660291	660292
Sampling Date	Quality	08/12/05	08/12/05	08/12/05	08/12/05	08/12/05	08/12/05
Matrix	Criteria	WATER	WATER	WATER	WATER	WATER	WATER
Dilution Factor		1.0	1.0	1.0	1.0	1.0	1.0
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)							
Chloromethane	NA	0.3 U					
Bromomethane	48.4	0.3 U					
Vinyl Chloride	0.083	0.3 U					
Chloroethane	NA	0.2 U					
Methylene Chloride	2.49	0.7	1.0	0.5 U	0.5 U	0.5 U	0.5 U
Trichlorofluoromethane	NA	0.2 U					
1,1-Dichloroethene	4.81	0.4 U					
1,1-Dichloroethane	NA	0.3 U					
trans-1,2-Dichloroethene	592	0.4 U					
cis-1,2-Dichloroethene	NA	0.4 U	0.8				
Chloroform	5.67	0.5 U					
1,2-Dichloroethane	0.291	0.3 U					
1,1,1-Trichloroethane	127	0.3 U					
Carbon Tetrachloride	0.363	0.3 U					
Bromodichloromethane	0.266	0.3 U					
1,2-Dichloropropane	NA	0.3 U					
cis-1,3-Dichloropropene	0.193	0.2 U					
Trichloroethene	1.09	0.4 U	3.0				
Dibromochloromethane	72.6	0.3 U					
1,1,2-Trichloroethane	13.5	0.3 U					
Benzene	0.15	0.3 U					
trans-1,3-Dichloropropene	0.193	0.2 U					
2-Chloroethyl Vinyl Ether	NA	0.4 U					
Bromoform	4.38	0.2 U					
Tetrachloroethene	0.388	0.4 U					
1,1,2,2-Tetrachloroethane	1.72	0.3 U					
Toluene	7440	0.4 U					
Chlorobenzene	22.0	0.4 U					
Ethylbenzene	3030	0.5 U					
Xylene (Total)	NA	0.4 U					
Total Confident Conc. VOAs (s)		0.7	1.0	ND	ND	ND	3.8
Total Estimated Conc. VOA TICs (s)		ND	ND	ND	ND	ND	ND

micrograms/Liter The compound was not detected at the indicated concentration No applicable Criteria Volatile Organic Compounds Tentatively Identified Compounds Concentration exceeds Fresh Water Quality Criteria The numbers in italics are NJ Fresh Water Quality Criteria.

Sample ID	New Jersey	TB	FB	SW-2	SW-3	SW-4	SW-12
Lab Sample Number	Fresh Water - 2	667584	667585	667603	667604	667605	667606
Sampling Date	Quality	09/08/05	09/08/05	09/08/05	09/08/05	09/08/05	09/08/05
Matrix	Criteria	WATER	WATER	WATER	WATER	WATER	WATER
Dilution Factor		1.0	1.0	1.0	1.0	1.0	1.0
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)							
Chloromethane	NA	0.3 U					
Bromomethane	48.4	0.3 U					
Vinyl Chloride	0.083	0.3 U					
Chloroethane	NA	0.2 U					
Methylene Chloride	2.49	0.7	0.5 U				
Trichlorofluoromethane	NA	0.2 U					
1,1-Dichloroethene	4.81	0.4 U					
1,1-Dichloroethane	NA	0.3 U					
trans-1,2-Dichloroethene	592	0.4 U					
cis-1,2-Dichloroethene	NA	0.4 U	1.0				
Chloroform	5.67	0.5 U					
1,2-Dichloroethane	0.291	0.3 U					
1,1,1-Trichloroethane	127	0.3 U					
Carbon Tetrachloride	0.363	0.3 U					
Bromodichloromethane	0.266	0.3 U					
1,2-Dichloropropane	NA	0.3 U					
cis-1,3-Dichloropropene	0.193	0.2 U					
Trichloroethene	1.09	0.4 U	3.6				
Dibromochloromethane	72.6	0.3 U					
1,1,2-Trichloroethane	13.5	0.3 U					
Benzene	0.15	0.3 U					
trans-1,3-Dichloropropene	0.193	0.2 U					
2-Chloroethyl Vinyl Ether	NA	0.4 U					
Bromoform	4.38	0.2 U					
Tetrachloroethene	0.388	0.4 U					
1,1,2,2-Tetrachloroethane	1.72	0.3 U					
Toluene	7440	0.4 U					
Chlorobenzene	22.0	0.4 U					
Ethylbenzene	3030	0.5 U					
Xylene (Total)	NA	0.4 U					
Total Confident Conc. VOAs (s)		0.7	ND	ND	ND	ND	4.6
Total Estimated Conc. VOA TICs (s)							

micrograms/Liter The compound was not detected at the indicated concentration No applicable Criteria Volatile Organic Compounds Tentatively Identified Compounds Concentration exceeds Fresh Water Quality Criteria The numbers in italics are NJ Fresh Water Quality Criteria.

Sample ID	New Jersey	SW-12	SW-4	SW-3	SW-2	SW-1	SW-12	SW-4
Lab Sample Number	Fresh Water - 2	677750	677751	677744	677748	677749	689254	689255
Sampling Date	Quality	10/14/05	10/14/05	10/14/05	10/14/05	10/14/05	11/22/05	11/22/05
Matrix	Criteria	WATER						
Dilution Factor		1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)								
Chloromethane	NA	0.3 U						
Bromomethane	48.4	0.3 U						
Vinyl Chloride	0.083	0.3 U						
Chloroethane	NA	0.2 U						
Methylene Chloride	2.49	0.5 U						
Trichlorofluoromethane	NA	0.2 U						
1,1-Dichloroethene	4.81	0.4 U						
1,1-Dichloroethane	NA	0.3 U						
trans-1,2-Dichloroethene	592	0.4 U						
cis-1,2-Dichloroethene	NA	0.4 U						
Chloroform	5.67	0.5 U						
1,2-Dichloroethane	0.291	0.3 U						
1,1,1-Trichloroethane	127	0.3 U						
Carbon Tetrachloride	0.363	0.3 U						
Bromodichloromethane	0.266	0.3 U						
1,2-Dichloropropane	NA	0.3 U						
cis-1,3-Dichloropropene	0.193	0.2 U						
Trichloroethene	1.09	0.4 U						
Dibromochloromethane	72.6	0.3 U						
1,1,2-Trichloroethane	13.5	0.3 U						
Benzene	0.15	0.3 U						
trans-1,3-Dichloropropene	0.193	0.2 U						
2-Chloroethyl Vinyl Ether	NA	0.4 U						
Bromoform	4.38	0.2 U						
Tetrachloroethene	0.388	0.4 U						
1,1,2,2-Tetrachloroethane	1.72	0.3 U						
Toluene	7440	0.4 U						
Chlorobenzene	22.0	0.4 U						
Ethylbenzene	3030	0.5 U						
Xylene (Total)	NA	0.4 U						
Total Confident Conc. VOAs (s)		0	0	0	0	0	0	0
Total Estimated Conc. VOA TICs (s)		0	0	0	0	0	0	0

micrograms/Liter

The compound was not detected at the indicated concentration No applicable Criteria Volatile Organic Compounds Tentatively Identified Compounds Concentration exceeds Fresh Water Quality Criteria The numbers in italics are NJ Fresh Water Quality Criteria.

Sample ID	New Jersey	SW-3	SW-2	SW-1	SW-4	SW-3	SW-2	SW-1	FB030306
Lab Sample Number	Fresh Water - 2	689256	689257	689258	714107	714108	714109	714110	714111
Sampling Date	Quality	11/22/05	11/22/05	11/22/05	03/06/06	03/06/06	03/06/06	03/06/06	03/06/06
Matrix	Criteria	WATER							
Dilution Factor		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOLATILE COMPOUNDS (GC/MS)									
Chloromethane	NA	0.3 U							
Bromomethane	48.4	0.3 U							
Vinyl Chloride	0.083	0.3 U							
Chloroethane	NA	0.2 U							
Methylene Chloride	2.49	0.5 U							
Trichlorofluoromethane	NA	0.2 U							
1,1-Dichloroethene	4.81	0.4 U							
1,1-Dichloroethane	NA	0.3 U							
trans-1,2-Dichloroethene	592	0.4 U							
cis-1,2-Dichloroethene	NA	0.4 U							
Chloroform	5.67	0.5 U							
1,2-Dichloroethane	0.291	0.3 U							
1,1,1-Trichloroethane	127	0.3 U							
Carbon Tetrachloride	0.363	0.3 U							
Bromodichloromethane	0.266	0.3 U							
1,2-Dichloropropane	NA	0.3 U							
cis-1,3-Dichloropropene	0.193	0.2 U							
Trichloroethene	1.09	0.4 U	0.4 U	0.4 U	0.4 U	0.6	1.2	0.4 U	0.4 U
Dibromochloromethane	72.6	0.3 U							
1,1,2-Trichloroethane	13.5	0.3 U							
Benzene	0.15	0.3 U							
trans-1,3-Dichloropropene	0.193	0.2 U							
2-Chloroethyl Vinyl Ether	NA	0.4 U							
Bromoform	4.38	0.2 U							
Tetrachloroethene	0.388	0.4 U							
1,1,2,2-Tetrachloroethane	1.72	0.3 U							
Toluene	7440	0.4 U							
Chlorobenzene	22.0	0.4 U							
Ethylbenzene	3030	0.5 U							
Xylene (Total)	NA	0.4 U							
Total Confident Conc. VOAs (s)		0	0	0	0	0.6	1.2	0	0
Total Estimated Conc. VOA TICs (s)		0	0	0	0	0	0	0	0

micrograms/Liter

The compound was not detected at the indicated concentration

No applicable Criteria

Volatile Organic Compounds

Tentatively Identified Compounds

Concentration exceeds Fresh Water Quality Criteria

The numbers in italics are NJ Fresh Water Quality Criteria.

