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As new emerging threats require faster than human-in-the-loop response times, next
generation defense systems are requiring more autonomy, data processing, and decision making
at the edge. These new systems are looking to artificial intelligence and machine learning (AI/ML)
to provide higher levels of autonomous command and control. For space systems, onboard
processing of advanced AI/ML algorithms, especially deep learning algorithms, requires a
multiple magnitude increase in compute capability compared to what is available with legacy,
radiation-tolerant, space-grade processors on current space vehicles. The next generation of
space processors for AI/ML onboard will likely include a diverse landscape of heterogeneous
systems including various combinations of CPUs, GPUs, FPGAs, and purpose-built ASICs. In
this manuscript, we identify the driving requirements for AI/ML processing onboard; detail
the similarities and differences between the ground, edge, and space environments for AI/ML;
define a reference architecture and the services required to provide an end-to-end framework for
developing and deploying AI/ML applications for space; and evaluate the hardware landscape
for current and next-generation space Al processors.

I. Introduction

ARTIFICIAL Intelligence (AI) for the space domain is critical to the United States’ national security strategy. Developing

and implementing mature and reliable Artificial Intelligence and Machine Learning (AI/ML) technologies is a key
enabler for realizing modern Joint All Domain Operations, and requires collaboration across the Department of Defense
(DoD), academia, industry, and allies to create and deliver these Al-enabled enhancements. Top military leaders are
predicting that whoever masters the AI/ML techniques first will dominate the battlefield of the future [1, 2]. In 2020,
when Congress asked then Secretary of Defense Mark Esper what the number one priority was for DoD technology
modernization, he responded with, “For me, it’s artificial intelligence. I think artificial intelligence will likely change
the character of warfare, and I believe whoever masters it first will dominate on the battlefield for many, many years. It’s
a fundamental game changer. We have to get there first.” [3]

To realize this, the DoD has developed an AI/ML strategy and is encouraging adaptable Al problem solving, enabling
decentralized development and experimentation, restructuring to promote Al and space, and streamlining acquisitions to
speed modernization. A relevant application of Al in space domain is “intelligentized” war where large scale awareness
and communications is enabled by growing constellations that rely on Al to process sensor data, manage data traffic,
control the satellites, and provide timely insights. The DoD is positioning itself as a leader in AI/ML and is pushing for
greater investments in this area. The DoD Al Research, Development, Test and Evaluation (RDT&E) investments for
the space domain are expected to see multifold growth (3x) over the coming years, achieving over $2B by 2025 (~10%
of the Al budget) [4]. As the industry evolves to meet the DoD’s AI/ML vision, DoD organizations will expect more
sophisticated, intelligentized satellites that observe, communicate, and cooperate across domains, at scale. This will
necessitate a more streamlined, standardized approach to Al development, deployment, demonstration, and sustainment.
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The purpose of this white paper is to derive the driving requirements for AI/ML processing onboard satellites
(Section II), identify the different environments for executing AI/ML (Section III), define a reference architecture for the
services necessary to develop for and deploy to these environments (Section IV), and evaluate the landscape of current
and next-generation hardware for execution of AI/ML models onboard satellites (Section V).

I1. Driving Requirements

In this section we define the driving requirements for developing an AI/ML application for onboard processing.
These requirements can be difficult to meet for AI/ML systems running on state-of-the-art, scalable, cloud-based
environments with mature infrastructure and tools and access to high-performance computing resources and GPUs. The
task will be even more difficult to achieve on a satellite with limited compute, support, and infrastructure. We divide the
driving requirements into three broader categories defined below: operational requirements, safety requirements, and
user experience requirements. In Table 1 we provide a summary of our findings.

Operational requirements cover the ability of an AI/ML system to perform the desired task in the desired environment.
End users desire AI/ML solutions that are able to process large amounts of data in real-time with a minimal hardware
footprint and high accuracy. These solutions also need to be deployable to a wide variety of platforns and hardware
architectures, scalable to variable inputs and throughputs across multiple processors and satellites, all while maintaining
the desired level of performance.

Safety requirements involve ensuring AI/ML systems operate in an expected manner and are resistant to outside
threats, both physical and digital. Deep learning models, in particular, are often described as black boxes where inputs
go in and outputs come out and there is little insight into how the model is making its determination. The seemingly
non-deterministic nature of AI/ML systems may cause some end users to be hesitant to trust AI/ML systems. AI/ML
systems will also need to meet more standard software metrics for reliability and security as they suffer many of the
same vulnerabilities that standard software systems do. There needs to be procedures in place to mitigate radiation
induced faults, allow graceful failover, and ensure damage to the AI/ML system has limited impact on the spacecraft and
mission.

User experience requirements focus on meeting the user needs for low cost AI/ML systems, developed rapidly, and
which are easy to use and provide value over more traditional methods. AI/ML-based systems can be more costly to
develop and maintain. End users need to see benefits from these systems worth the investment.

AI/ML Driving Requirements
Requirement ‘ Parameters ‘ Solutions
Operational
Performant
* Latency ¢ Model/Pipeline optimization
¢ Throughput * Pipeline scheduling systems
* Duty Cycle ¢ Testing environment
e Startup time e Minimal runtime
» Resource consumption
Deployable
* Model architecture (supported ops) ¢ Multi-platform support
* Programming language * Multi-accelerator support
* AI/ML Framework » Containerization
* Retargetability
Scalable
* Number of simultaneous I/O * Variable input/throughput
* Horizontal Scalability * Distributed processing/reasoning
¢ Vertical Scalability ¢ Orchestration
Sustainable
* Model update frequency ¢ MLOps pipelines
¢ Fraction of data downlinked ¢ Onboard monitoring
¢ MLOps artifacts size * Digital twins
¢ Required update bandwidth ¢ Active Learning
« Differential updates
Safety




Secure

¢ Threat vulnerability ¢ Robust model development and testing

« Threat detectability * Secure model updates

» Threat responsiveness * Adversarial training

* Model Robustness * V&V

¢ Prediction redundancy * AI/ML-based cyber security
Reliable

* Fault tolerance * Model monitoring

* Robustness * Built-in test/fault mitigation

* Downtime ¢ Multiple fallback options

¢ Duty cycle * Resource optimization
Explainable

* Model uncertainty ¢ Explainable Al techniques

¢ Model architecture/complexity * Continuous monitoring

« Explainability * Root cause analysis
User Experience
Rapid

¢ Development time * Model/Data repository

* Ease of update ¢ COTS development tools/services
High Value

* Non-recurring cost ¢ Automated pipelines

¢ Recurring cost * Reuse common solutions

¢ Improvement over other methods ¢ Reduce duplication of efforts
Easy to use

¢ UX/UI intuitiveness e User-centered design

« Ease of integration ¢ Adopt standard inter-

¢ Standards conformity faces/formats/methods

Table 1 Table of driving requirements for AI/ML and common solutions.

ITII. AI/ML Environments
The different AI/ML deployment environments can be defined by the unique challenges, hardware, and use cases
found in said environments. Here we briefly define the various environments under consideration and refer to them as
ground, edge, tiny, mobile, and space. This is not meant to be exhaustive, but instead to provide a baseline for discussing
the similarities and differences in developing for and deploying to different environments.

A. Ground

The ground environment contains AI/ML systems deployed on desktops, laptops, servers, or on scalable, on-demand
computing services (often referred to as cloud computing and includes services such as AWS and Azure). Computational
power is greatest in ground environments and resource efficiency tends to be secondary to accuracy, especially in the
cloud where it is easy to spin up additional resources as needed. Ground AI/ML systems are most frequently powered
by x86 CPUs and NVIDIA GPUs, although other processor architectures (e.g., ARM CPUs, AMD GPUs, TPUs, and
FPGA ) are seeing more applications in this environment. AI/ML systems in this environment tend to be deployed for
command and control, closed-loop processing, or for analysis of collected data.