Location	Sample Date	Analyte	Conc	Result Unit	Qualifiers
SW-1	May-94	Trichloroethene	0.5	ug/L	
SW-1	Jun-94	Trichloroethene	0.81	ug/L	
SW-1	Jun-94	Trichloroethene	0.88	ug/L	
SW-1	Jul-94	Trichloroethene	0.29	ug/L	J
SW-1	Aug-94	Trichloroethene	0.12	ug/L	J
SW-1	Feb-95	Trichloroethene	0.84	ug/L	
SW-1	Apr-96	Trichloroethene	0.6	ug/L	
SW-1	Apr-98	Trichloroethene	0.9	ug/L	
SW-1	Nov-99	Trichloroethene	0.4	ug/L	
SW-1	Dec-02	Trichloroethene	0	ug/L	
SW-1	Mar-03	Trichloroethene	0	ug/L	
SW-1	Jul-03	Trichloroethene	0.7	ug/L	
SW-1	Aug-03	Trichloroethene	0.2	ug/L	U
SW-1	Sep-03	Trichloroethene	0.3	ug/L	U
SW-1	Oct-03	Trichloroethene	0.2	ug/L	U
SW-1	Nov-03	Trichloroethene	0.2	ug/L	U
SW-1	Dec-03	Trichloroethene	0.2	ug/L	U
SW-1	Jan-04	Trichloroethene	0.2	ug/L	U
SW-1	Feb-04	Trichloroethene	0.2	ug/L	U
SW-1	Mar-04	Trichloroethene	0.2	ug/L	U
SW-1	Apr-04	Trichloroethene	0.2	ug/L	U
SW-1	May-04	Trichloroethene	0.2	ug/L	U
SW-1	Jun-04	Trichloroethene	0.2	ug/L	U
SW-1	Jul-04	Trichloroethene	0.4	ug/L	U
SW-1	Aug-04	Trichloroethene	0.4	ug/L	U
SW-1	Sep-04	Trichloroethene	0.4	ug/L	U
SW-1	Oct-04	Trichloroethene	0.4	ug/L	U
SW-1	Nov-04	Trichloroethene	0.4	ug/L	U
SW-1	Dec-04	Trichloroethene	0.4	ug/L	U
SW-1	Jan-05	Trichloroethene	0.4	ug/L	U
SW-1	Feb-05	Trichloroethene	0.4	ug/L	U
SW-1	Mar-05	Trichloroethene	0.4	ug/L	U
SW-1	Apr-05	Trichloroethene	0.4	ug/L	U
SW-1	May-05	Trichloroethene	0.4	ug/L	U
SW-1	Jun-05	Trichloroethene	0.4	ug/L	U
SW-1	Jul-05	Trichloroethene	0.4	ug/L	U
SW-1	Aug-05	Trichloroethene	NS	NS	NS
SW-1	Sep-05	Trichloroethene	NS	NS	NS
SW-1	Oct-05	Trichloroethene	0.4	ug/L	U
SW-1	Nov-05	Trichloroethene	0.4	ug/L	U
SW-1	Mar-06	Trichloroethene	0.4	ug/L	U
SW-2	Aug-93	Trichloroethene	39	ug/L	
SW-2	Aug-93	Trichloroethene	41	ug/L	
SW-2	Oct-93	Trichloroethene	160	ug/L	
SW-2	May-94	Trichloroethene	72	ug/L	
SW-2	Jun-94	Trichloroethene	55	ug/L	
SW-2	Jun-94	Trichloroethene	59	ug/L	
SW-2	Jun-94	Trichloroethene	63	ug/L	
SW-2	Jul-94	Trichloroethene	53	ug/L	
SW-2	Jul-94	Trichloroethene	42	ug/L	
SW-2	Aug-94	Trichloroethene	69	ug/L	D
SW-2	Oct-94	Trichloroethene	47	ug/L	
SW-2	Nov-94	Trichloroethene	71.2	ug/L	J
SW-2	Dec-94	Trichloroethene	75.5	ug/L	
SW-2	Jan-95	Trichloroethene	42	ug/L	
SW-2	Feb-95	Trichloroethene	81.1	ug/L	
SW-2	Apr-95	Trichloroethene	108	ug/L	
10/19/2006 1	0:41 AM Page 1 of 5	2542\R\2005 Report\Table	e 7-historical T	CE Concentrations in SW.	xls\Data_Sheet1

Location	Sample Date	Analyte	Conc	Result Unit	Qualifiers
SW-2	Jun-95	Trichloroethene	67.7	ug/L	
SW-2	Jun-95	Trichloroethene	70.9	ug/L	
SW-2	Jun-95	Trichloroethene	98.7	ug/L	
SW-2	Aug-95	Trichloroethene	127	ug/L	
SW-2	Apr-96	Trichloroethene	26	ug/L	
SW-2	Apr-96	Trichloroethene	27	ug/L	
SW-2	Sep-97	Trichloroethene	36.8	ug/L	
SW-2	Sep-97	Trichloroethene	41.9	ug/L	
SW-2	Apr-98	Trichloroethene	45.4	ug/L	
SW-2	Apr-98	Trichloroethene	48	ug/L	
SW-2	Sep-98	Trichloroethene	68.7	ug/L	
SW-2	Nov-99	Trichloroethene	80.1	ug/L	
SW-2	Mar-00	Trichloroethene	80	ug/L	
SW-2	Dec-02	Trichloroethene	57	ug/L	
SW-2	Mar-03	Trichloroethene	33	ug/L	
SW-2	Jul-03	Trichloroethene	3.6	ug/L	
SW-2	Aug-03	Trichloroethene	2.2	ug/L	
SW-2	Sep-03	Trichloroethene	0.3	ug/L	U
SW-2	Oct-03	Trichloroethene	0.2	ug/L	Ŭ
SW-2	Nov-03	Trichloroethene	0.2	ug/L	U
SW-2	Dec-03	Trichloroethene	0.2	ug/L	Ŭ
SW-2	Jan-04	Trichloroethene	2.1	ug/L	C
SW-2	Feb-04	Trichloroethene	1.4	ug/L	
SW-2 SW-2	Mar-04	Trichloroethene	0.2	ug/L	U
SW-2 SW-2	Apr-04	Trichloroethene	0.4	ug/L	U
SW-2 SW-2	May-04	Trichloroethene	2.2	ug/L	
SW-2 SW-2	Jun-04	Trichloroethene	0.2	ug/L	U
SW-2 SW-2	Jul-04	Trichloroethene	0.2	ug/L	U
SW-2 SW-2	Aug-04	Trichloroethene	0.6	ug/L	U
SW-2 SW-2	Sep-04	Trichloroethene	0.0	ug/L	U
SW-2 SW-2	Oct-04	Trichloroethene	1.7	ug/L	U
SW-2 SW-2	Nov-04	Trichloroethene	0.4	ug/L	U
SW-2 SW-2	Dec-04	Trichloroethene	0.4	ug/L	U
SW-2 SW-2	Jan-05	Trichloroethene	0.5	ug/L	
SW-2 SW-2	Feb-05	Trichloroethene	0.5	ug/L ug/L	
SW-2 SW-2	Mar-05	Trichloroethene	2.6	ug/L ug/L	
SW-2 SW-2	Apr-05	Trichloroethene	0.8	ug/L ug/L	
SW-2 SW-2	May-05	Trichloroethene	0.8	ug/L ug/L	U
SW-2 SW-2	Jun-05	Trichloroethene	0.4	ug/L ug/L	0
SW-2 SW-2	Jul-05	Trichloroethene	0.3	ug/L ug/L	U
SW-2 SW-2	Aug-05	Trichloroethene	0.4	ug/L ug/L	U
SW-2 SW-2	Sep-05	Trichloroethene	0.4	ug/L ug/L	U U
SW-2 SW-2	Oct-05	Trichloroethene	0.4	ug/L ug/L	U U
SW-2 SW-2	Nov-05	Trichloroethene	0.4	ug/L ug/L	U U
SW-2 SW-2	Mar-06	Trichloroethene	0.4	-	U
	Jun-94			ug/L	
SW-3		Trichloroethene	34.00	ug/L	
SW-3	Jun-94	Trichloroethene	36.00	ug/L	
SW-3	Jul-94	Trichloroethene	29.00	ug/L	
SW-3	Jul-94	Trichloroethene	26.00	ug/L	
SW-3	Aug-94	Trichloroethene	32.00	ug/L	
SW-3	Oct-94	Trichloroethene	14.5	ug/L	
SW-3	Nov-94	Trichloroethene	26.6	ug/L	J
SW-3	Dec-94	Trichloroethene	48.4	ug/L	
SW-3	Jan-95	Trichloroethene	31.7	ug/L	
SW-3	Feb-95	Trichloroethene	63.2	ug/L	
SW-3	Apr-95	Trichloroethene	48	ug/L	
SW-3 10/19/2006 1	Apr-95 Prage 2 of 5	Trichloroethene	51.4	ug/L EE Concentrations in SW.	In Flore Shoord

Location	Sample Date	Analyte	Conc	Result Unit	Qualifiers
SW-3	Jun-95	Trichloroethene	29	ug/L	
SW-3	Jun-95	Trichloroethene	7.51	ug/L	
SW-3	Aug-95	Trichloroethene	32	ug/L	
SW-3	Apr-96	Trichloroethene	24	ug/L	
SW-3	Sep-97	Trichloroethene	43.7	ug/L	
SW-3	Apr-98	Trichloroethene	47	ug/L	
SW-3	Sep-98	Trichloroethene	26.6	ug/L	
SW-3	Sep-98	Trichloroethene	27.8	ug/L	
SW-3	Nov-99	Trichloroethene	41.4	ug/L	
SW-3	Mar-00	Trichloroethene	60	ug/L	
SW-3	Dec-02	Trichloroethene	44	ug/L	
SW-3	Mar-03	Trichloroethene	28	ug/L	
SW-3	Jul-03	Trichloroethene	2.6	ug/L	
SW-3	Aug-03	Trichloroethene	1.2	ug/L	
SW-3	Sep-03	Trichloroethene	0.3	ug/L	U
SW-3	Oct-03	Trichloroethene	0.2	ug/L	U
SW-3	Nov-03	Trichloroethene	0.2	ug/L	U
SW-3	Dec-03	Trichloroethene	0.2	ug/L	U
SW-3	Jan-04	Trichloroethene	1.1	ug/L	
SW-3	Feb-04	Trichloroethene	0.8	ug/L	
SW-3	Mar-04	Trichloroethene	0.2	ug/L	U
SW-3	Apr-04	Trichloroethene	0.3	ug/L	
SW-3	May-04	Trichloroethene	1.2	ug/L	
SW-3	Jun-04	Trichloroethene	0.2	ug/L	U
SW-3	Jul-04	Trichloroethene	0.4	ug/L	U
SW-3	Aug-04	Trichloroethene	0.4	ug/L	U
SW-3	Sep-04	Trichloroethene	0.4	ug/L	U
SW-3	Oct-04	Trichloroethene	0.7	ug/L	
SW-3	Nov-04	Trichloroethene	0.4	ug/L	U
SW-3	Dec-04	Trichloroethene	0.4	ug/L	U
SW-3	Jan-05	Trichloroethene	0.4	ug/L	U
SW-3	Feb-05	Trichloroethene	0.4	ug/L	
SW-3	Mar-05	Trichloroethene	1.6	ug/L	
SW-3	Apr-05	Trichloroethene	0.4	ug/L	U
SW-3	May-05	Trichloroethene	0.4	ug/L	U
SW-3	Jun-05	Trichloroethene	0.4	ug/L	U
SW-3	Jul-05	Trichloroethene	0.4	ug/L	U
SW-3	Aug-05	Trichloroethene	0.4	ug/L	U
SW-3	Sep-05	Trichloroethene	0.4	ug/L	U
SW-3	Oct-05	Trichloroethene	0.4	ug/L	U
SW-3	Nov-05	Trichloroethene	0.4	ug/L	U
SW-3	Mar-06	Trichloroethene	0.6	ug/L	
SW-4	May-94	Trichloroethene	14	ug/L	
SW-4	Jun-94	Trichloroethene	14	ug/L	
SW-4	Jun-94	Trichloroethene	6.9	ug/L	
SW-4	Jul-94	Trichloroethene	6.5	ug/L	
SW-4	Jul-94	Trichloroethene	6.6	ug/L	
SW-4	Jul-94	Trichloroethene	9.4	ug/L	
SW-4	Aug-94	Trichloroethene	11	ug/L	
SW-4	Oct-94	Trichloroethene	2.08	ug/L	
SW-4	Nov-94	Trichloroethene	4.31	ug/L	J
SW-4	Dec-94	Trichloroethene	19.5	ug/L	
SW-4	Jan-95	Trichloroethene	16.1	ug/L	
SW-4	Jan-95	Trichloroethene	17	ug/L	
SW-4	Feb-95	Trichloroethene	53.7	ug/L	
SW-4	Feb-95	Trichloroethene	54.4	ug/L	
SW-4	Apr-95	Trichloroethene	19.3 7-historical T	ug/L	xis\Data_Sheet1

Location	Sample Date	Analyte	Conc	Result Unit	Qualifiers
SW-4	Jun-95	Trichloroethene	6.29	ug/L	
SW-4	Aug-95	Trichloroethene	2.62	ug/L	
SW-4	Aug-95	Trichloroethene	2.83	ug/L	
SW-4	Apr-96	Trichloroethene	16	ug/L	
SW-4	Sep-97	Trichloroethene	3.9	ug/L	
SW-4	Apr-98	Trichloroethene	30.4	ug/L	
SW-4	Sep-98	Trichloroethene	1.4	ug/L	
SW-4	Nov-99	Trichloroethene	19.2	ug/L	
SW-4	Mar-00	Trichloroethene	36	ug/L	
SW-4	Dec-02	Trichloroethene	30	ug/L	
SW-4	Mar-03	Trichloroethene	18	ug/L	
SW-4	Jul-03	Trichloroethene	1.7	ug/L	
SW-4	Aug-03	Trichloroethene	0.2	ug/L	U
SW-4	Sep-03	Trichloroethene	0.3	ug/L	U
SW-4	Oct-03	Trichloroethene	0.2	ug/L	U
SW-4	Nov-03	Trichloroethene	0.2	ug/L	U
SW-4	Dec-03	Trichloroethene	0.2	ug/L	U
SW-4	Jan-04	Trichloroethene	0.6	ug/L	
SW-4	Feb-04	Trichloroethene	0.6	ug/L	
SW-4	Mar-04	Trichloroethene	0.2	ug/L	U
SW-4	Apr-04	Trichloroethene	0.2	ug/L	U
SW-4	May-04	Trichloroethene	0.7	ug/L	
SW-4	Jun-04	Trichloroethene	0.2	ug/L	U
SW-4	Jul-04	Trichloroethene	0.4	ug/L	U
SW-4	Aug-04	Trichloroethene	0.4	ug/L	U
SW-4	Sep-04	Trichloroethene	0.4	ug/L	U
SW-4	Oct-04	Trichloroethene	0.4	ug/L	
SW-4	Nov-04	Trichloroethene	0.4	ug/L	U
SW-4	Dec-04	Trichloroethene	0.4	ug/L	
SW-4	Jan-05	Trichloroethene	0.4	ug/L	U
SW-4	Feb-05	Trichloroethene	0.4	ug/L	U
SW-4	Mar-05	Trichloroethene	1.1	ug/L	
SW-4	Apr-05	Trichloroethene	0.4	ug/L	U
SW-4	May-05	Trichloroethene	0.4	ug/L	U
SW-4	Jun-05	Trichloroethene	0.4	ug/L	U
SW-4	Jul-05	Trichloroethene	0.4	ug/L	U
SW-4	Aug-05	Trichloroethene	0.4	ug/L	U
SW-4	Sep-05	Trichloroethene	0.4	ug/L	U
SW-4	Oct-05	Trichloroethene	0.4	ug/L	U
SW-4	Nov-05	Trichloroethene	0.4	ug/L	U
SW-4	Mar-06	Trichloroethene	0.4	ug/L	U
SW-12	Dec-02	Trichloroethene	7.8	ug/L	
SW-12	Mar-03	Trichloroethene	5	ug/L	
SW-12	Mar-03	Trichloroethene	3	ug/L	
SW-12	Jul-03	Trichloroethene	1.7	ug/L	
SW-12	Aug-03	Trichloroethene	2.2	ug/L	
SW-12	Sep-03	Trichloroethene	3	ug/L	
SW-12	Oct-03	Trichloroethene	3.4	ug/L	U
SW-12	Nov-03	Trichloroethene	3.2	ug/L	
SW-12	Dec-03	Trichloroethene	1.1	ug/L	
SW-12	Jan-04	Trichloroethene	2.1	ug/L	
SW-12	Feb-04	Trichloroethene	1.4	ug/L	
SW-12	Mar-04	Trichloroethene	0.2	ug/L	U
SW-12	Apr-04	Trichloroethene	2.3	ug/L	
SW-12	May-04	Trichloroethene	2.4	ug/L	
SW-12	Jun-04	Trichloroethene	1.3	ug/L	
SW-12	Jul-04	Trichloroethene	2.5	ug/L	
10/19/2006 1	0.41 AM Page 4 of 5	2542\R\2005 Report\Table	7-historical T	CE Concentrations in SW.	xis\Data_Sheet1

Location	Sample Date	Analyte	Conc	Result Unit	Qualifiers
SW-12	Aug-04	Trichloroethene	2.4	ug/L	
SW-12	Sep-04	Trichloroethene	2.1	ug/L	
SW-12	Oct-04	Trichloroethene	2.2	ug/L	
SW-12	Nov-04	Trichloroethene	2.4	ug/L	
SW-12	Dec-04	Trichloroethene	1.1	ug/L	
SW-12	Jan-05	Trichloroethene	1.0	ug/L	
SW-12	Feb-05	Trichloroethene	2.3	ug/L	
SW-12	Mar-05	Trichloroethene	1.0	ug/L	
SW-12	Apr-05	Trichloroethene	1.2	ug/L	
SW-12	May-05	Trichloroethene	0.4	ug/L	U
SW-12	Jun-05	Trichloroethene	2.9	ug/L	
SW-12	Jul-05	Trichloroethene	3.3	ug/L	
SW-12	Aug-05	Trichloroethene	3.0	ug/L	
SW-12	Sep-05	Trichloroethene	3.6	ug/L	
SW-12	Oct-05	Trichloroethene	0.4	ug/L	U
SW-12	Nov-05	Trichloroethene	0.4	ug/L	U

ug/L U J

Data indicates the presence of a compound detected at less than the quantitation limit. The value is approximate.

D Concentration was reported from a diluted analysis. The value is approximate.

The compound was not detected above method detection limit

TABLE 8 SYSTEM PERFORMANCE SUMMARY FORMER LEC SITE WATCHUNG, NEW JERSEY

Sample Month	Influent TCE (ug/L)	Mid TCE (ug/L)	Effluent TCE (ug/L)	Average Pumping Rate (gpm)	Monthly Pumpage (MGM)	RW-1 Water Level (feet)
July 2003	62	ND	ND	133.4	2.31	43.8
August 2003	470	ND	ND	128.0	5.53	44.9
September 2003	62	ND	ND	127.5	5.51	44.6
October 2003	470	ND	ND	122.8	5.31	41.8
November 2003	510	58	ND	124.2	5.36	44.1
December 2003	650	160	ND	138.2	5.97	50.3
January 2004	430	310	1.2	138.8	6.00	51.5
February 2004	450	460	ND	135.5	5.85	52.5
March 2004	480	190	2.8	132.3	5.72	54
April 2004	370	340	2.0	129.6	5.57	49.9
May 2004	350	320	2.0	134.9	6.02	53.7
June 2004	370	3.3	0.8	100.1	4.32	55.8
July 2004	420	3.9	1	132.7	5.73	45.01
August 2004	390	53	0.6	132.3	5.72	53.73
September 2004	480	200	0.7	128.5	5.55	58.63
October 2004	400	1.2	0.5	104.5	4.52	56.06
November 2004	400	16	0.4	136.3	5.89	41.79
December 2004	360	73	0.4	118.8	5.13	55.19
January 2005	330	180	0.5	135.6	5.86	54.42
February 2005	380	260	ND	125.0	5.40	47.06
March 2005	370	47	ND	121.5	5.25	60.19
April 2005	350	130	0.4	144.2	6.23	52.3
May 2005	330	190	ND	127.8	5.52	60.8
June 2005	360	1.8	0.5	118.1	5.10	62.6
July 2005	360	5.1	0.5	129.1	5.58	61
August 2005	270	76	0.6	126.6	5.47	66.3
September 2005	240	120	NS	125.6	5.43	62.4
October 2005	320	2.9	0.5	82.7	3.57	49.9
November 2005	280	9	NS	126.5	5.47	58.9
December 2005	280	67	NS	126.9	5.48	56.5
January 2006	210	100	NS	126.3	5.46	60
February 2006	180	1.6	1.0	119.6	5.17	58.8
March 2006	260	4.1	NS	126.5	5.47	59.2

NS ND Not sampled, only need to sample effluent one time per quarter as per NJPDES Permit

The compound was not detected at the indicated concentration.

ug/L micrograms/Liter

gpm gallons per minute

MGM million gallons per month

APPENDIX A

Contour Map Reporting Forms

<u>CONTOUR MAP REPORTING FORM</u> – Shallow Zone September 7, 2005

- Did any surveyed well casing elevations change from the previous sampling event? Yes___No__X. If yes, attach new "Well Certification - Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
- 2. Are there any monitoring wells in unconfined aquifers in which in which the water table elevation is higher than the top of the well screen? Yes <u>X</u>NO <u>.</u> If yes, identify these wells. All the wells used in the construction of contours are for monitoring a chlorinated solvent plume. The well screens are typically below static water level.
- 3. Are there any monitoring wells present at the site but omitted from the contour map? Yes No X. Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
- 4. Are there any monitoring wells containing separate phase product during this measuring event? Yes _____ No___X. Were any of the monitoring wells with separate phase product included in the ground water contour map? Yes_____No___. If yes, show the formula used to correct the water table elevation.
- 5. Has the ground water flow direction changed more than 45° from the previous ground water contour map? Yes____ No <u>X</u>. If yes, discuss the reasons for the change.
- 6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes X No Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
- Are all the wells used in the contour map screened in the same water-bearing zone?
 Yes X No____. If no, justify inclusion of those wells. See Table 3-includes the wells listed in shallow zone which are included on the contour map.
- 8. Were the ground water contours computer generated ___, computer aided ___, or hand-drawn X____? If computer aided or generated, identify the interpolation method(s) used.

<u>CONTOUR MAP REPORTING FORM</u> – Intermediate Zone September 7, 2005

- Did any surveyed well casing elevations change from the previous sampling event? Yes___No__X. If yes, attach new "Well Certification - Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
- 2. Are there any monitoring wells in unconfined aquifers in which in which the water table elevation is higher than the top of the well screen? Yes No X. If yes, identify these wells. The wells used in this contour map are screened within an intermediate bedrock zone.
- 3. Are there any monitoring wells present at the site but omitted from the contour map? Yes No X. Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
- 4. Are there any monitoring wells containing separate phase product during this measuring event? Yes _____ No___X. Were any of the monitoring wells with separate phase product included in the ground water contour map? Yes_____No___. If yes, show the formula used to correct the water table elevation.
- 5. Has the ground water flow direction changed more than 45° from the previous ground water contour map? Yes____ No <u>X</u>. If yes, discuss the reasons for the change.
- 6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes X No Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
- 7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No____. If no, justify inclusion of those wells. See Table 3 for the wells used in the intermediate zone contour map
- 8. Were the ground water contours computer generated ___, computer aided ___, or hand-drawn X____? If computer aided or generated, identify the interpolation method(s) used.

<u>CONTOUR MAP REPORTING FORM</u> – Deep Zone September 7, 2005

- Did any surveyed well casing elevations change from the previous sampling event? Yes___No__X. If yes, attach new "Well Certification - Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
- 2. Are there any monitoring wells in unconfined aquifers in which in which the water table elevation is higher than the top of the well screen? Yes No X. If yes, identify these wells. The wells used in this contour map are screened within the deep bedrock zone.
- 3. Are there any monitoring wells present at the site but omitted from the contour map? Yes No X. Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
- 4. Are there any monitoring wells containing separate phase product during this measuring event? Yes _____ No___X. Were any of the monitoring wells with separate phase product included in the ground water contour map? Yes_____No___. If yes, show the formula used to correct the water table elevation.
- 5. Has the ground water flow direction changed more than 45° from the previous ground water contour map? Yes____ No <u>X</u>. If yes, discuss the reasons for the change.
- 6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes <u>No X</u> Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
- Are all the wells used in the contour map screened in the same water-bearing zone?
 Yes X No____. If no, justify inclusion of those wells. See Table 3 for the wells used in the deep zone contour map
- 8. Were the ground water contours computer generated ___, computer aided ___, or hand-drawn X____? If computer aided or generated, identify the interpolation method(s) used.