B. Edge, Tiny, & Mobile

The edge, tiny, and mobile environments contain a wide variety of devices focused on small form factors, low
power consumption, and mobility. The edge environment can include computational units such as CPUs, GPUs, TPUs,
FPGAs, ASICs, and many others, usually in the format of a single board computer (SBC), system-on-a-chip (SoC), or a
microcontroller (MCU). Edge devices can be found in both unmanned/manned land, air, and sea vehicles. They can
also be found in weapon systems, medical devices, drones, smart assistants, remote sensing stations, manufacturing
equipment, and IoT devices. Limited available computational power, memory, training data, and other constraints



present challenges to overcome in this environment. Not only must an AI/ML system be small enough to fit within
the available volatile and non-volatile memory, it must be able to perform inference within a desired level of latency
and accuracy. This results in the need to balance various performance metrics during development. Additionally, the
wide variety of computational units found at the edge do not all provide full support for AI/ML operations, if any at all.
Deploying to the edge generally requires more investment integrating the AI/ML system with the target device than
in the ground environment. In the tiny environment one can find devices focused on even lower power consumption
and smaller form factor, such as bare metal (instructions are executed directly on logic hardware without an operating
system) microcontrollers. Sensors, hand-held equipment, and other devices requiring a minimal form factor may employ
tiny computational units. Devices in the mobile environment are based on SoCs built around an ARM-based CPU and
may also contain GPUs, image signal processors (ISPs), digital signal processors (DSPs), and in some more modern
devices, neural processing units (NPUs) or tensor processing units (TPUs). Devices found in the mobile environment
include cellular phones and tablets; applications generally run in either iOS or Android OS (there are many other OS
options in the mobile environment, but none are as commonly used as the two mentioned). As in the edge and tiny
environments, the limited computational power and frequent need for real-time inference in the mobile environment
present challenges for developing AI/ML systems that can operate with the desired level of performance. Due to the
similarity of the edge, tiny, and mobile environments we frequently only refer to one of the environments in the following
sections on the AI/ML workflow, unless an explicit difference needs to be highlighted.

C. Space

We consider the space environment to include AI/ML deployed on platforms in low Earth orbit (LEO) or further
from the Earth. This can include unmanned space vehicles such as satellites, deep space explorers, and planetary
rovers; or manned space vehicles like space shuttles, crew modules (e.g., the Orion spacecraft), and the International
Space Station. The space environment shares many similarities with the edge environment but also presents unique
challenges to overcome. Like the edge environment, processing power is limited by size, weight, and power (SWaP) in
the space environment. In space, one must also contend with hardware that tends to lag several generations behind
what is found in the edge environment (and even further behind what is possible on the ground) due to the additional
challenges presented by operating in high-radiation environments. Thermal management also plays a more critical role
in determining what kind of processing is possible in vacuum. Any onboard AI/ML system needs to be optimized to
operate within many tight constraints (e.g., latency, accuracy, power and thermal loads, volatile/non-volatile memory
demands) in order to meet mission requirements. Often the AI/ML system will need to share resources with other
processing taking place onboard the space vehicle. Additionally, communication with devices in space is more limited
compared to other environments. Even when a permanent connection is not possible, it is relatively easy to transmit
data to and from devices in the ground, edge, tiny, and mobile environments compared to devices in space. In space,
bandwidth and transmission windows are reduced and different strategies for monitoring AI/ML systems in space are
required. All of these factors make the space environment the most challenging to deploy AI/ML systems in.

IV. Reference Architecture
Here we define the five steps of the AI/ML workflow (Prepare, Model, Optimize, Integrate, and Certify), identify
the components and functions that can exist within each step, identify the differences and similarities when developing
for the different environments, and survey existing functionality provided by FOSS and COTS software tools. Finally,
we consider how this workflow can be automated through the concept of MLOps and how MLOps practices might be
employed in ground, edge, and space environments.

A. Prepare

In the Prepare step of the AI/ML workflow, data are collected, stored, analyzed, and preprocessed. In some cases
this step is completed via ad hoc scripts and notebooks to import, analyze, and ready the data for training; however,
there is an ever-growing list of software tools to aide in data curation, management, and exploration. Figure 1 shows the
functional diagram for the data preparation step.

Training data are often stored in a variety of formats including text files (e.g., CSV or other delimited text, raw
text, fixed-width text, JSON, XML), binary files (e.g., HDF5, Excel, Python Pickle, TFRecord), image files (e.g., PNG,
JPEG, TIFF, NTF), databases (e.g., MySQL, PostgreSQL, NoSQL), and object stores (e.g., S3). Broad and extendable
support for different data formats and storage methods is essential for supporting a variety of uses cases with a single
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Fig. 1 Functional diagram of the Prepare step of the AI/ML workflow.

framework. A number of FOSS and COTS solutions exist and are implemented either as tools or APIs at the project
level (e.g., DVC* or the tf.data.Dataset module”) or as an enterprise-level central dataset repository (e.g., Collibra®).
Beyond storing the data, centralized dataset repositories provide additional features that aid in the management of
datasets via data governance. Central dataset repositories can be tied to enterprise authentication services such as Active
Directory to provide an easy-to-use and secure way for groups to manage access and modification permissions for their
datasets. For unrestricted datasets, a centralized repositry makes it easier for developers to find relevant datasets and
offers a single source of truth for datasets. Standards can also be implemented at the enterprise level to ensure data is
stored with consistent labeling, column naming, data type, data unit, etc. Data storage tools implemented at the project
level, like DVC and TensorFlow’s dataset API, can’t offer the same enterprise-level features as a central data repository,
but can provide other benefits such as being more portable to other systems, avoiding vendor lock, and not requiring
enterprise licenses and management. Both enterprise-level and project-level data management solutions can offer data
version control that tracks the original source and any modifications to a dataset, ensuring traceability of the data lineage.
The first step in most machine learning projects, once data is in hand, is exploratory data analysis (EDA). The goals
of EDA are to understand the contents of the dataset, identify any trends that might be exploitable via AI/ML, and begin
to shape the hypotheses and approaches to explore. The EDA step is often dataset-specific and requires a knowledgeable
data scientist to generate visualizations and other analysis of the data including histograms of features or summary
statistics, scatter plots comparing features, line plots of time series data, image visualization, metadata analysis, data
distribution statistics, cardinality, missing or inconsistent data, correlations between features, univariate analysis, and
clustering. Some of these analyses can be automated for some types of datasets. For example, the Pandas Profiling tool

*https://dvc.org/
Thttps ://www.tensorflow.org/api_docs/python/tf/data/Dataset
ihttps ://www.collibra.com/
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can automatically profile dataframes containing boolean, numerical, date, categorical, URL, path, file and image data®.

The EDA step may be ongoing and revisited multiple times during the course of an AI/ML project. However, at any
point, the developer can use information gathered via EDA to start cleaning and preparing the data for ingestion into a
model. The purpose of data cleaning is to fix errors or other issues in the dataset that would hamper model performance.
Data cleaning can include removing or replacing missing data, deduplication of data, filtering of outliers, fixing
inconsistencies in labeling categorical labels, removing artifacts or other faulty data, and any number of sensor-specific
calibrations such as flat-fielding image data. Data preparation takes the cleaned data and reformats it into a format better
suited for ML models. Data preparation can include normalizing or rescaling the data, converting categorical data to
one-hot encoding, interpolating onto a regular grid, resizing, reshaping, and windowing the data. Some data preparation
steps may be applied in reverse to model outputs in order to transform the outputs back to the same view as the original
data. Finally, feature engineering is the process of combing features of the dataset to build aggregate or derived features
that might be easier for an ML model to learn from (e.g., combining the fuel efficiency and gas tank size of a car to
calculate the maximum range). While feature engineering is often a manual, iterative, and experimental process, there
are some tools that attempt to automate the search for good feature combinations (e.g., Featuretools). These three
steps—cleaning, preparation, and feature engineering—may be performed at different times and the results stored off in
intermediate datasets, or they may be combined into a data pipeline definition and executed on the raw data at training
and inference time (e.g., scikit-learn Pipelines!).

An additional step is sometimes required between preprocessing the data and training a model on the data. That
is the data augmentation or generation step. For deep learning models that are prone to overfitting and often do not
generalize well to data different from the training data, it is sometimes necessary to augment the training data or generate
additional data based off the training data in order increase the robustness of the trained model. Data augmentation is
typically applied to sensor data such as imagery or speech data where transformations to the data can mimic changes in
how the data were collected. For example, changing the brightness of an image can mimic different lighting conditions
or changing the speed and pitch of an audio sample can mimic changes in speaking speed. Data augmentation processes
are typically defined by a transformation and an intensity value (which may be boolean) that is randomly chosen at
training time for each sample in each new batch. For example, an augmentation process may be to rotate an image and
the intensity is the degree of rotation, randomly chosen from a uniform distribution between —30 and +30 degrees. Data
augmentation may occur before or after data cleaning and preparation; however, unlike data cleaning and preparation,
data augmentation is non deterministic and is not applied to data at inference time. There are many data augmentation
processes that can be applied independently or concurrently. The augmentation processes to apply to a dataset and how
the intensity values are randomly chosen can be combined into a pipeline like Keras ImageDataGenerator™. Aside from
scripted augmentation, data generation or synthesizing can be used to add additional training data. The data may be
generated via physical modeling or DL-based approaches such as a GAN trained on the training data. The result of the
Prepare step is a data pipeline, either manual or automated, which incorporates all of the data cleaning, preprocessing,
augmentation and generation to produce the data used in the Model step to train models and test hypotheses.

B. Model

The Model step of the AI/ML workflow involves selecting an appropriate model for the application, defining the
model architecture, and iterating over the process of training the model, tuning hyperparameters, and evaluating the
model. Various components of the model selection, training, and tuning loop can be automated via approaches generally
referred to as AutoML. Whether or not desirable results are achieved will determine if a new model needs to be selected
or if the developer needs to return to the previous workflow and re-examine the available data. This workflow remains
largely the same for ground, edge, or space, but constraints of the intended environment may limit the models available
to choose from.

The model selection workflow, shown in Figure 2, starts with the developer identifying a model class, or classes,
suitable to the desired task. The applicability of a model is dependent on multiple factors, including the type of data
available, label availability, the problem objective, and constraints induced by the intended operational environment.
For example, if labeled data is unavailable, the developer will generally not choose supervised learning models which
require labeled data. The developer will then build the model architecture, usually with a machine learning framework

Shttps://github.com/pandas-profiling/pandas-profiling
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**https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
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such as TensorFlow, and select a method for initializing the model parameters and hyperparameters (the parameters that
are not directly learned from the data during the training process).

AutoML
Experiment
Loop

Interaction

User
Experiment
Loop

Fig. 2 Functional diagram of the Model step of the AI/ML workflow.

The next steps of the workflow involve training the model on the available data, evaluating results, and tuning model
architecture or hyperparameters if necessary. Training refers to the process of providing a model with data such that
it attempts to learn optimal model parameter values (weights) for inference. This is often done in conjunction with
evaluation, where results (such as accuracy, precision, and recall) are evaluated to determine whether the model needs
to be tuned and retrained. Tuning generally refers to the process of changing the architecture of the model, such as
the number of layers in an neural network, or adjusting other hyperparameters, such as batch size or learning rate for
training neural networks or the L; regularization parameter in a Lasso linear model. This process is iterative and usually
requires machine learning expertise as the performance of the algorithm can be highly dependent on the choice of
hyperparameters.

Various components of the model selection, training, and tuning loop can be automated via approaches generally
referred to as AutoML. At a minimum, AutoML tools generally provide automated hyperparameter tuning through
a standard grid or random search in a predefined hyperparameter space (e.g., scikit-learn’s Grid Search module’™).
An exhaustive grid search can be too computationally intensive for some problems with large and high-dimension
hyperparameter search spaces, especially when using K-fold cross validation. More advanced tools like auto-sklearn**
and AutoKeras®® can also automate the data preprocessing, model selection, and model architecture configuration (e.g.,
neural architecture search) steps and use more efficient search methods like Bayesian optimization. Some COTS ML
platforms like Dataiku! and H20’s Driverless AI*** include even more automation features and offer near complete
AutoML suites that guide users through an intuitive GUI to import their data, define their problem, and compare
automatically generated models. However, these more advanced and intuitive AutoML suites are often limited in their
application and work best on classification and regression of tabular data, with some extensions to a few time series,
computer vision, and natural language processing applications.

Once multiple models have been trained and compared, an approach called ensemble modeling can be used to
improve performance and robustness. Ensemble modeling can refer to approaches where many weak models are
combined to create a strong model (e.g., bagging and boosting). These techniques are often directly implemented as their
own model within a framework and the ensemble is built into the training scheme. However, ensemble modeling can

Hhttps ://scikit-1learn.org/stable/modules/grid_search.html

T"T'https ://automl.github.io/auto-sklearn/master/index.html

§§https ://autokeras.com/

ql(ﬂhttps ://www.dataiku.com/
***https://www.h20.ai/products/h2o-driverless-ai/
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also refer to the technique of stacking a handful of strong models to average out each individual model’s bias to create
an even better performing model that is more generalized, such as stacking results from mulitple CNN architectures to
achieve start-of-the-art performance on an image classification task.

The model selection workflow is similar whether the application is intended to run in a ground, edge, or space
environment, but additional considerations may need to be taken into account based on the deployment environment.
The field of machine learning has experienced rapid growth thanks to advances in computational power available on the
ground and many machine learning-based applications leverage this power in both the training phase and the inference
phase. If the intended environment is edge, mobile, or space, available computing resources are much more limited and
can operate in vastly different ways than a standard CPU or GPU. Model performance, processing restrictions, and
more must be considered when selecting a model to be deployed to the edge, mobile, or space. For limited compute
environments, the developer has to consider: the size of the model, computational complexity, data rates, desired
throughput, and many other factors. This will be dependent upon the available hardware and goals, as different hardware
configurations will have varying amounts of compute power. Another consideration is model maintenance. Regular
updates to the model can be difficult if the target hardware has limited uplink/downlink bandwidth. Limited downlink
reduces the amount of new training data that can be collected to update the model. Active learning techniques to identify
the usefulness of data in terms of the amount of information gained by including that data in a training dataset can help
determine what data is most valuable to downlink. If the model is a large deep learning model, it may not fit the size
or time constraints of the target hardware’s uplink windows, but a simpler model might. When deploying to different
environments, developers should consider the computational resources available, the system’s availability for updating,
as well as the required model maintenance.

Model evaluation is usually carried out alongside iterative model training and involves model analysis, head-to-head
model comparison, and explainable Al. Applicable evaluation techniques differ based on the problem category and type
of model chosen. Evaluation techniques result in a metric or set of metrics which are used to judge the performance of a
model. The applicable metrics and evaluation workflow can also depend on the intended environment.

Models can be evaluated with various metrics depending on the category of models. Visualizing the training and
validation loss functions over training iterations provides insight into how well a deep learning model has converged.
For supervised classification models, popular metrics include but are not limited to accuracy, precision, recall, F1
score, and area under curve (AUC) of the receiver operating characteristic (ROC) curve. Visualizations like confusion
matrices provide a more detailed overview of the performance of the model across different classes. For supervised
regression models, metrics such as root mean square error (RMSE) and mean absolute error (MAE) provide a sense of
the model performance across the entire dataset while residual plots can visualize performance as a function of input
parameters. The same metrics generally would not apply to unsupervised models due to difference in output between
the algorithms. Unsupervised model outputs are not compared to ground truth, so metrics for supervised models would
not apply. Popular metrics for clustering (an application of unsupervised models), for example, include internal validity
indices such as the Silhouette index, which aims to measure cluster cohesion and separation.

Explainable Al is an emerging field in machine learning that aims to provide better insight into how AI/ML systems
make decisions. The broad acceptance of AI/ML systems can be limited by the inability of users to understand the
system’s decisions and actions [5]. By better understanding how Al models work, developers can design Al solutions to
satisfy key performance indicators, correct errors, and mitigate bias [6] For example, a ship detection model may be
learning the pattern of the ocean in the image rather than the characteristics of the ship itself. Catching this error via
explainable techniques could aid developers correct the errors and ultimately produce a more reliable and trustworthy
system.

One way to achieve more explainable Al is to choose models that are inherently more explainable than others due to
their internal architecture. Simple models like decision trees, linear regression, and logistic regression are easier to
interpret. For example, decision trees make a sequence of decisions to arrive at the final decision, where intermediate
decisions can be analyzed directly to explain the output rationale. For these simpler models, there are often methods to
calculate feature importance, which features have the biggest impact on the models decision, in an intuitive manner
directly from the model. Neural networks, on the other hand, usually involve a large number of weights, all contributing
in complex ways to a final output. Due to the sheer number of these weights and their non-linear relationships, it
becomes extremely difficult to interpret how the inputs directly influence the output decision.

For complex models, there are some explainability techniques that help developers gain better insight into a models
decision process and include explainability metrics, visualizations, and prediction explanation. Local Interpretable
Model-agnostic Explainations (LIME) [7] and SHapley Additive exPlanations (SHAP) [8] are two black box explainability
methods that are agnostic to the type of model used. They attempt to identify the most important input features



that lead to a specific output by perturbing the inputs and measuring the response at the output. For deep learning
models specifically, gradient-based explainability methods like Class Activation Maps (CAMs) [9] and Grad-CAMs
[10] can highlight regions in an image that had the most influence on the classification of the image. Darwin AI’s
GenSynth platform uses a counterfactual approach to identify which inputs (e.g., pixels) when removed result in
incorrect classification [11].

If the intended environment is edge or space, additional evaluation and optimization techniques may be necessary.
Performing thorough in-situ evaluation on models prior to deployment may not be feasible in some cases; however,
some summary metrics such as number of parameters, model size in MB, number of operations in GFLOPS, and critical
datapath length (CDL) [12] can still provide insight into the feasibility of deploying a model to a specific platform
within a specific environment.