<u>CONTOUR MAP REPORTING FORM</u> – Shallow Zone March 6, 2006

- Did any surveyed well casing elevations change from the previous sampling event? Yes___No__X. If yes, attach new "Well Certification - Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
- 2. Are there any monitoring wells in unconfined aquifers in which in which the water table elevation is higher than the top of the well screen? Yes <u>X</u>NO <u>.</u> If yes, identify these wells. All the wells used in the construction of contours are for monitoring a chlorinated solvent plume. The well screens are typically below static water level.
- 3. Are there any monitoring wells present at the site but omitted from the contour map? Yes No X. Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
- 4. Are there any monitoring wells containing separate phase product during this measuring event? Yes _____ No___X. Were any of the monitoring wells with separate phase product included in the ground water contour map? Yes_____No___. If yes, show the formula used to correct the water table elevation.
- 5. Has the ground water flow direction changed more than 45° from the previous ground water contour map? Yes____ No <u>X</u>. If yes, discuss the reasons for the change.
- 6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes X No Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
- Are all the wells used in the contour map screened in the same water-bearing zone?
 Yes X No____. If no, justify inclusion of those wells. See Table 3-includes the wells listed in shallow zone which are included on the contour map.
- 8. Were the ground water contours computer generated ___, computer aided ___, or hand-drawn X____? If computer aided or generated, identify the interpolation method(s) used.

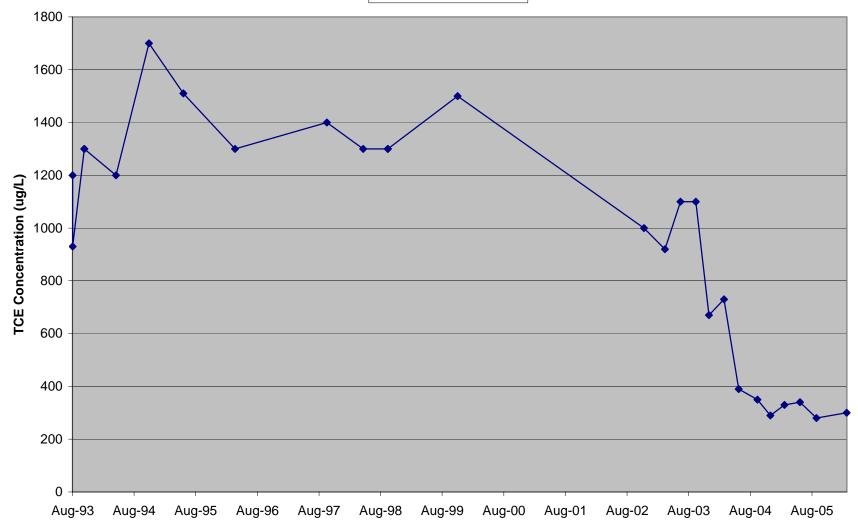
<u>CONTOUR MAP REPORTING FORM</u> – Intermediate Zone March 6, 2006

- Did any surveyed well casing elevations change from the previous sampling event? Yes___No__X. If yes, attach new "Well Certification - Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
- 2. Are there any monitoring wells in unconfined aquifers in which in which the water table elevation is higher than the top of the well screen? Yes No X. If yes, identify these wells. The wells used in this contour map are screened within an intermediate bedrock zone.
- 3. Are there any monitoring wells present at the site but omitted from the contour map? Yes No X. Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
- 4. Are there any monitoring wells containing separate phase product during this measuring event? Yes _____ No___X. Were any of the monitoring wells with separate phase product included in the ground water contour map? Yes_____No___. If yes, show the formula used to correct the water table elevation.
- 5. Has the ground water flow direction changed more than 45° from the previous ground water contour map? Yes____ No <u>X</u>. If yes, discuss the reasons for the change.
- 6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes X No Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
- 7. Are all the wells used in the contour map screened in the same water-bearing zone? Yes X No____. If no, justify inclusion of those wells. See Table 3 for the wells used in the intermediate zone contour map
- 8. Were the ground water contours computer generated ___, computer aided ___, or hand-drawn X____? If computer aided or generated, identify the interpolation method(s) used.

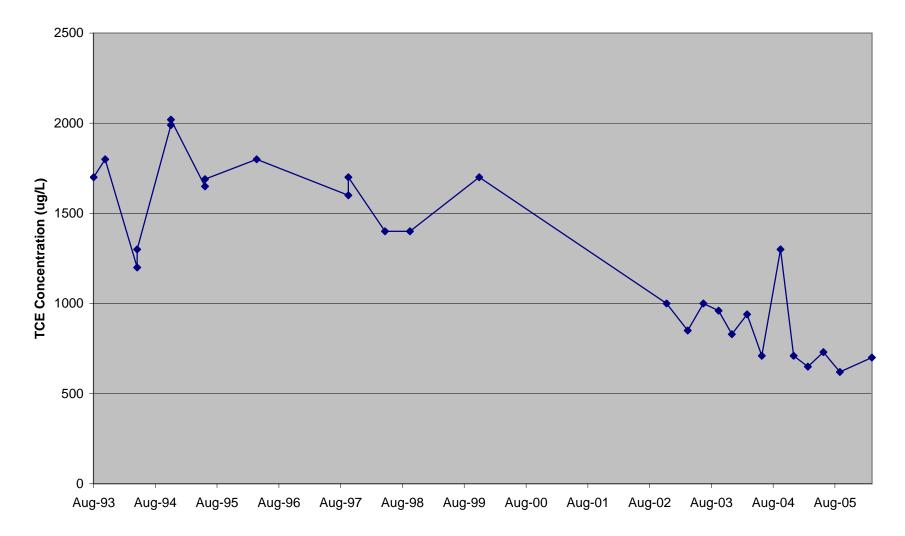
<u>CONTOUR MAP REPORTING FORM</u> – Deep Zone March 6, 2006

- Did any surveyed well casing elevations change from the previous sampling event? Yes___No__X. If yes, attach new "Well Certification - Form B" and identify the reason for the elevation change (damage to casing, installation of recovery system in monitoring well, etc.).
- 2. Are there any monitoring wells in unconfined aquifers in which in which the water table elevation is higher than the top of the well screen? Yes No X. If yes, identify these wells. The wells used in this contour map are screened within the deep bedrock zone.
- 3. Are there any monitoring wells present at the site but omitted from the contour map? Yes No X. Unless the omission of the well(s) has been previously approved by the Department, justify the omissions.
- 4. Are there any monitoring wells containing separate phase product during this measuring event? Yes _____ No___X. Were any of the monitoring wells with separate phase product included in the ground water contour map? Yes_____No___. If yes, show the formula used to correct the water table elevation.
- 5. Has the ground water flow direction changed more than 45° from the previous ground water contour map? Yes____ No <u>X</u>. If yes, discuss the reasons for the change.
- 6. Has ground water mounding and/or depressions been identified in the ground water contour map? Yes <u>No X</u> Unless the ground water mounds and/or depressions are caused by the ground water remediation system, discuss the reasons for this occurrence.
- Are all the wells used in the contour map screened in the same water-bearing zone?
 Yes X No____. If no, justify inclusion of those wells. See Table 3 for the wells used in the deep zone contour map
- 8. Were the ground water contours computer generated ___, computer aided ___, or hand-drawn X____? If computer aided or generated, identify the interpolation method(s) used.

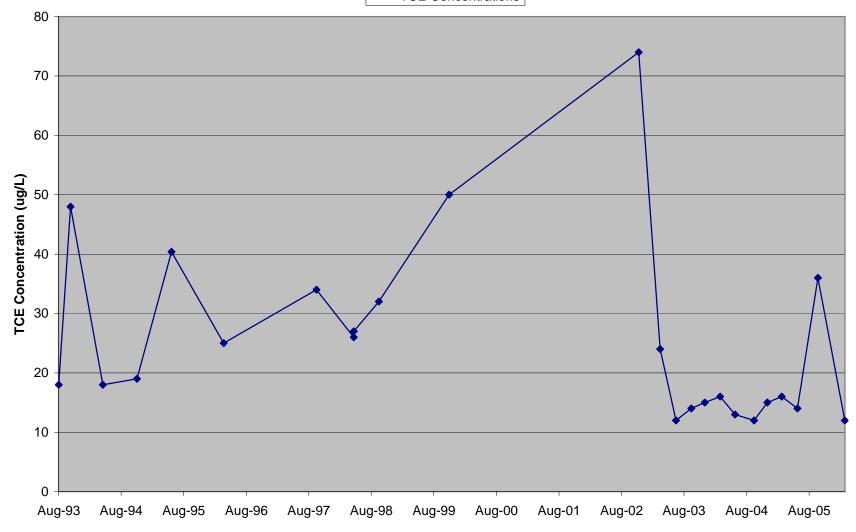
APPENDIX B

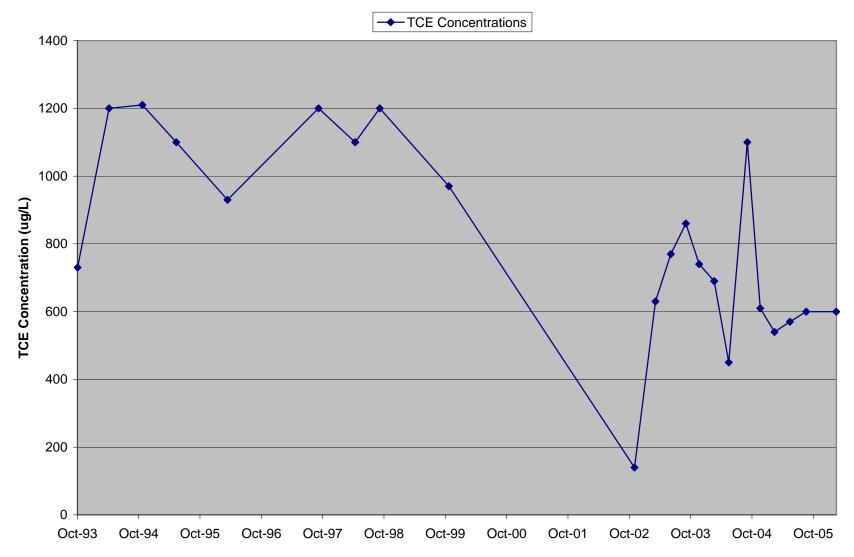

Plots of TCE Concentrations Versus Time for Selected Monitoring Wells

Well MW-502A Historical TCE Concentrations

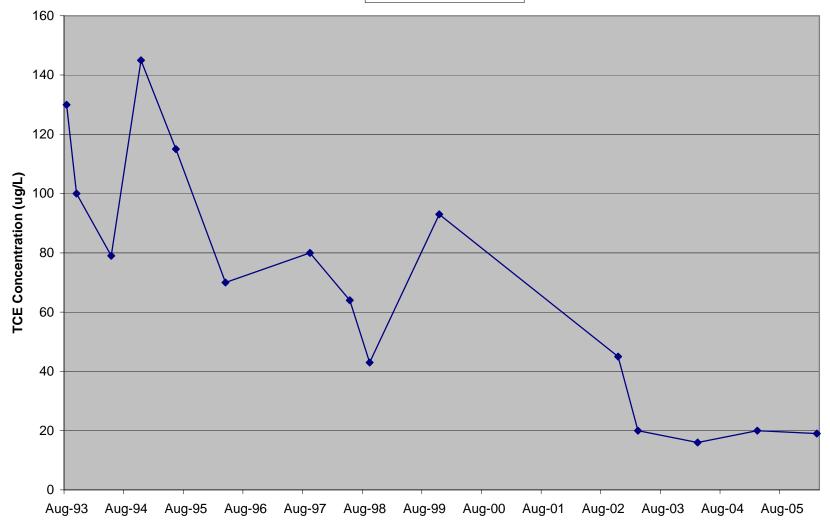

 TCE Concentration TCE Concentration (ug/L) Aug-93 Aug-94 Aug-95 Aug-96 Aug-97 Aug-98 Aug-99 Aug-00 Aug-01 Aug-02 Aug-03 Aug-04 Aug-05