C. Optimize

Once a model has been trained, evaluated, and chosen for deployment, an optional next step is to optimize the
model through various methods of compression and acceleration. The goal of the optimize step is to reduce the
complexity of the model in order to reduce the size of the model on disk, the latency of running inference, and the
power used per inference. For models deployed to ground/cloud environments where compute and power limitations are
often of little concern beyond efficiency, the Optimize step is regularly skipped. For models deployed to edge/mobile
and space environments, optimization can provide significant benefit and may, in some cases, be necessary to meet
operational requirements. There are four major categories of model optimization: computation graph optimization,
pruning, quantization, and hardware-specific optimization. Computation graph optimizations and hardware-specific
optimizations often do not fundamentally change the results of the model and the functional mappings of input to
output should be equivalent before and after these optimizations. Pruning and quantization, on the other hand, do
fundamentally change the functional mapping of the model and can alter results.

Computation graph optimizations look at the network as a directed acyclic graph (DAG) and attempt to optimize the
graph through elimination of no-ops and zero-dimension tensors, algebraic simplification, operator fusion, constant-
folding, data layout transformations, and static memory planning [13]. Generally, these optimizations are not
hardware-specific and can be applied to a high-level intermediate representation of the model such as Relay and ONNX;
however, some operator fusions and layout transformations can by optimized based on the target hardware .

When supplied with a training dataset, higher-level node pruning can be used to reduce the overall size of the
computation graph without significantly reducing the accuracy of the model. These training-aware compression
approaches attempt to trim away operations in the model that don’t have a significant impact on the inference results,
but add to the size and complexity of the model [14]. Node pruning alone can reduce the number of parameters in
models like AlexNet and VGG-16 by an order of magnitude with negligible (< 1%) impact on performance [15].
More advanced pruning techniques alter the entire architecture of the model to replace large, costly portions of the
computational graph with smaller, more efficient subgraphs that approximate the replaced subgraph The Generative
Synthesis approach applied in Darwin AI’s GenSynth platform uses a generator-inquisitor pair to generate new models
from a seed model that are subject to user-defined constraints and performance targets [16]. For models like ResNet-50
and InceptionV3, GenSynth can produce models with 1/3rd-1/7th the number of parameters as the original model
while maintaining accuracy within a few percent [17].

Quantization is a powerful approach to reducing the size and latency of a model by replacing the costly 32-bit
floating-point operations typically required for training with 16-bit, 8-bit, or even down to 1-bit fixed point operations
[18, 19]. Converting from FP-32 to INT-8 alone can reduce the size of the model to 1/4th the original size [20]. As the
dynamic range is significantly reduced when representing the model with 8-bit integers, there can be some degradation
in performance, though it is usually minimal [18]. Training-aware quantization can often provide better accuracy results
if a training dataset is available during the optimization step [21]. Latent AI’s Efficient Inference Platform implements
both post-training quantization and training-aware quantization for model compression. Without a training set, Latent
AT’s post training quantization can achieve bit-depths down to 3-bits without significantly reducing accuracy (<2%)
[22].

Hardware-specific optimizations can include elements of computation graph optimization, pruning, and quantization
to tailor a model for inference on a specific device. The optimizations utilized will differ between hardware types (e.g.
CPU, GPU, FPGA, TPU) and manufacturers (e.g. NVIDIA, Xilinx, AMD, Intel). The basic approach is to make the best
use of hand-optimized kernels that have been designed for specific target hardware. This often is achieved through the

https://www.onnxruntime. ai/docs/resources/graph-optimizations.html#extended-graph-optimizations
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use of deep learning libraries such as cuDNN for CUDA-based GPUs; oneDNN for Intel CPUs, GPUs, and FPGAs; Arm
NN for Arm CPUs and GPUs; and MIOpen for AMD GPUs. These libraries can often be implemented as the backend
for deep learning frameworks and provide optimized kernels for common deep learning operations such as multiply and
accumulate and higher-level kernels for deep learning-specific fused operations such as 2D convolution + ReLU + Batch
Normalization. For some edge devices, the trained model is executed on the device via a runtime inference API such as
TensorFlow Lite or device-specific libraries such as Android NN API for Android devices and Core ML for iOS devices.
For other target hardware, specialized SDKs are required to convert a trained model to a runtime inference engine. Vitis
Al, for example, provides compression, quantization, and synthesization of deep learning models for running inference
on Xilinx FPGAs*#, Similarly, TensorRT provides an all-in-one platform for graph-level optimization, quantization,
and compilation of neural networks for NVIDIA GPUs®¥. Sometimes, hardware-specific optimizations happen in
parallel with compilation of the runtime inference engine as part of the Integrate step of the workflow.

Ground/Cloud

Trained Model: Optimized Modet Service-

Interactionr
Data Preprocessing Pipeline

Edge/Mobile/Space
Trained Model Optimized Modet
Inference Engine
Data Preprocessing Pipeline App
App Custom Development
Test Data Emulator/Tes N Test Results
Fig. 3 Functional diagram of the Optimize and Integrate steps of the AI/ML workflow.
D. Integrate

In the Integrate step, the final steps are taken to bring a model from proof-of-concept to a deployed, full-fledged
AI/ML solution. Broadly, this involves compiling the model into a runtime inference engine that can execute on the
target hardware, productionizing the model by developing and integrating the support services required to operate in the
target environment, and developing sustainment methods to monitor the data and model while in production. Figure 3
shows the functional diagram of the Optimize and Integrate steps.

There are many options for how to execute a model as a runtime inference engine. The simplest approach is to wrap
an API around the model in the framework the model was developed in. This API can be made available through a
RESTful service and deployed in the same environment used for training. Some frameworks have built-in support for
this approach such as TensorFlow Serving!l. Another approach is to make use of a model deployment platform that
orchestrates the deployment and sustainment of deep learning models to a scalable compute environment. Examples of
tools that provide model deployment features include Dataiku!’, MLflow'8, and Modzy'°.

For edge/mobile and space deployments, additional steps are required to generate a runtime inference engine for

”ihttps://www.xilinx.com/products/design—tools/vitis/vitis—ai.html
§§§https://developer.nvidia.com/tensorrt
%Mhttps://www.tensorflow.org/tfx/guide/serving

l7https://www.dataiku.com/

Ighttps://mlflow.org/

19https://www.modzy.com/
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a given model. Typically, the acceleration hardware and software libraries that are used for model training are not
available on edge devices or space platforms. In this case, the model must first be compiled to run on the target hardware
either by translating the model operations to low-level C or C++ code that can be directly compiled for the target
hardware or through the use of a neural network runtime library that is already compiled to run on the target hardware
and implemented through an API. Though the specific details of the process may differ across libraries, the overall flow
is largely the same. First, the model is exported or converted to a format that can be read in by the runtime library. Next,
as mentioned in Section IV.C, some libraries provide optimization features such as fusing operations and making use
of highly optimized deep learning kernels supported on the target hardware. Finally, the runtime inference engine is
exported as an executable on the target hardware. TensorRT?°, Vitis AI?!, and TFLite?? are examples of such libraries
that offer optimization and compilation in one.

While many of these runtime libraries are hardware-specific or offer limited support of different target hardware,
there are more recent efforts to develop deep learning compilers that generalize the optimization and compilation of deep
learning models for a wide variety of target hardware [23]. At the core of DL compilers is the intermediate representation
(IR). DL compilers can implement multiple levels of IRs. For a high-level IR, the model is typically represented as a
computation graph where non-hardware-specific optimizations can be made. Low-level IRs provide a more fine-grained
representation of the computations that allow for more hardware-specific optimizations such as memory allocation,
loop oriented optimizations, and parallelization. The IR can then be processed by one of many backends that replace
low-level IR instructions with hardware intrinsics and kernels from available acceleration libraries. There can be
an enormous number of parameters for tuning hardware-specific optimization prior to compilation. Automatically
configuring the HW-specific optimizations is called auto-tuning and approaches vary based on the parameterization of
the configuration, the cost model, and the search technique. TVM is Apache’s DL compiler and implements the Relay
IR for computation graph representation, a Halide-based low-level IR, and a machine-learning-based cost model for
auto tuning [13]. Other DL compilers include nGraph [24] from Intel, Tensor Comprehensions [25] and Glow [26] both
from Facebook, and TensorFlow’s XLA 3 from Google.

Once the model has been compiled into an optimized inference engine, it can be deployed to the target hardware,
but this is typically not the end of development. Beyond the inference engine, other support services and software
infrastructure may need to be developed to aide in the execution and sustainment of the deployed model such as for data
streaming and preprocessing, model result postprocessing, and data/model monitoring. This development effort can
be significant for edge and space applications where the deployment environment is dramatically different than the
development environment and standard tools and software do not exist. Beyond these services, additional features to
support MLOps such as a model registry or feature store may be required (see Section IV.F for more info). All these
services need to be developed, integrated, tested, and compiled for the target hardware before the entire system is ready
for deployment.

For space deployments where the variability of the natural environment can directly influence the sensors and
systems providing inputs to the deep learning model, of particular interest for support services is a robust sustainment
approach to ensure a continuous level of model performance. Some cases one might want to monitor for are data
drift where the distribution of the input data changes over time, model prediction drift where the distribution of model
predictions change over time, model performance degradation where the accuracy of the model results or reported
confidence decrease over time, and outliers where some individual inputs or clusters of inputs are significantly different
than any inputs in the training dataset. Beyond incidental changes in data and model performance, deployed ML models
are at risk of purposefully being tricked via adversarial attacks [27]. Additional safeguards such as model ensembles
and V&V techniques can provide some protection against adversarial attacks. Finally, specific to space deployments,
radiation-induced faults can affect model performance [28]. The limited operations used in deep learning models and
the hardware used to accelerate them may offer opportunities for fault mitigation specific to inference with deep learning
models.

E. Certify
The previous sections covered a standard workflow for development and integration of AI/ML systems with
environment specific hardware and some of the necessary support services. Each of the components in an AI/ML system

https://developer.nvidia.com/tensorrt

21https ://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
22https ://www.tensorflow.org/lite

23https ://wuw.tensorflow.org/xla
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need to be tested in a suitable environment to validate key operational requirements are met and to assess the safety/risk
of the system. The need for testing is critical for the space environment, where a malfunction or unintended decision can
cost billions and/or cause casualties. For software/hardware bound for space vehicles such testing is common practice; a
Technology Readiness Level (TRL) system, developed by NASA, is used to describe the amount of development/testing
a system has undergone [29]. However, deployment of AI/ML carries additional risk that needs to be accounted for. The
complex nature of AI/ML models, which are often treated as black boxes, makes the logic behind each decision opaque.
The need for extensive testing is additionally highlighted by the fact that the processing hardware on space vehicles can
be an entirely different type of processor than what was used to train the model. It is not straightforward to predict how
a model will perform on an FPGA based on how it performed on a GPU or CPU. In any of the environments under
consideration, as the level of risk grows so to should the level of trust needed to deploy, which requires rigorous and
thorough testing of resource consumption, system/environment interactions, and security vulnerabilities.

Each of the components or artifacts in an AI/ML system should be tested under conditions as similar as possible to
the intended deployment environment. For ground this is relatively straightforward as AI/ML systems are commonly run
in this environment and well established methods already exist. The widely available compute in the ground environment
not only reduces the need to optimize models over various physical constraints, it also allows for running shadow models
(models that undergo testing on real-time data but whose outputs are only compared to the actual outcome and the
current production version of a model, if one exists) with continuous monitoring. For the edge, mobile, tiny, and space
environments, real-time testing is more difficult to achieve. The limited compute available in these environments makes
it difficult if not impossible to deploy shadow models while the current version of a model is in operation. In this
situation either downtime for the service needs to be allowed to run a shadow model until satisfactory operation is shown,
or the shadow model must be run on the ground on equivalent hardware and data. With space deployments, the latter
method is complicated by latency issues related to communication with satellites, and the inability to always be online.

AI/ML systems deployed on space vehicles need to achieve desired levels of performance while constrained on
processing power, power consumption, heat generation, volatile/non-volatile memory usage, and other limitations
introduced by the operational environment. The AI/ML system as a whole, including data ingestion/preprocessing,
model inference, output postprocessing, data/model monitoring, and decision making need to be tested against the same
metrics as the model inside it. Testing the model and AI/ML system components separately allows for identification of
bottlenecks and performance issues while testing the system as a whole validates overall performance. For example, it is
often possible to simplify a model through creative feature engineering, but if the creation of these features requires
extensive processing or is ineflicient, the AI/ML system may still require more than the available memory despite the
model fitting within the constraints.

Additionally, it would be necessary to test the AI/ML system integration with the other systems it would be interacting
with on the target device (e.g., the datastream from a sensor, another AI/ML system, onboard mission management, or
constellation management). This is needed to not only ensure all software and hardware dependencies are met, but
to also investigate for possible feedback loops. The various systems onboard a space vehicle can interact directly by
transmitting messages to each other and indirectly through a chain of events and resource consumption. The same
resources needed by the AI/ML system will often be shared with other software for mission related applications and
vehicle or payload control. An AI/ML system that consumes more than the initially planned amount of resources can
cause the AI/ML system or another system to fail, which can result in mission failure and, depending on the level of
autonomous control and interaction, damage the space vehicle and other assets or loss of life. Thus there is a need
to rigorously stress test AI/ML systems intended for these environments under the expected resource constraints and
develop a detailed understanding of how allocation of resources for the AI/ML system impacts the additional systems
onboard over the mission of a space vehicle. It will be desireable to deploy AI/ML systems across many types of devices,
like an app on a cellphone or tablet, and it is necessary to develop profiles of performance and resource consumption for
every environment the AI/ML system will be deployed in.

Beyond just meeting goals for performance and resource constraints there are other risk factors an AI/ML system
must be tested against before deployment. Part of certifying an AI/ML system should include developing profiles of the
training and testing data to detect anomalous data and bias, which ideally took place during the prepare and model steps
of the workflow. Additionally, high-quality datasets for these environments can be difficult to come by and relying on
augmentation or simulations potentially introduces unknown vulnerabilities. Questions, such as "How will the model
respond to novel inputs?" or "Under what conditions do we expect the outputs of the model to be valid?" need to be
addressed. The performance of an AI/ML system will naturally degrade over time whether due to data drift, changes in
data pipeline, or corruption of the model weights in memory. Data drift refers to the tendency of the distribution of data
to change over time. For example; the phase, amplitude, and relative position of the individual elements in a phased
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array can change due to vibrations in the array or other environmental effects; the signal arriving at an array can be
impacted by external mechanical and natural sources of noise. The impact of both of these examples is a received signal
with statistically significant differences over time. Data drift can cause a model that once operated within requirements
to perform no better than random guessing. Part of the certification process of an AI/ML system should be to understand
how model degradation can occur, what are the signs it is happening, and what is the best course of action when it does
occur. This testing process may involve simulating data drift to observe how the model performs on data distributions it
was not trained on and from there define a boundary for when the model results should not be trusted. Methods to
monitor the inputs to and outputs of a model for data drift and degradation will need to be implemented into the AI/ML
system.

Deploying AI/ML onboard satellites also creates new potential vectors for cyber attacks. Machine learning models
do not learn perfectly and sometimes the training of the model can result in the learning of non-salient features that,
while informative, can be exploited to cause the model to make erroneous predictions [30]. The training data itself can
introduce vulnerabilities both unitintentially through inadequate curation, or intentionally via a data poisoning attack
(where the training data is corrupted by a malicious individual or group). The fact that machine learning models can
be spoofed has become common knowledge in the AI/ML community, and an active area of research involves both
developing methods to attack AI/ML systems as well as protect them [31-33]. Adversaries could leverage publicly
accessible information pertaining to common model architectures and spoofing methods to produce erroneous results
from AI/ML systems. AI/ML systems are also vulnerable to standard cyber attacks since it is still software. Overall,
adding AI/ML increases the potential attack surface, and the certification of an AI/ML system should include probing
the potential security risks the system presents.

Certifying the operation of AI/ML systems is a vital process for mitigating risks and producing products capable of
meeting the demanding needs of end users. Standardization of testing and validation practices will allow for automation
of certification in the an MLOps pipeline (discussed in more detail in the next section), produce products with consistent
quality, and instill confidence in users. The certify step is the final hurdle to overcome before having a deployable
product and also serves as an opportunity to demonstrate the quality of a product that has been developed.

F. MLOps

Up to this point we have covered the steps involved in developing a model for various environments. We will now
discuss how these steps can be combined and automated through the DevOps practices of Continuous Integration (CI)
and Continuous Delivery (CD). Continuous Integration involves building, testing, and packaging as new code is pushed
to a source code repository. For AI/ML systems this can also include building artifacts needed for running in the target
environment, building and testing compatibility with the target environment, and testing if training converges. The
input to the CI stage will be an automated model pipeline and the output will be the same pipeline packaged for the
target environment. Continuous Delivery involves pushing new packages, manually or automatically, to the target
environment as they become available. There are two steps to Continuous Delivery with an AI/ML system. First a
package containing an automated model pipeline will be pushed to the target environment. Then the automated model
pipeline will build and serve a model as a service or application. Additionally, with AI/ML systems two more practices,
Continuous Training (CT) and Continuous Monitoring, are added. Continuous Training involves training a model
while it is in service to maintain an acceptable performance level, this is also implemented by the automated model
pipeline. Continuous Monitoring involves monitoring the input data and results of the model inference for anomalies or
drift. Collectively the four practices of CI, CD, CT, and CM are often referred to as MLOps. The goal of MLOps is
to introduce automation and monitoring throughout the life cycle of an AI/ML system to ensure only a reliable and
accurate service is deployed.