Well MW-502B Historical TCE Concentrations

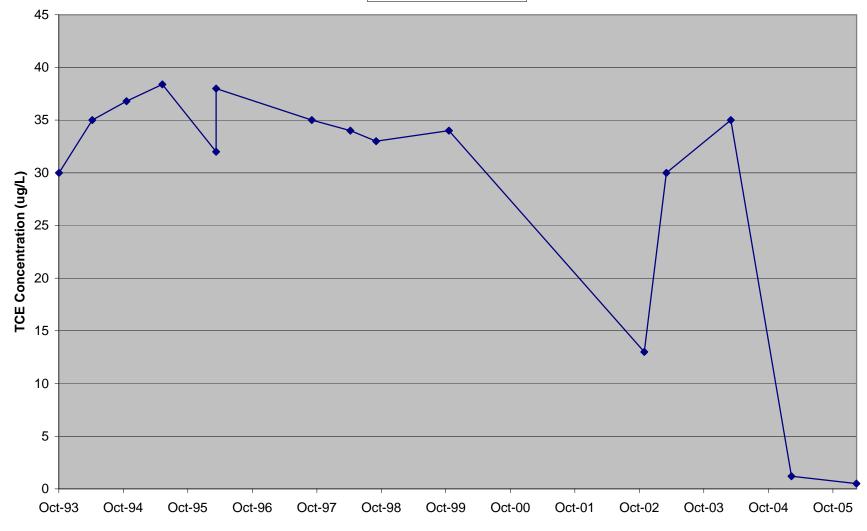

TCE Concentrations


Well MW-506A Historical TCE Concentrations

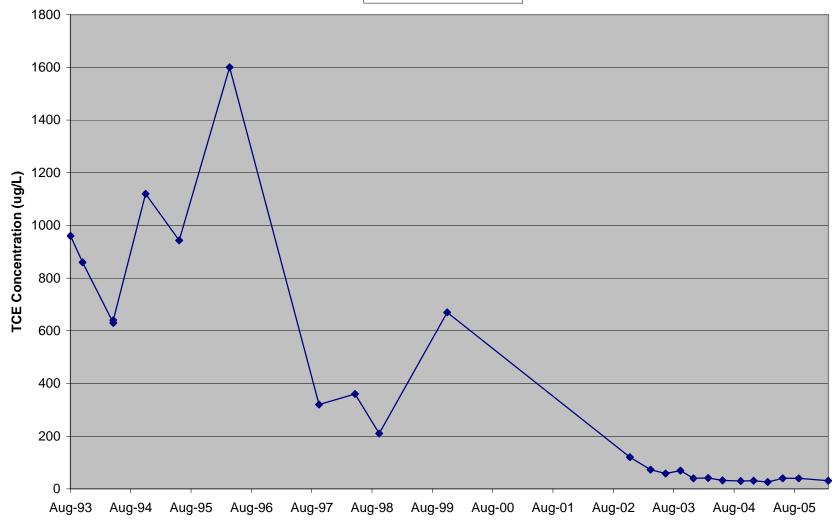
Well MW-506B Historical TCE Concentrations



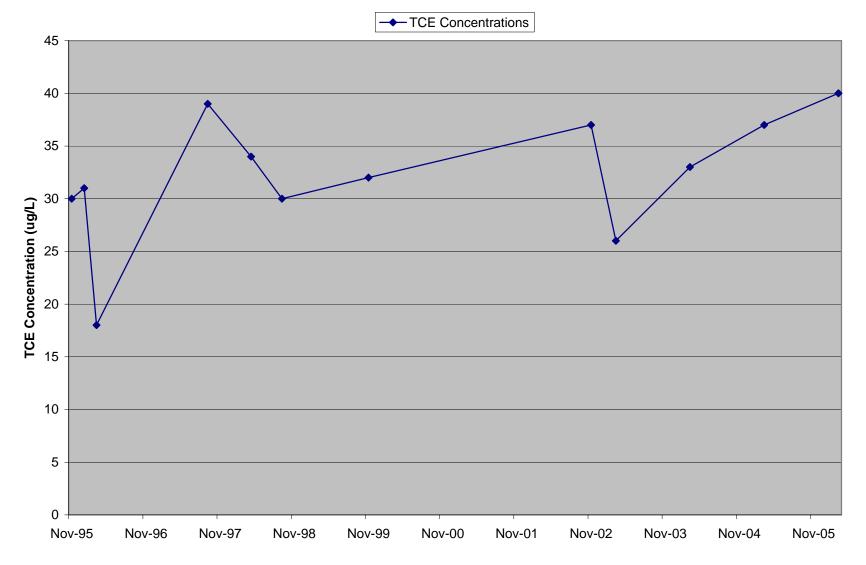
Well MW-507A Historical TCE Concentrations


Well MW-507B Historical TCE Concentrations

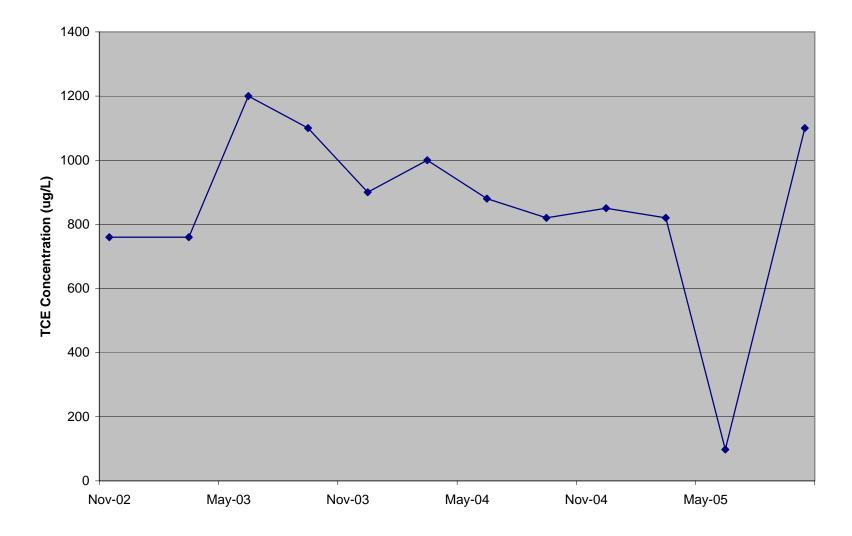
TCE Concentrations



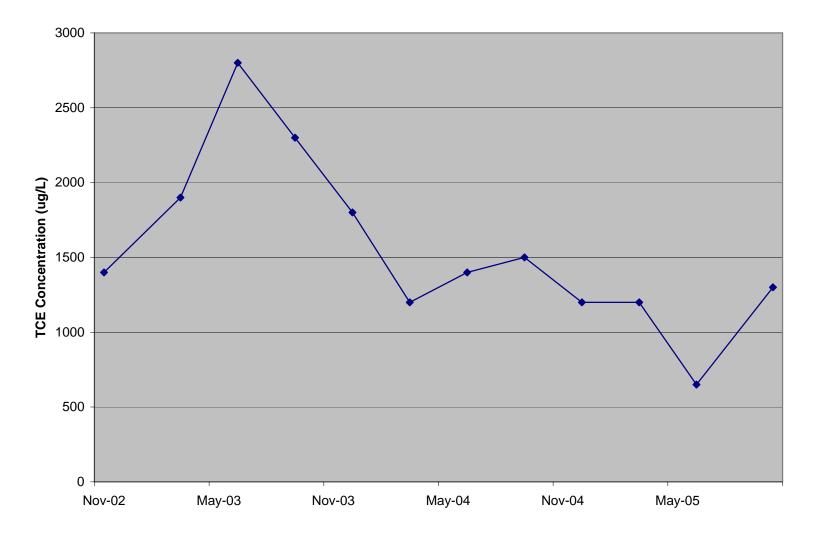
Well MW-508A Historical TCE Concentrations


TCE Concentrations

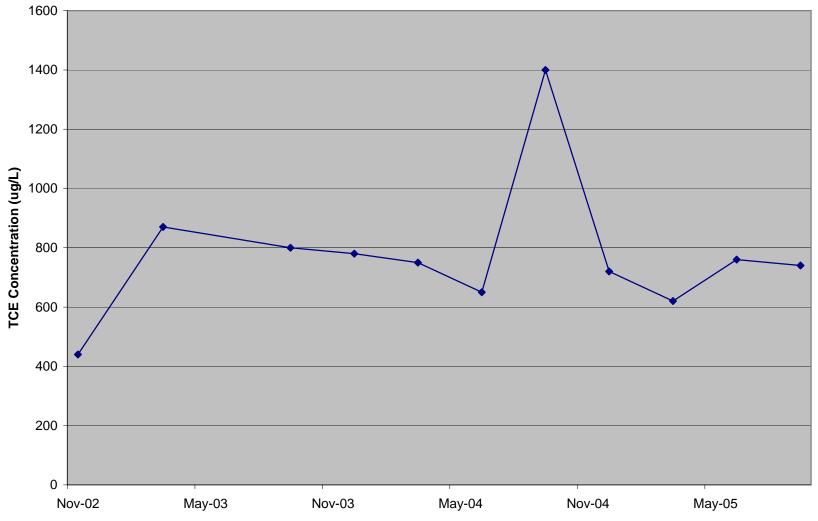
Well MW-508B Historical TCE Concentrations


Well MW-532A Historical TCE Concentrations

Well MW-546A Historical TCE Concentrations


160 140 120 TCE Concentration (ug/L) 09 08 001 40 20 0 Nov-99 May-00 Nov-00 May-01 Nov-01 May-02 Nov-02 May-03 Nov-03 May-04 Nov-04 May-05

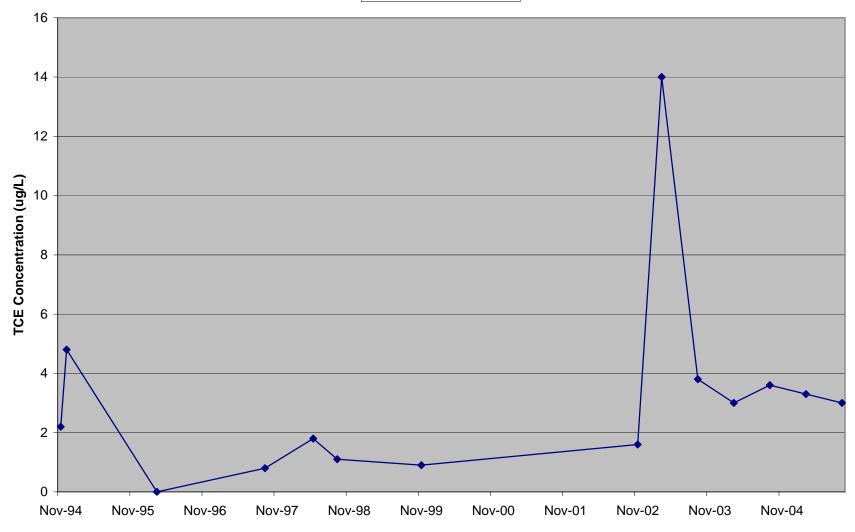
Well MW-549A Historical TCE Concentrations