We present in this section a guideline for implementing MLOps in three distinct environments: ground, edge/mobile?,
and space. MLOps on ground is the simplest due to the availability of powerful computing resources and the relative
ease with which monitoring can be conducted. We base our guidelines for MLOps on ground off of Ref. [34] and from
this source extrapolate guidelines for the edge/mobile and space environments.

1. Ground MLOps
In Figure 4 we show the general steps and artifacts for MLOps on ground. MLOps on ground can be divided into
two main components: the Develop phase and the Deploy phase. Continuous Integration and Continuous Training occur

241n this section we do not explicitly refer to the tiny environment (which consists of microcontrollers such as Arduino and other small devices
with no OS on board) as it can be derived from the edge/mobile guidelines for MLOps.
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during the Develop phase and Deploy phase respectively. Continuous Delivery occurs across both phases where in the
Develop phase an automated model pipeline is delivered and in the Deploy phase a model is delivered. Continuous
Monitoring occurs in the Deploy phase.

The Prepare, Model, Optimize, and Integrate steps described in the previous sections occur during the Develop
phase (Sections IV.A-IV.D). These workflows generally involve exploratory analysis and at any point the developer can
be redirected to a previous step or workflow. Generally development begins with data preparation, and continues to
model selection, training, and evaluation. In the data preparation stage the model inputs should be kept in a feature store
that will also be accessible during the Deploy phase. A feature store is a centralized repository where you standardize
the definition, storage, and access of features for training and serving [34]. After evaluation the model should be
reviewed to ensure minimum standards are met. Upon meeting those standards the source code of the model is stored in
a repository, from which it can be retrieved for deployment. At this stage, Continuous Integration, which envelops the
model deployment workflow, begins. The model deployment workflow involves converting the model source code into a
format compatible with the target processor and the development of artifacts to maintain and monitor the model. The
artifacts of the AI/ML system are then tested to ensure proper execution and behavior.

These artifacts will generally consist of:
* An automated model pipeline which should perform the following processes:
— Extract data from the feature store
Validate the data
Prepare the data for training
Train a new model
Evaluate the new model
Validate the new model’s performance against previous versions
Incorporate the optimal model into the prediction service

* A model registry which stores previous versions of the model produced by the automated model pipeline.

* A metadata store to track previous executions of the automated model pipeline to help with reproducibility,

comparisons, and error analysis.

* A monitoring system to track various statistics of the models performance.

* A trigger system to determine when to run the automated model pipeline or restart the Develop phase. The trigger

can be determined by performance of the model and/or a schedule.
After development, the artifacts are tested to ensure proper function and performance. Next a final review is conducted
before the packaged automated model pipeline is released for delivery to the target environment.

The major steps in the Develop phase are largely the same across the three environments and the differences at
workflow level have been discussed in the previous sections. The main differences are the types of artifacts built during
Continuous Integration, which we cover in the next sections.

During the Deploy phase, the packaged automated model pipeline from the Develop phase is built in the target
environment. After the automated model pipeline is built it trains and delivers a model for a prediction service. The
model is then monitored for a model performance or schedule based trigger to update the model either through the
automated model pipeline or by restarting the Develop phase. After a new model is trained and validated to have
optimal performance the prediction service is updated with the new model and the cycle continues. This phase varies
the most across the three environments as the impact of limited available computation power and communication must
be considered.

2. Edge/Mobile MLOps

Deploying an AI/ML system in the edge/mobile environment adds additional complexity to MLOps. Instead of the
Deploy phase existing entirely on connected servers it is split across both a server and an edge or mobile device. For
simplicity, for the remainder of this section we will refer only to edge devices as the MLOps practices are the same.
How the Deploy phase is split across the server and edge device depends on the computational demands of the AI/ML
system and the computational power of the edge device.

In Figure 5 we show a diagram of MLOps for the edge environment with three different levels of complexity for
deployment. We refer to the simplest deployment as Deployment Lvl. 0. For Deployment Lvl. O the edge device serves
only to collect data and perform minor processing before transmitting the data to the server hosting the remaining
artifacts and services.

For Deployment Lvl. 1 the prediction service is either simple enough or the edge device is powerful enough to
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host the prediction service. This level of deployment requires the creation of two new optional artifacts during the
Develop phase. The first is a system to locally log performance metrics of the model. The second is a smaller deployed
version of the feature store. The purpose of these two artifacts is to reduce communication between the server and the
edge device, increasing the speed with which an alert of performance degradation can be made and reducing prediction
latency. The automated model pipeline and other artifacts necessary for Continuous Training remain on the host server.

The final level of deployment, Lvl. 2, does not add any additional artifacts but now the model is simple enough or the
edge device powerful enough for the entire automated model pipeline to be hosted on the edge device. This final level
of deployment minimizes the time between model degradation being noticed and the delivery of a new automatically
produced model.

3. Space MLOps

Conducting MLOps in space requires addressing several additional complicating factors. In the space environment,
not only is the available computing power extremely limited and shared across many applications, there are thermal/power
duty cycles, limited telemetry, and radiation induced faults to contend with. Onboard AI/ML systems must also be made
to work within the CONOPs of a satellite’s mission.

Due to the limited compute available on a satellite it will generally not be possible to deploy a fully automated
model pipeline capable of training and delivering a new model onboard. Even if the onboard processor was capable of
handling the training of a model, the often long training times would interfere with the ability to perform other onboard
processing, interfering with the mission. Additionally large amounts of data are necessary for training models, which
would impact the limited data storage available onboard. Realistically, only the simplest of training schemes are feasible
onboard with state of the art processors, such as online training of simple models. As a workaround to these limitations
we propose using two automated model pipelines for AI/ML systems onboard satellites, as shown in Figure 6. The first
of these pipelines would be the now familiar automated model pipeline deployed on a server, capable of handling the
delivery of a new model from the data extraction stage all the way to model validation. The second pipeline (onboard
model pipeline) would be a simpler version running onboard a satellite. The purpose of the onboard model pipeline
would be to perform basic maintenance of a model, fault mitigation, and validation of the model’s performance until a
new model can be uplinked to the satellite.

In addition to the onboard model pipeline, methods will need to be put in place to handle uplink and downlink of
model updates. For most missions there will only be a limited window of opportunity to handle the transmission of data
and the sustainment plan of a model needs to be built around these windows. The developers will need to consider
strategies such as making model updates small enough to fit within a single attempt to transmit or having the ability to
send larger updates over multiple transmissions. There will also be additional considerations with what data to transmit
back to the ground. The retraining a model may require the collection and transmission of additional data meant to be
processed onboard.

In the space environment, limited computing power and varying duty cycles mean any AI/ML system will likely not
be running at all times. All of the components of the AI/ML system must be designed to handle interruptions due to the
normal scheduling of mission processing, loss of power, and overheating. Each step in the MLOps process needs to be
designed to execute only when there are enough resources available to complete the step and methods need to be built in
to handle incomplete execution of steps.

Conducting MLOps in the space environment adds significant complexity, but it is necessary. Some of this additional
complexity comes from the need to build additional artifacts to maintain and schedule the AI/ML system. The greatest
source of complexity is likely to be incorporating a plan operating, monitoring, and updating the system within the
constraints of a mission’s CONOPs. It is not a matter of if an AI/ML system’s performance will degrade, but when.
Different AI/ML system’s will degrade at different rates but it is guaranteed to happen and procedures need to be in
place to ensure the validity of automated mission critical decisions.

V. Hardware Landscape
To know what is possible with AI/ML in space it is necessary to have an understanding of the different types of
processors or accelerators that are available for computation and their capabilities. Here we provide a brief overview of
several types of processors and highlight their strengths and weaknesses for performing AI/ML acceleration in space.
We then follow up with a discussion on specific space-grade computation hardware that is currently on the market and
what we may see in the future. We note that in this section we only consider applications of using these processors for
inference only and do not consider the applicability of different hardware for training.
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Throughout this section the following processing units will be discussed:

* CPU: Central Processing Unit

* FPGA: Field Programmable Gate Array

* GPU: Graphics Processing Unit

Generally speaking, a CPU is good at evaluating complicated decision trees and performing operations one task
at a time. Conversely, a GPU is not very well suited for evaluating decision trees, but is very good at computing
vectorized workloads such as matrix multiplication. This optimization for vectorized operations has lead to GPUs
being the currently preferred computation unit for AI/ML as many AI/ML algorithms, deep learning in particular,
are based on linear algebra. FPGAs are optimized to be a blank slate where any combination of digital logic can be
implemented, though they generally lack in the high-bandwidth memory that GPUs tend to have. FPGAs have several
advantages when it comes to AI/ML computations, which we discuss below, leading to increased interest in the units. In
the following discussion we provide a comparison of the computation units with respect to AI/ML processing.

A. Processor Comparison

In order to better compare these very different computational units, the scope of comparison will be limited to the
application of AI/ML. The subjects to be compared will include the following:

* Throughput: the quantity of data being processed through a system within a unit of time.

* Latency: the time taken from an input action to result in an output from the system.

* Sensor Integration: the process of retrieving data from a sensor, performing pre-processing steps and feeding the

results into the model.

 Ease of Update: the difficulty in the process required to change the deployed model functionality.

 Radiation Tolerance: the tolerance of each piece of hardware to radiation exposure and commercial availability.

* Ease of development: the difficulty of deploying a model to each type of hardware.

* Power: the efficiency of computations with respect to power consumption for each type of hardware.

1. Throughput and Latency

The venerable CPU is capable of evaluating nearly any model due to the general purpose nature of the device
However, it is not very performant in either throughput or latency due to the small number of parallel processes it can
evaluate. Even with the comparably faster clock rates against both GPU’s and FPGA’s, both its throughput and latency
can be lacking due to the smaller number of computation cores.

FPGAs on the other hand offer great performance with high throughput and low latency. FPGAs can inherently
provide low latency as well as deterministic latency for real-time applications such as consuming a continuous data
stream from a sensor and directly feeding the data to the model, which would bypass an ordinary CPU. Typically
designers will build a neural network from the ground up and structure the FPGA to best suit the model. FPGAs can
offer performance advantages over GPUs when the application demands low latency and low batch sizes — for example,
with speech recognition and other "real-time" analysis workloads.

GPUs instead are able to provide a higher bandwidth than FPGAs, at the cost of higher latency. They are better
for highly parallel computations, such as training deep neural networks, thanks to the very high memory bandwidth.
Bandwidth is one of the main reasons why GPUs are faster for computing over CPUs. GPU cores are usually organized
into blocks of 32 cores that all execute the same instruction on multiple data points at the same time making vectorized
math much quicker to implement. Modern GPUs tend to have over two-thousand cores depending on the application
environment, allowing for a huge amount of data to be processed in one clock cycle. Ignoring the transfer time from
storage or RAM to a GPU’s VRAM, GPUs have lower latency than CPUs for highly parallelized algorithms since they
devote proportionally more transistors to arithmetic logic units and fewer to caches and flow control. GPUs found in
edge devices will only have cores numbering in the hundreds, still allowing for a greater bandwidth than CPUs and
FPGAss also found in edge devices. GPU’s however require a CPU or FPGA to command the high-level logic to drive
computations.

25

25Some models such as spiking neural networks and quantum neural networks are designed for different computing architectures but can be
simulated on general purpose processors.
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2. Sensor Integration

Sensor integration is a very broad topic, therefore the scope of this section will be limited to the flow of data. A
CPU or GPU is likely to retrieve data through a peripheral interface. Peripheral interfaces will add additional latency to
the pipeline and will potentially add a new bottleneck for data ingestion. However, the peripheral devices often can work
off of direct-memory access which minimizes CPU overhead for acquiring the data. If preprocessing is required, both
throughput and latency will be negatively impacted.

FPGAs can help overcome I/O bottlenecks. They are often used where data must traverse many different networks
at low latency. They’re useful for eliminating memory buffering and overcoming I/O bottlenecks—one of the most
limiting factors in Al system performance. By accelerating data ingestion, FPGAs can speed the entire Al work-flow.
FPGAs can also enable sensor fusion with minimal overhead. FPGAs excel when handling data input from multiple
sensors, such as cameras, LIDAR, and other sensors.

3. Radiation Tolerance

CPUs and FPGAs have come in radiation hardened and tolerant models for decades thanks to the demand in the
space industry. GPUs on the other hand have seen little demand for radiation tolerant models until recently and options
available on the market remain limited. Most processing demanding highly parallelized computation has been performed
on the ground. As there are no radiation hardened GPU designs, most efforts to make radiation tolerant GPUs involve
shielding low-power GPUs designed for edge applications.

4. Power

CPUs are generally very power efficient for generalized workloads, but would require much more total energy to
complete vectorized tasks than either FPGAs or GPUs. This is due to the serial nature of CPUs, they are optimized for
control flow that allows for code branches to occur with little penalty.

GPUs tend to be more power efficient than CPUs when applied to a vectorized workload. They work well when
operating on large independent datasets due to the exploitation of data and thread level parallelism. They also work very
well on linear code that have very few changes in control flow. GPUs generally don’t do well with branching code since
it can starve functional units of work leaving them idle. They also don’t generally have large caches, and the individual
functional units are relatively slow which makes mispredicting a branch result in potentially serious performance and
power penalties.

With FPGAs, designers can fine-tune the hardware to the application, helping meet power efficiency requirements.
FPGAs can also accommodate multiple functions (e.g. sensor fusion), delivering more energy efficiency from the chip.
It’s possible to use a portion of an FPGA for a function, rather than the entire chip, allowing the FPGA to host multiple
functions in parallel.

5. Ease of Development

Having the greatest possible computational performance does little good if it is exceptionally difficult to develop
AI/ML models for the hardware. Most AI/ML model development libraries (e.g., Tensorflow and PyTorch) provide
robust support for compiling models on a CPU. Compiling a model to a GPU requires additional effort to efficiently
parallelize the computations across the many cores. In the case of NVIDIA GPUs this can be accomplished with CUDA
and cuDNN libraries developed by NVIDIA. GPUs from other manufacturers require similar drivers and libraries.
There is broad support for deep learning operations on GPUs as they are currently the primary accelerators of deep
learning models. Initial installation of the drivers and libraries can be challenging but methods such as containerization
have made this process easier as it only needs to be done once. The need to install these additional drivers and libraries
makes deploying an AI/ML model on a GPU a little more difficult than a CPU, but the massive performance increase
due to the parallelization makes the effort worthwhile. FPGAs can prove significantly more challenging to deploy
AI/ML models to. Only recently have manufacturers started to provide tools to ease development of deep learning
models for FPGAs, like Xilinx’s Vitis Al. This presents another difficulty as each manufacturer provides a different
toolset. Additionally the available tools for compiling deep learning models on FPGAs provide only limited support for
deep learning operations. Deploying a model on a FPGA can require significant changes to a deep learning model to
account for unsupported operations; this compounded with the steep learning curve associated with programming for
FPGAs can lead to costly development.
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6. Ease of Update

The process for updating an active model can vary between the various platforms. For CPUs and GPUs, the process
usually embraces conventional and robust methods of swapping over runtime control to a new model. This usually
results in minimal down time and allows for automatic fallback in the event of a failed update. FPGAs on the other hand
require the logic fabric to be re-flashed which requires the hardware to go offline during the update process. The fabric
is also unable to revert itself to the previous design in the event of a failure, the device overseeing the flash of the fabric
will need to maintain that logic.

7. Summary

Figure 7 shows a notional comparison of the strengths of each hardware option. The further the representative area
reaches from the origin of the chart, the better the performance in the labeled category. Generally speaking, the more
surface area covered by each type of hardware the better the hardware is at performing AI/ML operations onboard space
vehicles. As an example, for applications where latency and radiation tolerance are the key criteria (equally rated),
then the FPGA would be the best choice since GPUs aren’t radiation hardened at this time. Additionally, each type of
hardware could theoretically be combined to achieve maximal performance in most categories. One such combination
could be the combination of a GPU with an FPGA that has an on-board microprocessor.

B. Heterogeneous Compute

Heterogeneous computing refers to systems that use more than one type of processing core. These systems can
benefit from higher processing efficiency by adding coprocessors that can perform specialized computing tasks, e.g.
a FPU (floating-point unit), GPU, or FPGA. For example, GPU’s need a CPU for the high-level logic but the CPU
is also useful for preparing batches of data while the GPU is performing inference operations. An FPGA and GPU
combination can also be beneficial by running small low-latency models on the FPGA and then utilizing the GPU when
a more complicated model should be applied to the data. An example would be a two stage system for Automatic Target
Recognition (ATR). Data streaming from a camera can produce more frames per second than an ATR model is able to
evaluate. Instead it would be more efficient to deploy a low-latency model on the FPGA to detect important frames and
then send the selected frames to a more complex model on the GPU, where targets would be identified. These systems do
have their own challenges though that are not found in homogeneous systems. The presence of multiple processing cores
have all the same issues involved with homogeneous parallel processing systems while adding potential non-uniformity
in system development, programming practices, and overall system capability. As an example there needs to be an
interface defined between various types of hardware, in the case of a CPU/GPU system this interface is a well-defined
protocol on the PCle bus. However, when interfacing a generic CPU with an FPGA the interface is not well defined and
could involve a lot of overhead to design a solution. This is not always the case though, when using a Xilinx SOC with
an embedded processor developers can make use of integrated solutions such as the proprietary AXI bus or DMA.