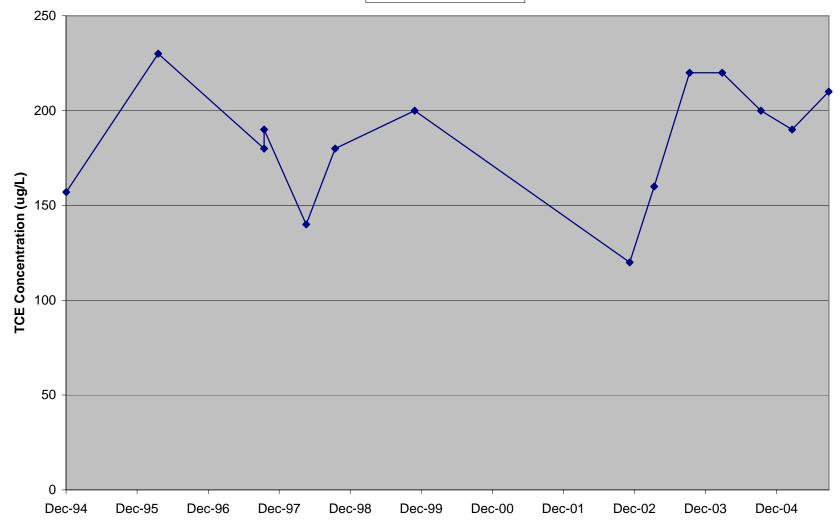
Well MW-549B Historical TCE Concentrations

TCE Concentrations

Well MW-550B Historical TCE Concentrations

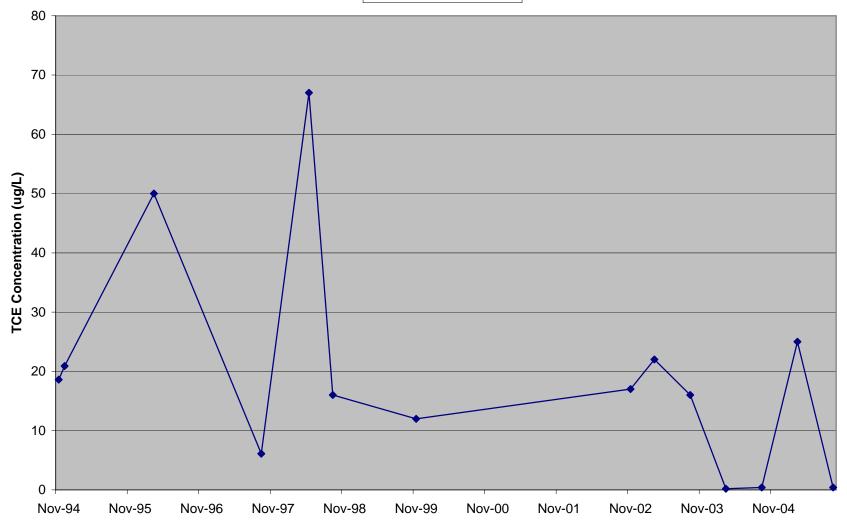


Well MW-550C Historical TCE Concentrations


200 180 160 140 **TCE Concentration (ug/L)** 00 00 00 02 03 04 60 40 20 0 Nov-02 May-03 Nov-03 May-04 Nov-04 May-05

Well P-522A Historical TCE Concentrations

TCE Concentrations



Well P-522B Historical TCE Concentrations

Well P-522C Historical TCE Concentrations

TCE Concentrations

APPENDIX C

Stream Field Measurements

Former LEC Site	Samp	ele Date: 7/15/2005	
Crab Brook	Sampl	le Time: 11:45	
SW-1 Water Body	y Sample Type:	Surface Water Sample	
SW-1	Decon (y/n)		
Velocity(ft3/se	c):	Flow Rate(gpm):	
clear	Sampler(s):	TD	
7.49 s.u.	Temperature	22.2 AC	
0.647 mS/cm^2	Salinity	0.3 %	
NM	Eh	NM	
6.04 mg/L			
Sample EPA Method	624+10		
	HORIBA U-2	22	
I B woods	elmont		
*			
Collected samp	le at SW-1		
woods			
Velocity Stream Flow	Stream Flow		
ft/sec ft3/sec	gpm		
ft/sec ft3/sec 0.0 0.000	gpm 0.000		
ft/sec ft3/sec 0.0 0.000 0.0 0.000	gpm 0.000 0.000		
ft/sec ft3/sec 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000	gpm 0.000 0.000 0.000		
ft/sec ft3/sec 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.20 0.080	gpm 0.000 0.000 0.000 35.904		
ft/sec ft3/sec 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000	gpm 0.000 0.000 0.000		
	SW-1 Water Body SW-1 Velocity(ft3/sec <u>clear</u> 7.49 s.u. 0.647 mS/cm ² <u>NM</u> 6.04 mg/L Sample EPA Method	Crab Brook Sample SW-1 Water Body Sample Type: SW-1 Decon (y/n) Velocity(ft3/sec): <u>clear</u> Sampler(s): 7.49 s.u. Temperature 0.647 mS/cm ² Salinity NM Eh 6.04 mg/L Sample EPA Method 624+10 HORIBA U-2 HORIBA U-2	

NOTE:

Site ID:	Former LEC Site	Sample Date	: 7/15/2005					
Stream Location:	Crab Brook	Sample Time	: 11:00					
Sample Location:	SW-2 Water Body S	Sample Type: Sur	face Water Sample					
Sample ID:	SW-2	Decon (y/n)						
Sample Collection Method:	Velocity(ft3/sec)	: Flow R	ate(gpm):					
Sample Appearance/Odor:	clear	Sampler(s):	TD					
рН	7.50 s.u.	Temperature	20.2 AC					
Conductivity	0.648 mS/cm ²	Salinity	0.3%					
Turbidity	NM	Eh	NM					
DO	7.06 mg/L							
Sample Bottles ID <u>SW-2</u>	Sample EPA Method	624+10						
Notes:		HORIBA U-22						
Notes: HORIBA U-22								
Stream Location North Drive								

1 (0)					
SW-2	Width	Depth	Velocity	Stream Fl	ow Stream Flow
	ft	ft	ft/sec	ft3/sec	gpm
#1	1.0	0.20	0.10	0.0	8.976
#2	1.0	0.20	0.10	0.0	8.976
#3	1.0	0.30	0.27	0.081	36.353
#4	1.0	0.40	0.27	0.108	48.470
#5	1.0	0.20	0.10	0.02	8.976
Total Wie	dth 6.0	0.25	111.75		

Site ID:		Former LE	EC Site	C Site Sample Date: 7/15/2005		
Stream Location:		Crab Broo	k		Sample Time:	10:00
Sample Location:		SW-3	Water	Body Sample Ty	/pe: Surfa	ce Water Sample
Sample ID:		SW-3		Decon (y/n)	
Sample Collection Me	thod:		Velocity	(ft3/sec):	Flow Rat	te(gpm):
Sample Appearance/O	dor:	clear/non	e	Sampler	r(s):	TD
рН		7.39 s.u.	_	Tempera	ature	18.9 AC
Conductivity		0.641 mS/	cm^2	Salinity	-	0.3%
Turbidity		NM	_	Eh		NM
DO		7.54 mg/L	_			
Sample Bottles ID	SW-3	Sample EF	PA Method	624+10		
Notes:				HORI	BA U-22	
	lected surfa nple SW-3	ace water		Westervelt Avenue		
	n Location			<u> </u>		
SW-3 #1 #2	velt Avenue Width ft 1.0 1.0	Depth ft 0.05 0.05	Velocity ft/sec 0.40 0.44	ft3/sec 0.020 0.022	FlowStream Flow gpm 8.976 9.8736	
#3 #4	1.0 1.0	0.05 0.01	0.44 0.44	0.022 0.004	9.8736 1.97	

#5 <u>1.0</u> Total Width 6.0 0.05

0.59

0.0041.970.029513.23960.09843.93752

Site ID:		Former L	EC Site		Sample I	Date:	7/15/2005	
Stream Location:		Crab Bro	ok	Sample Ti		ime:	13:45	
Sample Location:		SW-4	Water	Body Sample	Гуре:		Surface Water Sample	
Sample ID:		SW-4		Decon	(y/n)			
Sample Collection Met	e Collection Method: Velocity(ft3/sec):		ft3/sec):	c): Flow Rate(gpm):				
Sample Appearance/Oc	lor:	cle	ar	Sampl	er(s):	TD		
pН		6.99 s.u	_	Tempe	erature	21.0	ΛC	
Conductivity		6.30 mS/c	em ²	Salinit	у	0.3 %	6	
Turbidity		NM		Eh		NM		
DO		6.45 mg/I						
Sample Bottles ID	SW-4	_		624+1	0			
Notes:					HORIBA	U-22		
	ed surface v SW-4 loca			Watchung Avenue				
Watcu SW-4	n Location ng Avenue Width ft	Depth ft	Velocity ft/sec	ft3/sec	01	Flow		
#1 #2 #3	1.0 1.0 1.0	0.30 0.20 0.20	0.1 0.1 0.2	0.03 0.02 0.04	13.464 8.976 17.952			

#4 1.0Total Width 5.0

0.10

0.3

0.04 17.952 0.025 11.22 0.115 51.612

Site ID:		Former LE	C Site	Samj	ple Date: 7/15/2005
Stream Location:		Crab Brool	c	Samp	ble Time: 12:45
Sample Location:		SW-12	Water Bo	dy Sample Type:	Surface Water Sample
Sample ID:		SW-12		Decon (y/n)	yes
Sample Collection Me	thod:		Velocity(ft3/	sec):	Flow Rate(gpm):
Sample Appearance/O	dor:	clea	<u>r</u>	Sampler(s):	TD
рН		7.64 s.u.	_	Temperature	20.5 AC
Conductivity		0.680 mS/c	<u>m</u> ²	Salinity	0.3 %
Turbidity		NM	-	Eh	NM
DO		6.40 mg/L	-		
Sample Bottles ID	SW-12	Sample EP	A Method	624+10	
Notes:				HORIBA U-2	22
Location Sketch		Stony Brook Flow Direction			Crab Brook Flow Direction
	n Location				
Greenbrook SW-12 #1 #2 #3 #4 Total Wic	Road & Grov Width ft 1.0 1.0 1.0 1.0 1.0 1.0	Depth ft 0.20 0.20 0.35 0.35	Velocity ft/sec 0.2 0.2 0.7 0.7	0.04 17. 0.245 109 0.245 109	