There are some options that may provide better overall performance in the future. Most of the examples are
purpose-built ASICs that target AI/ML applications to accelerate training and inference of deep learning models or,
in some cases, focus on inference-only applications. Some examples include ASICs such as the Tensor Processing
Units (TPUs) and Edge TPUs coming from Google, and neuromorphic processors being developed by Intel and other
manufacturers.

C. Space Hardware Landscape

In the previous sections we compared the three major types of computational units available in the space environment.
In this section we look at the currently available processors utilized in space and compare them to what will and may be
available in the near future. The primary metric we use for comparing computational performance is Giga-Floating-Point
Operations Per Second (GFLOPS) which, for most devices, can be found either from datasheets or benchmark
tests[35-55]. Additionally the number of GFLOPs for a single inference with a 32-bit neural network model can be
calculated and the ratio of GFLOPs to GFLOPS can then provide a rough estimate of the time required for a single
inference of a model on a particular type of hardware. We also use peak operating power for a device to estimate
GFLOPS per Watt (GFLOPS/W) and use this as an indicator of computational efficiency. In Figure 8 we present a
scatter plot of GFLOPS against peak operating power in Watts for various computational devices. Figure 8 is meant
to provide a rough estimate of the performance of the various devices under consideration, to facilitate a discussion
on current computational trends, and is not meant to be a definitive statement on the quality of each product. In the
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following, we provide a brief discussion of the current state of computational power in space and infer what will be
possible in the future based on developments in edge processing.

The current generation of space qualified processors (e.g., BAE RAD 750) lag significantly behind what is possible
on the ground (green), in terms of GFLOPS, by several orders of magnitude. The BAE RAD750 is extremely deficient
relative to the other devices and being able to run valuable AI/ML applications on the RAD750 is unlikely. The BAE
RADS5545 and the Microsemi RTG4 are capable of roughly 10 times the GFLOPS as the RAD750, but, when compared
to what is possible at the edge (orange), they are still vastly inferior. The RAD5545 and RTG4 would only be able
to perform multiple inferences per second with small models like MobileNet (a neural network designed to perform
image classification on mobile devices) and would only be able to perform near real-time inference on data streams with
significantly smaller models. While the RAD750, RAD5545, and RTG4 are the least performative processors on the list
they also provide the greatest tolerance to radiation, making the three devices more suitable for long term missions.

The Innoflight CFC-400 is a heterogeneous device with a CPU and an FPGA. We provide two data points for the
CFC-400, labeled CFC-400 Max and CFC-400*. The former is the theoretical maximum GFLOPS possible assuming
maximum utilization of the FPGA on the device, the latter is the GFLOPS achieved for an AI/ML application on a
COTS (commercial off the shelf) equivalent processor [56]. We provided the two data points to highlight the difficulty
in obtaining peak performance with an FPGA and that realistic peak performance is likely to be somewhere in the
range of the two data points. The biggest drawback of the CFC-400 is using the FPGA for acceleration of AI/ML
models, particularly for neural networks. Many of the popular tools for developing and training neural networks (e.g.,
Tensorflow, PyTorch) are designed around deployment on x86 CPUs and NVIDIA GPUs. Compiling and running a
neural network on a FPGA, that was initially designed for another processor, can be a difficult process. Tools exist to
ease this burden (see Section IV.D) but there are still various pain points in learning these tools along with a lack of
full support for all operations found in neural networks. Achievable performance should improve as better tools for
optimizing AI/ML models on FPGAs improve. The CFC-400 is capable of significantly greater inference rates than the
RADS5545 and should be able to perform real-time inference with well optimized models or operate models at slower
rates while additional processing is happening.

Newer space qualified devices, like the Innoflight CFC-500, Ibeos Edge 1U, and the Moog Deep Delphi iX5, will
increase radiation tolerant computational power in space by several orders of magnitude relative to the RADS5545, while
maintaining similar power needs. All three of these devices combine a CPU and GPU and will be able to achieve
inference rates similar to what is possible with a highly optimized CFC-400. The main advantage presented by these
devices is the utilization of a GPU instead of a FPGA. As mentioned previously, GPUs and CPUs are significantly
easier to deploy AI/ML models to when compared to an FPGA. This ease of deployment is a significant advantage
and potentially a worthwhile trade for an increase in power consumption and decrease in GFLOPS. The CFC-500 was
released after the CFC-400 and the former has lower theoretical GFLOPS/W than the latter, but in application this may
not materialize due to the relative ease with which models can be deployed on GPU. The CFC-500 was initially released
with a NVIDIA Tegra K1 SoC GPU; however, that GPU is now obsolete and the future design of CFC-500 is unclear.
With devices like the CFC-500 one could implement a two stage change detection algorithm; a smaller model like a
MobileNet could be used to scan data streaming from a camera at very high inferences per second and if something of
interest is detected the image could then be sent to a larger model for a more thorough analysis. The Ibeos Edge 1U is
also of interest as powering two of these devices would only require slightly more energy than the CFC-500 but provide
the ability to deploy multiple AI/ML systems simultaneously.

The edge environment is seeing massive gains in computing performance. The NVIDIA Jetson, AMD Ryzen
Embedded, Xilinx Versal, and Intel Stratix lineups are able to achieve GFLOPS/W ratios that are better than the NVIDIA
1080Ti (a GPU that several years ago was considered top of the line for graphics processing) with a fraction of the
volume. As technology continues to improve and the demand for AI/ML onboard increases, these devices (or similar
ones) will find their way into space vehicles, allowing for complex AI/ML systems onboard. The Trident Versal Digital
RF Transceiver (VDRT) will utilize a Xilinx Versal AI VC1902 (capable of ~ 11.2 TFLOPS) as its primary processor
and is slated to be released during the second quarter of 2022. This will likely make the VDRT one of the most powerful
space-grade processors and bring computing to space that is on par with the edge.

We also highlight the Coral System-on-Module (SoM); while not the most performative device for AI/ML processing,
it requires the least amount of energy and is able to achieve maximum performance with only 2 watts. The Coral SoM
consists of an ARM CPU with an integrated GPU and a Google Edge TPU. Technically the Edge TPU is an ASIC that is
only capable of 8-bit deep learning operations using Tensorflow Lite (the device only supports a limited number of
common deep learning operations) and the great energy efficiency comes at the cost of this lack of versatility. Since the
Coral SoM only performs 8-bit operations, we cannot directly compare the performance of the device to the others in
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terms of GFLOPS. Instead, we use latency benchmarks for model inference with the Coral SoM [55] and extrapolate the
minimum GFLOPS needed to achieve the same latency with a 32-bit MobileNet model. Therefore, using an ASIC
architecture and quantizing models to an 8-bit format allows one to achieve performance similar to the Jetson Nano with
one fifth of the power. A system composed of several of these devices could conduct inference with many AI/ML models
simultaneously with relatively little energy demand. Currently the radiation tolerance of the Coral SoM is unknown, but
rad-tolerant ASICs have been produced and ASICs built specifically for accelerating deep learning models could be
applied in space in the future. The biggest drawback to ASICs is the lack of reprogramability. CPUs, GPUs, and FPGAs
can all be reprogrammed to perform completely different tasks, but ASICs can only do what they were initially designed
for—an Edge TPU could never be used for any computation other than deep learning operations. Various models can be
compiled on an Edge TPU, but the operations required for the execution of a model on the device must adhere to a
short list of common matrix operations. Therefore, an ASIC could never be the only compute available in a payload.
Instead, ASICs could be utilized to accelerate deep learning models while a second type of processer is used for other
computational needs.

VI. Conclusion

Future space systems will rely increasingly more on AI/ML for autonomy and processing data faster than closed-loop
ground processing timelines. AI/ML processing onboard satellites will add new requirements to meet operational, safety,
and customer needs. The space environment poses new challenges for AI/ML processing not seen in the ground and
edge environments including a more diverse set of heterogeneous, low-SWaP, rad-tolerant compute devices. Developing
AI/ML applications for space requires considering the target environment throughout the development workflow and new
approaches to implementing MLOps in low-SWaP, distributed, optionally-connected environments. While new advances
in edge processing devices deliver significant acceleration capability for deep learning models, their applicability in a
space environment is to be seen. In this white paper, we have derived the driving requirements for AI/ML solutions in
space; identified the differences between the ground, edge, and space environments; provided a reference architecture
for end-to-end development, deployment, and sustainment of AI/ML systems in the space environment; and evaluated
the current and next-generation processors for accelerating AI/ML models in space.
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