Site ID:	Former LEC Site	Sample Date: 8/12/2005							
Stream Location:	Crab Brook	Sample Tim	e:						
Sample Location:	SW-1 Water Body	Sample Type: S	urface Water Sample						
Sample ID:	SW-1	Decon (y/n)							
Sample Collection Method:	Velocity(ft3/sec): Flow	Rate(gpm):						
Sample Appearance/Odor:	no water in stream	Sampler(s):	TD						
рН	no water in stream	Temperature	no water in stream						
Conductivity	no water in stream	Salinity	no water in stream						
Turbidity	<u>no water</u> in stream	Eh	no water in stream						
DO	no water in stream								
Sample Bottles ID	Sample EPA Method								
Notes:		HORIBA U-22							
Location Sketch Leanorc	Be woods	Imont							
Flow Direction	Flow Direction Collected sample at SW-1								
	woods								
Stream Location									
Belmont & LeanordSW-1WidthDepth	Velocity Stream Flow	Stream Flow							
ft ft	ft/sec ft3/sec	gpm							
#1 <u>no water in stream</u> Total Width 0.0									

NOTE:

Site ID:		Former LEC	Site	Samp	ple Date:	8/12/2005
Stream Location:		Crab Brook		Samp	le Time:	12:15
Sample Location:		SW-2	Water Body S	ample Type:	Surfa	ace Water Sample
Sample ID:		SW-2		Decon (y/n)		
Sample Collection Meth	nod:		Velocity(ft3/sec):		Flow Ra	te(gpm):
Sample Appearance/Od	or:			Sampler(s):		TD
рН		7.54 s.u.		Temperature		18.7 AC
Conductivity		0.640 mS/cm	\mathbf{n}^2	Salinity		0.3%
Turbidity		NM		Eh		NM
DO		7.9 mg/L				
Sample Bottles ID	SW-2	Sample EPA	Method	624+10		
Notes:				HORIBA U-2	2	
Location Sketch	th Drive		cted surface wat e SW-2	er		
	Location h Drive					
SW-2	Width	-	Velocity	Stream Flow Stre	eam Flow	7

5 W - 2	wiath	Depth	velocity	Stream Flo	w Stream Flow
	ft	ft	ft/sec	ft3/sec	gpm
#1	1.0	0.10	0.10	0.0	4.488
#2	1.0	0.10	0.10	0.0	4.488
#3	1.0	0.20	0.20	0.04	17.952
#4	1.0	0.40	0.60	0.24	107.712
Total Widtl	h 6.0			0.30	134.64

Site ID:		Former LE	C Site		Sample Date: 8/	12/2005
Stream Location:		Crab Brook	ζ.	Sample Time: 11:30		
Sample Location:		SW-3	Water	Body Sample Type	e: Surface	Water Sample
Sample ID:		SW-3		Decon (y/n	1)	
Sample Collection Me	ethod:		Velocity(ft3/sec):	Flow Rate(s	gpm):
Sample Appearance/C)dor:		_	Sampler(s)): TD)
рН		7.70 s.u.	-	Temperatu	ire <u>19</u>	-8 ΛC
Conductivity		0.620 mS/c	\underline{m}^2	Salinity	0.3	%
Turbidity		NM	-	Eh	NN	И
DO		6.9 mg/L	-			
Sample Bottles ID	SW-3	Sample EP.	A Method	624+10	_	
Notes:				HORIBA	A U-22	
	lected surfanple SW-3	ace water		Westervelt Avenue		
	m Location velt Avenue	9				
SW-3	Width	Depth	Velocity		ow Stream Flow	
Ш1	ft	ft 0.10	ft/sec	ft3/sec	gpm	
#1 #2	1.0 1.0	0.10 0.10	0.10 0.10	0.010 0.010	4.488 4.488	
#2 #3	1.0	0.10	0.10	0.08	35.904	

#4 <u>1.0</u> Total Width 6.0 0.20

0.60

0.0835.9040.1253.8560.22098.736

				G 1 D / 0/12/2007
Site ID:	Former L	EC Site		Sample Date: 8/12/2005
Stream Location:	Crab Bro	ok		Sample Time: 10:00
Sample Location:	SW-4	Water	Body Sample Type	e: Surface Water Sample
Sample ID:	SW-4		Decon (y/n	n)
Sample Collection Method:		Velocity(ft3/sec):	Flow Rate(gpm):
Sample Appearance/Odor:			Sampler(s)): TD
рН	7.88 s.u		Temperatu	ите <u>22.8 AC</u>
Conductivity	0.600 mS	$/cm^2$	Salinity	0.3 %
Turbidity	NM		Eh	NM
DO	9.00 mg/I			
Sample Bottles ID <u>SW-</u> 2	1		624+10	_
Notes:			HORIBA	A U-22
Location Sketch			Watchung	
Collected surfa	ace water		Avenue	
sample SW-4				
			ļ	
	×			
Flow Direction				
Stream Locat				
Watcung Ave		V-1'-		
SW-4 Widt ft	h Depth ft	Velocity ft/sec	ft3/sec	ow Stream Flow
#1 1.0	0.30	0.6	0.18	gpm 80.784
#1 1.0 #2 1.0	0.30	0.0 0.4	0.18	53.856
#2 1.0 #3 1.0	0.30	0.4 0.5	0.12	44.880
#4 1.0	0.20	0.3	0.04	17.952
Total Width 5.0	0.20		0.44	197.472

· · · · · · · · · · · · · · · · · · ·					
Site ID:		Former L	EC Site	Sa	mple Date: 8/12/2005
Stream Location:		Crab Broo	ok	Sa	mple Time: 11:00
Sample Location:		SW-12	Water B	Body Sample Type:	Surface Water Sample
Sample ID:		SW-12		Decon (y/n)	yes
Sample Collection Me	thod:		Velocity(ft	3/sec):	Flow Rate(gpm):
Sample Appearance/O	dor:			Sampler(s):	TD
рН		7.71 s.u.		Temperature	23.1 AC
Conductivity		0.650 mS	$/cm^2$	Salinity	0.3 %
Turbidity		NM	_	Eh	NM
DO		6.0 mg/L			
Sample Bottles ID	SW-12	Sample E	PA Method	624+10	
Notes:				HORIBA U	J-22
Location Sketch		Stony Brook Flow Direction	n		
		↓ ↓			Crab Brook Flow Direction
			1	ĸ	
					Collected surface water sample SW-12
Stream	n Location	<u>1</u>	<u> </u>		
	Road & Gro				
SW-12	Width	Depth	Velocity	Stream Flow S	Stream Flow
	ft	ft	ft/sec		gpm
#1	1.0	0.10	0.2		3.976
#2	1.0	0.30	0.2	0.06	26.928
#3	1.0	0.30	0.3	0.09	40.392
Total Wid	lth 4.0			0.17	76.296

Site ID:	Former LEC Site	Sample Date	e: 9/8/2005	
Stream Location:	Crab Brook	Sample Time:		
Sample Location:	SW-1 Water Body	Sample Type: Su	urface Water Sample	
Sample ID:	SW-1	Decon (y/n)		
Sample Collection Method:	Velocity(ft3/sec)	: Flow	Rate(gpm):	
Sample Appearance/Odor:	no water in stream	Sampler(s):	TD	
рН	no water in stream	Temperature	no water in stream	
Conductivity	no water in stream	Salinity	no water in stream	
Turbidity	no water in stream	Eh	no water in stream	
DO	no water in stream			
Sample Bottles ID	Sample EPA Method			
Notes:		HORIBA U-22		
Location Sketch Leanord	woods	Imont		
Flow Direction	Collected sample	e at SW-1		
	woods			
Stream Location				
Belmont & Leanord				
SW-1 Width Depth	Velocity Stream Flow	Stream Flow		
ft ft #1 no water in stream	ft/sec ft3/sec	gpm		
#1no water in streamTotal Width0.0				

NOTE:

i						
Site ID:		Former LEC	Site	Sar	nple Date:	9/8/2005
Stream Location:		Crab Brook		San	ple Time:	15:30
Sample Location:		SW-2	Water Body S	Sample Type:	Surf	ace Water Sample
Sample ID:		SW-2		Decon (y/n)		
Sample Collection Met	hod:		Velocity(ft3/sec)	:	Flow Ra	ate(gpm):
Sample Appearance/Oc	lor:			Sampler(s):		TD
рН		7.20 s.u.		Temperature		18.9 AC
Conductivity		0.600 mS/cm	n^2	Salinity		NM
Turbidity		NM		Eh		+300 mV
DO		10.0 mg/L				
Sample Bottles ID	SW-2	Sample EPA	Method	624+10		
Notes:				HORIBA U-	-22	
Flow Direction	rth Drive		cted surface wat	er		
	n Location th Drive					
SW-2	Width	Depth	Velocity	Stream Flow S	tream Flov	V
#1	ft 1.0	ft	ft/sec 0.20		pm 7.952	

#3 <u>1.0</u> Total Width 6.0

#2

1.0

0.20

0.35

0.20

0.00

0.04017.95200.0000.0835.90

Site ID:	Former LEC	ite Sample Date: 9/8/2005			
Stream Location:	Crab Brook	Sa	mple Time: 15:00		
Sample Location:	SW-3	Water Body Sample Type:	Surface Water Sample		
Sample ID:	SW-3	Decon (y/n)			
Sample Collection Method:	٧	/elocity(ft3/sec):	Flow Rate(gpm):		
Sample Appearance/Odor:		Sampler(s):	TD		
рН	7.13 s.u.	Temperature	17.7 AC		
Conductivity	0.440 mS/cm ²	² Salinity	NM		
Turbidity	NM	Eh	+220 mV		
DO	8.9 mg/L				
Sample Bottles ID <u>SW-3</u>	Sample EPA	Method <u>624+10</u>			
Notes:		HORIBA U	J-22		
Location Sketch Collected surfac sample SW-3 Flow Direction	e water	Westervelt Avenue			
Stream Location					
Westervelt Avenue SW-3 Width ft #1 1.0 #2 1.0 #3 1.0 #4 1.0 #4 1.0	ft f 0.10 0 0.10 0 0.10 0	0.20 0.020 8	gpm 3.976 3.976)		

0 0.040

17.952

#4 <u>1.0</u> Total Width 5.0

Site ID:	Former LEC S	Site	Sa	mple Date: 9	9/8/2005
Stream Location:	Crab Brook		Sa	mple Time:	14:30
Sample Location:	SW-4	Water Body Sa	mple Type:	Surface	e Water Sample
Sample ID:	SW-4	1	Decon (y/n)		
Sample Collection Method:	V	velocity(ft3/sec):		Flow Rate((gpm):
Sample Appearance/Odor:		2	Sampler(s):	TI	D
рН	8.0 s.u		Temperature	<u>17</u>	7.8 ЛС
Conductivity	0.620 mS/cm^2		Salinity	N	M
Turbidity	NM]	Eh	+2	250 mV
DO	14.55 mg/L				
Sample Bottles ID <u>SW-4</u>	_		624+10		
Notes:			HORIBA U	J-22	
Location Sketch Collected surface w sample SW-4 locati Flow Direction		Watchung Avenue			
Stream Location					
Watcung Avenue SW-4 Width ft #1 1.0 #2 1.0 #3 1.0	ft ft 0.25 0 0.25 0	t/sec 1 .4 (.5 (0.100 4 0.125 5	Stream Flow gpm 14.88 56.1 17.124	
Total Width 4.0	_ `			48.104	

Site ID:		Former LH	EC Site	San	nple Date: 9/8/2005
Stream Location:		Crab Broo	k	Sam	nple Time: 14:00
Sample Location:		SW-12	Water Body	Sample Type:	Surface Water Sample
Sample ID:		SW-12		Decon (y/n)	yes
Sample Collection Meth	od:		Velocity(ft3/sec):	Flow Rate(gpm):
Sample Appearance/Od	or:			Sampler(s):	TD
рН		7.70 s.u.	_	Temperature	<u>18.0 AC</u>
Conductivity		0.680 mS/	cm^2	Salinity	NM
Turbidity		NM	_	Eh	+140 mV
DO		11.00 mg/			
Sample Bottles ID	SW-12	_Sample El	PA Method	624+10	
Notes:				HORIBA U-	-22
Location Sketch		Stony Brook Flow Direction			Crab Brook Flow Direction
	Location				
Greenbrook R SW-12	oad & Grove Width	St Depth	Velocity	Stream Flow St	tream Flow
#1 #2 #3 #4 Total Width	ft 1.0 1.0 1.0 1.0	Depth ft 0.15 0.10 0.10 0.15	ft/sec 0.4 0.4 0.5 0.4	ft3/sec gi 0.060 26 0.040 17 0.050 22 0.060 26	pm 5.928 7.952 2.440 5.928 4.248

TRC Raviv SAMPLE DATA RECORD : Crab Brook

Site ID:		Former	LEC Site	Sa	ample Date:	3/6/2006
Stream Location:		Crab Broo	ok	Sa	mple Time:	12:30
Sample Location:		SW-1	Water Body	Sample Type:	Surfa	ace Water Sample
Sample ID:		SW-1		Decon (y/n)		
Sample Collection Method	1:		Velocity(ft3/set	c):	Flow Ra	te(gpm):
Sample Appearance/Odor:	:	Clear	[Sampler(s):		JR/TD
рН		5.90		Temperature	-	8.4
Conductivity		2.21 mS	<u>/cm</u>	Salinity	-	NA
Turbidity		9)	Eh	-	161
DO		13.26	5			
Sample Bottles ID	SW-1	Sample	EPA Method	624+10		
Notes:				HORIBA	U-22	
Location Sketch	Leanord		В	elmont		
		woods		I		
		Woods				
Flow Direction		ሳ	Collected samp	lo ot SW/ 1		
			Collected Samp			
		woods				
Stream Location Belmont & Leanord						
Belmont & Leanord	Width	Depth	Velocity	Stream Flow	Stream Flow	
Belmont & Leanord SW-1	Width ft	Depth ft	Velocity ft/sec		Stream Flow gpm	
Belmont & Leanord SW-1 #1	ft 1.0	ft 0.20	ft/sec 0.00	ft3/sec 0.0	gpm 0.000	
Belmont & Leanord SW-1 #1	ft	ft	ft/sec	ft3/sec 0.0	gpm	
Belmont & Leanord SW-1 #1 #2	ft 1.0	ft 0.20	ft/sec 0.00	ft3/sec 0.0 0.0	gpm 0.000	
Belmont & Leanord SW-1	ft 1.0 1.0	ft 0.20 0.20	ft/sec 0.00 0.00	ft3/sec 0.0 0.0 0.06	gpm 0.000 0.000	

TRC Raviv SAMPLE DATA RECORD : Crab brook

Site ID:		Former LE	C Site		Sample Date: 3/6/2006		
Stream Location:		Crab Broo	k	Sample Time: 12:16			
Sample Location:		SW-2	Water Body	er Body Sample Type: Surface Water Sample			
Sample ID:		SW-2		Decon (y/r	1)		
Sample Collection Me	thod:		Velocity(ft3/sec): Flow Rate(gpm):				
Sample Appearance/O	dor:	Clea	ar	Sampler(s)	: JR/TD		
рН		6.5	2	Temperatu	re <u>11.4</u>		
Conductivity		1.5 mS/ci	<u>m</u>	Salinity	NA		
Turbidity		6.	9	Eh	128		
DO		13.	1				
Sample Bottles ID	SW-2	Sample EF	A Method	624+10	_		
Notes:				HORIB	A U-22		
Location Sketch	orth Drive		ected surface w	ater			
	m Location th Drive						
SW-2 #1 #2 #3	Width ft 1.0 1.0 1.0	Depth ft 0.20 0.30 0.40	Velocity ft/sec 0.00 0.40 0.70	ft3/sec 0.0 0.1 0.28	w Stream Flow gpm 0.000 53.856 125.664		
Total Wie	lth 5.0			0.40	179.52		

TRC Raviv SAMPLE DATA RECORD : Crab Brook

Site ID:	Former LEC	Site		Sample Date:	3/6/2006
Stream Location:	Crab Brook			Sample Time:	12:05
Sample Location:	SW-3	Water Boo	ly Sample Type	: Surfa	ce Water Sample
Sample ID:	SW-3		Decon (y/n)	
Sample Collection Method:		Velocity(ft3/s	ec):	Flow Rat	e(gpm):
Sample Appearance/Odor:	Clear		Sampler(s)	: _	JR/TD
рН	6.86		Temperatu	re _	10.6
Conductivity	1.56 mS/cm		Salinity	_	NA
Turbidity	3.3		Eh	_	119
DO	10.01				
Sample Bottles ID <u>SW-3</u>	Sample EPA	Method	624+10	_	
Notes:			HORIB	A U-22	
Location Sketch Collected surface sample SW-3	e water] Wes	stervelt nue		
Stream Location Westervelt Avenue SW-3 Width ft #1 1.0 #2 1.0 #3 1.0 Total Width 4.0 Total Width 4.0 Total Width 4.0	Depth ft 0.10 0.30 0.30	Velocity ft/sec 0.00 1.10 1.20	Stream Flo ft3/sec 0.000 0.330 0.36 0.690	w Stream Flow gpm 0 148.104 161.568 309.672	

TRC Raviv SAMPLE DATA RECORD : Crab Brook

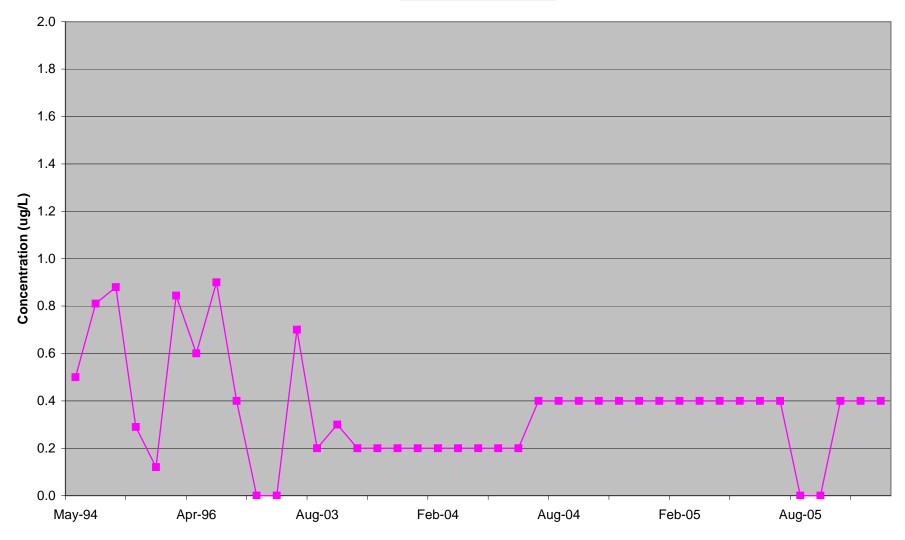
Site ID:		Former LEC	C Site	Sample Date: 3/6/2006				
Stream Location:		Crab Brook		Sample Time: 11:49				
Sample Location:		SW-4	Water	Body Sam	ple Type	e: Surf	ace Water Sample	
Sample ID:		SW-4		Decon (y/n)				
Sample Collection Me	thod:		Velocity(ft3/sec):		Flow Ra	ate(gpm):	
Sample Appearance/O	dor:	Clear	-	Sa	mpler(s)	:	JR/TD	
рН		7.09	_	Te	emperatu	re	10.36	
Conductivity		1.52 mS/cm	<u> </u>	Sa	linity		NA	
Turbidity		4.1	_	Eh	1		112	
DO		9.41	_					
Sample Bottles ID	SW-4	_		62	4+10	_		
Notes:					HORIB	A U-22		
	ed surface v SW-4 loca			Watchung Avenue				
	m Location ing Avenue			<u> </u>	-			
SW-4	Width ft	Depth ft	Velocity ft/sec		ream Flo 3/sec	w Stream Flow gpm	,	
#1 #2 #3	1.0 1.0 1.0	0.30 0.30 0.20	0.1 0.9 0.2	0.0 0.2 0.0	03 27	13.464 121.176 17.952		
		00		0.0	- ·			

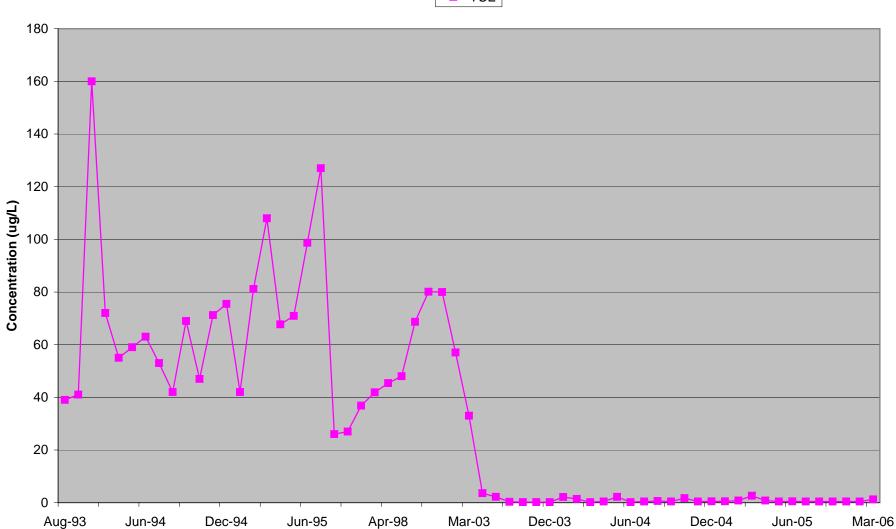
#4 <u>1.0</u> Total Width 5.0 0.5

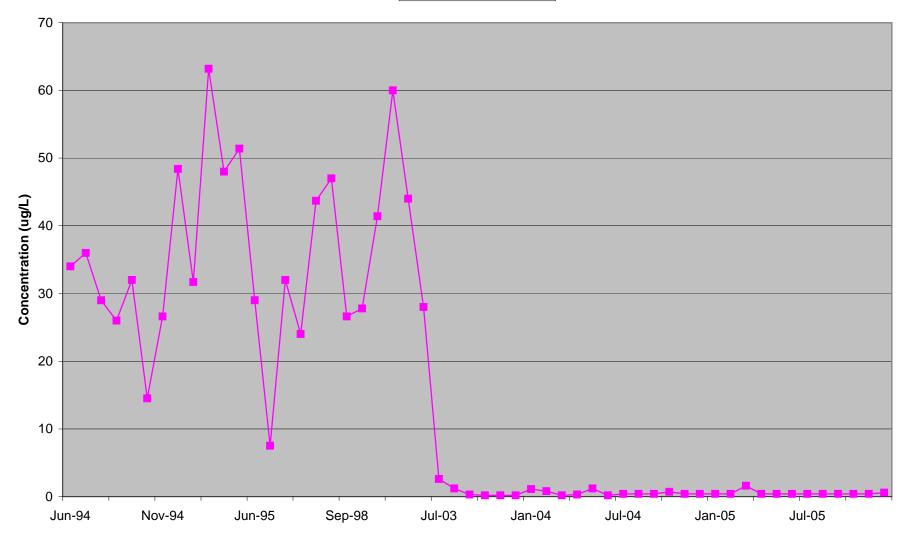
0.15

0.49

67.32


219.912


0.30


APPENDIX D

Plots of TCE Concentrations Versus Time for Stream Locations

